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Chapter 1

Introduction

This research is entitled Agricultural Productivity in Space because it deals
with the measurement and analysis of agricultural productivity especially
along its spatial dimension. It is called in Space because it describes agricul-
tural productivity by means of multilateral comparisons at different aggre-
gation levels and because it deals with the spatial properties of the measure-
ments.

Multilateral comparisons are presented for geographical regions as well
as for farm typologies and farm size classes. Their aim is to provide a wider
perspective on the agricultural production performance in Italy.

The research uses the Italian FADN1 survey data and thus, focuses on the
Italian commercial agriculture as defined by the Italian FADN. Commercial
agriculture is composed solely by farms that are considered large enough
to provide a main activity for the farmer and a level of income sufficient to
support his or her family2. Only farms that have an annual Standard Output
equal or above 4,000 EUR enter the Italian FADN field of survey3.

According to the Farm Structure Survey of 2013, commercial farms in
Italy account for the 70% of the total number of farms, the 90% of the total
Annual Working Units, the 94% of the total Utilized Agricultural Area and
the 98% of the total Standard Output.

This research aims at providing measurements of agricultural productiv-
ity in Italy over the period 2008-2014 and at giving insights on its spatial
properties. The specific research questions answered here are the following:

• What is the recent Italian agricultural performance ?

1Farm Accountancy Data Network. Rete di Informazione Contabile Agricola (RICA)
in Italy

2http://ec.europa.eu/agriculture/rica/methodology1 en.cfm
3http://rica.crea.gov.it/public/it/campo osservazione.php?action=cd 2010
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– How does the actual productive performance compare with the
previously measured one ?

– Are there regional disparities ?
– Is there any relation between regional TFP and the composition
of the agricultural sector within each region ?

• How does agricultural productivity behave in space ?

– Is there productivity clustering ?
– How does the TFP diffuse following a productivity shock?

To answer these questions, productivity measurements are derived at ge-
ographical level, at the level of types of farming and at the level of size
classes.

At geographical level, measurements of productivity are derived at na-
tional level, at the level of FADN regions4, and at NUTS3 level.

Exploiting farm-level heterogeneity and the detailed information con-
tained in the FADN database, productivity measurements are obtained for
the ten types of farming practices as classified by the Italian FADN. Farm
type is a function of its Standard Output. It is defined as the crop or livestock
product group for which its share of Standard Output is maximum5.

Data are further aggregated and productivity measurements are derived
for three farm size classes: small, medium and large. The size of a farm
is defined as its economic size and, again, computed as a function of its
Standard Output.

Agricultural productivity relative levels and growth rates are provided
along each of the dimension and computed using the index number approach.

The index number approach is preferred over other methodologies because
it provides a single measure of productivity that can be used to compare the
production performance of different agricultural producing units over the
period considered. In addition, the measures are relatively simple to derive,
do not require the estimation of a production frontier, can be compared
with measurements provided by international agencies and it can be used to
answer the previous research questions.

Results at national level and at the level of farm typology and farm sizes
point to a declining productivity in Italy over the period considered. Annual
average growth rates are negative at country level. A declining performance
is also observable for all the different size classes and the types of farming,

4FADN regional classification in Italy is similar to the NUTS2 classification by Eurostat.
The only difference is the FADn classification splits Trentino-Alto Adige into two separate
regions, Trentino and Alto Adige.

5http://ec.europa.eu/agriculture/rica/methodology2 en.cfm#tsotfs
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except for the Wine sector6. Regional level performances show large varia-
tions within the period and across regions. The highest levels of productivity
are observed in either the Northern regions and in some of the Southern ones.
It is also shown that significant correlations exist between the composition
of regional agricultural sectors and their regional performance.

Results are compared with the most recent calculation of agricultural pro-
ductivity in Italy at regional level provided by Pierani (Pierani, 2009). It is
shown that there are some similarities and stark contrasts between the results
of the two researches. These difference might be due to an actual change in
productive performance of Italian regions but also due to the differences in
the data used and in the measurement approach.

In the second part of the research, the focus is on the spatial properties
of the productivity measurement. Here, space-time dependence of produc-
tivity is inspected at the level of NUTS3 in the country. The granular level
of analysis is useful to gain insights on the possible site-specificities of the
agricultural production processes and to account for the large variability in
topographic features, and in soil and climate conditions within the country.

The NUTS3 level is the most detailed spatial aggregation level that allows
the systematic coverage of the Italian territory using the FADN sample.

A linear relationship between relative levels of productivity, its temporally
lagged value, its spatial lag and other explanatory variables is hypothesized
and estimated using the BCLSDV estimator. A selected estimated relation-
ship is then used to model the diffusion process of a productivity shock hitting
specific locations.

This research is important for, at least, three reasons. First of all, it
contributes to the issues of food security and environmental sustainability
in Europe. Secondly, it provides natural key performance indicators for the
Common Agricultural Policy and provides insights for future CAP policy-
making. Thirdly, it contributes to the debate on the possible slowdown of
agricultural productivity growth in developed countries.

For what regards the contribution to the issues of food security and en-
vironmental sustainability, food security is defined at the 1996 World Food
Summit as the physical and economic access at all time for all people, to
safe and nutritious food to meet their dietary needs and food preferences
for an active and healthy life (FAO, 1996). Environmental sustainability is
defined as the maintenance natural capital (Goodland, 1995). Productivity
is defined as the amount of output produced per unit of inputs used (OECD,

6The Wine sector includes the production of com-
mon wine, quality wines and the production of grapes
(http://www.rica.inea.it/public/it/disegno campionario.php?action=ote 10)s.
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2011). Increasing productivity contributes to the issues of food security and
environmental sustainability in Europe because it either means:

– increasing the ability to produce the same amount of output with less
use of resources;

– increasing the amount of output produced using the same amount of
resources;

– both increasing output produced and resources used.
Anyhow, increasing productivity means contributing positively to the issue
of food security lowering production costs and to the issue of environmental
sustainability by using less resources.

Despite the fact that the analysis focuses solely on Italy, results are rel-
evant also at a European level given then importance of Italian agriculture
in Europe. According to the latest FSS (Eurostat, 2013), in 2013 Italy rep-
resents:

– the 9.3% share of the number of agricultural holdings in the EU-28;
– the 6.9% share of the total EU-28 Utilized Agricultural Area;
– the 7.2% share of the total EU-28 Livestock Units;
– the 8.5% share of then total EU-28 Annual Working Units;
– the 13% share of the total EU-28 Standard Output.

Thus, Italy represents one of the largest share of the European agricultural
sector.

For what regards the ability to benchmark the Common Agricultural
Policy, index numbers productivity measures can be used to evaluate the
achievements of the objectives of the CAP in the latest financial framework
2007-2013 because:

– agricultural productivity growth is the first of the objectives of the
common agricultural policy;

– index numbers productivity measures are one of the CAP impact indi-
cators used by DG AGRI;

– the time span covered by the latest Italian FADN data collection spans
the period 2008-2014 and covers almost completely the 7th financial
framework.

The amount of money from the EU Budget poured into the Italian agriculture
by the Common Agricultural Policy is large. On average, annually around
6.8 billion EUR are received by beneficiaries in Italy. In the period 2007-2011
the total CAP expenditure in Italy represented the 10.6% share of the total
EU-27 budget (Bonfiglio et al., 2016). Productivity measurements could
provide a measure of the return-on-investment of the CAP support.

The third main contribution of this research regards the additional sup-
port given to the debate on the possible slowdown of agricultural productivity
growth in developed countries in recent years. The hypothesis of a slowdown
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in agricultural productivity growth was brought about after the international
agricultural commodities price spikes of 2007/2008 and 2010/11 and the per-
sistent price volatility since 2007. World food prices increased dramatically
in 2007 and in the 1st and 2nd quarter of 2008. Afterwards, they fell dra-
matically but increased again during 2009 and 2010, peaking again in 2011
at a level slightly higher than in 2008.

Rising and volatile prices imply a tight market where supply is constrained
and demand is growing. For a long time, during and after the Green Revolu-
tion, there have been a consensus over the ability of technology to cope with
population and income growth. Science contributes to technical change and
technical change is one of the main sources of productivity growth (Wang et
al., 2015). Productivity growth has been regarded for long time the main
contributor to output growth in agriculture (Ball and Norton, 2010). The
changes in agricultural production were associated with major technological
innovations that transformed the relationship between inputs and outputs in
agriculture.

Recent price spikes have raised concerns over the ability of technology to
keep pace with increasing demand, especially in developed countries and in
the EU.

Empirical analyses have contributed to the debate giving contrasting
views. In particular, measures of TFP growth produced by DG AGRI and by
the USDA are completely different (Matthews, 2014). DG AGRI7 estimated
a TFP growth around 1.6% per annum from 1995 to about 2002 in the EU15.
Since then, they claim that EU15-TFP growth has stagnated, growing only
around 0.3% over the period 2002-2011. TFP growth in New Member States
averaged around 1.6% growth per annum over 2002 and 2011. By country,
higher TFP growth were achieved by New Member States (Matthews, 2014).

According to the USDA instead, agricultural TFP growth in the EU23
has been accelerating over the past decade. This acceleration has been partic-
ularly pronounced in the EU15, while TFP growth in the new MS has slowed
down more recently. According to the USDA agricultural TFP growth rates
for the EU23 were 2.1% for the decade 1991-2000, 2.2% for the period 2001-
2005 and 3.1% for the period 2006-2010 approximately. The New Member
States show a different pattern. The corresponding figures for the EU28 were
1.0% for the period 1991-2000, 1.2% for the period 2001-2005, and a 0.5%
for the period 2006-2010. Over the first decade of the 2000s Italy, Portu-
gal, Netherlands, Germany, Spain and Austria all had growth of 3% or more
according to USDA (Matthews, 2014).

These difference in measurements between two prominent international

7Directorate-General for Agriculture and Rural Development
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agencies can be due to the volume measure for the individual inputs and
outputs to differences in weights used for aggregation, and to differences in
the index number methodology adopted to create the TFP index (Matthews,
2014).

Additional references on international productivity comparisons in agri-
culture can be found in the work of the OECD entitled ”Fostering produc-
tivity and competitiveness in agriculture” (OECD, 2011).

The present research can contribute to the debate by providing produc-
tivity measurements derived with a methodology similar to those used by
the USDA and by DG AGRI but using different data. The FADN data are
very detailed in respect to FAOSTAT and Eurostat data which were used
by the two agencies. Therefore, they could provide a new point of view in
supporting the previously presented researches and it could shed more light
into what explains the difference between these two measures.

The research is divided into 6 parts. The second chapter is dedicated to
the choice of productivity measurements. Several methodologies for the esti-
mation of productivity are presented. Index numbers in a panel data context
are discussed and their choice as productivity measurements is justified. The
third chapter implements the index number methodology in a panel data con-
text to derive relative productivity measurements for the Italian agriculture.
The fourth chapter uses productivity measurements derived at the NUTS3
level in order to analyze the spatio-temporal properties of productivity and
to model the diffusion process of TFP. The fifth part summarizes and dis-
cusses the results obtained in the third and fourth chapter. The last part
is constituted of a series of important annexes. Here, the features of the
sampling plan as well as the data processing steps used in the derivation of
the indexes are described.

14



Chapter 2

Productivity measurement
approaches

In Chapter 3 and Chapter 4 aggregate productivity measures are derived at
different aggregation levels. Multilateral comparisons in a panel data context
are presented at regional level, for NUTS3, for types of farming and for size
classes of farms. The final objective is to give a wider perspective on the
Italian agricultural production performance.

The present chapter provides the theoretical background for the measure-
ment of productivity. It focuses on the choice of the productivity measure-
ment methodology used in the next chapters and on the available alternatives.
It starts with the definition of productivity.

Productivity is defined as how well an economic system converts input
into desirable outputs (Fuglie et al., 2016). The concept of productivity is
often understood as a ratio of output to a single input. A typical example in
agriculture is land productivity, i.e., the ratio between a measure of output
and the surface of land utilized in the production process. Such a productivity
measure, like any other that takes into account a single factor of production,
is referred to as partial productivity measure because it takes into account
solely a single factor of production.

Such a productivity measure might give a biased representation of the
comparisons between agricultural production processes. The reason is that,
land productivity might be low (or high) due factors such as a low (or high)
amount of fertilizers applied or little (or much) labor employed on-site. Miss-
ing this kind of information might lead to biased conclusions.

In the present analysis, the term productivity refers to a measure of Total
Factor Productivity (TFP), i.e., a measure that takes into account of all -
or, at least, as many as possible - the outputs and inputs of the production
process that are marketed. Such a measure is generally defined as a ratio of
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aggregate output to a ratio of aggregate input:

TFP = Y/X

If the production process was single-input and single-output, and the in-
put and the output were homogeneous, then a simple ratio Y/X would suffice
in providing information regarding the production performance of every sin-
gle unit. In such a case, the Partial Productivity measure would coincide
with a measure of Total Factor Productivity.

However, agricultural production processes, especially at an aggregate
level, are multi-input and multi-output. It is necessary to use some multi
dimensional function in order to describe and compare complex production
processes that might substantially differ among each other.

The tool that is most widely used in economics to describe a production
process is the concept of production function. The production function is a
mathematical function that formalizes the relationship between inputs and
outputs. The evolution of the production function that best suits the multi-
dimensional nature of the agricultural production process is the concept of
distance function. A distance function can be input or output orientated. An
input distance function characterizes the production technology by looking
at the minimal proportional contraction of the input vector given an out-
put vector. An output distance function considers a maximal proportional
expansion of the output vector, given an input vector (Coelli et al., 2005).

Distance functions can be used to derive the Malmquist productivity in-
dex, i.e., the basis for most productivity analyses1. The Malmquist index is
purely a theoretical index introduced by Caves et al (Caves et al., 1992).

There are two general approaches through which the concept of the
Malmquist index can be made operational. The first one uses the idea of
comparing the output distance functions of different units or period of time.
Alternatively, the input distance functions could be used. The second one,
called Hicks-Moorsteen approach uses both output and input distance func-
tions instead. In the present analysis, the second approach is used. A TFP
index is constructed as a ratio of two geometric averages, on the nominator
the geometric average of two output Malmquist indexes and on the denomina-
tor the geometric averages of two input Malmquist indexes. Each component
of the ratio is approximated by using the Fisher index number formula.

The Fisher output and input quantity indexes provides an approximation
to the Malmquist theoretical indexes. It can be proven that if the distance

1There exist also generalization of distance functions such as the Directional Distance
Functions and Hyperbolic Distance Functions but we will not talk about this methods
here
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functions used in the derivation of the Malmquist index are quadratic func-
tions with identical second-order parameters, then the geometric average of
the Malmquist indexes is equal to the Fisher index (Coelli et al., 2005). Thus,
the HM TFP index is closely related to the Malmquist index.

So, index numbers provide a theoretically meaningful aggregation method
for inputs and outputs while avoiding strict assumptions regarding the shape
of the production technology frontier. Van Biesebroeck (Van Biesebroeck,
2008) defines the advantages of the index number procedure in the context
of productivity analysis as the ease with which one can access productivity
measures that are robust to the assumptions of the functional form of the
underlying production technology. The main disadvantages instead are the
deterministic nature of the approach and the assumptions of optimizing be-
havior and competitive market structure needed to justify their theoretical
basis.

The HM approach using index numbers is a so-called non-frontier de-
terministic approach to productivity measurement and it is different from
other approaches. The other most widely used alternatives are based on the
comparisons between producing units after the estimation of a technology
frontier. These alternatives can be either deterministic in nature or stochas-
tic allowing for the presence of noise in the data.

The HM approach with index numbers is preferred here over the other
available approaches because it allows the derivation of theoretically mean-
ingful indexes without the need to estimate the parameters characterizing
the technology. So, it is much simpler and allows to focus on the complexity
of the dataset.

The non-frontier approach is a widely used method to measure agricul-
tural productivity and is used by the major statistical offices around the
world. The USDA, DG AGRI and the OECD all derive productivity statis-
tics using this methodology. Their estimates are also at the core of the debate
on the existence of an agricultural productivity growth slowdown in recent
years.

The other approaches to productivity measurement are based on the con-
cept of either a output-orientated Malmquist index or an input-orientated
Malmquist index. These approaches require the analyst to estimate the full
production technology characterizing the production process.

Knowing the production frontier allows the derivation of the Malmquist
indexes as a function of the distance to the frontier. On top of that, Malmquist
indexes derived using this approach allows the decomposition of productivity
change into its sources. Using only quantity information it could be possible
to attribute the change in the Malmquist index to a change in technology
and a change in efficiency by which the technology is used.
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Such approach is made operational typically in two ways one of which
is parametric and the other non-parametric. The first one is the Stochas-
tic Frontier Analysis while the second approach is called Data Envelopment
Analysis. Both ways provide more information with respect to the index
number approach. At the same time however, they introduce complexities in
the measurement process. Also, it can be proven that under certain condi-
tions the two approaches coincide with the HM and index numbers approach.

Despite the disadvantages of index numbers and the HM approach, this
methodology is used here to derive output and input aggregate indexes and to
approximate the Malmquist indexes. Using index numbers, an output index
is created by aggregating together quantities of different output by weighting
them using their value shares. An input index is created by aggregating
together quantities of all the inputs employed in the production process by
weighting them by their cost shares. The two quantity index are then divided
to obtain a productivity index.

It can be proven that the derived output, input and productivity indexes
satisfy several interesting statistical properties (Fisher, 1922). The property
that none of the productivity measurements mentioned here satisfies is the
property of transitivity: a set of bilateral comparisons might not be inter-
nally consistent. This is an extremely important property to be satisfied in
cross-sectional and panel comparisons as it guarantees the uniqueness of the
productivity measurements (Hill, 2004).

In order to derive indexes that can be compared over time and across
units, it is necessary to augment the index number methodology in a way
that it satisfies the transitivity property. In the present research, transitivity
is achieved by means of chaining bilateral comparisons in a spanning tree
that minimizes the Paasche-Laspeyres spreads between the nodes composing
the tree. This procedure allows for the derivation of indexes comparable
over time and across producing units. The indexes at regional level, at the
level of NUTS3, for types of farming and for size classes are derived using
this procedure. Productivity indexes at national level are derived using a
chained Fisher index instead.

This chapter presents the theoretical Malmquist index and the ways by
which it can be made operational. Index numbers and the Fisher formula are
introduced first. Then the minimum spanning tree transitivization method is
presented together with alternatives for the creation of panel robust indexes.
Subsequently, the alternative productivity measurement methodology, that
is, Data Envelopment Analysis and Stochastic Frontier Analysis are briefly
introduced and compared with the HM and index numbers approach.
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2.1 Malmquist index

The Malmquist index is based on the concept of Shephard distance functions
and describes a measure of productivity change. The Shephard distance
function can be thought of as a generalization of the concept of production
function. It accommodates for a multi-input multi-output production pro-
cesses. The Output Shephard Distance function is defined as follows:

Do(x, y) = min

{
θ :

(
x,

y

θ

)
∈ T

}

where T is the state of technology, x the input vector and y the output
vector. As an example, the Malmquist index using the output distance func-
tion between two adjacent periods will be derived assuming that technology
stays the same in the two periods.

By definition, the output distance function is homogeneous of degree +1
in outputs. Following the exposition in Fried et al. (Fried et al, 2008), in
Figure 2.1 and Figure 2.2 the concept of distance functions is graphically
presented:

Figure 2.1: Productivity and distance functions (1)

The technology T is bounded above by the ray from the origin and, given
free disposability, from below by the x-axis. Two sample outcomes (x0, y0)
and (x1, y1) are projected onto the reference technology by the output dis-
tance function in the output direction. The slope of the ray passing through
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(x1, y1) is larger than the other one thus, productivity is higher for observa-
tion (x1, y1).

Figure 2.2: Productivity and distance functions (2)

Distance functions can be used for multiple outputs and multiple inputs
and, the productivity index as ratios of output distance functions provides
a generalization of the average product ratios. This average product ratio is
the definition of the Malmquist index:

Mo =
Do(x1, y1)

Do(x0, y0)

In the case of two periods of time or two cross-sectional comparisons, it
is likely that the technology T would be different in these two situations;
we would probably have a T0 and a T1 that differ from each other. In such
a case, both technologies could be used as reference technology for making
comparisons. Since no preference between the two exists, it was decided to
define a productivity index as the geometric average of the two:

TFP01 =
√

M o
0 ∗M o

1 =

√
Do

0(x1, y1)

Do
0(x0, y0)

∗ Do
1(x1, y1)

Do
1(x0, y0)

The Malmquist index is a theoretical index and is typically made oper-
ational using non-frontier or frontier approaches. The first way is the index
number approach. It a so-called a non-frontier method because it does not
require the estimation of a reference technology. With this method, output
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and input comparisons are made assuming that producers are technically and
allocative efficient. If the data is assumed to be noise-free, that measure can
be interpreted as a measure of technical change. However, if one if willing
to make the additional assumption that the distance functions can be rep-
resented by quadratic functions, than the approximation to the Malmquist
index would be exact by using the Fisher formula as index number formula.

The second way is the frontier approach. Under this approach, the focus
is on the comparisons between the performance of producing units using a
common technology frontier. The technology frontier is the best-practice
surface that is estimated from the data and used to compare production
performances by inspecting the extent to which producers fail to reach that
frontier. The frontier approach can be used in two ways. In the first way, the
assumption is that there is no noise in the data and that the failure to reach
the frontier is entirely due to technical inefficiency of producers. This is the
deterministic frontier approach. The second way allows for noise in the data
and assumes the frontier surface as stochastic.

The frontier approach is a more sophisticated way to implement the
Malmquist index with respect to the non-frontier approach. The data is
used to fully describe the technology. The comparisons of production perfor-
mances against a frontier allows an implementation of the Malmquist index
that includes the descriptions of its sources of growth:

• technical efficiency;

• technical change.

However, the estimation of a full technology poses some conceptual and
statistical challenge that introduces complexities in the analysis.

In this research the focus is on the micro-nature of the data and, the HP
approach through index numbers is preferred over the other available ones.

2.2 Hicks-Moorsteen TFP Index

The present research uses the Hicks-Moorsteen (Coelli et al., 2005; Fried et
al., 2008) approach to derive space-time comparable productivity measures
for each level of analysis. This approach is fairly easy and is based on a ratio
of the geometric average of two output Malmquist indexes and the geometric
average of two input Malmquist index.

HM TFP Index =
QIoutputst

QI inputst

=

√
M output

s ∗M output
t√

M input
s ∗M input

t
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The Malmquist indexes are approximated using the Fisher index number
formula:

HM TFP Index =
Fisher output quantity index

Fisher input quantity index

The Fisher index is exact for the geometric mean of the theoretical
Malmquist index when the technology is a quadratic functional form. As
the quadratic function is a flexible function, the Fisher index is called su-
perlative.

Index Numbers and the Fisher formula

Index numbers are defined as functions that measure changes of a set of prices
and quantities over time and/or across a number of units (Coelli et al., 2005).
There are several index numbers formulas. The most widely used are the
Laspeyres, Paasche, Fisher and Tornqvist formulas. In the present research,
output and input quantity index are derived using the Fisher formula.

Given vectors of prices p and quantities q for two time periods and/or
units s and t, the Fisher index is defined as follows:

QIFisher
st =

√
p′
sqt

p′
sqs

∗ p
′
tqt

p
′
tqs

Index numbers are typically chosen on the basis of their statistical prop-
erties and on the basis of their economic foundation.

For what regards the statistical properties of indexes, the Fisher formula is
the index number formula that satisfies most of the statistical tests available
to compare such indexes. These tests, proposed by Fisher (Fisher, 1922), are
the following:

• Positivity : the index should be everywhere positive;

• Continuity : the index is a continuous function of price and quantities;

• Proportionality : if all quantities increase by the same proportion than
the index should increase by that same proportion;

• Dimensional Invariance: the quantity index must be independent of
the units of measurement used in the analysis;

• Time-reversal test : for two periods s and t:

QIst =
1

QIts
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;

• Mean-value test : the quantity index must lie between the respective
minimum and maximum changes at the commodity level;

• Factor-reversal test : it requires that multiplying a price index and a
volume index of the same type should be equal to the proportionate
change in the current values;

• Transitivity : for any three periods and/or units s, t and r this test
requires that:

QIst = QIsr ∗QIrt

.

The Fisher index is the only index that satisfies all the properties listed
above with the exception of the circularity, or transitivity, test. In fact, no
index number formula satisfies the circularity test.

To make an index number comparable across-spatial units it is necessary
to derive it using specific procedures. These procedures will be discussed in
the next session.

For what regards the economic foundation of the index number formu-
las, the Fisher index is called exact for a quadratic aggregator function. An
index number is exact for an aggregator function, i.e., it is consistent with
an aggregator function, when it is equal to the ratio of two aggregator func-
tions computed using the same price and quantity information. Because
the quadratic production function is a flexible production function, and the
Fisher index is exact for a quadratic function, the Fisher index is called
superlative (Diewert, 1992).

The necessary hypotheses to be made in order to derive the economic the-
oretic properties of the index number formulas is that production is technical
and allocative efficient.

2.2.1 Panel comparisons using index numbers

Standard index number formulas, either fixed-based or chained, satisfy many
statistical properties except for the transitivity property. Following Hill (Hill,
2004) this property can be formulated as follows:

QIjs,kt = QIjs,mu ∗Qmu,kt

and it can be described as the equality of a bilateral comparison between
unit j in period s and unit k in periods t with an indirect comparisons via
unit m in time period u.
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Because of the failure to satisfy this statistical property - except in cases
in which the weights attached to each item in the derivation of the index
number formula is the same for all producing units - the standard index
number algorithms are not suitable for making productivity comparisons in
time and across producers. The main issue with the lack of transitivity is
that more than one estimate could be derived from the measurement (Hill,
2004).

The solutions adopted by the literature to solve this comparability issue
are based on two different methods. The first method is based on the idea
that indexes can be derived by comparing all units under analysis simulta-
neously (Rao et al., 2010). This is the EKS approach. Under this approach
a first set of non-transitive index numbers are derived using the standard
formulas. Then, in a second step, these measures are transformed in such
a way that the matrix of all comparisons satisfy the transitivity property
while minimizing the deviations from the original index (Rao et al., 2010).
This approach is one of the most widely used in the literature of produc-
tivity measurements in agriculture. It is especially used by statistical offices
such as the OECD, DG AGRI, Eurostat and the USDA to derive space-time
comparable price index statistics. The main issue with this methodology is
that it considers all binary comparisons as equally reliable. However in agri-
culture, as it is true also for many other economic sectors, it is well known
that some comparisons are more reliable than others. Reliability stems from
the similarity of the production processes. Productivity comparisons are cer-
tainly more reliable when two similar production structures are compared
with each other rather than when comparing two dissimilar ones.

Because of the failure of the EKS transitivity procedure in recognizing
that production structures differ from each other, the present analysis favors
a second approach in the derivation of transitive index. In contrast to the
EKS procedure, this second approach is based on the idea that comparisons
across a set of producers over time can be made by chaining together bilateral
comparisons that are selected based on the similarities of their production
processes. This method is called minimum spanning tree approach and re-
quires the selection of a set of bilateral comparisons to be chained together.
To satisfy the transitivity property, the chain of bilateral comparisons must
contain no cycles. In other words, the set of bilateral comparisons should
represent a spanning tree. The set of bilateral comparisons is established
through a specific procedure that identifies the pairs of most similar pro-
duction structures based on their similarities in prices and quantities. The
similarity measure used to identify the set of bilateral indexes is the Paasche-
Laspeyres spread (Hill, 2004):
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PLSjs,kt =

∣∣∣∣∣∣log
(
QILjs,kt
QIPjs,kt

)∣∣∣∣∣∣
Thus, the indexes are obtained by chaining bilateral comparisons across

a spanning tree that is the spanning tree that minimizes the global distance
between the nodes of the tree where this distance is defined as the Paasche-
Laspeyres spread:

min

K−1∑
edge=1

PLSedge

Because the method is based on the idea that comparisons should be made
between similar producers, the minimum spanning tree chaining method is
seen as a major development with respect to the EKS procedure in the deriva-
tion of transitive index numbers (Rao et al., 2010). The spanning trees used
to construct the transitive output and input quantity indexes are represented
in Appendix C and Appendix E.

Trade-offs when indexing in time and space

In panel data comparisons, a tension exists between the spatial and temporal
dimension (Hill, 2004). The tension can be described using five criteria:
temporal fixity, spatial fixity, temporal consistency, spatial consistency and
temporal displacement. Hill (Hill, 2004) has proposed different methods to
generate a set of panel robust indexes and evaluate them based on these
criteria.

Temporal fixity is respected by a panel comparison whenever the set of
comparisons derived in a panel dataset are not affected by the inclusion of a
new temporal data observations.

Spatial fixity is respected whenever the set of comparisons derived in the
panel dataset are not affected by the inclusion of the information regarding
a new producing unit.

Temporal consistency is respected if the panel comparison is units sepa-
rable, i.e., if the overall comparisons can be broken up into a series of sepa-
rate temporal comparisons for each producers that are linked together. This
means that the temporal results for each producer do not depend on the
other producers in the comparisons.

A panel comparison is spatially consistent if it is time separable, i.e., if
the overall comparisons can be broken up into a series of separable spatial
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comparisons for each year. This means that the spatial results for each year
do not depend on the other years in the comparison.

Temporal displacement measures the time span between time periods rep-
resented in the formula of bilateral spatial comparisons subsumed within a
panel index comparison (Hill, 2004). The units of temporal displacement
are the same as the intervals between time periods in the panel data set.
Temporal displacement of a panel comparison is the maximum temporal dis-
placement of each of the bilateral spatial comparisons within it.

Hill (Hill, 2004) proposed six panel comparisons methods and evaluated
them using these criteria.

The minimum-spanning-tree considers each vertex of the tree as a space-
time observation. The total number of vertexes in the tree is given by KT
where K is the number of producing units and T the number of time periods.
The spanning tree is selected based on a defined distance function. In the
present research, this method is adopted to generate panel robust productiv-
ity indexes and the Paasche-Laspeyres spread is used as distance function.
This method violates spatial and temporal consistency, and temporal fix-
ity. Still, it is favored because is based on the idea of comparing production
units with similar production structures and is robust to the choice of the
reference space-time observation. As this research is mostly based on the
cross-sectional dimension of the data, this method seemed to be the most
appropriate choice.

Minimum-temporally-fixed-graph is a method that constructs the graph in
a series of steps. The first step consists in making a multilateral comparison
using the EKS method for the first year of the panel. Then the vertexes
for the following year are connected to those of the previous year by the
minimum-spanning tree method and so on for every year of the panel. Using
this method, temporal fixity is respected while temporal consistency and
spatial consistency are not.

Temporally-consistent graph consists of a linkage between separate tem-
poral comparisons for each producing units. A temporally consistent graph
is obtained by linking together all these temporal comparisons. Temporal
consistency and temporal fixity are assured. Spatial consistency is violated.

Spatially-consistent graph consists in a series of multilateral comparisons
long as the number of time periods in the analysis. The spatial comparisons
are made for each of the year and then linked together though a chronological
unit of a single producing unit. The method violates temporal consistency
but satisfies spatial consistency and temporal fixity.

A temporally-fixed grid graph is constructed from purely spatial compar-
isons and purely temporal comparisons. Thus, the graph has a grid structure.
EKS spatial comparisons are made at a certain time interval, and temporal
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comparisons are made using chronological chains, except in the year in which
the EKS comparisons are made. This method violates temporal consistency
and spatial consistency, unless the EKS procedure are made every year. Tem-
poral fixity is satisfied.

Lastly the multilateral method uses trasitivization algorithm such as the
EKS is applied to the whole panel of comparisons. The method violates
temporal consistency, spatial consistency and temporal fixity.

No consensus has emerged over which method is better to generate panel
robust comparisons. The decision of the minimum spanning tree was taken
here because it is a practically easier procedure in respect to the minimum
temporally fixed graph and the temporally fixed graph, because it is based
on the similarity of production structures of the space-time units involved in
the comparison, because it is not sensitive to the choice of benchmark space-
time unit unlike other methods such as the temporally consistent graph or
the spatially consistent graph.

2.3 Data Envelopment Analysis

It is a frontier, deterministic, non-parametric method for measuring produc-
tivity. It uses a measure of distance from the observed performance of each
producer to the estimated frontier and it uses this distance to compare them
in terms of efficiency. Any deviation from the frontier is attributed solely
to technical inefficiency. No room is made for the assumption of statistical
noise in the data.

A short definition of DEA is that it provides a mathematical programming
methods for estimating best practice production frontiers and evaluating the
relative efficiency of different entities (Bogetoft and Otto, 2011).

The non-parametric nature of the methodology is its main advantage and
makes it easier to implement with respect to the frontier parametric methods.

DEA approximates the unobservable production frontier by wrapping
with a convex hull the data on observed productions of entities.

The frontier T is approximated using the minimal extrapolation principle
(Bogetoft and Otto, 2011) where T ∗, the estimated frontier, is constructed
as the smallest subset of the and output space that contains the data, and
satisfy the returns to scale assumption characterizing the technology.

The basic assumptions in DEA are the following:

1. free disposability ;

2. convexity ;
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3. return to scale;

4. additivity.

The distance measure in a DEA context can be directly calculated using
four linear programs for each producer in the panel. One issue that was
recognized in DEA frontier estimation is the presence of slacks.

The slack problem is when a firm is placed onto the vertical or horizontal
part of the estimated frontier. In such cases, the entity is considered as
technically efficient as it lies onto the frontier but still it could improve its
situation by producing more output (or by using less input if it lies onto the
horizontal part of the frontier).

The two solutions proposed in these cases are: using a penalty factor for
slacks that is large enough to recognize the possible slack and small enough
not to alter the numerical results; to solve the dual problem using strictly
positive input and output prices.

By using panel data, it is possible to replicate the analysis in each of the
accounting period of the analysis and derive the corresponding Malmquist in-
dex. The presence of the frontier allows to split the change in the Malmquist
index into a change in the technological frontier by looking at the shift of the
estimated frontier and into a change in technical efficiency, i.e., how much
the failure to achieve the frontier of best practices has changed over adjacent
periods.

According to Van Biesebroeck (Van Biesebroeck, 2008) the main advan-
tage of DEA is the absence of functional form or behavioral assumptions.
Disadvantages are the deterministic nature of the methodology which makes
the measurement sensitive to even one outliers for one of the entity under
investigation and the problem of estimating the efficiency for some particular
firms. Under variable returns to scale or example, each firm with the lowest
input or output level in absolute terms is also fully efficient.

2.4 Stochastic Frontier Analysis

The other most widely used approach for implementing the Malmquist pro-
ductivity index is the Stochastic Frontier Analysis. This methodology is
particularly complex but informative.

It is a frontier, stochastic, parametric method. It extends the literature
of the econometric estimation of production technologies with deterministic
frontier allowing the presence of statistical noise in the data.

In the literature of deterministic frontiers, the most widely used estima-
tion methodologies were OLS, COLS and MOLS estimation of production or
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distance functions. The first one focuses on the estimation of the technolo-
gies parameters associated with a function passing through the data. This
methodology is not consistent with the idea that the production frontier is
the frontier of the production possibility set. To be consistent with this idea,
the second method extends the first by shifting the estimated regression line
accordingly and wrapping up all the observations. The deviation from the
frontier is defined as technical inefficiency. The MOLS approach uses the
OLS procedure to derive a regression line in the first step. In the second
step, it uses the methods of moments and assumptions regarding the distri-
bution of the inefficiency terms to derive inefficiencies for each producers. All
the three specification can be extended to include a time trend to take into
account of possible shifts in the production function due to technical change
in panel data settings. The main problem with this methodologies is that
they do not account for noise in the data.

SFA is a major evolution of these methodologies as it allows the derivation
of a frontier function consistent with the idea that the production frontier
represents the set of maximum production possibilities and by introducing
noise in the model. Noise is introduced by a composite error term that
includes a technical inefficiency term and a random noise term. The noise
term is a typical random component designed to capture the effects of random
exogenous variations in the operating environment (Kumbhakar and Lovell,
2008). The inefficiency term is a one sided error component designed to
capture the effects of inefficiency and constitutes the main contribution of
SFA to the literature of production analysis (Kumbhakar and Lovell, 2008).

SFA originated from two papers published nearly simultaneously by Meeusen
and van den Broeck (Meeusen and van den Broeck, 1977) and Aigner, Lovell,
and Schmidt (Aigner et al., 1977). They shared the composite error struc-
ture that can be analytically expressed in a production function context as
follows:

y = f(x; β) ∗ exp(v − u)

where y is a scalar output, x is a vector of inputs and β is a vector of
technology parameters. The first error component v ∼ N(0, σ2

v) is intended
to capture the effects of statistical noise, and the second error component
u � 0 is intended to capture the effects of technical inefficiency (Kumbhakar
and Lovell, 2008).

Thus, producers operate on or beneath their stochastic production fron-
tier f(x, β) ∗ exp(v), according to the value of u. If u = 0 then the producer
operates on the production frontier while, if u > 0 there is a certain degree
of technical inefficiency (Kumbhakar and Lovell, 2008).

After the estimation of the composite error term it is possible to decom-
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pose it into its two components thanks to the work of Jondrow (Jondrow et
al., 1982) in which the authors proposed the expected value E[u|v−u] as so-
lution to the problem of disentangling the error component to the inefficiency
term.

The estimation of such a model in a panel data setting could be done
using a fixed-effect or random-effect estimator without the need to specify
a specific distribution for the inefficiency term thus reducing the number
of hypothesis to be made. If one is willing to specify a distribution for the
error term than, it is also possible to use the maximum likelihood estimator to
obtain estimates of technical efficiency and estimates of the other parameters
of the model.

In a panel data setting, it is also possible to specify a time-varying ineffi-
ciency term and a time trend to capture the shift over time of the stochastic
production frontier. There are various approaches to the estimation of a
time-varying technical efficiency. No consensus has yet emerged over which
method is superior and the choice often depends on the analyst.

The SFA allows the full estimation of a production technology, it al-
lows the full description of the production process and to decompose the
Malmquist index into its constituent components namely technical efficiency,
technical change, scale efficiency and allocative efficiency. Thus this approach
is very informative. However, this advantage comes at a high cost.

There are great challenges to the estimation of production frontiers. The
two main challenges are statistical issues such as functional form specification,
and theoretical ones such as endogeneity and distributional assumptions.

2.5 Concluding Remarks

In this chapter a set of the most widely used methodologies have been briefly
review. To date, no clear consensus has emerged over which methodology
is best for productivity comparisons. Every methodology has its own ad-
vantages and disadvantages. Much of the decision in empirical analyses is
based on the specific data availability, the objective of the analysis and the
assumptions one is willing to make.

In the present study, the HM approach with index numbers was selected
as a tool to derive productivity comparisons over time and across different
producing units. This methodology was favored over the DEA and the SFA
because of its simplicity and comparability with the literature on agricultural
productivity at national and international level. The index number proce-
dure is the simplest approach among the three reviewed. It is simple because
it requires a one-step only: the derivation of transitive index numbers. DEA
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and SFA would require a multi-step approach in order to derive panel con-
sistent measures of productivity. First, they would require hypotheses on
how to aggregate the large number of outputs and inputs into a meaning-
ful number of aggregate statistics. Then, the parametric or non-parametric
estimation strategy would be required to derive Malmquist indexes of produc-
tivity. Thirdly, a transitivization method such as the EKS would be needed
to create panel consistent comparisons. The simplicity of this method allows
us to avoid the complexity of a multi-step measurement approach and focus
attention on the structure of the database.

A major challenge of this work consisted in the compilation of the required
price and quantity statistics from the FADN farm-level data. Much of the
attention have been devoted to the inspection of the data, the understanding
of its features and to pre-processing steps needed to derive price and quantity
statistics. The index number approach was considered to be the best choice
in these circumstances. All the same, it would be interesting to extend the
scope of the analysis by using and comparing productivity measurement with
the alternative approaches.

Equally interesting would be the extension of the analysis in order to take
into account of the environmental impacts of economic activity. Such an ob-
jective requires the inclusion of undesired outputs and consumption of natural
resources into the measurement. An SFA framework would probably be the
best way to pursue such extensions. An SFA framework would allow the
inspection of a multi-output technology while introducing hypotheses on the
relationships between output, bad output, marketable and non-marketable
inputs. An alternative approach would require the development of sets of
agri-environmental indicators and present them alongside typical measures
of TFP (Fuglie et al., 2016).
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Chapter 3

Agricultural productivity in
Italy over the period 2008-2014

3.1 Introduction

In this research, multilateral productivity comparisons for regions, for types
of farming and for economic size classes of farms are presented to describe
the agricultural production performance in Italy over the period 2008-2014.

Productivity measurements are derived using the index numbers approach
and the Fisher formula. In order to make productivity statistics comparable
across spatial units and over time, indexes are constructed using the mini-
mum spanning tree method proposed by Hill (Hill, 1999; Hill, 2004). In this
procedure, transitivity of indexes is achieved by chaining bilateral compar-
isons in spanning trees where the vertexes are all the space-time units and
the edges are Fisher bilateral comparisons.

The main contribution of this research is the derivation of productivity
statistics at regional level in Italy together with productivity statistics for
the different types of farming and for size classes of farms. The derivation
of productivity indexes at regional level and at the level of types of farming
and size classes were made possible by the use of farm-level data and by
leveraging farm-level heterogeneity. Price and quantity information for each
level of analysis are obtained by aggregating weighted farm-level price and
quantity statistics to the desired level of aggregation. The data used are
taken from the Italian FADN database. This contains survey information on
annual samples of around 11,000 farms defined as commercial farms. Thus,
the research focuses on the professional side of the Italian agricultural sector
and excludes the very small-holding farming practices.

The use micro data posed three main methodological challenges. First
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of all, not all the necessary information for the derivation of output and
input indexes were readily available in the Italian FADN tables. Missing
information, such as the unit price of production, the price of family labor
and the price and quantity of capital services, had to be imputed for all
farms. Other information such as the price of fertilizers and pesticides for
all time periods considered, and such as the opportunity cost of investing
in durable assets had to be imported from additional data sources such as
Eurostat or the European Central Bank.

Secondly, the information contained in the FADN database regarding
products produced and reused on-site by farms is very large. Collectively,
more than a thousands crop and livestock products are recorded. Because
input and output comparisons are based only on the items shared by two
adjacent units, such a large number of products might lead to comparisons
between units involving only a small fraction of their total production. In
addition, dealing with very large output and input matrices poses serious
computational challenges. Thus, to simplify the construction of aggregate in-
dexes and to make bilateral comparisons across space-time units more mean-
ingful, a specific products aggregation procedure based on the results of the
minimum spanning trees was used. This procedures consists in aggregat-
ing similar products by taking into account their characteristics and units of
measurement.

Thirdly, there was a need to derive aggregate price statistics from weighted
farm-level information. This is achieved here by means of production-weighted
average prices for each level of aggregation.

Results show that Italian productivity is declining over the period 2008-
2014. The aggregate productivity performance at country level is a mixture
of very different performances at regional level. Two productivity regional
clusters, one in the North and one in the South were found. Productivity
statistics at regional level are then compared with the work by Pierani and
Rizzi (Pierani and Rizzi, 2009) and by Pierani (Pierani, 2009). They provided
agricultural output, input and productivity statistics at regional level using
the AGREFIT database (Pierani and Rizzi, 2009) over the period 1951-
2002. It can be seen that the relative performances for some regions in
2008-2014 were similar to those provided by Pierani for the last year of his
multilateral analysis 2002. However, some stark contrasts were also found.
Multilateral comparisons between types of farming show the emergence of
the dairy sector, the horticultural sector, the wine and grapes production
sector and the fruit production sector as the most productive ones. All
types of farming show a declining productive performance except for the
wine and grapes production sector. Productivity indexes for size classes of
farms show a direct relationship between economic size and performance. Our
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results show that the composition of regional agricultures in terms of types
of farming and in terms of size of farms helps giving a qualitative explanation
to the productivity performances observed at regional level. However, this
composition does not seem to be the only factor driving their performance.
Some other region-specific factors might play an important role in driving
their performance and have to be investigated further.

3.2 Literature review

This research aims at providing a picture of the production performance of
Italian professional agriculture at an aggregate level, at regional level and
along the dimensions of types of farming and class sizes. The more re-
cent available measurements of agricultural productivity in Italy at regional
level are provided by Pierani and Rizzi (Pierani and Rizzi, 2009) and by
Pierani (Pierani, 2009) and are based on price and quantity statistics col-
lected/derived at the level of Italian regions. To our knowledge, there are
no existing comparisons of agricultural productivity in Italy at the level of
types of farming and sizes of farms.

The works done by Pierani and Rizzi and by Pierani are based on the
data contained in AGREFIT (Pierani and Rizzi, 2009) and cover the period
1951-2002. The first of the two researches provides a description of the
AGREFIT database. This is a set of data tables describing, in terms of price
and quantity information and at regional level, the evolution of the Italian
agriculture from 1951 to 2002. In addition, the authors build chronological
chains of bilateral Fisher indexes to describe the evolution of productivity in
Italy in the period considered. They find a regional average annual growth
rate of productivity larger than 2%. Growth in productivity was particularly
robust in the Central and Southern regions with respect to Northern regions
due to a greater reduction in the aggregate use of inputs.

However, growth performances were not homogeneous over the period
considered. A general slowdown in productivity growth was registered in
the period 1977-2002 with respect to the period 1952-1976. The slowdown
was particularly marked for regions in the North-East, in the Center and in
the South of the country. The authors report also a higher volatility in the
growth rates of Southern regions with respect to the rest of the country and
claim that such a high level of volatility might due to a higher concentration
of crop products in the composition of the aggregate output in the South1.
Such an output structure could be highly influenced by climatic variability

1Aggregate output is composed by 78% of crop products in Southern regions while the
share of crop products stands at 55% in the North-Western part of the country.

35



and the productivity growth trend might be masked by fluctuations due to
weather events.

Pierani (Pierani, 2009), using the same dataset, provides multilateral
comparisons of output, input and productivity statistics for Italian regions
in the same period of time covering 1951-2002. He uses the index number
approach to derive aggregate indexes. He provides panel robust indexes of
relative TFP levels by using a temporally fixed grid graph in which he uses
the Fisher formula to construct bilateral comparisons and the EKS method
to construct transitive multilateral comparisons at five-year intervals. Using
this method, he shows the impressive growth performance in agricultural
TFP in Italy and tests for convergence in productivity levels using panel
data unit root tests. He reports the existence of a period of strong regional
convergence spanning the years 1960 to 1975 and afterwards, he registers a
period long term clustering of Northern and Southern regions along divergent
paths up to 2002. The effects of such a development process can be seen in
Table 3.1 where some of its results are reported.

With our research paper we aim at providing an updated picture to the
productivity statistics provided by Pierani at regional level. By leveraging
farm-level heterogeneity we also aim at giving a qualitative explanation of the
productivity performances of regions. The hypothesis is that the structure of
regional agricultures in terms of types of farming and size of farms influences
the aggregate productivity performance at regional level.

3.3 Data

The analysis uses farm-level survey information from the Italian FADN2.
The sample consists of around 11,000 agricultural holdings for every year of
the period 2008-2014. The FADN sampling strategy consists in a stratified
random sample plus a constant subsample. The universe is composed of
commercial farms3.

The universe is stratified along the dimension of FADN region4, types
of farming and economic size. To infer total values form the sampled in-
formation, each sample is associated with a weight that corresponds to the
number of farms that the sampled one represents within their corresponding

2Rete di Informazione Contabile Agricola
3A commercial farm is defined as a farm which is large enough to provide a main

activity for the farmer and a level of income sufficient to support his or her family (FADN
website).

4FADN regions corresponds to the NUTS2 classification but for Trentino-Alto Adige.
In the FADN classification the region is split into regions, Trentino and Alto Adige. The
total number of FADN regions is 21.
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Region
1951 2002 Average

Rank Level Rank Level growth rate

Valle d’Aosta 1 1.661 1 4.446 1.32
Sardegna 2 1.583 9 2.937 0.95
Sicilia 3 1.498 19 2.545 1.15
Puglia 4 1.332 17 2.683 1.56
Calabria 5 1.226 2 3.528 1.60

Emilia Romagna 6 1.197 7 2.992 1.72
Molise 7 1.113 3 3.412 1.90

Lombardia 8 1.086 11 2.992 2.00
Campania 9 1.040 4 3.357 2.07
Piemonte 1 1.000 14 2.706 2.29

Trentino-Alto Adige 11 0.987 12 2.920 2.55
Basilicata 12 0.956 10 2.929 2.17
Veneto 13 0.833 13 2.905 2.39
Lazio 14 0.731 16 2.689 2.63

Friuli Venezia Giulia 15 0.719 6 3.032 2.97
Marche 16 0.715 15 2.699 2.92
Abruzzo 17 0.703 5 3.090 3.03
Liguria 18 0.692 20 2.421 3.15
Toscana 19 0.618 18 2.652 2.98
Umbria 20 0.604 8 2.962 3.35

Table 3.1: Regional level of TFP presented by Pierani (Pierani, 2009)
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strata. In the present analysis, productivity statistics are derived at national,
regional and at the level of farm typology and farm size using aggregated,
weighted farm-level price and quantity information.

The Italian FADN database is composed of 25 detailed tables regarding
the structure, activities, balance sheet, and CAP support farms receive. A
brief description of the data tables is included in Appendix A. Information
contained in these tables is used to derive price and quantity statistics for
the creation of aggregate output and input quantity indexes.

Aggregate quantities for any level of analysis is obtained by summing
up the weighted farm-level quantities. Prices are obtained as production-
weighted average prices. Whenever price information were not available or
were incomplete, they were imputed or imported from external data sources.

3.3.1 Output indexes

Output indexes for every level of analysis are created using the information
contained in the PRODUCTS table5 . This table contains information on
quantities of the products produced, purchased, transformed, and sold by
the sampled farms. Considering the different units of measurement, methods
of cultivation6 and products names, information on a total number of 1047
different products is available in the table.

To get the necessary price and quantity information for the creation of
the output indexes several steps are taken. First of all, the production value
for each products is imputed from the value information present in the table.
Secondly, the products which exhibit extremely large7 year-to-year percent-
age change in quantity produced are eliminated from the analysis. These
products were excluded because they could have affected aggregate indexes
and because their contribution to the final production of the year was very
small.

The third and last step, before the use of the index number algorithm, is
the selection of products for the creation of the output index. The number of
products in the analysis is very large. Excluding the products that exhibited
large variations, the PRODUCTS table contains information regarding 1018
products. Such a large number poses two main challenges. First of all it
creates computational complexities because of the dimension of the matrices
involved in the derivation of the indexes. Secondly, productivity comparisons
might be less meaningful by considering such a large variety of products. The

5The list of data table of the Italian FADN database is provided in Appendix A
6Three methods are included: in open field, in industrial garden and in greenhouse.
7The products excluded where those who exhibited a percentage rate of change year

after year larger than 10,000%.
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reason is because output and input comparisons between units is a function
of the common items between the two units. As producing units might have
very different composition of their output vector, their output comparisons
might be based on a small number of shared products and be less meaningful.
It is clear that, two conflicting needs arise in the creation of the indexes:

• the need to use the largest possible number of different products to
derive average unit prices that reflect their specific quality;

• the need to aggregate similar products in order to base output and input
comparisons on the largest possible value share of total production of
the units to be compared.

To reconcile the two needs, a multi-step procedure is taken here. The
procedure is based on the idea that the products used in creating the output
index should contain all the most detailed information for the most important
products in terms of value share. Once these major products are identified,
the remaining ones are aggregated into macro-categories. Details on the
steps undertaken to derive the output index are presented in Appendix C.
The output and input indexes for each level of analysis are constructed using
a different products aggregation procedure.

3.3.2 Input Indexes

Several inputs have been used in the creation of the aggregate input index.
They are: labor, fertilizers, pesticides, external services, water, electricity,
seeds, feeding stuff, capital assets, land, reuses, and other general expenses
such as commercialization, veterinary services, costs for the transformation
of products and others.

Labor input is constructed from the information regarding the salary
and hours worked for four groups of workers: family workers, full-time con-
tract workers, temporary contract workers and seasonal workers. The annual
salary for family workers is missing and therefore, is imputed by dividing the
farms net operating income by the number of family workers.

Information on price and quantity of fertilizers and pesticides is obtained
by deflating total costs from the income statement by average prices. Av-
erage prices at farm-level for fertilizers and pesticides are obtained by using
the information included in the tables FERTILIZERS and PESTICIDES.
If farms did not disclose any information in these two tables, their average
prices are assigned based on a regional average.

Total costs for seeds and feeding stuff are taken from the INCOME
STATEMENT and are deflated using the agricultural price indexes provided
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by Eurostat8. The price indexes are national-level prices and therefore they
are equal for every farm.

Total costs for external services are taken from the INCOME STATE-
MENT of farms and deflated by the number of hours of work by external
services. This latter information is included in the table WORK.

Total costs for water usage is taken from the tables CROPS and ANIMAL
HUSBANDRY. Volume of water is taken from the table WATER USAGE.
The table contains information regarding volume of water usage for a limited
number of farms and collected since 2011 only. For this limited set of farms
total costs have been deflated by their corresponding water volume to get
average prices. For those farms that did not disclose information regarding
their water usage, an average price at regional level was imputed and used
to derive implicitly their water usage.

Energy is composed of motor fuels and energy for electricity, heating
and other uses. Total energy costs for these two components of the energy
used were taken from the tables CROPS and ANIMAL HUSBANDRY. Price
indexes used were corresponding Eurostat national level price information.

Capital assets considered here includes machines, buildings, plantations
and livestock. All categories associated with information regarding their ex-
pected life length were included in the analysis. All those categories without
expected information on their life-length information have been excluded.
Capital services were derived as proportional to the farm-level capital stock
while the value component of the capital assets is represented by the sum of
the rental prices for all the assets used. Rental prices was constructed as a
function of the age of the asset, opportunity cost, depreciation, and expected
revaluation.

Land input consists of a quantity component that is represented by the
Utilized Agricultural Area (UAA) and a price component which was con-
structed from the value per hectare included in the table LAND. Land input
was considered as non-depreciable asset and its price component was defined
as a share of the sales value. The share is represented by the opportunity-cost
of the investment.

Farms reuses a portion of their production. It is possible to find the
information regarding the quantity and value of reuses in the PRODUCTS
table. All products under the heading ”Other Uses” were considered as
reuses.

The last input considered in the analysis is composed of costs for the
commercialization, veterinary services, transformation costs, and costs re-
lated to the purchase of consumption materials such as telephone bills, and

8http://ec.europa.eu/eurostat/data/database
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other means of production. Its value component is represented by the total
costs for such expenses while the price component is the Harmonized Index
of Consumer Prices (HICP).

A technical section where the major steps for the creation of quantity and
prices for each input is presented in Appendix E together with the spanning
trees used in chaining bilateral comparisons.

3.4 Productivity measurement methodology

Total Factor Productivity measurements are derived using the Hick-Moorsteen
approach. The HM approach defines a TFP index as a ratio of an aggre-
gate output index to an aggregate input index (Coelli et al., 2005; Fried et
al, 2008). Aggregate output and input indexes are derived using the index
number approach. The index number approach is a non-parametric, non-
frontier methodology widely used by statistical agencies for measuring total
factor productivity. The index number approach is preferred over the others
available because it allows the derivation of productivity measurement with
desirable statistical properties and grounded on economic theory without the
need to estimate a full technology.

Index numbers use information contained in the value shares of input and
output for the aggregation of output and inputs, and allow the comparisons
of multi-input multi-output production processes.

The index number formula used in the derivation of the quantity indexes is
the Fisher formula. This index is exact for a a quadratic production function
and is the formula that satisfies most of the tests proposed by Fisher (Fisher,
1922) for the evaluation of index number formulas. However, the Fisher
index in its basic fixed-based or chained form, as for all the other index
number formulas, fails to satisfy the property of transitivity. In other words,
a binary Fisher comparison between two units, s and t, might not be equal
to the comparisons of the two units through a third one r.

QIst �= Qsr ∗QIrt

Transitivity is an extremely important property when dealing with cross-
sectional or panel comparisons as it ensures the uniqueness of results (Hill,
2004). As the cross-sectional dimension is of the utmost importance in the
present research, a TFP measurement methodology that allows the derivation
of panel robust comparisons is required.

According to Hill (Hill, 1999; Hill, 2004), transitivity is achieved when
using index number formulas for chaining bilateral comparisons across a span-
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ning tree9.

In this analysis, we adopt the minimum spanning tree approach suggested
by Hill where the vertexes of the trees are all the space-time units and the
edges are the bilateral Fisher indexes. The spanning tree is selected among
all possible ones by finding the one that minimizes the sum of the Paasche-
Laspeyres spread of all bilateral comparisons across the tree.

The Paasche-Laspeyres spread is equal to zero when the vector of quan-
tities or the vector of prices between two units is proportional. Thus, by
minimizing the sum of the Paasche-Laspeyres spread, the set of bilateral
comparisons that have the most similar production structure is found. Thus,
output and input comparisons are more meaningful and are less sensitive to
the choice of index number formulas. Bilateral comparisons are derived using
the Fisher formula and transitive index number are obtained by chaining the
set of bilateral comparisons across the tree.

The minimum spanning tree used in the derivation of the output and
input indexes at the level of FADN regions, types of farming and size classes
are contained in Appendix C and Appendix E.

3.5 Results

Results of the index number measurement methodology are presented in this
section. First of all, productivity indexes at country level are presented. Four
different TFP indexes at country level are constructed and presented in Table
3.2. The four indexes differ because of the different products aggregation
procedure used in the derivation of input and output indexes. Although the
aggregation method differs, the final results seem to be robust. Secondly,
results at regional level are presented and compared with the statistics from
2002 provided by Pierani (Pierani, 2009). Thirdly, relative TFP levels are
presented at the level of types of farming. Ten types of farming are defined
in the Italian FADN database and their relative productivity performance
is presented here for the different years of the panel. Fourthly, productivity
statistics for the three size classes included in the Italian FADN database
are shown. Lastly, the composition of regional agricultures is analyzed and
compared with productivity performances at regional level. The objective
is to have a qualitative inspection of some of the sources of productivity
change of regions. Value shares for each type of farming and size classes are
associated with the respective regional performance.

9A spanning tree is a set of connected vertexes that contains no cycles.
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Country level

Relative levels of productivity at country level together with their mean
growth rates and their standard deviations are presented in Table 3.2. Four
different results are presented, each of them is obtained by using a different
products aggregation procedure.

No matter what the products aggregation procedure is, productivity mea-
surements behave similarly. The index is a chained Fisher index normalized
to one in 2008. The series exhibit a generally diminishing trend with a pro-
ductivity peak in 2010. The peak corresponds to the year in which the data
collection methodology changed and a period of high turnover rate in the
sampled companies as shown in Appendix B. The change in methodology
regarded the update of the standard coefficients in the measurement of the
Standard Output10 and the measure by which the economic size of farms was
designed. From 2010, farms stopped being classified as commercial based on
their standard gross margins11 and started being classified as such based on
their Standard Output.

Year TFPname TFPname+um TFPname+um+mc TFPpercAgg=90%

2008 1.000 1.000 1.000 1.000
2009 0.898 0.922 0.916 0.983
2010 1.165 1.202 1.171 1.263
2011 0.758 0.783 0.773 0.833
2012 0.722 0.748 0.740 0.795
2013 0.749 0.774 0.765 0.830
2014 0.764 0.772 0.750 0.814

Mean growth −0.028 −0.022 −0.029 −0.015
Std. growth 0.209 0.209 0.199 0.200

Table 3.2: Chained Fisher TFP indexes for different products aggregation
methods, country level

10The Standard Output (SO) is the average monetary value of the agricultural output
at farm-gate price of each agricultural product (crop or livestock) in a given region. SO of
the holding is calculated as the sum of the SO of each agricultural product present in the
holding multiplied by the relevant number of hectares or heads of livestock of the holding
(FADN website).

11The Standard Gross Margin (SGM) is the average value of output minus certain
specific costs of each agricultural product (crop or livestock) in a given region. The SGM
of the holding is calculated as the sum of the SGM of each agricultural product present
in the holding multiplied by the relevant number of hectares or heads of livestock of the
holding (FADN website).

43



Average growth rates were negative for all results. In the case of the
raw data, annual average TFP growth rates were ranging between -1.5% and
-2.9% depending on the products aggregation procedure adopted.

FADN regions

The FADN classification for Italian regions differ from the Eurostat NUTS2
classification only for one region, Trentino-Adige. Trentino-Alto Adige in the
FADN classification is split into two regions Trentino and Alto Adige. The
other 19 regions remain unchanged.

Results are normalized in such a way that the relative level of productivity
in Piemonte in 2008 was one. TFP relative levels are presented in Table 3.3.

In 2008, the most productive FADN region were Friuli Venezia Giulia
followed by Piemonte, Trentino, Lazio and Veneto. Then least productive
regions were Liguria, Abruzzo, Molise, Toscana and Sardegna. After seven
years, in 2014, the picture has changed remarkably. Emilia Romagna has
become the most productive region and has increased its relative performance
by around 40%. Friuli Venezia Giulia retained an high ranking position
by keeping its productive performance unchanged. An impressive change
was registered by Lombardia that from the 11th position jumped up and
became the third most productive region in 2014. Lombardia increased its
performance by around 40% with respect to its performance in 2008. The
regions that have lost positions in the 7-year period are Piemonte, Trentino,
Marche, Umbria, Campania, Valle d’Aosta and Liguria.

By taking into account the average relative levels of productivity reported
in Table 3.3, there appear to be two clusters of regions associated with a
high relative level of productivity. One is located in the North and includes
Trentino, Emilia Romagna, Veneto, Lombardia, Friuli Venezia Giulia and
Alto Adige, and the other in the South and is composed of Calabria and
Basilicata. A cluster with an intermediate average level of productivity is
composed of most of the regions located in the Central and Southern part of
the country. This group is composed of Umbria, Lazio, Marche and Toscana
together with Puglia, Sicilia, Campania and Molise. Also Piemonte is part
of this group. This group has on average 25% less productivity than the first
group. The last cluster is composed of Sardegna, Abruzzo, Valle d’Aosta and
Liguria. On average, they have around 50% of the productivity of the first
group.

By comparing the ranking of regions based on their average relative levels
of productivity with the productivity ranking provided by Pierani (Pierani,
2009) few features emerge. First of all, there is a group of regions that
have their position almost unchanged since 2002. This group is composed
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FADN 2008 2014 Average Median Average

Region Rank Level Rank Level Rank Level growth growth

FV 1 1.139 2 1.129 6 0.774 -0.063 +0.139
PI 2 1.000 7 0.818 14 0.567 -0.041 +0.101
TR 3 0.991 9 0.722 2 0.882 -0.054 +0.103
LA 4 0.983 5 0.990 10 0.661 -0.098 +0.215
VE 5 0.901 4 1.026 4 0.811 +0.076 +0.133
BA 6 0.873 6 0.899 8 0.703 +0.064 +0.099
MA 7 0.830 10 0.698 16 0.549 +0.082 +0.028
CL 8 0.803 8 0.805 1 0.908 +0.035 +0.092
ER 9 0.801 1 1.378 3 0.853 +0.086 +0.155
UM 10 0.788 12 0.599 9 0.680 -0.086 +0.054
LO 11 0.772 3 1.090 5 0.797 +0.317 +0.183
CM 12 0.728 18 0.412 13 0.625 -0.135 +0.095
AA 13 0.583 14 0.546 7 0.708 -0.064 +0.067
SI 14 0.561 15 0.515 12 0.654 -0.049 +0.092
VA 15 0.520 20 0.352 20 0.476 +0.025 -0.016
PU 16 0.518 11 0.674 11 0.661 +0.041 +0.057
LI 17 0.514 21 0.289 21 0.404 -0.047 -0.075
AB 18 0.495 17 0.474 19 0.486 +0.097 +0.074
MO 19 0.477 19 0.360 15 0.566 -0.021 +0.020
TO 20 0.424 13 0.575 17 0.528 -0.019 +0.145
SA 21 0.337 16 0.478 18 0.496 +0.025 +0.115

Table 3.3: Ranking and relative levels of TFP, FADN regions
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of Calabria, Basilicata, Umbria, Friuli Venezia Giulia, Piemonte, Marche,
Toscana and Liguria.

Secondly, a group of regions have a significantly different positions with
respect of the results in Pierani. Following Pierani, Trentino - that was a
regions with a medium level of relative productivity in 2002 - is one of the
leading regions in terms of productivity according to this research. Emilia
Romagna have climbed up few positions with respect to 2002 while Veneto
have increased remarkably its position together with Puglia. Two regions
that have lost a large number of positions are Campania and Molise. They
were respectively the fourth and the third in terms of relative productivity
levels in 2002 and they are now, on average, the thirteenth and the fifteenth
of the group. Other regions that have seen a considerable positive relative
change from 2002 are Lombardia, Alto Adige, Lazio and Sicilia. Sardegna
have lost several positions instead.

The third feature that emerges is that there are two regions that have
changed dramatically their position in terms of relative levels of productivity.
These two are Valle d’Aosta and Abruzzo. In the work of Pierani, Valle
d’Aosta was the first region in terms of productivity levels either in 1951 and
in 2002. In the statistics presented here instead, Valle d’Aosta is almost at
the bottom of the ranking. According to the analysis by Pierani, Abruzzo
was ranking fifth in 2002 and is now ranking 19th.

Time-series of productivity indexes together with their HP-smoothed se-
ries and their average are presented in Appendix G. The smoothing parameter
of the Hodrick-Prescott filter is equal to 0.5. The smoothing helps identi-
fying the productivity trend in a possibly noisy time-series. TFP estimates
capture the effects of factors such as changes in climate conditions and natu-
ral resources and these effects might mask productivity trends (Fuglie et al.,
2016).

Types of farming

In this section, the results of TFP measurements for the different types of
farming included in the Italian FADN database are presented. There are ten
types of farming practices considered here. They are defined by the Italian
FADN as the type of crop or livestock product for which the Standard Output
contribution to the total Standard Output at farm-level is maximum. The
link between the detailed types of farming at the EU level and the types
considered by the Italian FADN is provided in Appendix F.

The types of farming considered here are Dairy, Cereals, Grazing live-
stock, Fruits, Granivores, Mixed, Olives, Horticulture, Arable crops and
Wine. Productivity indexes are normalized in such a way that productivity
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for Mixed farms in 2008 is equal to one.

TF
2008 2014 Average Average

Rank Level Rank Level Rank Level growth

Dairy 1 1.856 2 1.446 1 1.581 -0.036
Horticulture 2 1.687 3 1.339 2 1.446 -0.036

Fruits 3 1.485 6 1.149 4 1.351 -0.040
Arable crops 4 1.331 5 1.158 6 1.138 -0.012

Olives 5 1.330 4 1.263 5 1.305 -0.007
Wine 6 1.286 1 1.471 3 1.410 +0.023
Mixed 7 1.000 8 0.801 8 0.927 -0.030
Cereals 8 0.951 7 1.025 9 0.926 +0.024

Grazing liv. 9 0.748 9 0.713 10 0.692 +0.007
Granivores 10 0.651 10 0.449 7 1.050 +0.205

Table 3.4: Ranking and relative levels of TFP, types of farming

In 2008, the most productive sectors are the dairy sector, the horticultural
sector and the production of fruits. The dairy sector was almost three times
as productive as the least productive sector, i.e., the granivores sector. In
2014, the ranking has not changed dramatically. The only remarkable change
was made by the wine and grapes production sector that, with an average
annual growth rate of +2.3%, moved from the sixth position to the first in
seven years. The Wine sector has increased its productive performance by
around 12% in the period considered. The relative position of the other
types of farming remained almost unaltered even though most of them have
exhibited negative average annual growth rates over the period.

By taking a look at the ranking of the average relative level of TFP by
types of farming, it is clear that the farming type that is most productive is
the dairy sector. This sector is followed by the horticultural and wine sectors
both with a level of productivity that is around 90% of that of the dairy
sector. The wine sector is followed by the fruits production and by the olives
and olive oil production sectors. These two latter sectors have, on average,
respectively 85% and 82% of the productivity level of the dairy sector. Arable
crops and granivores farming follow. Mixed farms and cereals have similar
average relative productivity levels that is, on average, around 60% of the
productivity of the dairy sector. The least productive sector is represented
by the Grazing livestock sector. It has a considerably low productivity level
around 43% the level of the dairy sector.

The time-series of relative productivity indexes, the HP-smoothed pro-
ductivity indexes and their average levels are presented in Appendix H.
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Size classes

In this subsection, indexes at the level of size classes of farms are derived. The
size classification used is provided by the Italian FADN. It is based on the
concept of economic size and Standard Output, and differs from the other
classification provided at European level. It is composed of three classes:
large, medium-sized and small farms. A small farm is a farm with a Standard
Output lower than 25,000 EUR, a medium-sized farm has a Standard Output
larger than 25,000 EUR and lower than 100,000 EUR, while large farms have
a SO larger or equal to 100,000 EUR.

This classification is preferred over the others available because it is the
only one that does not change throughout the period 2008-2014. However,
because the calculation of the unit value of the Standard Output for each
product changed between 2008-2009 and 2010-2014, the original FADN clas-
sification has been modified in this analysis in order to have a relatively
constant composition across classes. In particular, the Unit Standard Out-
put Coefficients of the period 2010-2014 were used to compute the economic
size of farms for all time periods togheter with the thresholds defined earlier.
A detailed description of the issues and of the procedure used is provided in
Appendix G.

Statistics on productivity levels for each size class in 2008 and in 2014 to-
gether with their average level throughout the period 2008-2014 are presented
in Table 3.5. All statistics are relative to productivity level of Medium-sized
farms in 2008. As it is possible to see, there exists a direct relationship be-
tween economic size and productivity and this relationship remained stable
over time. Large farms were the most productive in 2008 and remained the
most productive in 2014. The ranking of the medium-sized farms and small
farms remained unchanged.

Size 2008 2014 Average Average

classes Rank Level Rank Level Rank Level growth

Large 1 2.054 1 1.381 1 1.581 -0.060
Medium 2 1.000 2 0.866 2 0.893 -0.021
Small 3 0.630 3 0.535 3 0.572 -0.024

Table 3.5: Ranking and relative levels of TFP, size clases

On average, large farms are almost three times as productive as small
farms and close to be two times more productive than medium-sized farms.
However, productivity performances for the three size classes seem to change
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considerably over time and the productivity gap of size classes seems to
narrow. Average annual growth rates of TFP were negative for all class sizes
but with different magnitude. While medium-sized and small farms have an
average annual growth rate ranging between -2.4% and -2.1%, large farms
experienced an average annual growth rate of -6.0%.

Structure of regional agricultures

In this section, the composition of regional agricultures in terms of types of
farming and size of farms is inspected. The hypothesis to be tested here is
that the agricultural structure of regions is what drives their performance.
In Table 3.6, Table 3.7 and Table 3.8 the average annual shares of total
production coming from the different types of farming and for the different
size classes within each region are presented. The regions presented in Table
3.6 are the ones at the top of the average productivity ranking for the period
2008-2014.

TF AA BA CL ER FV LO TR VE

Dairy 0.318 0.061 0.014 0.280 0.164 0.495 0.155 0.155
Cereals 0.000 0.202 0.019 0.065 0.143 0.150 0.006 0.120

Grazing liv. 0.019 0.107 0.033 0.020 0.018 0.038 0.028 0.024
Fruits 0.434 0.204 0.268 0.167 0.066 0.025 0.451 0.063

Granivores 0.003 0.002 0.000 0.039 0.031 0.054 0.000 0.022
Mixed 0.030 0.078 0.073 0.075 0.082 0.033 0.044 0.076
Olives 0.000 0.039 0.467 0.000 0.000 0.000 0.000 0.001

Horticulture 0.103 0.150 0.039 0.134 0.131 0.125 0.062 0.181
Arable crops 0.014 0.122 0.051 0.163 0.038 0.050 0.048 0.092

Wine 0.079 0.034 0.038 0.057 0.327 0.029 0.210 0.266

Size AA BA CL ER FV LO TR VE

Large 0.141 0.308 0.200 0.710 0.628 0.780 0.247 0.596
Medium 0.679 0.377 0.297 0.211 0.230 0.153 0.497 0.276
Small 0.179 0.315 0.503 0.079 0.143 0.067 0.256 0.128

Table 3.6: Average share of production value by source, group 1

In terms of types of farming, some regions are highly specialized with an
average annual share of one of their specialization larger than 40%. These
regions are Alto Adige, Calabria, Lombardia and Trentino. They are highly
specialized in fruits, wine and olives production and in the dairy sector.
Basilicata, Emilia Romagna, Friuli Venezia Giulia and Veneto have a more
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diversified agricultural production structure. Basilicata has, on average, five
types of farming each with an annual share larger than 10%. Emilia Ro-
magna, Friuli Venezia Giulia and Veneto have four types of farming with an
average annual share on the total production value larger than 10%. For what
regards the size of farms, a clear feature seems to emerge in this group of re-
gions. The regions in the Center-North such as Alto Adige, Emilia Romagna,
Friuli Venezia Giulia, Lombardia, Trentino and Veneto are all characterized
by a large share of production coming from large and medium-sized farms
while regions in the South, e.g., Basilicata and Calabria have a large share
of their production that is produced by small farms. In particular, more
than 50% of the production value produced in Calabria is coming from small
farms. On the opposite side, in Emilia Romagna, and Lombardia large farms
produce more than 70% of the regional production value. Such concentration
of activities might influence the relative levels of productivity of these regions.
In particular, the high level of relative productivity of the regions located in
the North might be easily associated with the concentration of activities into
large farms and in the specialization into highly productive sectors such as
the dairy sector, the wine and the fruits production sectors. More difficult
is to explain the remarkable performance of Basilicata and Calabria. Their
production structure is largely made of small and medium-sized farms that
are specialized into types of farming that are not associated with the highest
levels of productivity such as the production of cereals and olives.

The second group of regions is associated with an medium level of rela-
tive productivity that is comprised between 0.7 and 0.5. These regions are
Campania, Lazio, Marche, Molise, Piemonte, Puglia, Sicilia, Toscana and
Umbria. In Table 3.7 their average annual share of production value by type
of farming and size of farms is presented.

What is apparent from the table is that, in general, these regions seem not
to be concentrated into few activities but rather they produce a large variety
of products. The dairy sector is particularly relevant in Campania, Lazio,
Molise and Piemonte. Horticulture is one of the major type of farming in
these regions with an average annual production value exceeding 20% of their
total production for Campania, Lazio, Sicilia and Toscana. Other major spe-
cializations for these regions are the production of fruits and the production
of wine. In terms of size of farms, Piemonte share the typical production
structure of Northern regions with a large portion of its production coming
from large farms and a small portion coming from small farms. Also Toscana
shares a similar structure with an average annual share of production value
coming from large and medium-sized farms exceeding 80%. All the other
regions in this group have a smaller share of production value coming from
large and medium-sized farms.
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TF CM LA MA MO PI PU SI TO UM

Dairy 0.177 0.165 0.010 0.171 0.148 0.069 0.038 0.012 0.044
Cereals 0.020 0.038 0.241 0.243 0.179 0.081 0.043 0.058 0.156

Grazing liv. 0.033 0.089 0.057 0.092 0.083 0.025 0.069 0.031 0.069
Fruits 0.165 0.174 0.050 0.049 0.104 0.149 0.221 0.139 0.054

Granivores 0.015 0.008 0.033 0.023 0.117 0.000 0.006 0.005 0.044
Mixed 0.048 0.045 0.095 0.147 0.068 0.065 0.053 0.054 0.136
Olives 0.066 0.060 0.018 0.016 0.000 0.138 0.051 0.043 0.102

Horticulture 0.314 0.251 0.164 0.055 0.042 0.202 0.288 0.242 0.064
Arable crops 0.119 0.120 0.222 0.130 0.055 0.088 0.091 0.080 0.202

Wine 0.043 0.050 0.111 0.073 0.204 0.182 0.140 0.337 0.131

Size CM LA MA MO PI PU SI TO UM

Large 0.435 0.433 0.365 0.221 0.608 0.297 0.401 0.572 0.456
Medium 0.264 0.304 0.331 0.387 0.270 0.335 0.352 0.241 0.274
Small 0.302 0.263 0.304 0.392 0.122 0.367 0.247 0.187 0.270

Table 3.7: Average share of production value by source, group 2

While for most of the regions in this group seems reasonable to assume
that their production structure - with a diversified structure and a large
share of small farms - might influence their average production, it seems more
difficult to explain the 14th and 17th position in the productivity ranking for
Piemonte and Toscana. They have a production structure largely composed
of large and medium-sized farms and they have their activities concentrated
into highly productive sectors such as the Dairy sector, the Fruit and Wine
production and Horticulture.

In Table 3.8 the composition of the remaining group of regions is pre-
sented. These are the least productive regions during the period 2008-2014
and they have an average relative level of productivity below 0.5.

The first feature that emerges is that Liguria, Sardegna and Valle d’Aosta
have their activities concentrated into a single type of farming. Liguria has
on average more than 65% of its aggregate production value coming from
Horticulture. Valle d’Aosta has more than 60% of its annual production
value coming from the dairy sector while Sardegna has an average annual
share of production value coming from the farming of grazing livestock higher
than 43%. Sardegna has a large share of its production coming from other
sectors such as horticulture and the dairy sector. Valle d’Aosta has large
annual share coming from grazing livestock. Abruzzo has a more diversified
structure with a 25.5% of its average production value coming from the pro-
duction of grapes and wine, a 19.9% coming from horticulture and almost
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TF AB LI SA VA

Dairy 0.084 0.017 0.110 0.602
Cereals 0.040 0.002 0.022 0.000

Grazing liv. 0.072 0.040 0.437 0.194
Fruits 0.066 0.064 0.036 0.051

Granivores 0.010 0.002 0.013 0.000
Mixed 0.085 0.023 0.062 0.037
Olives 0.030 0.102 0.015 0.000

Horticulture 0.199 0.657 0.153 0.065
Arable crops 0.159 0.040 0.085 0.014

Wine 0.255 0.054 0.067 0.094

Size AB LI SA VA

Large 0.365 0.311 0.447 0.308
Medium 0.379 0.365 0.376 0.426
Small 0.257 0.324 0.178 0.266

Table 3.8: Average share of production value by source, group 3

16% coming from growing arable crops. In terms of size of farms, Sardegna
is the region with an higher average annual share of production value coming
from large farms. The remaining three regions have most of their production
coming from medium-sized farms and a large share coming from small farms.
Except for Sardegna that is specialized in the Grazing livestock, all regions
are specialized into sectors of medium and high average level of productivity.
Nevertheless, their relative performance is relatively poor. In terms of size
of farms, the only region with a production structure characterized mostly
by large farms is Sardegna and yet its productive performance is low.

A quantitative look at the associations between productivity, and types
of farming and size classes is given in Table 3.9. Here, the correlations
between relative levels of TFP in each of the year for each region and their
corresponding share of production value for each type of farming and each
size class are presented.

From the correlation coefficient, it seems as if specializing into some types
of farming is associated to a higher level of productivity. A higher share of
production value coming from the dairy sector, the fruit production sector,
and the olives production sectors is associated with higher levels of relative
productivity. Sometimes, as in the case of the fruit production and olives
production sector, the correlation coefficient is highly significant. For the
dairy sector instead, the linear association seems not to be statistically sig-
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TF Corr. coef.

Arable crops -0.009
Cereals 0.018
Dairy 0.137∗

Fruits 0.245∗∗∗

Granivores -0.037
Grazing liv. -0.264∗∗

Horticulture -0.267∗∗

Mixed -0.028
Olives 0.382∗∗∗

Wine -0.035

Size Corr. coef.

Large 0.033
Medium -0.012
Small -0.039

Table 3.9: Correlation between performance and sectoral composition by
source. ∗ : p < 0.1, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01.

nificant. In terms of class sizes, a higher share of large farms is associated
with a higher level of relative productivity. However, the relation seems not
to be clear as all correlation coefficients are not statistically significant. A
negative linear relation exists between productivity and the concentration of
medium-sized or small farms.

All in all, a relationship between the composition of regional agricultures
and their productivity performance seems to exist but it is not clear cut.
A positive relation seem to exist between the specialization into some agri-
cultural sectors such as the Dairy sector, the Olives production sector and
the Fruit production sector. Also, there seems to exist a positive relation
between size of farms and productivity levels. Yet, these associations are
not so clear. A deeper inspection into the sources of the productivity per-
formance at regional level would be required before coming to conclusions.
Such an inspection has to take into account the composition of the regional
agricultures in terms of types of farming and class sizes.
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3.6 Conclusions

Agricultural productivity in Italy exhibits negative annual growth rates at
country level during the period 2008-2014. Using different methods for the
construction of the output index, this work shows that relative levels of pro-
ductivity in Italy decreased by around 20% in the period.

This decreasing trend is also observed at sub-national level. Multilateral
productivity comparisons are created for types of farming and for classes of
farm size and they both show a generally decreasing trend.

For what regards productivity by types of farming, the most productive
specializations are the Dairy sector, the Horticultural sector, the fruits pro-
duction sector and the wine production sector. The least productive sectors
are the granivores sector, the mixed sector, the cereals production sector and
the Grazing livestock sector. This latter types of farming has, on average, a
relative level of productivity that is around 44% of that of the Dairy sector.
Relative levels of productivity of all sectors follow a downward trend with
the exception of the Wine sector that shows an increasing trend over time.

In terms of farms size, there is a positive relation between TFP and size
of farms. On average, large farms are almost three times as productive as
small farms and more than 40% more productive than medium-sized farms.
Growth rates of relative productivity levels by size classes are all negative
with large farms showing the fastest decrease in productive performance over
time. Medium-sized farms and small farms exhibit an average annual growth
rate of respectively -2.1% and -2.4%.

The agricultural sector within FAND regions has a composite structure
with production coming from different types of farming and farms of differ-
ent size. The resulting productive performance of regions over time is mixed.
However, there are large disparities in TFP relative levels. Three groups can
be identified with respect of their average relative productive performance
in the period. Regions with a higher average relative levels of productivity
are Alto Adige, Basilicata, Calabria, Emilia Romagna, Friuli Venezia Giu-
lia, Lombardia, Trentino and Veneto. The group of regions with the lowest
average relative levels of productivity are Abruzzo, Liguria, Sardegna and
Valle d’Aosta. The remaining group has an intermediate average relative
levels of productivity and includes most of the central regions such as Lazio,
Marche, Toscana and Umbria together with regions from the South such as
Campania, Molise, Puglia and Sicilia. Piemonte is the only regions located
in the Northern part of the country that also belongs to this group.

There seems to be a relation between relative levels of TFP for FADN re-
gions and their composition in terms of types of farming and size of farms. In
particular, a higher presence of the dairy sector, the fruits production sector
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and the Olives production sector seems to be associated with higher levels
of productivity. A higher incidence of the horticultural and grazing livestock
sectors in the whole agricultural production process of regions seems to be
associated with lower levels of relative TFP instead. Size of farms matters
in the sense that the presence of large farms seems to be associated with
higher levels of productivity but the relation is not found to be statistically
significant.
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Chapter 4

Spillover effects and diffusion
process of agricultural
productivity in Italy

4.1 Introduction

Understanding the diffusion process of agricultural productivity is useful for
investment decisions at different policy levels. R&D investments and on-farm
innovation are considered to be the main drivers of agricultural productivity
growth (Fuglie et al., 2016). Policy making at regional, national and in-
ternational level can channel resources into specific instruments to promote
the introduction of innovation into the sector and to drive up productivity.
Then, through inter-regional and inter-sectoral channels innovation diffuses
in space and over time leading to positive externalities in the agricultural
production process of inter-related producing units.

This paper aims at modeling the diffusion process of productivity shocks
in specific geographical locations within the Italian agriculture. This can
provide useful insights for guiding R&D investments into the sector.

Diffusion effects of productivity are modeled by estimating the degree
of spatial and temporal dependence of agricultural TFP levels across Ital-
ian NUTS3 and by assuming a unitary productivity shock hitting specific
locations.

Multilateral Total Factor Productivity measurements are derived at NUTS3
level over the period 2008-2014 using the index number approach. A TFP
index is represented by a ratio of an aggregate output quantity index to an
aggregate input quantity index. Comparability of measurements in space
and time is achieved by chaining bilateral comparisons across a minimum
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spanning tree as suggested by Hill (Hill, 1999; Hill, 2004). Vertexes of the
spanning tree are represented by all space-time units while edges are bilateral
Fisher comparisons. Productivity statistics at NUTS3 level are obtained by
aggregating weighted farm-level statistics provided by the Italian FADN.

The inspection of the degree of space-time dependence starts with some
exploratory analyses. A set of spatial autocorrelation tests are carried out
in each year of the panel using different assumptions regarding the spatial
correlation structure across NUTS3. Results show a limited degree of spatial
autocorrelation. Productivity clustering is found in five years of the panel
and its maximum extent was found for relatively narrow spatial correlation
structures. A visual inspection helps uncovering productivity clustering in
the Northern part of the country, across the Padan plain, and in the Southern
part across Puglia, Basilicata, Campania, Calabria and Sicilia.

Space-time dependence of TFP is used in modeling the diffusion pro-
cess and is obtained by estimating a space-time linear panel data model. A
linear relation between relative levels of productivity of NUTS3 and their
temporal and spatial lag is assumed. Some additional explanatory variables
are included in the specification. The selected adjacency matrix is a row-
standardized distance matrix in which neighbors are identified as the set of
NUTS3 whose centroids falls within a 50 kilometers radius from the centroid
of each corresponding NUTS3. This spatial correlation structure has been
selected out of a series of alternatives based on the maximum value of the
maximized log-likelihood and assuming stationarity in space and time. The
relation is estimated using the BCLSDV estimator. Elhorst (Elhorst, 2010)
has shown that the BCLSDV estimator outperforms, in terms of bias and
mean square error, other available estimation methodologies.

Then, using the estimated model and assuming a unitary shock occurring
in specific spatial units, the spread of productivity is observed across NUTS3
over time.

By focusing on one the most diffusive region in Italy, Emilia Romagna, it
is shown that the degree of productivity diffusion in Italy is limited. A unitary
shock hitting every NUTS3 in Emilia Romagna drives up productivity levels
of other locations, even far from the epicenter of the shock. Cumulating the
effect of the shock in every time period, it is possible to derive the spillover
for every NUTS3 in all time periods. Due to narrow correlation structure and
the limited degree of temporal dependence, the long-run spillover effect varies
remarkably in time and space across provinces. NUTS3 that are closer to the
epicenter of the productivity shock have a total spillover effect higher than
those further away. For these regions, spillover effects are quiet rapid and
reach their maximum level after few time periods. Approximately, a unitary
shock hitting NUTS3 in Emilia Romagna reach their maximum effects in
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the NUTS3 in Lombardia in 4/5 years. For NUTS3 that are far away from
the source of the shock, these spillover effects are lower and take more time
to spread. The spillover effect of a unitary shock in Emilia Romagna takes
around 8 years to reach their peak in NUTS3 in Abruzzo.

4.2 Literature review

Since the development of the endogenous growth theory, an extensive strand
of literature has been focusing on the relationship between R&D investments,
innovation spillover effects, and TFP growth in agriculture.

A general result points to the existence of a positive relationship between
R&D effort, innovation and TFP growth (Johnson and Evenson, 1999; Craig
et al, 1997; Alfranca and Huffman, 1999; Shimmelpfenning and Thirtle, 1999;
Gutierrez and Gutierrez, 2003; Esposti, 2011; Lin and Kwan, 2013; Fuglie
et al., 2016). One of the main contribution of R&D activities to agricul-
tural productivity is transmitted in the form inter-sectoral and inter-regional
spillover (Alfranca and Huffman, 1999; Johnson and Evenson, 1999).

Due to proximity and trade, TFP levels in agriculture should converge
across countries and regions within and across countries due to the diffusion
process of technology. However, empirical evidence points to large cross-
country productivity differentials (Ball et al. , 2010; Sheng et al. 2014).
Large differentials are also found across regions within the same country
(Pierani, 2009; Hayami and Ruttan, 1969; Maietta et al. 1995). These
productivity differentials were attributed to differential diffusion processes of
innovation due to local specificities (Griliches, 1960; Nelson 1969; Hayami
and Ruttan, 1969).

Acemoglu and Zilibotti (Acemoglu and Zilibotti, 2001) have argued that
productivity differentials can be explained by the fact that innovations are
developed in specific economic environment, with specific factor availability
and prices. When those conditions are not perfectly met, technology diffusion
could not achieve its full potential in terms of productivity gains.

Griliches (Griliches, 1960) have recognized that the pattern of diffusion
of innovations, such as hybrid corn, has been characterized by marked geo-
graphic differences because of location-specific economic factors.

In agriculture production processes are highly influenced by location-
specific factors such as topography, land quality and climate (Esposti, 2011;
Griliches, 1960). These specificities might influence the agricultural produc-
tion processes across locations and steer the process of diffusion of technology
leading to wide productivity differentials.

Hayami and Ruttan (Hayami and Ruttan, 1969) have argued that due to
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the differential diffusion of agricultural technology, and, to an even greater
degree, of differential diffusion of the scientific and technical capacity to in-
vent and develop new mechanical, biological and chemical technology specif-
ically adapted to the factor endowments and prices in a particular country
or region, agricultural producers are not all on the same micro-production
function.

It is quite intuitive to think that the spread of positive externalities takes
place across producing units over a certain length of time. Imitation and
adoption might be lengthy processes that influence the speed at which tech-
nology can spread. Contemporaneous effects cannot be not ruled out, but
lagged effects might play an important role in the diffusion process of inno-
vation.

Empirical analyses aimed at explaining spillover effects have provided
measures of correlation between productivity measures and R&D efforts
mostly focusing on static models (Johnson and Evenson, 1999) or in spa-
tially lagged frameworks (Keller, 1999; Abreu and Forax, 2004), or providing
summary statistics on the space time evolution of output, input and produc-
tivity measures (Griliches, 1960; Acquaye et al. 2010). To our knowledge,
the only studies that take into account both spatial and temporal dimensions
in examining the dynamics of productivity are Esposti (Esposti, 2011), and
Lin and Kwan (Lin and Kwan, 2013).

Research focused on the quantitative analysis of diffusion processes is re-
cent. Examples of this literature outside the agricultural sector are those
from Parent and LeSage (Parent and LeSage, 2010) and Debarsy et al. (De-
barsy et al. 2012). The first of these two works focuses on the spreading
of the positive effects, in terms of commuting time, to highway segments
following investments for the improvement of a single segment. In the sec-
ond research, the authors inspect the bootlegging effect of cigarettes buyers
across neighboring US states.

For what regards the measurement of agricultural productivity in Italy,
there are several works that were aimed at measuring productivity levels
and rate of growth in Italian provinces and regions. The latest contribu-
tions are given by Maietta and Viganò (Maietta and Viganò, 1995), Pierani
and Rizzi (Pierani and Rizzi, 2009), Pierani (Pierani, 2009) and Esposti (Es-
posti, 2011). These studies have focused the attention on the measurement
of productivity levels and growth rates, and/or on testing convergence hy-
potheses of productivity levels and of growth rates of productivity. However,
none of them have specifically focused on the diffusion of productivity across
locations over time in Italy.

Maietta and Viganò, estimating a stochastic frontier, identified efficiency
levels and technical change for the Italian agriculture using statistics at
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NUTS3 level. They studied the evolution of these productivity parameters
through 1980-1990. They identified an outward shift of the frontier due to
technical change, and by assuming a time-varying efficiency component for
the NUTS3, have found a downward trend in the general level of efficiency
in Italy.

Comparisons of levels and growth rates of TFP at a subnational level in
Italy was carried out by Pierani, and Esposti. Pierani, studying multilateral
indexes of relative productivity throughout the period 1951-2002 at regional
level, have found evidences of TFP convergence in levels of TFP only through
the period of time spanning 1967-1972. In the subsequent period under study,
he found productivity clustering along divergent development paths.

Using the same dataset1 Esposti (Esposti, 2011) has studied whether and
why productivity growth rates tend to equalize in the long-run. Using panel
data unit root tests, he found evidence of convergence in growth rate only for
a limited number of regions. He argues that, due to the counter-balancing of
convergence and divergence forces, TFP growth of regions did not diverge. He
also estimated the relationship between TFP growth and public investments
in R&D . He found a strong positive relation between R&D investments and
TFP growth rates.

The aim of this chapter is to extend the literature on agricultural pro-
ductivity measurement and to combine it with the literature on spillover
effects and diffusion processes. It does so by providing a model for the diffu-
sion process of TFP across Italy, at high spatial resolution, and to quantify
spillover effects due to productivity shocks. The evidence put forward by
this work could be used to explain observed disparities in productivity levels
and growth rates, and can be used to guide R&D investment decisions.

4.3 Data

The data used for the analysis consist of observations on total factor produc-
tivity measurements in the panel of 1072 Italian NUTS3 observed during the
period 2008-2014.

Productivity measurements are derived using the Hicks-Moorsteen, i.e.,
by a ratio of an output quantity index to an input quantity index (Fried et
al., 2008; Coelli et al., 2005). Indexes are derived using the index number

1AGREFIT (Pierani and Rizzi, 2009)
2The number of NUTS3 according to Eurostat classification corresponds to the admin-

istrative division of Italian provinces as of 2011. In the present research, three provinces
were merged together with neighboring ones in order to derive detailed accounts on input
and output indexes for every spatial unit.
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approach and the Fisher formula.

The Fisher index posses a number of interesting statistical properties but
fails to satisfy the property of transitivity., i.e., a comparison between two
units might not be equal to the comparisons of the two units through a
third one. Transitivity is a very important property for cross-sectional and
panel comparisons. In the present analysis, productivity statistics compara-
ble across units and over time are derived using the minimum spanning tree
method proposed by Hill (Hill, 1999; Hill, 2004). Transitive indexes are ob-
tained by chaining, across a spanning tree, all the space-time observations of
the panel using bilateral Fisher comparisons. The spanning tree is identified
as the one that minimizes the sum of the Paasche-Laspeyres spreads between
each bilateral comparisons.

Price and quantity statistics used for the derivation of the indexes are
aggregation of weighted price and quantity statistics at farm-level as provided
by the Italian FADN3. The sample consists of around 11,000 commercial
farms4 sampled annually with a stratified random sampling strategy and
contains also a constant sample. A weight is attached to each sampled farm
in order to reflect the number of farms that the sampled one represents in
the universe of commercial farms in Italy.

Productivity statistics at NUTS3 level are presented in Figure 4.1. The
data show a low degree of productivity clustering. Clusters are highly lo-
calized. By visual inspection, NUTS3 clusters in small groups of relatively
homogeneous productivity levels. High levels of productivity are observed in
the Northern part of the country especially across the Padan Plain. High
levels of productivity are also found in clusters in the Southern part of the
country especially in Campania, Puglia, Calabria and Sicilia. The Center is
mostly characterized by low levels of productivity instead.

The distribution for the TFP index and its logarithm are found in Figure
4.2. While the Jarque-Bera test strongly rejects the hypothesis of normality
of both empirical distributions, the distribution of the log-transformed data
show a higher degree of symmetry.

The observation that productivity groups into clusters of similar levels can
be tested using the Moran test. In few words, the Moran test inspects the
magnitude and statistical significance of a linear relationship between pro-
ductivity levels for each NUTS3 and the average productivity level of their
neighbors. While a positive statistically significant linear relation between
these two variables identifies productivity clustering, a negative relation im-

3Farm Accountancy Data Network
4A commercial farm is a farm that is large enough to provide a main source of income

for the farmer and its family
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Figure 4.1: Relative productivity levels (in logs) for Italian NUTS3
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Figure 4.2: Empirical distribution of TFP and log-TFP

plies that high levels of productivity are surrounded by areas with low levels
of productivity and vice versa.

As the distribution of the logarithm of the productivity index is statisti-
cally closer to a normal distribution, we decided to present the set of Moran
tests using the logarithm of the productivity relative levels as target variable
in each of the accounting years of the panel.

A series of spatial correlation tests was carried out iteratively using, for
each year of the panel, different assumptions regarding the correlation struc-
ture across observations. The binary correlation structure used was always
a function of the radial distance between centroids. At each iteration, the
definition of neighborhood changed according to the length of the radius con-
sidered. We tried the set of radius lengths comprised in the interval [35 km,
500 km] using a step of 5 km at each iteration.

Results of the tests are presented in Figure 4.3. Significant Moran I
statistics are found in 2008, 2009, 2011, 2012 and 2014. In all these cases,
the Moran I statistic is positive pointing to productivity clustering. For 2010
and 2013, the spatial autocorrelation tests failed to reject the null hypothesis
of no spatial autocorrelation considering any of the assumptions regarding
the correlation structure. The highest and statistically significant, at 95%
confidence level, Moran I statistics are found for different definitions of neigh-
borhood in each of the years considered. In 2008, the highest statistically
significant Moran I statistics was found considering a radial distance of 55
km, in 2009 a distance of 50 km, in 2011 a distance of 100 km, in 2012 of
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Figure 4.3: Moran tests using different spatial weight matrices for every time
period
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45 km and in 2014 up to 105. In all the time periods in which productiv-
ity clustering was statistically significant, the highest Moran I statistics was
ranging between 0.1 and 0.35. All these evidences point to a limited degree
of productivity clustering across NUTS3 in Italy.

To quantify the degree of spatial and temporal dependence of produc-
tivity across NUTS3 a dynamic spatial model is estimated. This model is
estimated using information regarding relative TFP levels of NUTS3 and a
set of exogenous variables. The exogenous variables are included in the model
to capture potential sources of temporal and spatial variability that might
TFP at NUTS3 level. These exogenous variables included are: the year-
to-year turnover rate of the sampled farms for each NUTS3, the estimated
percentage deviation of estimated rainfall level from a long-time trend, the
number of Utilized Agricultural Area (UAA) in logarithm, the share of UAA
located in plain areas, the average CAP support per beneficiary (Sotte and
Baldoni, 2016)5, the share of UAA of large farms, the share of UAA of small
farms, the share of UAA belonging to farms specialized in Grazing Livestock
and the average altitude of the UAA (included as a quadratic polynomial).

Figure 4.4: Year to year turnover rate by NUTS3

Data on the year-to-year turnover is presented in the maps in Figure 4.4.
The turnover rate is computed for all time periods but the first. In the first

5Information are extracted from the database provided to the European Commission
by AGEA (Agenzia per le Erogazioni in Agricoltura). The data are a courtesy from
Associazione Alessandro Bartola. Further information can be found in La spesa PAC in
Italia (2008-2014) (Sotte and Baldoni, 2016).

66



time period the turnover rate is assumed to be zero. Two patterns arise from
the visual inspection of the maps. First, some years are associated with a
higher turnover rate, and secondly some NUTS3 are associated with a higher
turnover rate over the full time period. Particularly high was the turnover
rate in 2014, 2012 and 2010. The inspection of the turnover rate is useful
because a widely changing sample is expected to be associated with more
volatile output, input and productivity indexes due to the random nature of
the sample.

The second exogenous variable considered is the yearly percentage devia-
tion of the estimated rainfall levels with respect to a long-time trend6 (Funk
et al., 2014) aggregated at NUTS3 level. The long-time trend used is the
average aggregate rainfall of the period 1981-2004 for each NUTS3.

Figure 4.5: Percentage deviation of rainfall from long-time trend by NUTS3

Data on the percentage deviation are presented in Figure 4.5. The per-
centage deviation from the long-time trend is generally positive and high
across the country in 2008, 2009, 2010, 2013 and 2014. In 2011 and 2012
rainfall levels seem less spread around the 1981-2004 trend and sometimes
are lower than the long-time trend.

The third variable included consists of the number of hectares of Uti-
lized Agricultural Area per NUTS3. These are presented in Figure 4.6.
The NUTS3 with more UAA are mostly found in Puglia, Sicilia, Sardegna,

6Rainfall data are provided by the Climate Hazards Group of the Department of ge-
ography at the University of California at Santa Barbara in collaboration with the USGS
Famine Early Warning Systems Network
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Figure 4.6: Number of UAA in hectares by NUTS3

Toscana and Piemonte. On average, NUTS3 with a low number of UAA are
located in Liguria.

The share of UAA located in plain areas are presented in Figure 4.7.
Regions with a higher density of plain areas are Emilia Romagna, Lombardia,
Veneto and Puglia. The share of the plane UAA in some of their NUTS3 is
above the 90% of their total UAA. In contrast, the share of UAA located in
plain areas is very small in NUTS3 in Sicilia, Sardegna, Toscana and Valle
d’Aosta. In some locations, these shares are below 5% of the total UAA.

Figure 4.8 presents the share of UAA in NUTS3 belonging to farms with
large economic size. On average, NUTS3 with highest shares are located in
Lombardia, Toscana, Piemonte and Emilia Romagna. NUTS3 with a low
share of agricultural land belonging to large farms are mostly located in the
Central and Souther parts of the country. A share below 15% is found in
NUTS3 in Abruzzo, Campania, Calabria, Molise. NUTS3 with a low share
are also found in Liguria, Alto Adige, Friuli Venezia Giulia and Toscana.

Additional information on the composition of NUTS3 agricultures is found
in Figure 4.9. Here, the share of UAA belonging to small farms is presented.
The maps show that small farming practices are located in Liguria, Marche,
Toscana and in the Southern part of the country. In the South, high concen-
tration of small-farms are found in Calabria and Campania and Puglia.

Figure 4.10 shows the average elevation of agricultural plots of FADN
farms. An average elevation above 1000 meters is found in Valle d’Aosta,
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Figure 4.7: Share of UAA located in plains by NUTS3

Figure 4.8: Share of UAA belonging to large farms
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Figure 4.9: Share of UAA belonging to small farms

Figure 4.10: Average elevation of UAA

70



Trentino and Alto Adige. Average levels below 1000 meters and above
600 meters are found in NUTS3 Abruzzo, Molise, Veneto, Basilicata and
Piemonte. Lowest elevation levels are found in some of the NUTS3 in Veneto,
Lombardia, Toscana, Emilia Romagna and Friuli Venezia Giulia.

4.4 Space-Time Model

To model the diffusion process of agricultural TFP, the space-time depen-
dence of TFP levels of NUTS3 is used. This level of analysis was considered
the most appropriate for the job at hand because NUTS3 represents the most
granular level available that covers systematically all territories in Italy. The
level of analysis avoids aggregation biases of coarser spatial levels. By having
a full coverage of the Italian land, it was possible to use the statistical tools
available to model processes in space and thus, it was possible to study the
diffusion process of productivity.

Space-time dependence of TFP is obtained by estimating a dynamic spa-
tial linear relation. The relation is the following:

yt = φyt−1 + δWyt +Xtβ + εt

where yt contains the information regarding relative productivity levels
for the 107 provinces at time t in logarithmic form, yt−1 is the temporal lag
of the productivity levels, W is the spatial weight matrix, Xt is a matrix
containing the exogenous variables and εt is the random component assumed
normally distributed with mean zero and variance σ2. The error is assumed
to be not serially and not spatially correlated.

The estimation of the parameters is carried out using the Bias Corrected
LSDV (BCLDV) estimator based on the work of Elhorst (Elhorst, 2010) and
Yu, DeJong and Lee (Yu et al., 2008). The multi-step estimation procedure
is presented in Appendix I using Elhorst’s notation.

The coefficients estimates that will be used in the modeling of the dif-
fusion process are selected among a set of alternatives. These alternative
results were obtained by using the BCLSDV estimator in the estimation of
the same linear specification but assuming different spatial correlation struc-
tures across NUTS3. Thus, what differed in the set of alternative results was
the spatial weight matrix used. In each estimation, the matrix was defined
as a row-standardized distance matrix where, for each spatial unit, neighbors
were identified as the spatial units whose centroid fall within a certain radius
from the reference centroid. The spatial weight assigned to each neighbor,
before row-standardization, was equal to its distance from the reference cen-
troid. The set of results were obtained by using a different radius length in
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the definition of neighborhoods. The set of radius lengths considered were
all the unitary lengths comprised in the interval [40 km; 220 km]. Estimates
of three selected models are presented in Table 4.1.

km: 50 km: 61 km: 69
maxll: -1243.293 maxll: -1243.299 maxll: -1243.308

Estimate Std.Err Estimate Std.Err Estimate Std.Err

φ̂ 0.107 (0.0438) 0.105 (0.0438) 0.105 (0.0438)

δ̂ 0.768 (0.0422) 0.751 (0.0438) 0.704 (0.0495)

β̂turnover -0.052 (0.1246) -0.046 (0.1246) -0.040 (0.1246)

β̂deviation -0.166 (0.1062) -0.149 (0.1063) -0.170 (0.1064)

β̂log UAA -0.251 (0.0797) -0.262 (0.0797) -0.242 (0.0797)

β̂share plains 0.430 (0.3641) 0.441 (0.3642) 0.447 (0.3642)

β̂CAP -0.00003 (0.00001) -0.00003 (0.00001) -0.00003 (0.00001)

β̂share large 1.049 (0.29579) 1.122 (0.2958) 1.099 (0.2958)

β̂share small -0.351 (0.3060) -0.211 (0.3060) -0.221 (0.3060)

β̂share grazing -1.004 (0.3330) -0.917 (0.3329) -0.897 (0.3329)

β̂elevation 0.001 (0.0009) 0.001 (0.0009) 0.001 (0.0009)

β̂elevation2 -0.000001 (0.000001) -0.000001 (0.000001) -0.000001 (0.000001)
σ̂2 28.393 (0.3206) 28.167 (0.3193) 27.902 (0.3178)

Table 4.1: BCLSDV estimates

The three models were selected because they assume stationarity in space
and time7 and because they are associated with the largest values of the max-
imized log-likelihood function among all the alternative models estimated. A
larger maximum of the log-likelihood implies an higher probability of observ-
ing the sample given the assumptions made. The three corresponding spatial
structures use radius lengths of 50 kilometers, 61 kilometers and 69 kilome-
ters respectively. These spatial structures are assumed to be time-invariant
and are presented in Figure 4.11.

The three sets of estimates are similar to each other. The coefficients
estimates associated with the temporal and spatial lags are all highly signifi-
cant. However, while the temporal dependence does not change in the three
models, the spatial dependence parameters changes slighlty. By increasing
the radius length, the spatial dependence parameter decreases. Given the

7Stationarity in space and time is achieved when the sum of the absolute value of the
spatial and temporal parameters is smaller than one.

|φ̂|+ |δ̂| < 1

Following Elhorst (Elhorst, 2014), the condition is satisfied when the characteristics
roots of the matrix φ(I − δW ) are included in the interval (−1, 1).
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Figure 4.11: Spatial correlation structures with respectvely 50 km, 61 km
and 69 km neighborhood radii

magnitude of their coefficients, it seems as if the spatial dependence is much
stronger than the temporal dependence.

Coefficients associated with the exogenous variables help explaining the
relationship. Those associated with the phisycal size of the NUSTS3 are neg-
ative and highly significant. This points to a negative relationship between
TFP and physical size at NUTS3 level. The share of UAA located in plain
areas is positevely related to the productive performance. However, the co-
efficient is not statistically significant in all three models. The coefficients
associated with the share of land dedicated to large farms, to small farms
and to farms spacialized in grazing livestock behave as expected: the share
of land area dedicated to large farms is positively related to the productive
preformance of NUTS3, while the share of small farms as well as the share
of UAA dedicated to grazing livestock is negatively related to TFP. Neither
these two latter coefficients are statistically significant at any level of confi-
dence above the 90%. The average payment from the Common Agricultural
Policy received by beneficieries located within NUTS3 is negatively related
to productivity and its associated coefficient is statistically significant. How-
ever, given the complexity and diversity of the CAP support, this evidence
should be investigated further before coming to any conclusions. Elevation
has a non-linear concave relationship with TFP. On average for the three
models, the relationship between elevation and producitvity is positive until
around 500 meters elevation. Then, it starts declining.

For the modeling of diffusion in the next section, the model used is the one
associated with the spatial weight matrix whose definition of neighborhood

73



is based on a radius length of 50 km. This specification is selected because
of its higher value for the maximized log-likelihood.

4.5 Productivity diffusion

Diffusion effects are obtained by using the space-time dependence structure
estimated earlier using a radius length of 50 kilometers and by simulating a
unitary shock hitting specific NUTS3. The effect of the unitary shocks hitting
the locations spill-out to other NUTS3 over time. The positive contagion
has a contemporaneous effect that reinforces the exogenous unitary shock in
neighboring locations and has a temporal dimension over which the effect of
the disturbance vanishes due to the stationarity.

Using the estimated econometric relation, it is possible to derive the diffu-
sion matrix. The diffusion matrix is a matrix that contains the information
on the space-time dependence of TFP of NUTS3 and is used to compute
partial effects of explanatory variables. In this case, the diffusion matrix
is obtained to quantify the partial effect of a random unitary productivity
shock in specific NUTS3.

The diffusion matrix is obtained by backward substitution of the space-
time relation as follows:

yt = φyt−1 + δWyt +Xtβ + εt

(I − δW )(−φL)yt = Xtβ + εt

Qyt = Xtβ + εt

yt = Q−1Xtβ +Q−1εt

where, following Debarsy et al. (Debarsy et al., 2012) notation, Q is the
space-time filter defined as follows:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B 0 0 0 0 0
C B 0 . . .
0 C B 0 . .
. 0 C B 0 .
. . 0 C B 0
0 0 0 0 C B

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.
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where B = (IN − δW )−1 and C = −φIN . A productivity shock in the
spatial unit i = 1 at time t = 1 has consequences for the same spatial unit and
for the neighboring units over time. This cumulative effect (or spillover effect)
at any time period is found by summing up the effects of the productivity
shock for all spatial unit in each period considered as follows:

T∑
k=0

∂yt+k

∂εi=1,t=1

= Q−1vi=1,t=1 (4.1)

where vi=1,t=1 is a vector of length Nk composed of all zeros elements but
for the first spatial unit in the first time period. That non-zero element is
equal to one and represents the unitary shock occuring to the spatial unit in
the first time period.

Assuming a unitary shock hitting NUTS3 in every FADN region8, we
computed the cumulative spillover effect for each FADN region in a window
of 20 years. Given the cumulative effects of a shock over these 20-period
window, it is possible to establish a ranking of the most and least diffusive
FADN regions. The ranking of the most diffusive ones is presented in Table
4.2. The cumulative diffusion effect is composed of all the effects that spill-
out from NUTS3 of that specific FADN region to NUTS3 of other ones.
Within regions spillovers are not included in the definition of the ranking.

The most diffusive FADN regions are Lombardia, Emilia Romagna, Veneto
and Marche. The least diffusive ones are Alto Adige, Basilicata, Calabria,
Puglia, Sardegna, Sicilia, Trentino and Valle d’Aosta. This latter group is
composed of regions that, due to the narrow spatial correlation structure
assumed, do not have any spatial connections with any other regions.

To describe the diffusion process of agricultural TFP, we focus on one of
the most diffusive region that is located in the central part of the country,
Emilia Romagna9. Assuming a unitary productivity shock in each of the
NUTS3 in the region, we observe how the shock spreads to other locations
and how it behaves over time. Results are presented in the form of maps,
impulse response functions and spillover effects10 in Figure 4.7, Figure 4.8,
Figure 4.9 and Figure 4.10.

8FADn regions correspond to the NUTS2 classification but for Trentino-Alto Adige. In
the FADN classification, Trentino-Alto Adige is split into two separate regions, Trentino
and Alto Adige.

9Results concerning the diffusion process assuming a unitary shock in the NUTS3 of
other regions are contained in Appendix J.

10The impulse response functions and spillover effects are presented without confidence
intervals. An important development of this work will be to derive the confidence intervals
for those curves using the bootstrap method.
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Region Spill-out

Lombardia 27.176
Emilia Romagna 26.858

Veneto 14.598
Marche 13.466
Toscana 11.095
Piemonte 10.451
Campania 7.803
Molise 6.518
Abruzzo 6.514

Friuli Venezia Giulia 5.707
Umbria 5.449
Lazio 3.231
Liguria 1.625

Alto Adige 0.000
Basilicata 0.000
Calabria 0.000
Puglia 0.000

Sardegna 0.000
Sicilia 0.000

Trentino 0.000
Valle d’Aosta 0.000

Table 4.2: Ranking of FADN regions by spill-out
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Figure 4.12: Geographical representation of the effects of a unitary produc-
tivity shock in NUTS3 in Emilia Romagna
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An interesting point of view is given by the impulse response functions
for each NUTS3 in Emilia Romagna presented in Figure 4.8. They represent
the temporal profile of the effect of the shock for each NUTS3.

Figure 4.13: Impulse response functions and spillover effect for NUTS3 in
Emilia Romagna

Two features are worth noticing. First, the contemporaneous endogenous
spillover effect of neighbors adds up to the exogenous shock in each NUTS3.
This can be seen by looking at the level of the shock in the first time period.
For all NUTS3, these effects are larger than one due to the contemporaneous
spatial spillover effect of neighbors. The second feature that is worth noticing
is the time span over which the shock fades away. After five time periods,
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the effect is mostly absorbed and is close to zero. The cumulated values of
the impulse response functions define the spillover effect of the initial shock
at any time period and are represented by the red dotted line. It can be seen
that, due to stationarity, the spillover effect in each NUTS3 increases over
time and stabilizes in the long-run to an equilibrium level, i.e., the long-run
spillover effect of the productivity shock. This equilibrium level is reached
after around five years.

Due to the spatial link structure assumed, NUTS3 in one location are
indirectly connected to other NUTS3 in locations even if these latter ones are
far away. Given these assumed interdependence, the effect of the productivity
shock reaches locations far from the epicenter of the shock over time.

The effects in Lombardia of the shocks in Emilia Romagna are represented
by the impulse response functions in Figure 4.9. Here, three main features
emerge. The first regards the magnitude of the shock. Due to the distance
to the centroids from where the exogenous shock occurred, the magnitude of
the shock in NUTS3 in Lombardia is typically much lower than the unitary
exogenous shock. The second feature is that the indirect effect of the shock,
in some NUTS3, does not always decrease. In the first time period in some
NUTS3, it reinforces and only from the second time period starts decreasing.
The third feature is that, due to the assumed spatial relations across NUTS3,
positive externalities do not reach all NUTS3. Sondrio is not linked, neither
directly nor indirectly, to NUTS3 in Emilia Romagna and it is not influenced
by the shocks.

Figure 4.10 presents the impulse response functions of NUT3 in Abruzzo.
Abruzzo does not share boundaries with Emilia Romagna and the effects
of a shock in Emilia Romagna can be transmitted indirectly through its
neighbors.

The impulse responses show different patterns with respect to the ones for
NUTS3 in Lombardia. Due to the link structure across NUTS3, a unitary
productivity shock in Emilia Romagna spreads to all NUTS3 in Abruzzo.
The shock increases for all NUTS3 in the first two time periods and then
starts fading towards zero. The long-run spillover effect is much lower than
those locations closer to the epicenter of the shock. The peak of the spillover
effect is reached after around eight years.

Maps showing the diffusion process in space and time assuming a unitary
shock hitting NUTS3 of other regions in Italy are presented in Appendix J.

Using the same 20-year window we computed the effects of a unitary
shock hitting every NUTS3 in Italy. Then, we ranked them in terms of how
much they spill-out and how much they absorb from shocks occuring in other
NUTS3, i.e., their spill-in. By assuming a unitary shock in each NUTS3, we
ranked NUTS3 based on the cumulative effect of the productivity shock in
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Figure 4.14: Impulse response functions and spillover effect for NUTS3 in
Lombardia
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Figure 4.15: Impulse response functions and spillover effect for NUTS3 in
Abruzzo

every other NUTS3 in twenty years. The list of the ten most diffusive NUTS3
is found in Table 4.3.

The most diffusive NUTS3 are Medio Campidano, Caserta, Milano, Pescara,
Lodi, Parma and Massa-Carrara. The least diffusive ones are all NUTS3 that
do not have any connections with any other NUTS3 as visible in Figure 4.6.

Then, for every NUTS3, we assumed a unitary shock hitting all other
Italian NUTS3 and computed the cumulative effect occurring within the first
NUTS3. We labeled this cumulative effect as the total spill-in. The most
absorptive NUTS3 are presented in Table 4.4.

The maps of the most diffusive and most absorptive NUTS3 is presented
in Figure 4.11. Values are normalized within the interval [0,1] to allow for a
better visualization.

In terms of spill-out, the most diffusive NUTS3 are located mostly within
the Northern and the Central regions. In the North, high levels of spill-
out are delivered from NUTS3 in Piemonte, Lombardia, Veneto and Friuli
Venezia Giulia. In the Center, high levels of spill-out are found for NUTS3
in Emilia Romagna, Marche, Abruzzo and Toscana. Highly diffusive NUTS3
are also found in Campania and within both islands. The highest level of
spill-out is registered in Sardegna.

In terms of spill-in, NUTS3 are more homogeneous. Due to the spatial
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NUTS3 Spill-out

Medio Campidano 1.000
Caserta 0.991
Milano 0.962
Pescara 0.909
Lodi 0.886
Parma 0.847

Massa-Carrara 0.813
Novara∗ 0.767
Macerata 0.735
Piacenza 0.732
Pavia 0.715
Pistoia 0.684
Udine 0.677
Como∗ 0.673
Siena 0.667

Table 4.3: Ranking of NUTS3 by spill-out

NUTS3 Spill-in

La Spezia 1.000
Cremona 0.953
Fermo 0.943
Napoli 0.941
Como∗ 0.934
Lecco∗ 0.932
Trieste 0.931

Reggio Emilia 0.929
L’Aquila 0.929
Asti 0.928
Biella 0.926
Chieti 0.925
Vercelli 0.923
Pavia 0.921
Teramo 0.920

Table 4.4: Ranking of NUTS3 by spill-in

82



Figure 4.16: Maps of NUTS3 by spill-out and by spill-in
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correlation structure, there seems to be a large cluster of highly absorptive
NUTS3 running from the Northern regions to the Adriatic coast to Campa-
nia. Low levels of absorptivity are found in NUTS3 across Basilicata and
Puglia. Relatively high and low levels of absorptivity are found within the
two islands, especially within Sardegna.

4.6 Conclusions

This paper explores the spatial and temporal properties of agricultural TFP
measurements derived at a spatially disaggregated level in Italy. It is shown
that a low degree of productivity clustering exists across the country and that
productivity clusters are geographically limited. Space-time dependence of
productivity levels for NUTS3 is estimated in a dynamic spatial panel data
model. Space-time dependence is then used to quantify the expected diffusion
effects of a productivity shock hitting NUTS3 in Italy. Due to the low degree
of time dependence and to the narrow correlation structure embedded in the
selected spatial weight matrix, the effects of a shock spread significantly only
to contiguous regions. The spillover effect is positive also for NUTS3 that
are not directly connected to the source of the shock but is much smaller in
magnitude. The shock has an immediate impact for those NUTS3 close to
the epicenter of the shock and tends to fade in few time periods. The impact
of the shock increases in magnitude over time for the NUTS3 far away from
the sources of the shock. For these regions, these effect reaches its peak in
two time periods and then starts fading to zero. The maximum spillover
effect follwoing the producitvity shock is attained after around eight years.

We bring forward these evidences to support the idea that agricultural
production is a site-specific production process that is highly influenced
by those economic and climatic conditions that are geographically limited.
These specific conditions of locations influence their agricultural production
processes and tehcnology. As a consequence, the diffusion process of innova-
tion is significantly low and limited, resulting in large productivity differen-
tials even across neighboring regions.

A policy with the objective of promoting agricultural productivity growth
in Italy should first recognize that large differentials exist. Then, it would
channel investment into R&D and into instruments to promote the creation of
on-farm innovation. Investing in specific locations could result in a higher re-
turn on investment rather than investing into other locations due to spillover
effects. The most diffusive regions in Italy are Lombardia and Emilia Ro-
magna followed at a distance by Veneto, Marche and Toscana. The least dif-
fusive regions are Alto Adige, Trentino, Valle d’Aosta, Basilicata, Calabria,

84



Puglia, Sardegna and Sicilia. A policy at regional level aimed at promoting
agricultural productivity growth but subject to budget constraints should
either target the most diffusive regions in Italy or increasing the absorptive
capacity of the least absorptive ones.

The most diffusive NUTS3 in Italy are Medio Campidano, Caserta, Mi-
lano, Pescara and Lodi. The most absorptive NUTS3 are La Spezia, Cre-
mona, Fermo and Napoli. A policy aimed at promoting productivity growth
at NUTS3 level, with a budget constraint, could target those NUTS3 that
have an higher capacity of channeling externalities to other locations. At the
same time, the policy could use alternative policy instruments for increasing
the absorptive capacity of the least absorptive ones.
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Chapter 5

Discussion

The aim of this section is to summarize the results presented in the previous
chapters and to discuss possible explanations for the evidences emerged. The
main results of the whole research are the following:

• aggregate productivity is declining in Italy;

• there are wide productivity differentials across types of farming;

• there is a positive relationship between TFP and economic size;

• regional productive performances are not easily comparable;

• spillover effects are limited.

Aggregate productivity is declining in Italy

In Chapter 3, productivity levels at national level were derived using different
definitions for the output index. Despite the fact that the output indexes
were based on different assumptions, the time-series of aggregate productivity
were remarkably similar. All four TFP indexes were trending downwards
with an annual average rate of change ranging between -1.5% and -2.9%.
A general downtrending behavior can be observed also when looking at the
productivity indexes aggregated by type of farming and by economic size of
farms.

The period of analysis spanning 2008-2014 might be too narrow to come
to conclusions regarding long-term trending behavior of TFP. However, this
evidence could be used to support the idea that productivity growth is slow-
ing in developed countries in recent years.

Two possible explanations are discussed here. They are the innovative
capacity of Italian agriculture and the effects of the 2003/2004 CAP Reform.
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According to the Economic Research Service at the USDA, the main
dirver of long-run TFP growth is technological innovation (Wang et al., 2015).
Innovation can be spurred by both public and private R&D investments.
However, the ability of adoption ultimately influence the impact of R&D
investments. Both public infrastructures and extension services influence the
speed of adoption and thus, they are critical drivers of producitvity growth.

A possible explanation for the seemingly poor performance in Italy in
recent years can be found in the structural features of Italian agriculture. In
particular, its endowment of human capital and ICT infrastructure coupled
with the small average size of farms could affect the innovative capacity of
the Italian agricultural system. De Devitiis and Maietta (De Devitiis and
Maietta, 2013) compare the level of human capital in agriculture across Eu-
ropean countries and found that Italy ranks very low in the list. In 2005, only
11.2% of Italian farmers have either a Basic or Full Agricultural Training1.
They define such percentage as very low when compared to other EU-27
countries. Among European Member States, Italy ranks 21st. The Nether-
lands ranked first in the list with a 71.5% share of farmers with either Basic
or Full agricultural training followed by Germany, Luxemburg and France
with the 68.5%, the 55.9% and the 54.3% share respectively. De Devitiis and
Maietta defined the agricultural education system in Italy as non-efficient
and not attractive at any level (De Devitiis and Maietta, 2013).

The authors identified a second source of major deficiency in the Italian
agricultural sector, i.e., the lack of ICT investments. They have found that
merely the 3.8% of farms in 2010 owned ICT and 25% of them were located
in Lombardia and Emilia Romagna (De Devitiis and Maietta, 2013).

The authors estimated that only a percentage of Italian farms ranging
between 2% and 4% could be classified as innovative. In 2010, the kinds
of innovation introduced were mostly related to new machinery, equipment
and plants. Agro-energy was another important source of innovation. Major
obstacles in innovating were identified as credit rationing, market instability
and bureaucracy burden (De Devitiis and Maietta, 2013).

Besides the structural features of the Italian agricultural system, another
potential driver of productivity growth in the period is represented by the
effects of the 2003/2004 CAP Reform2. Esposti (Esposti, 2015) has shown

1According to the Farm Structure Survey of 2010 and of 2013, Italy ranks first in
the list in both surveys with a share of farmers with either Basic or Full Agricultural
Training above 95%. The remarkable improvement occurring over such a narrow time
window casts doubts over the constancy of assumptions underlying these measurements.
A further investigation would be required in order to verify what the sources of change
are.

2The so-called Fischler Reform.
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that the decoupling of subsidies under this reform has had a significant impact
in re-orienting the production choices of farmers while it less clearly impacted
investment decisions. Although the relationship between producitvity and
the decoupling of subsidies should be investigated with appropriate tools
before inferring its effects, the decline in aggregate agricultural productivity
over the period 2008-2014 could represent a signal that the elimination of the
distorting effects on production decisions has had no discernible impact in
increasing productivity of Italian farms in the medium-term. This result, if
confirmed, would be consistent with those presented by Rizov et al. (Rizov
et al, 2013) and of Serra et al. (Serra et al., 2008).

There are wide productivity differentials across types of farming

Productivity indexes aggregated at the level of types of farming point to
large productivity differentials across sectors. On average during the sever-
year period, the dairy sector was the most productive sector followed by
horticulture, wine and fruits production. The least productive farms were
those specialized in grazing livestock, cereals, mixed crops and livestock, and
granivores. In 2008, dairy farms were almost two times more productive then
those specialized in cereals production. In 2014, the farms specialized in wine
production were more than two times more productive than those specialized
in grazing livestock.

These productivity differentials could be the reflection of technical and
organizational features of the production process specific to each sector. Huff-
man and Evenson (Huffman and Evenson, 2001) suggested that some specific
agricultural sectors, such as the livestock sector, tend to be less dependent
on seasonal and spatial constraints, and are more reliant on fixed production
plants. All these features make these production processes similar to those
typical of the manufacturing sector with the consequence that workers can
specialize in a particular phase of production and be more productive (Huff-
man and Evenson, 2001). Overall, agricultural businesses associated with
higher degrees of specialization, with a less risk averse behavior and with
an higher paid-to-unpaid labor ratio tend to show hgher levels of technical
efficiency (Barnes et al., 2010). Sheng et al. (Sheng et al., 2016) inter-
prets risk aversion as the capacity and willingness to adopt alternative input
mixes, management practices and technologies. Claiming that the elastcity
of substitution between inputs is positively linked to productivity, they ar-
gue that farmers with higher educational levels are less risk averse, they may
have higher elasticity of substitution and thus, are associated with higher
productivity levels.

The productivity differentials observed among types of farming may be
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a consequence of the more enterpreneurial nature of some farm types. The
dairy sector, the horticultural sector and the wine production sector can all
be associated to a more professional nature of the business with respect to
sectors such as arable crop and cerelas production. These latter ones are
typically constrained by plant and soil biology as well as by climate. It is
difficult for workers in crop production to be fully employed and to specialize
in any phase of production (Huffman and Evenson, 2001).

There is a positive relationship between productivity and economic size

Results of Chapter 3 show a clear positive relation between economic size and
productivity. Such a result could be explained by the presence of increasing
returns to scale in Italian agricultural production.

In the literature, there is a long standing debate on the relationship be-
tween size and productivity in agriculture. The debate is characterized by
two main views: one that argues in favor of a negative relationship between
physical size and productivity and the other that argues in favor of a positive
relation between economic size and productivity. Both views are not neces-
sarily constrasting and are highly influenced by the definition of productivity
and of farm size.

• Negative relation between physical size and productivity : the idea
that a negative relationship exists between farm physical size and
productivity - defined as land productivity - has almost become a
stylized fact in the economic development literature (Townsend et
al., 1998). Since the work of Sen (Sen, 1966), the explanations put
forward to justify this stylized fact were related to specific features
characterizing imperfect markets in developing countries. In par-
ticular, the main argument supporting the theory was the higher
incentive of family labor to work intensively with respect to hired
labor (Feder, 1985; Chen et al., 2005; Thapa 2007). Over time,
the idea of such a negative relationship has been challenged on the
grounds of omissions of important variables such as soil quality or
the presence of measurement errors (Barrett et al., 2009), or be-
cause it was considered flawed by the usage of partial productivity
measurements (Townsend et al., 1998; Helfand and Levine, 2004).
When including the aforementioned omitted variables or when us-
ing total factor productivity measurements, the inverse relationship
seems to loose significance (Townsend et al., 1998; Helfand and
Levine, 2004).
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• Positive relation between economic size and productivity : studies
regarding the relationship between economic size and productivity
are typically focused on agricultural systems in developed countries.
Results point to a positive relationship between productivity and
measures of economic size such as total output, total input, assets
value, gross farm income (Huffman and Evenson, 2001; Mugera and
Langemeier, 2011; Sheng et al., 2016). The main explanations for
such a positive relation can be found in the underlying common
drivers of TFP and size, and in the higher probability for larger
farms to access critical resources. Using a theoretical model, Sheng
et al. (Sheng et al., 2016) show that both farm productivity and
farm size are positively related to TFP. In the presence of a reduc-
tion in the relative price of capital to labor, farms with the ability
to adjust their input mix tend to be more productive and larger
due to the so-called ”income-effects” (Klump and de La Grandville,
2000; Sheng et al., 2016). Arguments in favor of the positive re-
lation between size and productivity is linked to increased revenue
per unit output and reduced costs due to: efficient access to infor-
mation, better marketing decisions and opportunities for vertical
integration with an input supply business (Huffman and Evenson,
2001). Additional arguments supporting the view are related to the
possibility for large-sized farms of gathering resorces through more
modern and flexible contracts and because those farms are more
likely to be endowed with a high level of human capital (De Devi-
tiis and Maietta, 2013). Restricted access to different production
factors may limit innovative capacity and influence productivity dif-
ferentials (Restuccia et al., 2008; De Devitiis and Maietta, 2013).

The two arguments presented are not necessarily constrasting becuase
economic size and physical size do not coincide in agriculture. Depending
on the types of activities carried out, there may be farms with large physical
size but with small economic size and vice versa. A typical example of farms
associated with a small physical size but large economic size is represented
by horticulture specialists. In Italy, these farms are concentrated in Liguria
and produce high value crops under greenhouses or in industrial gardens on
limited land areas. Due to the high unit value of those crops, their economic
size is large while their physical one is small. On the contrary, arable crops
and cereals specialists tend to carry out their activities on larger areas but
their output value per hectare may be relatively small when compared to
horticulture specialists limiting their economic size.

In the present research, economic size of farms is a function of their Stan-
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dard Output. Standard Output is a proxy for the potential average output
of farms in each location. Results show a clear positive relationship between
economic size and TFP in Italy thus confirming the prevalent literature on
the relation between economic size and productivity in developed countries.

Regional productive performances are not easily comparable

In Figure H.2 of Appendix H, productivity indexes, their HP filtered series
and their mean trends are presented for FADN regions in Italy. All produc-
tivity statistics present a large degree of variability within the period. Some
regions such as Sardegna, Emilia Romagna and Puglia seem to exhibit an
uptrending behavior. Some others such as Liguria and Valle d’Aosta seem to
exhibit a downtrending behavior. However, some regions such as Lombardia,
Marche, Lazio and Friuli Venezia Giulia show complex trends and it is diffi-
cult to compare their evolution in the period considered. The complexity of
the figures might be attributable to the different composition of the regional
agricultures as well as to idiosyncratic factors affecting each region in every
time period.

By averaging out productivity indexes over time, a simpler but possibly
misleading picture emerges. In Chapter 3, section 3.5, regions were classi-
fied into three groups of different levels of average productivity. Alto Adige,
Trentino, Veneto, Lombardia, Friuli Venezia Giulia, Emilia Romagna, Cal-
abria and Basilicata were clustered into the group of highly productive re-
gions. Piemonte, Toscana, Umbria, Marche, Lazio, Molise, Puglia and Sicilia
were classfied as regions with an intermediate level of productivity. Lastly,
Valle d’Aosta, Liguria, Abruzzo and Sardegna were classfiied as less produc-
tive regions. Then, the composition of the regional agriculture was inspected.

Most of the highly productive regions from Northern Italy are associated
with highly productive specializations. For example, Lombardia, Alto Adige
and Emilia Romagna are highly specialized in the dairy sector. Trentino and
Alto Adige are highly specialized into fruit production. Wine production is a
major specialization in Friuli Venezia Giulia, Veneto and Trentino. Especially
in Lombardia and Emilia Romagna, most activities are concentrated into
farms of large economic size. Moreover, levels of human capital are typically
higher in the Northen part of Italy. In 2010, the percentage of farmers with
an agriculture-specific tertiary education were higher in Lombardia, Emilia
Romagna and Umbria (De Devitiis and Maietta, 2013). Lombardia, Emilia
Romagna together with Toscana are also the leading regions in Italy in the use
of ICT insfrastructure. Furthermore, the features of the Italian agriculture
seem to be clearly linked with territorial development models (De Devitiis and
Maietta, 2013). Given these evidences, it does not surprise that most highly
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productive regions are those located in the North. What surprises instead
is the presence of Basilicata and Calabria in the list of most productive
regions. Basilicata is not highly specialized into specific sectors and presents
an almost equal composition in terms of economic classes of farms. Calabria
has a very high concentration into the olives and oil production sector and its
activities are carried out primarily in small farms. Sources of their remarkable
performance could be found outside the dimensions of specialization and
economic size. According to De Devitiis and Maietta, Basilicata and Calabria
have specific features that differentiate them from the rest of the country.
Both regions are the leading Italian regions in terms of the share of UAA
dedicated to organic farming. This farming type can be explained by the
regional public support, by private action, and by better climatic conditions
(De Devitiis and Maietta, 2013). An additional features that distinguish the
farmers population in Calabria could be the presence of a large share of young
farmers. In 2012, the percentage of youth-run farms in Calabria was around
14% against a national average of 6.7%. A younger farming population could
be associated to more educated farmers, less risk averse behavior and more
innovative agriculture. These features could be the source of their production
performance.

For what regards the group associated with an intermediate average level
of productivity, it is made of regions located either in the North, in the
Center and in the South. The composition of their agriculture is rather di-
versified and concentrated in small farms except for Toscana and Piemonte.
These two regions are specialized into highly productive sectors and concen-
trate their activities into large farms. Intuitively, one would expect them to
lead in terms of productive performance. However, this is not the case. A
deeper investigation would be required to explain their rather disppointing
performance.

Group three is composed of less productive regions. Three of them,
namely Valle d’Aosta, Liguria and Sardegna, are highly specialized into a sin-
gle sector. They are specialized in the dairy sector, horticultural sector and
in the grazing livestock sector respectively. Abruzzo is specialized into wine
production, horticulture, and arable crops production. Except for Sardegna,
the composition of the agricultures of this group of regions is approximately
balanced across farm size classes.

A first attempt to explain regional productivity was to measure the corre-
lation coefficients between TFP levels and the concentration of activities by
types of farming and size classes. Some intersting insights can be extracted
from these summary statistics. However, more complex modeling approaches
would be required before being able to descrive the dynamics of productivity.

A possible line of investigation would require the derivation of producitvity

93



indexes that take into account the regional dimension as well as the type of
farming and the size classes of farms at the same time. Such indexes would
be useful in comparing the production performance of farms operating in
different regions holding their economic size and their type of farming equal.
An example is given in Figure 5.1.

Figure 5.1: Regional level productivity for medium-sized farms specialized
in horticulture

Figure 5.1 shows that, the productive performance of medium-sized farms
specialized in horticulture differs remarkably across regions. Such produc-
tivity differentials may not be attributed to differences in accessible physical
technology and in the organization of the production processes of the spa-
tial units, as they are all engaged in the same farming type and using the
same scale of operation. Thus, sources of productivity differentials could
be represented, for example, by differences in operating environment or in
management practices. A thorough investigation using this level of analysis
could be extremely useful in deriving policy advice.

Spillover effects are limited in space

In Chapter 4, the spatial properties of productivity measurements were in-
vestigated at NUTS3 level. The level of analysis was selected to take into
account, as much as possible, of the spatial heterogeneity of the Italian ter-
ritory. This could be particularly relevant when dealing with aggregate pro-
duction functions in agriculture where crop and animal biology plays a major
role. Neglecting specific seasonal and spatial features of locations, that in
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turn influence the biology of crops and animals, could give rise to biased
conclusions.

Moran spatial autocorrelation tests were carried out in each of the ac-
counting years considerd. Those tests were pointing to a limited degree
of spatial autocorrelation of productivity at NUTS3 level. When detected,
spatial autocorrelation was higher when using a very narrow definition of
neighborhood. When this definition was broadened by increasing the radius
length, the spatial autocorrelation coefficients tended to decrease.

A similar insight was extracted from the iterative estimation of a space-
time autorgressive panel data model controlling for covariates. The spatial
weight matrixes used were time-invariant row-standardized distance matrixes
with a cut-off value in the definition of neighbors. Assuming normality, the
maxima of the alternative log-likelihood functions were higher using neigh-
borhood radii comprised in the interval of 50 - 70 kilometers. When the
radius length in the definition of the spatial weight matrix was increased to
over 120 kilometers, the BCLSDV estimates of the spatial dependence were
explosive or non-significant.

The use of a distance matrix with a cut-off value in the definition of
a time-invariant spatial weight matrix can be questioned. As there is no
consensus over how to define a-priori a spatial weight matrix in econometric
models, anyone could come up with arguments supporting an alternative
definition of the spatial correlation structure. In this analysis, the distance
matrix was selected based on theoretical and empirical grounds. This type
of matrix used a spatial correlation structure that is consistent with the
nexus between spatial agglomeration and knowledge spillover (Cardamone,
2014). The closer two producing units are, the higher is the probability
of existence of a certain degree of interdependence betweeen them. This
effect was considered to be limited in space by introducing a cut-off value
in the definition of neighbohoods. The cut-off value was introduced also on
empirical grounds. In fact, it was difficult to estimate a stationary space-time
model when using a full distance matrix. Further, the specific cut-off value
was selected based on the maximum value of the maximized log-likelihood
functions.

The evidences emerged from the spatial autocorrelation tests and from
the estimation of the space-time models were used to support the idea that
the agricultural production process in Italy is highly site-specific. According
to De Devitiis and Maietta, there is a process of productive specialization
in Italy at regional and even at sub-regional level. Geographical features as
well as the interconnection with territorial development models define a clear
geographic differentiation of agricultural production activities (De Devitiis
and Maietta, 2013).
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Further evidence on the geographical specialization can be gathered by
aggregating at NUTS3 level FADN information on production value of the
most important agricultural products. The maps in Figure 5.2, Figure 5.3,
Figure 5.4 and Figure 5.5 show the distribution of production value across
NUTS3 of some of the most valuable Italian products. Only NUTS3 with a
higher degree of specialization in those specific products are considered.

Figure 5.2: Shares of livestock related production value in most specialized
NUTS3

From Figure 5.2, it can be seen that the production of cow’s milk is
concentrated in Lombardia and Emilia Romagna in the NUTS3 of Mantova,
Cremona, Parma and Modena. Milk from sheeps and goats is produced for
a share of over 50% in Sardegna in the NUTS3 of Sassari, Nuoro, Oristano,
Cagliari, Carbonia Iglesias and Medio Campidano. For what regards the
production of corn silage, most of the activities are located in Lombardia
and Veneto in the provinces3 of Cremona, Verona, Mantova, Brescia and
Padova.

Cereals production is carried out throughout the country. However, the
production of specific cereals is concentrated in particular areas. Figure 5.2
shows the spatial distribution of the largest shares of hybrid maize, rice and
durum wheat production value. Hybrid Maize is mostly produced both in
the North-West and in the North-East. Piemonte Lombardia, Veneto and
Friuli Venezia Giulia is where most of the production is located. NUTS3
most involved in the produciton of hybrid maize are Torino (Piemonte), Cre-
mona, Brescia (Lombardia), Rovigo and Padova (Veneto). Rice production
is concentrated in the North-West in the provinces of Pavia, Milano (Lom-
bardia), Vercelli, Novara and Alessandria (Piemonte). Almost 50% of the
production of durum wheat is located in Puglia, Marche, Sicilia, Basilicata

3Italian provinces correspond to the Eurostat NUTS3.
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Figure 5.3: Shares of cereals production value in most specialized NUTS3

and Molise. NUTS3 most involved in the production of durum wheat are
Foggia (Puglia), Ancona (Marche) and Palermo (Sicilia).

Figure 5.4: Shares of legumes production value in most specialized NUTS3

Figure 5.4 shows the distribution of the largest shares of the production
value of the most important legumes. These are soybeans, alfalfa and fava
bean. Their production is concentrated in the North-East, the Center, and
in the South respectively. Production of soybeans is mostly located in the
provinces of Venezia, Rovigo, Padova (Veneto), Udine (Friuli Venezia Giulia)
and Ferrara (Emilia Romagna). Alfalfa hay production is concentrated in the
provinces of Parma, Modena, Reggio Emilia, Bologna (Emilia Romagna),
Mantova (Lombardia) and Pesaro Urbino (Marche). As for the production
of fava beans, Crotone and Palermo (Calabria and Sicilia respectively) are
the leading provinces in terms of produciton value. These two latter NUTS3
account for more than 20% of the fava beans production value of the whole
period in Italy.
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Figure 5.5: Shares of perennials production value in most specialized NUTS3

More than 40% of the total production value of oranges in the whole
period 2008-2014 come from Sicilia. Almost an additional 40% is produced
in Calabria. The leading provinces in Sicilia are Siracusa, Agrigento and
Catania. In Calabria, the most important provinces in the production of
oranges are Cosenza, Reggio Calabria, Vibo Valentia, Catanzaro and Cro-
tone. Most of the table grapes production was carried out in Puglia, Sicilia
and Basilicata. The provinces most involved in this activity are Taranto,
Barletta-Andria-Trani, Bari, Foggia (Puglia), Ragusa, Agrigento (Sicilia),
and Matera (Basilicata). Calabria is the leading region in the production of
olives. More then 30% of the production of olives in the period come from
Calabria. Leading provinces in Calabria are Cosenza, Reggio Calabria and
Catanzaro.

These maps show the spatial nature of the agricultural production. The
marked geographical distribution of certain agricultural activities are cer-
tainlly influenced by local geographic, climatic and economic factors.

In order to compare productive performance of different producing units
in agriculture, factors such as biophysical characteristics, regulatory and pol-
icy approaches have to be relatively similar (Barnes et al., 2010). If geography
is a main driver in the choice the types of products to be produced than, it
also influences the technology required to produce that types of products.
As we have already discussed for the case of differentials in productivity
among different farming types, differences across NUTS3 in relative levels of
productivity might be closely linked to the differences in the technical and
organizational elements that characterize agricultural specializations. As a
consequence, the large productivity differentials observed and the narrow spa-
tial autocorrelation structures of the measurements observed at NUTS3 level
might be a reflection of the differences in their agricultural specializations.
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As NUTS3 differ in physical environment, a producitvity shock in one
location might have a limited spillover effect for the productive performance
of neighboring locations because of the differences in technological and orga-
nizational endowment. As a consequence, the diffusion of innovation might
be a limited and lengthy process in agriculture.
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Appendix A

Italian FADN tables

The database provided by CREA1 contains farm-level information spanning
the period 2008-2014. It is composed of the following 25 tables :

Table Description

FARMS Contains the general economic and structural information such as ID, location, physical dimension, standard
output, LU, AWU, UAA, economic size, specialization

SUBSIDIES Contains information regarding CAP support received by the farm divided by type of intervention and payment
channel

ANIMAL HUSBANDRY Quantitative physical and financial information regarding livestock by category owned by farms

ENVIRONMENT Physical and qualitative information regarding natural resources of the farm

LIVESTOCK Physical and economic characteristics of livestock belonging to the farm or used within the farm y livestock
category

INCOME STATEMENT Statement of revenues and expenses of the accounting period

BALANCE SHEET Summary of the financial balances

SAMPLE ID, stratum, weight for each sampled farm

CERTIFICATION Information on products or processes certifications

CLASSIFICATION Information on standard output per types of products

CROPS Economic and physical information about crop productions

LABOR COSTS Information regarding number of people working on the farm, amount of work supplied to the farm and salary
earned by type of workers

BUILDINGS Physical and economic information regarding farms’ buildings

FERTILIZERS Information regarding value and quantities of fertilizers by type

PESTICIDES Information regarding value and quantities of pesticides by type

LABOR Information regarding the characteristics of each of the workers

MACHINES Information regarding machines and installations used on farm by type and by ownership

MANPOWER Additional information regarding workers’ characteristics

PLANTATIONS Technical and economic information regarding crops and forest plantations

PRODUCTS Quantitative and economic information regarding agricultural products produced, purchased, sold, reused,
stocked in farm

SERVICES Physical information regarding services offered such as camping, production of renewable energies, machinery
renting, room rent and farmhouse services

LAND Surfaces and value of land by type of land

SGM TYPOLOGY Information regarding standard gross margins, economic size and specialization for those companies sampled in
2008 and 2009

WATER USAGE Information regarding the use of water by crop (volumes, timing)

LAND USE Land surfaced by type of land use

1Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria,
http://www.crea.gov.it/
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The data provided by the Italian FADN and used in this analysis is up-
dated as of 27 July 2016. Values and prices are collected in current values.
These values are deflated using appropriate price indexes2 to transform the
current values in 2008-constant values.

2Price indexes are taken from the Eurostat Agricultural Price indexes and from other
Eurostat data tables.
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Appendix B

Sampled farms

The Italian FADN is the Italian subset of the FADN. The FAND is a EU
tool for evaluating the income of agricultural holdings and the impacts of the
CAP. It does so by collecting information on a sample of farms throughout the
EU every year. The sampling strategy and data collection are made by the
Liaison Agencies in each EU Member State under certain general guidelines
and with the approval of the EU Commission. In Italy, the Liaison Agency
is the CREA1.

The FADN field of observation consists of the subset of the universe of
the Farm Structure Survey2 named commercial farms. Commercial Farms are
defined as farms large enough to provide a main activity for the farmer and
a level of income sufficient to support his or her own family. To be classified
as such a farm need to exceed a minimum economic size and the thresholds
for the minimum size are established at the level of Member States.

In Italy, until 2009 the minimum economic size to be classified as commer-
cial farm was 4 UDE. A UDE is a measure of economic size and corresponds
to 1200 EUR of Standard Gross Margin. The standard gross margin of a crop
or livestock item is defined as the value of output from one hectare or from
one animal less the cost of variable inputs required to produce that output.
The economic size of a farm was obtained by summing up all the SGMs for
all crop or livestock product.

Since 2010, the minimum economic size to be classified commercial in
Italy was a Standard Output (SO) larger than 4000 EUR. THE SO is the
monetary of the gross agricultural output at the farm-gate price. It is ob-
tained for each farm by multiplying the Standard Output per unit of crop and

1Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria
2The universe of the FSS is composed of all agricultural holdings in the EU of at least

1 hectare and those of less than 1 hectare provided the latter market a certain proportion
of their output or produce more than a specified amount of output
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livestock product by the corresponding number of units of crop and livestock
products. Standard Outputs per unit of product is an average monetary
measure per unit that is calculated for each crop and livestock product over
a period of five years in each region.

The Italian FADN samples in Italy around 11,000 agricultural holdings
annually. The sample size of the Italian FADN is one of the largest in the EU
(Hansen et al., 2009). Each year CREA draws a random sample stratified
along the dimension of FADN region, economic size and types of farming. A
constant subsample is also added to the random sample.

Representativeness of the FADN sample with respect to the actual uni-
verse of commercial farm, as listed by the FSS, might be undermined by
the inclusion of two additional sample selection criteria. To be included into
the sampling frame, agricultural holdings must: have a suitable set of farm
accounts and be willing to participate. As a result, the sample is actually
drawn at random from the subset of commercial farms that fulfill these two
criteria.

After the sampling is done a weight is attached to each sample. The
weight corresponds to the number of agricultural holdings that the sampled
one represents. According to the sampling plan, if a stratum is composed of
100 farms and only 20 of them are sampled, than each of the sampled farm
will have a weight equal to 5 (100/20 = 5).

The purpose of the weighting procedure is to derive an approximation of
the population’s values by using information on a much smaller number of
agricultural holdings. Thus, it is likely that the higher the weight the less
reliablethe inferential procedure is because it is assumed that the represented
farms are equal in terms of activities and structure to the sampled one.

Country level

At the most aggregate level, around 11,000 farms are sampled annually by
CREA. The highest number of sampled farms is registered in 2008 and 2013
with more than 11,330 farms. The year in which the smallest number of
sampled farms is recorded is the latest year, the 2014 with less than 10,500
farms.

By summing up the weights attached to each farms is possible to derive
the number of farms that are represented by the sampled ones. The temporal
distribution of the represented farms is presented in the third column of
Table B.1. It is possible to see that, although the number of sampled farms
stayed relatively constant throughout the period 2008-2013, the number of
represented farms has slightly increased over time. This is reflected also in
the increasing average weight that is applied to each farm at national level.
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Year Sample Universe Average weight

2008 11, 389 693, 649 60.9

2009 11, 029 693, 617 62.9

2010 11, 155 785, 920 70.5

2011 11, 237 779, 657 69.4

2012 11, 178 792, 627 70.9

2013 11, 319 800, 844 70.8

2014 10, 487 596, 215 56.9

Table B.1: Sampled farms, represented farms and average weights, national
level

It is possible to see that the average weight has increased from 60.9 in 2008
to 70.8 in 2013. The 2014 marks a break in the trend with a drastic fall in
the number of sampled farms and in the number of represented farms. But
their relative difference is also decreased as reflected by the decrease in the
average weight to 56.9. It might be inferred by the decrease in the average
weight that the representativeness of the sampling strategy increased in 2014
after a period of decreasing reliability.

It is also possible to compare the estimates with the number of holdings
as provided by the FSS in 2010 and in 20133. In terms of the number of
agricultural holdings in Italy exceeding the minimum economic size of 4000
EUR, the FSS recorded 838,740 and 711,820 holdings in 2010 and in 2013
respectively. In the same years, the number of represented farms in the
Italian FADN database is 785,920 and 800,844 respectively. The FADN data
do not seem to align with the trends recorded by the FSS. In fact, the number
of holdings, as recorded by the FSS, diminished considerably between 2010
and 2013 while, according to the FADN data, the number of represented
commercial farms has slightly increased over the period.

Another interesting feature of the sample regards how the composition
of the sample has changed over time. In particular, since farm-level data
with weights attached are used to approximate aggregate data and to derive
output and input indexes at an aggregate level, it is interesting to see how the
composition of companies within each aggregate has changed. This might
help in interpreting the output and input indexes derived. In fact, it could
be assumed that a higher turnover rate of companies is associated with a

3The FSS data collection was carried most recently in 2005, 2007, 2010 and 2013.
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higher volatility of aggregate indexes.
Figure B.1 shows the time-series of the turnover of sampled companies

year-to-year (pink line) and year-to-period (blue line) . The year-to-year
turnover is the share of companies that in each year are newly sampled with
respect to the previous year. The year-to-period turnover is the percentage
of companies that have entered the sample for the first time since 2008.

Figure B.1: Turnover rates, national level

The two curves are close together meaning that, typically, the new com-
panies surveyed every year are new to the whole dataset. The second pattern
that is easily identifiable is the average number of new companies in each year
that stands around 18%. This means that, on average, 18% of the companies
that are surveyed annually are new companies.

Another interesting feature is that the turnover rate changed drastically
from year to year. In 2010, 2012 and 2014 the turnover rate stood high at
around 25% while in 2009, 2011 and 2013 the turnover rate was relatively
low at between 6% and 15%.

FADN regions

The FADN sample is stratified along the dimensions of FADN region, eco-
nomic size and type of farming. The FADN regions in Italy are 21 and
corresponds almost entirely to the NUTS2 administrative division. The only
exception is given by Trentino-Alto Adige that in the FADN map is split into
two regions, i.e., Trentino and Alto Adige.
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Among the 21 FADN regions the most sampled are Piemonte, Emilia
Romagna, Veneto, Toscana and Lombardia with an average annual number
of sample companies of respectively 1029, 916, 733, 665 and 628 holdings.
On average they represent the 9.2%, the 8.2%, the 6.5%, the 5.9% and the
5.6% of the agricultural holdings sampled annually in Italy. The number of
sampled farms in Emilia Romagna and Toscana has been steadily declining
throughout the period.

The least sampled regions are Valle d’Aosta, Trentino and Molise with
respectively an average number of sampled companies of per year of 183,
279 and 335 farms accounting for the 1.6%, 2.5% and 3% of the companies
sampled annually in Italy.

By applying the weight to each of the sampled farm and aggregating that
number at the level of FADN region, it is possible to derive the geographical
distribution of represented farms over time.

The number of sampled and represented farms by FADN region is pre-
sented in Table B.2. The share of sampled and represented farms by FADN
region is presented in Table B.3. Regarding the number of represented farms,
the story is somewhat different with respect to the sampled ones. There are
FADN regions that represent a large number of companies while the number
of their sampled companies are relatively small. It is interesting to inspect
these trends because they might help in understanding the reliability of the
estimates.

First of all, it is possible to notice that a number of regions have a rela-
tively high share of represented farms each year. The number of regions with
the highest average share are respectively Puglia, Sicilia, Campania, Veneto
and Emilia Romagna. Secondly, among these regions the ones that have a
large number of sampled farms are only Emilia Romagna and Veneto. The
others, all coming from the Southern part of the country, have a relatively
low number of sampled companies. The discrepancy between the number of
sampled and represented farms becomes clear by looking at the time-series
of the average weight by FADN region in Figure B.2. It is clear that Puglia,
Sicilia, Campania but also Calabria have a very high average weight attached
to each farms. The weight for these regions is higher than 100 or even 150
while the average for the whole sample is around 63.

The fact that some regions are associated with a high average weight
could be attributed to two possible sources: a high degree of homogeneity of
farms in the regions or to a lower degree of reliability of the sampling plan.
If the second hypothesis were supported, then one should be more cautious
in interpreting the corresponding estimates.

In terms of turnover rate, the year-to-year and year-to-period turnover
curves are very close together as in the aggregate case. This mens that
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FADN 2008 2009 2010 2011 2012 2013 2014

region sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni.

AB 523 24, 402 508 24, 318 441 27, 200 439 27, 049 431 20, 876 445 20, 859 526 20, 986

AA 337 14, 205 349 14, 023 213 16, 684 261 16, 980 261 15, 831 262 15, 864 325 14, 150

BA 449 19, 031 420 19, 063 420 19, 570 405 19, 517 388 18, 310 420 19, 170 360 13, 804

CL 348 37, 878 315 40, 075 470 67, 689 474 68, 197 471 68, 057 466 67, 730 461 41, 427

CM 441 55, 972 441 55, 378 593 65, 443 574 65, 019 582 65, 371 598 64, 750 587 43, 451

ER 1, 168 58, 363 1, 055 59, 084 1, 011 58, 874 878 57, 623 845 58, 297 760 59, 286 701 48, 828

FV 652 11, 672 632 11, 619 510 11, 669 519 11, 255 516 11, 995 520 11, 945 389 8, 506

LA 449 33, 186 445 33, 907 500 43, 116 557 42, 755 524 42, 312 577 42, 780 709 30, 508

LI 473 10, 305 472 10, 122 519 9, 449 512 9, 435 559 9, 094 559 9, 082 399 6, 726

LO 648 38, 112 597 38, 176 639 37, 729 611 36, 809 640 38, 091 630 38, 449 634 33, 281

MA 530 22, 551 552 22, 786 447 21, 739 475 21, 685 481 21, 641 456 21, 869 379 15, 181

MO 322 8, 372 319 7, 953 338 9, 758 348 9, 891 348 9, 560 351 9, 608 323 6, 534

PI 1, 005 44, 919 1, 037 45, 912 1, 054 49, 993 1, 032 49, 528 1, 031 51, 104 1, 037 50, 788 1, 008 41, 714

PU 452 91, 418 449 91, 357 682 89, 909 721 89, 867 683 90, 180 674 95, 327 611 62, 551

SA 371 27, 676 377 26, 005 524 33, 858 522 34, 767 537 34, 894 708 34, 893 510 29, 073

SI 457 76, 814 450 75, 669 598 98, 532 641 96, 544 628 108, 747 651 108, 505 617 80, 800

TO 867 35, 082 817 35, 190 626 35, 642 630 35, 192 620 35, 066 608 37, 971 488 27, 658

TR 322 10, 069 307 9, 978 256 11, 826 279 10, 569 263 10, 687 279 11, 822 248 9, 814

UM 436 9, 754 454 9, 826 465 15, 047 495 15, 192 473 15, 824 468 15, 756 426 9, 964

VA 260 1, 275 194 1, 389 158 1, 796 156 1, 761 190 1, 826 159 1, 655 168 1, 254

VE 879 62, 593 839 61, 789 691 60, 398 708 60, 024 707 64, 863 691 62, 734 618 50, 006

Table B.2: Sampled (sam.) and represented farms (uni.) by FADN region

FADN 2008 2009 2010 2011 2012 2013 2014

region sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni.

AB 0.046 0.035 0.046 0.035 0.040 0.035 0.039 0.035 0.039 0.026 0.039 0.026 0.050 0.035

AA 0.030 0.020 0.032 0.020 0.019 0.021 0.023 0.022 0.023 0.020 0.023 0.020 0.031 0.024

BA 0.039 0.027 0.038 0.027 0.038 0.025 0.036 0.025 0.035 0.023 0.037 0.024 0.034 0.023

CL 0.031 0.055 0.029 0.058 0.042 0.086 0.042 0.087 0.042 0.086 0.041 0.085 0.044 0.069

CM 0.039 0.081 0.040 0.080 0.053 0.083 0.051 0.083 0.052 0.082 0.053 0.081 0.056 0.073

ER 0.103 0.084 0.096 0.085 0.091 0.075 0.078 0.074 0.076 0.074 0.067 0.074 0.067 0.082

FV 0.057 0.017 0.057 0.017 0.046 0.015 0.046 0.014 0.046 0.015 0.046 0.015 0.037 0.014

LA 0.039 0.048 0.040 0.049 0.045 0.055 0.050 0.055 0.047 0.053 0.051 0.053 0.068 0.051

LI 0.042 0.015 0.043 0.015 0.047 0.012 0.046 0.012 0.050 0.011 0.049 0.011 0.038 0.011

LO 0.057 0.055 0.054 0.055 0.057 0.048 0.054 0.047 0.057 0.048 0.056 0.048 0.060 0.056

MA 0.047 0.033 0.050 0.033 0.040 0.028 0.042 0.028 0.043 0.027 0.040 0.027 0.036 0.025

MO 0.028 0.012 0.029 0.011 0.030 0.012 0.031 0.013 0.031 0.012 0.031 0.012 0.031 0.011

PI 0.088 0.065 0.094 0.066 0.094 0.064 0.092 0.064 0.092 0.064 0.092 0.063 0.096 0.070

PU 0.040 0.132 0.041 0.132 0.061 0.114 0.064 0.115 0.061 0.114 0.060 0.119 0.058 0.105

SA 0.033 0.040 0.034 0.037 0.047 0.043 0.046 0.045 0.048 0.044 0.063 0.044 0.049 0.049

SI 0.040 0.111 0.041 0.109 0.054 0.125 0.057 0.124 0.056 0.137 0.058 0.135 0.059 0.136

TO 0.076 0.051 0.074 0.051 0.056 0.045 0.056 0.045 0.055 0.044 0.054 0.047 0.047 0.046

TR 0.028 0.015 0.028 0.014 0.023 0.015 0.025 0.014 0.024 0.013 0.025 0.015 0.024 0.016

UM 0.038 0.014 0.041 0.014 0.042 0.019 0.044 0.019 0.042 0.020 0.041 0.020 0.041 0.017

VA 0.023 0.002 0.018 0.002 0.014 0.002 0.014 0.002 0.017 0.002 0.014 0.002 0.016 0.002

VE 0.077 0.090 0.076 0.089 0.062 0.077 0.063 0.077 0.063 0.082 0.061 0.078 0.059 0.084

Table B.3: Annual share of sampled and represented farms by FADN region
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Figure B.2: Average weight by FADN region

Figure B.3: Turnover rates by FADN region
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the companies that are newly sampled in each of the year have never been
sampled before and this applies to all regions. The only exceptions are Alto
Adige in 2011 and Lazio in 2013. In these two regions, the gap between
the year-to-year and the year-to-period curve is larger than for the rest of
the regions. For what regards the average level of turnover, some regions
share a higher average turnover rate with respect to the others. The average
year-to-year turnover is very high for Sardegna and Lazio. These two regions
have an average annual turnover rate of above 30%. At regional level, the
average yearly turnover rate stands at 18.9%. Some regions perform fairly
better with respect to the average. In particular, Piemonte and Liguria have
an average yearly turnover rate below 10%. The expected implications for
the rate of turnover are that one would expect the indexes of output and
inputs be more stable for regions under more stable sampling conditions and
be more volatile in the case of a higher turnover rate due to the quasi-random
nature of the FADN sample.

NUTS3

NUTS3 corresponds perfectly with the Italian administrative division of
provinces in 2011. Collectively, there are 110 provinces in the FADN database.
However, in the present analysis three NUTS3 were merged with other neigh-
boring ones in order to be able to derive specific indexes for inputs such as
fertilizers and pesticides. Some of the provinces, due to the very low number
of sampled companies in some of the years did not have information on some
of the most important inputs. Therefore, it was decided to aggregate them
into larger spatial units. The spatial aggregation was made while meeting
the largest number of the following criteria:

• NUTS3 must be merged with other NUTS3 belonging to the same
NUTS2;

• NUTS3 must be merged with neighboring ones who share the lowest
possible number of sampled companies;

• the final geographical combination of the two merged provinces ought
to be latitudinally and longitudinally restricted.

Following this procedure, Varese was merged with Como, Monza e delle
brianza with Lecco and Verbano-Cusio-Ossola with Novara. Figure B.4 gives
a geographical representation of the aggregation procedure. The final number
of NUTS3 in the analysis is 107.

There is high variability in the number of sampled companies per NUTS3.
Those that have a higher relative share of sampled companies in each of
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Figure B.4: Spatial aggregation of selected NUTS3

the year of the period 2008-2014 are Perugia (Umbria), Cuneo (Piemonte),
Campobasso (Molise), Udine (Friuli Venezia Giulia), Bolzano (Alto Adige),
Trento (Trentino), Imperia (Liguria) and Verona (Veneto). These NUTS3
have an annual average share of sampled companies that is above the 2%
of the entire sample in each year. The least sampled NUTS3 are Monza
e della Brianza, Lecco, Verbano-Cusio-Ossola that have from two to four
companies sampled annually in some of the years. They are thus merged
with neighboring NUTS3.

Summing the weights applied to each farm and aggregating at NUTS3
level it is possible to derive the number of represented farms by province. Un-
der the hypothesis that the represented farms lie within the province bound-
aries of their representative farm, the number of represented farms provides
an approximate value to the total values at NUTS3 level. The annual share
of represented farms by NUTS3 is depicted in the map in Figure B.5.

From the maps it is easy to see that the highest share of represented farms
are located into provinces in the North-East, in the Central-West, and in the
South. For what regards the provinces in the North-East and in the Central-
West, the high number of represented farms is matched with a high number
of sampled companies. This is not true for many Southern provinces. For
many of them, sampled companies have a very high number of represented
farms. This is reflected by the high average weight throughout the years in
the Southern part of the country. The map of average weight by NUTS3
is presented in Figure B.6. As noted earlier, two possible explanations for
a higher weight can be the fact that there is high homogeneity of farming

111



Figure B.5: Annual share of represented farms by NUTS3

Figure B.6: Average weight by NUTS3
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structures or because the approximation involved is larger. In this second
case, we should be cautious in interpreting the productivity statistics from
those NUTS3.

Figure B.7: Turnover rate by NUTS3

The year-to-year turnover rate was very low in 2008 and very high in
2010, 2012, and in 2014 as in the aggregate data. For some NUTS3, the
turnover was particularly high in these years. A year-to-year turnover higher
than 80% was found in the provinces of Livorno, Roma, Pisa Rieti, Arezzo,
Latina, Frosinone e Massa-Carrara in 2014 and in Ogliastra in 2012. The
map of the year-to-year turnover rate in presented in Figure B.7.

Types of farming

The types of farming provided in the Italian FADN are the following ten
classes: dairy, cereals, grazing livestock, fruits, granivores, mixed crops and
livestock, olives, horticulture, arable crops and wine. The link between the
code for the types of farming and the classes provided in the Italian FADN
is presented in Appendix F. The distribution of the sampled and represented
farms by type of farming is provided in Table B.4.

All types of farming have a high number of sampled companies. The least
sampled class is the granivores with around 400 sampled farms annually. By
applying the weights to the corresponding farms and aggregating by class,
it is possible to derive the distribution of represented farms. These are pre-
sented for each year in the column ”univ.”. This distribution represents the
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Types of 2008 2009 2010 2011 2012 2013 2014

farming sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni.

Dairy 1, 325 49, 063 1, 170 48, 283 1, 083 34, 886 1, 064 33, 721 1, 068 33, 180 1, 102 33, 683 937 31, 317

Cereals 1, 622 123, 610 1, 429 121, 698 1, 367 104, 432 1, 375 102, 860 1, 341 103, 728 1, 296 101, 835 1, 134 61, 100

Grazing livestock 1, 092 40, 038 1, 154 39, 915 1, 372 70, 595 1, 392 69, 442 1, 505 72, 682 1, 693 71, 555 1, 507 68, 104

Fruits 1, 834 132, 050 1, 830 133, 622 1, 382 146, 220 1, 446 146, 242 1, 247 154, 494 1, 249 155, 150 1, 328 92, 228

Granivores 323 5, 368 285 4, 776 424 7, 468 408 7, 263 517 7, 152 507 7, 518 492 7, 967

Mixed 822 40, 502 826 43, 699 952 76, 950 990 77, 152 987 75, 510 991 77, 267 968 48, 737

Olives 466 80, 716 458 81, 145 468 74, 351 499 74, 711 479 73, 640 480 72, 578 432 41, 518

Horticulture 1, 173 56, 455 1, 154 54, 167 1, 482 62, 778 1, 448 63, 697 1, 495 61, 811 1, 464 62, 698 1, 225 61, 207

Arable crops 1, 638 104, 311 1, 673 101, 781 1, 172 77, 893 1, 153 79, 170 1, 194 76, 181 1, 246 78, 209 1, 216 60, 388

Wine 1, 094 61, 535 1, 050 64, 533 1, 453 130, 348 1, 462 125, 399 1, 345 134, 249 1, 291 140, 351 1, 248 123, 649

Table B.4: Sampled and represented farms, types of farming

distribution of commercial farms in Italy by specialization. It is worth notic-
ing that there is a considerable difference between the number of sampled
farms and the number of represented ones for some specialization. Olives,
fruits, wine, mixed and cereals, especially in some years, have a number of
sampled farms that is small with respect to the number of represented farms
relative to other classes.

Types of 2008 2009 2010 2011 2012 2013 2014

farming sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni.

Dairy 0.116 0.071 0.106 0.070 0.097 0.044 0.095 0.043 0.096 0.042 0.097 0.042 0.089 0.053

Cereals 0.142 0.178 0.130 0.175 0.123 0.133 0.122 0.132 0.120 0.131 0.114 0.127 0.108 0.102

Grazing livestock 0.096 0.058 0.105 0.058 0.123 0.090 0.124 0.089 0.135 0.092 0.150 0.089 0.144 0.114

Fruits 0.161 0.190 0.166 0.193 0.124 0.186 0.129 0.188 0.112 0.195 0.110 0.194 0.127 0.155

Granivores 0.028 0.008 0.026 0.007 0.038 0.010 0.036 0.009 0.046 0.009 0.045 0.009 0.047 0.013

Mixed 0.072 0.058 0.075 0.063 0.085 0.098 0.088 0.099 0.088 0.095 0.088 0.096 0.092 0.082

Olives 0.041 0.116 0.042 0.117 0.042 0.095 0.044 0.096 0.043 0.093 0.042 0.091 0.041 0.070

Horticulture 0.103 0.081 0.105 0.078 0.133 0.080 0.129 0.082 0.134 0.078 0.129 0.078 0.117 0.103

Arable crops 0.144 0.150 0.152 0.147 0.105 0.099 0.103 0.102 0.107 0.096 0.110 0.098 0.116 0.101

Wine 0.096 0.089 0.095 0.093 0.130 0.166 0.130 0.161 0.120 0.169 0.114 0.175 0.119 0.207

Table B.5: Share of sampled and represented farms, types of farming

The gap between the number of sampled companies and the number of
represented companies is summarized in the time-series of the average weight
by types of farming. It is possible to see that olives and fruits have a very
high average weight attached to each of their farms. Also wine, cereals and
mixed are associated with average high weights but just in some of the years.
In addition, it seems that there exists a break in the series between the period
2008-2009 and the period 2010-2014. It seems as if, for most specialization,
the share of companies have changed in line with the change in the data col-
lection done between these two periods (in 2010). Two possible explanations
for this change are i) the change in the data collection and, in particular, the
update of the unit SO coefficients associated with each agricultural product
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Figure B.8: Average weights, types of farming

has led to a different classification of the companies ii) the actual compo-
sition of the Italian commercial agriculture has changed between these two
periods.

In terms of turnover, some specializations have an higher turnover rate
with respect to the others. In particular, Mixed have a remarkably high rate
of turnover. Also arable crops and grazing livestock share a high average
level of turnover. Another interesting feature that can be detected from
these time-series is that it appears as if there are two types of trends shared
by the groups: one in which the rate of turnover is relatively high in 2010,
2012 and 2014 and another one in which the rate of turnover is high in 2010
and 2014 but not in 2012. Olives, cereals and fruits belong to this second
group. It is also worth noticing how the year-to-year turnover is different
to the year-to-period turnover for some specializations. Mixed, arable crops,
and cereals seem to have a wider gap between the two curves and ths meas
that, in each year, the number of new companies entering the dataset are
companies that have been surveyed in some of the previous periods.

Size classes

The size of agricultural holdings is determined by their economics size. The
classification of economic sizes of farms used in this analysis is provided in
the Italian FADN database. This classification attempted to harmonize the
differences in the European classifications between the two data collection
periods: 2008-2009 and 2010-2014. This classification is a function of the
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Figure B.9: Turnover rates by types of farming

Standard Output of agricultural holdings. However, because of the change
in the methodology with which the Standard Output has been measured in
the two sub-periods, also the size classes have a high number of companies
moving from one class to the other even though the farms ave not changed
their structure at all. In order to reduce the bias produced by the change in
the classification, in the present analysis a specific procedure has been under-
taken in order to increase the comparability between the two data collection
periods.

In particular, for the period 2008-2009 the SO unit coefficients have been
replaced (when possible) with the SO unit coefficients of the period 2010-
2014. In a second stage, the SO per agricultural product have been aggre-
gated by farm in each of the accounting year. The recalculated SO is then
used to classify the farms in three class size according to the pre-defined
thresholds4. Details of the procedure are presented in Annex G.

The resulting distribution appears to be more balanced than the previous
one. The class that on average is most sampled is the class of the medium-
sized farms with around 4,500 farms sampled annually. The class that follows
is the class of large farms with around 3,500 farms sampled annually. The re-
maining class is the one with the small-sized ones and it is composed annually
on average by 3,000 companies.

Given the distribution of the sampled farms, it is clear how much the
Italian FADN sample is unbalanced in favor of the large farms. By looking

4A farm is small is its SO is less than 25,00 EUR; it is considered medium-sized when
the SO is between 25,001 and 50,000; it considered large when its SO is larger than 100,000.

116



at the number of represented farm, this is even clearer. The represented
farms should represent the actual distribution of the companies by size and
by year. On average, it seems as the small farms account for around the 60%
of the total number of companies while in the present database the share
of small size sampled companies is considerably less than the 30% share.
The medium-sized farms represent on average around the 30% share of the
sampled companies and the average share of the sampling plan give is about
the same. In contrast, large farms are largely overrepresented. While they
should account for around the 10% of the sampled companies, in fact, they
account for around the 40% of the sampled ones.

Size 2008 2009 2010 2011 2012 2013 2014

classes sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni.

Large 3, 628 65, 256 3, 537 67, 397 3, 662 85, 742 3, 604 85, 535 3, 725 85, 931 3, 728 86, 056 3, 402 86, 918

Medium 4, 613 210, 980 4, 525 215, 858 4, 352 215, 019 4, 488 214, 225 4, 356 214, 964 4, 548 215, 632 4, 512 215, 959

Small 3, 148 417, 414 2, 967 410, 362 3, 141 485, 159 3, 145 479, 897 3, 097 491, 732 3, 043 499, 156 2, 573 293, 338

Table B.6: Sampled and represented farms by class size

Size 2008 2009 2010 2011 2012 2013 2014

classes sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni. sam. uni.

Large 0.319 0.094 0.321 0.097 0.328 0.109 0.321 0.110 0.333 0.108 0.329 0.107 0.324 0.146

Medium 0.405 0.304 0.410 0.311 0.390 0.274 0.399 0.275 0.390 0.271 0.402 0.269 0.430 0.362

Small 0.276 0.602 0.269 0.592 0.282 0.617 0.280 0.616 0.277 0.620 0.269 0.623 0.245 0.492

Table B.7: Share of sampled and represented farms by class size

Average weights by size classes is presented in Figure B.10. On average,
the large farms sampled represent around 20 represented farms. Medium-
sized farms are associated with a weight that is around the double of the
weight for large farms while small farms are associated with a much larger
average weight. On average, each sampled farm classified as small represents
around 150 small farms.

The turnover rates are presented in Figure B.11. Rates are similar across
size classes. For small farms, turnover rates appear to be sightly higher than
the other classes. Particularly high was the turnover rate in 2010, 2012 and
2014 for all size classes.
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Figure B.10: Average weight by class size

Figure B.11: Turnover rates by class size
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Appendix C

Derivation of the output index

Exclusion of products with large variations

The output index is created from the information contained in the table
PRODUCTS. This table contains detailed information on the quantity and
values of 1047 products. As some of them exhibit huge year to year varia-
tions in the quantity produced, in this analysis we decided to exclude them
from the computation of the output index. The reason why they were ex-
cluded is because huge year to year variations in quantities might cause large
fluctuations in the output index and biases in the derivation of the produc-
tivity indexes. Huge year to year fluctuations might be due to errors in the
data collection methodology and to different units of measurements rather
than due to an actual change in production quantities. As the index number
procedure does not take into account the presence of noise in the data, the
present analysis excludes the products that might drive large fluctuation in
aggregate indexes.

The products that were excluded from the analysis were those that exhib-
ited a year to year variations larger than 10,000% in, at least, one of the year
of the panel. There are 29 products that exhibit such year to year variations
in the quantity produced. They are the following:

– alcool di Vite per vino comune
– Altri prodotti di Suini
– Altri prodotti lattiero caseari di Ovini
– altri prodotti olive di Olivo per olive da olio
– altri sottoprodotti di Altre ortive
– altri sottoprodotti di Altre piante aromatiche, officinali e medicinali
– altri sottoprodotti di Porro
– Carni fresche e congelate di Tacchini
– erba verde di Erbaio di altre specie
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– erba verde di Erbaio di leguminose
– erba verde di Erbaio di sorgo in erba e a maturaz cerosa
– erba verde di Erbaio di Sorgo zuccherino
– fieno di Erbaio di Sorgo zuccherino
– marmellata di frutta di Lampone
– marmellata di frutta di Melo
– marmellata di frutta di Mora di rovo
– marmellata di frutta di Susino
– piante di Begonia
– piante di Rose
– piante e fiori per essenze e aromi di Altre piante aromatiche, officinali
e medicinali

– piante e fiori per essenze e aromi di Aneto
– piante e fiori per essenze e aromi di Camomilla
– piante e fiori per essenze e aromi di Lavanda
– piante e fiori per essenze e aromi di Menta
– prodotti del vivaio di Vivaio piante aromatiche, medicinali e officinali
– residui della potatura di Vite per vino DOC e DOCG
– sidro di Melo
– Siero di Bovini
– tuberi di bieta da radice

Collectively, they contribute to a small share of the total production for
every year. Their total contributions ranges between 0.42% in 2008 to 0.065%
in 2012. Their contribution is small and relatively stable over time so that
the time-series of aggregate indexes should not be affected by their exclusion.

Year Value share

2008 0.00370

2009 0.00425

2010 0.00197

2011 0.00136

2012 0.00065

2013 0.00099

2014 0.00158

Table C.1: Annual value share of excluded products
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Macro-categories used in the products aggregation step

To make the panel output comparisons more meaningful, a product aggre-
gation procedure has been used. In this procedure, a number of products
with similar features were merged together. The products selected to be ag-
gregated were the products that were not included in the definition of major
products considered in Appendix D. These non-major products were aggre-
gated into 56 macro-categories taking into account their characteristics and
unit of measurement.

The macro-categories used in the aggregation procedure are the following:

– aceto HL
– acquavite LT
– alcool LT
– carni QL
– formaggio QL
– altri prodotti frutta KG
– altri prodotti viticoltura QL
– altri prodotti olivicoltura QL
– altri prodotti erbacee QL
– altri prodotti ortive QL
– altri prodotti piante industriali QL
– altri prodotti cereali QL
– altri prodotti piante QL
– altri prodotti legumi QL
– altri prodotti animali MG
– ortaggi QL
– latte QL
– prodotti apicoltura QL
– erba verde QL
– essenze KG
– farina QL
– fibre tessili QL
– fieno QL
– fieno UB
– fiori CTS
– fronde QL
– frutta lavorata QL
– frutta QL
– legumi QL
– piante industriali QL
– cereali QL
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– insilato QL
– lana QL
– legno MC
– legno QL
– letame QL
– marmellata KG
– mosto HL
– olio QL
– paglia QL
– pascolo QL
– pascolo UB
– altri prodotti animali QL
– piante CTV
– piante per essenze e aromi MG
– cereali lavorati QL
– salumi QL
– residui potatura QL
– segatura e trucioli MC
– semi foraggere MG
– semi foraggere QL
– semi piante tessili QL
– succhi di frutta LT
– uova MG
– vinacce QL
– vino HL

Minimum spanning trees of the output indexes

In this section the minimum spanning trees used in the construction of the
chained output indexes at the level of FADN regions, types of farming, and
size classes are presented.
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Figure C.1: MST output index, FADN regions
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Figure C.2: MST output index, types of farming

Figure C.3: MST output index, size classes
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Appendix D

Selection of the products
aggregation procedures

The output indexes for the different levels of analysis are created after a spe-
cific products aggregation procedures. As the number of available products
is very large, the aggregation procedure should help creating more meaning-
ful output comparisons between spatial units and, at the same time, save
computation time.

The aggregation procedure consists in two steps: first, the products that
make for a certain share of the production value of each region in every year
are selected1, and secondly, the remaining products are aggregated into 56
macro-categories. The main challenge at this point is to select the relevant
share of the regional production values. This share will separate the group
of products that will be aggregated from those that will not. We will conve-
niently name the products that will not be aggregated as the major products.

The specific share changes for each analysis so that each output index
is the one that is based on the most reliable binary comparisons. Every
time, the selection is done in two steps. In the first step, the output index
is calculated using different share values2. Second, the best share value is
selected based on the most reliable of the computed output indexes. The
reliability of the output index is defined as the sum of the Paasche-Laspeyres
Spreads (PLS) across the minimum spanning tree associated with the index.
The lower the sum, the more reliable the output index.

1An additional criterion to be simultaneously satisfied is that for every region a number
of at least 8 products must be selected before the algorithm stops. The share value is
augmented with an additional 1% share at every iteration until the two conditions are
satisfied together.

2The different values tried out are included in the interval between 20% and 95%
considering a step of 2.5%.
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Figure D.1: PLS sums, FADN regions

The reliability of the output indexes is evaluated also without the prod-
ucts aggregation step. It is computed also for output indexes that differenti-
ate products based on their name only (Agg: name), based on their name and
on their corresponding unit of measurement (Agg: name + um) and based
on their name, their unit of measurement and their method of cultivation
(Agg: name + um + mc).

The best output index for every analysis is selected among all these based
on the minimum sum of the Paasche-Laspeyres spreads.

The sum of Paasche-Laspeyres spreads for each level of analysis and for
each share value is included in the Figure D.1, D.2 and D.3. In every figure,
the sum of the Paasche-Laspeyres spreads for all possible share of the regional
production value is presented together with the sum of the Paasche-Laspeyres
spreads for the output indexes considered using the products selection proce-
dures without aggregation. The first set of statistics are represented by the
dots, the second set is represented by the dashed lines. The red line is the
statistics associated with the most reliable output index.

Regarding the output index at regional level, the most reliable index is
the one that is constructed by considering as major products those that make
for the 90% of the production values of all regions. The remaining 10% are
aggregated into macro-categories.

For what regards the output indexes at the level of farms type and farms
size, the most reliable indexes are obtained respectively by considering as
major the products that make for the 60% of the production value at re-
gional level and by not aggregating products into macro-categories but by
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Figure D.2: PLS sums, types of farming and size classes

differentiating products based on their description together with their unit
of measurement. The most reliable index at the level of NUTS3 is the one
created by considering the products that make the first 20% of the produc-
tion value in each year in year region as the major products as presented in
Figure D.3.

Figure D.3: PLS sums, NUTS3
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Appendix E

Derivation of the input index

The inputs considered in the creation of an aggregate input index are the
following: labor, fertilizers, pesticides, external services, water usage, elec-
tricity usage, seeds, feeding stuff, capital assets, land, reuses, and other gen-
eral expenses such as commercialization, veterinary services, costs for the
transformation of products and others.

In the creation of the aggregate input index, information regarding input
prices and quantities are necessary. Such information can be often found
within the FADN tables. However, the FADN database is not created for
the generation of productivity statistics and in some instances some of the
information required for the creation of aggregate indexes are missing.

The reason why they are not present might be different:

– because they are not collected. For example, salary of family workers
is never registered;

– because information have been partially collected. For example water
usage is collected on a voluntary basis only since 2011;

– because they might not exist. For example, price of capital does not
exists because capital usage does not generally generate financial trans-
actions;

– because they are not listed in the available database. For example,
liters of motor fuel consumed on farm is registered on a voluntary basis
and it is not present in the available database. However, CREA stores
the information that might be available on request;

– because some data are collected only on a voluntary basis and cannot
be used unless pre-processed.

When price and quantity data are not available, information has been
imputed. However, the derivation of missing quantities and prices for these
inputs could be a challenging task.

The imputation method can be done along the following lines:
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– using partial information that is recorded in the survey (ex. average
price of fertilizers per farm or region);

– using secondary external data (ex. interest rate was taken from the
European Central Bank website);

– introducing assumptions (the shape of the decay function for asset ef-
ficiency is assumed);

– combining some of the previous ones (ex. to derive salary of fam-
ily workers we take the net profit and split equally among the family
members).

In what follows, the steps required for the derivation of the statistics
necessary to create the aggregate input quantity index for each of the input
are described. Also, a section with the spanning trees used in the creation of
the aggregate input indexes is presented.

Labor

Quantities of labor supplied together with its corresponding price informa-
tion can be found in the table LABOR COST. They are represented by hours
worked and the corresponding average hourly salary plus average hourly so-
cial charges. This information is included in the table LABOR COST under
the headings ”HOURS”, ”SALARY”, and ”SOCIAL CHARGES”. Data is
divided by types of workers. There are four types of workers:

– seasonal workers;
– family workers;
– contract workers;
– full-time employees
Information regarding the salary received is not available for family work-

ers. The salary for family workers needs to be imputed. Here, the salary of
family workers is derived as a function of the financial performance of the
farm. Net income for the accounting year is taken as the sum of the annual
salary for all the family workers. In order to derive an average hourly salary,
the sum is equally split by the number of family members and then divided
by the number of hours worked.

Fertilizers

Quantities of fertilizers is obtained by deflating total costs for fertilizers found
in the INCOME STATEMENT table by a corresponding average price. The
average price if found in two possible ways. The first option is to deflate total
costs for fertilizers by the total quantities used by using the detailed informa-
tion available in the table FERTILIZERS. This option is used whenever the
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farm has disclosed, in any of the year of the panel, information regarding the
price and quantities of the fertilizers it had used. Not always companies have
disclosed such detailed information and therefore, this option is not always
available. When farms decided not to disclose detailed information regard-
ing their fertilizers usage, an average price is imputed on a regional basis. In
practice, an average price for aggregate fertilizers is obtained in any of the
year of the panel for all Italian regions. When farms did not disclose informa-
tion regarding fertilizers price and quantities, this average price at regional
level is used to deflate their total costs in order to obtain an approximate
measure of quantity.

Pesticides

The procedure applied to derive the price and quantities of fertilizers is used
to obtain the price and quantities for pesticides. Total costs for fertilizers at
farm-level are obtained from the INCOME STATEMENT and deflated by an
average price to obtain the corresponding quantity component. The average
price is either obtained using the information available in the PESTICIDES
table or by using an average price at regional level.

Energy

Two types of energy inputs are considered here: electricity and fuels for
heating, and motor fuels. Only the value component of these two aggregates
is available in the FADN database. Total costs for electricity and heating
fuels are taken from two tables: table ANIMAL HUSBANDRY and table
CROPS. In the two tables total cost for this energy components are divided
by type of crops of by livestock. This information is aggregated at the level
of farm in each of the accounting period.

Total costs for motor fuels are taken from the INCOME STATEMENT
under the heading ”Mechanization”1.

The quantity component of energy use is not available in the database and
is derived indirectly with the use of imported information from external data
sources. In the present analysis, the price component of both energy types
is taken from the EU agricultural price indexes. The price indexes used here
are the price index for aggregate energy and for motor fuels. The quantity
component is obtained by dividing the value component by its corresponding
price component.

1The heading ”Mechanization” is the English translation of the Italian word ”Mecca-
nizzazione”.
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Water usage

Price and quantity of water are obtained using the information available
in the tables ANIMAL HUSBANDRY, CROPS and WATER USAGE. Total
value of the water usage is taken from the tables ANIMAL HUSBANDRY and
the table CROPS. In the two tables, total costs for water usage is available
and split by type of crop or livestock product. The value component for
water usage is obtained by summing up the costs for water usage for each
agricultural product. The corresponding quantity component is computed in
two ways:

1. if the company provided information regarding water volumes in the
accounting year, than that water volume is the quantity component for
that company in that year;

2. if the farm did not include any information regarding its water volume
in the accounting year, than an average price is used to deflate the
total value of water usage. The average price considered is given by the
aggregate average price at regional level. This average price is obtained
simply by dividing the total costs by the total amount of volume for
the whole period 2008-2014 at regional level using information within
the table WATER USAGE.

Services

The value and quantity components of external services received by farms is
found in the tables LABOR, ANIMAL HUSBANDRY and CROPS.

Total costs for external services are obtained by summing the costs for
external services for livestock and for crops. Hours worked are obtained by
summing man- and machine-hour of external services available in the table
LABOR.

In the presence of no working hours recorded for some farms and positive
costs for external services, an average price for the accounting period at
regional level is used to deflate the total value and to obtain the number of
hours of external services demanded by farms. If that average price is not
available for the current accounting period, an average price at regional level
is used considering the full 2008-2014 period.

Seeds

Total costs for seeds are available in the FADN dataset. However, neither
quantity nor price informations are given. Therefore, to retrieve the necessary
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price and quantity components, additional external information is used. The
EU agricultural price index of seeds is used here as price component to deflate
the value component and obtain the corresponding quantity component. EU
price indexes are available only at national level and this means that the price
component for seeds is equal across all farms considered in this analysis.

Feedingstuff

Feedingstuff is represented by straw and forage. The FADN database con-
tains information on total costs for these inputs while, as for the case of
seeds, no information regarding prices is available. Again, the price compo-
nent for feedingstuff is taken from the EU agricultural price indexes. The
same EU price index for feedingstuff is used here to deflate the total costs
for feedingstuff for all farms.

Other costs

Other costs include costs for:
– costs for commercialization of products;
– veterinary expenses;
– costs associated with products transformation;
– other costs such as purchase of materials, phone bills, and other means
of production.

As for seeds and feedingstuff information regarding this input is provided
in the FADN database in the form of total costs. The price used here is the
EU harmonized price index. The quantity component is thus obtained by
deflating the value component by this price component.

Capital

Capital assets are one of the most important production factor in the agricul-
tural production processes. The capital aggregate is composed of all durable
equipment that are, typically, bought once and used as input in the produc-
tion function of several accounting periods. In this analysis, capital assets
are considered to be machines, buildings (excluding building dedicated to
farmhouse services), livestock and plantations.

Despite its importance, assigning a quantity and price component to the
amount of capital that enters the production function in each of the ac-
counting period is a challenging task. The main challenge is that capital
assets provide services to the production function without generating finan-
cial transaction.
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Therefore, the quantity and price components of capital assets entering
the production function need to be imputed under some assumptions. The
following steps are made following the OECD (OECD, 2009) and Pierani and
Rizzi (Pierani and Rizzi, 2009).

In particular, the main assumption used in measuring the quantity of
capital input is that the amount of capital input entering the production
function is proportional to the available productive stock of capital. The
productive stock of capital is the amount of capital that is technically effective
and can provide services to the production process. The productive stock is
calculated by correcting past investment in capital assets by their loss in
productive efficiency assuming a certain shape for the loss in efficiency. The
function that relate the share of productive efficiency and the age of every
asset is called age-efficiency function and is usually assumed to be either
linear, geometric, hyperbolic, one-hoss shay-shaped, or of other shapes.

Figure E.1: Age-efficiency and corresponding age-price profiles, hyperbolic

Following, Ball et al. (Ball et al., 2010) and following Pierani and Rizzi
(Pierani and Rizzi, 2009) the age-efficiency function used in this analysis is
an hyperbolic age-efficiency function. The age-efficiency function is itself a
function of a shape parameter, β, that determines the slope of the function.

For the different types of assets a different β is used. For machines and
livestock β takes the value 0.5 while for buildings and plantations it takes
the value 0.75.

134



There are many instances within the FADN database where the asset is
recorded for a period of time that exceeds its expected life-length. In those
instances, the approach taken here is to consider the productive efficiency of
those assets at its minimum. Specifically, the level of productive efficiency
that is attributed corresponds to the level of efficiency of the last year in
which its productive efficiency was larger than zero.

With the capital stock obtained as the sum of efficiency-corrected series of
past investments in each asset, it is possible to obtain the quantity component
of capital services once their respective price component is determined in each
of the accounting year.

The price component of each capital asset is called user cost or rental
price because it represents the minimum a lessor would be willing to rent an
asset for one accounting period. This minimum price represents all the costs
associated with the use of the asset in the production processes of one year.

Typically, this price is composed of three components:
– the opportunity cost linked to the purchase of a durable asset;
– the depreciation of the asset, the value loss due to aging;
– revaluation, the expected price change of the asset in the specific ac-
counting year.

In this analysis, the opportunity cost linked to the purchase of a durable
good is taken to be the expected yield of the 10-year government bond for
the period 2002-2013. This period was selected because it starts from the
first years of the Euro Area, it is a relatively stable period, and because it is
observable by farmers throughout the period 2008-2014.

Depreciation is the loss in the value of the asset due to aging. It is a
function of the age of the asset and of its loss in productive efficiency. In
particular, it can derived as the percentage change of value of the asset over
time. The function that describes the price of an asset is called age-price
function and it is closely linked to the age-efficiency function.

The last term is revaluation, the expected price change of the asset. In
the present research, this term is obtained as the average price change of the
nominal price index for each asset in the period 2008-2014.

The user cost formula is the following:

UCt = V alue0θt(r
e + δt(1 + τ e)− τ e)

where V alue0 is the price paid for the capital asset, θt is discount factor for
the price of the asset after t years of life, re is the expected interest rate, δt is
the depreciation at year t, and τ e is the expected value of the nominal price
change.

With the price component and the capital stock component for each asset,
it is possible to derive an aggregate quantity measure of capital services. This
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is obtained here by aggregating the capital stock of each vintage of capital
asset in a multilateral Fisher index where the weights used for aggregation
are represented by their corresponding rental prices.

The bilateral Fisher index number formula for the measurement of capital
services considering two adjacent spatio-temporal unit, s and t, within the
corresponding minimum spanning tree is the following:

CSs,t =

√
¯UCs

′
PSt

¯UCs

′
PSs

¯UCt

′
PSt

¯UCt

′
PSs

where ŪC is the vector containing the aggregate average user costs for the
assets and PS is the vector containing the corresponding productive stocks.

The quantity index that is obtained by this multilateral aggregation rep-
resents the aggregate quantity component of capital services. The aggregate
price component is obtained by deflating the sum of all rental prices by this
quantity component.

Land

It is assumed that land does not depreciate. Its quality remains constant
over time and therefore, land is treated separately from other capital assets.
The information of quantity and price of the input land is found in the table
LAND. Here, the quantity component of the input is the surface, in hectares,
of land used in the agricultural production process while the price component
is a fraction of the purchase price of the land. The fraction taken of the price
of land is the rental price of land. The rental price of land is the percentage
of the purchase price that is considered as opportunity cost. The rental price
is just the purchase price times the average 10-year Italian bond yield over
the period 2002-2013.

Reuses

The last input that is considered in the definition of the aggregate input
index is represented by the products produced and reused on-site by farms.
These products take the form of raw inputs in the production processes or as
intermediate inputs in a more complex production process. The information
on reuses is found in the table PRODUCTS. Reuses are available under the
heading ”Other uses”. Their quantity and value are readily available in the
table.
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Minimum spanning trees of the input indexes

In this section the minimum spanning trees used in the construction of the
chained input indexes at he level of FADN regions, types of farming, and size
classes are presented.

Figure E.2: MST input index, FADN regions

Figure E.3: MST input index, Types of farming
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Figure E.4: MST input index, Size classes
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Appendix F

Types of farming for the FADN

Code TF Code TF Code TF Code TF

4110 Dairy 3610 Fruits 8232 Mixed 2220 Horticulture

4120 Dairy 3620 Fruits 6120 Mixed 2230 Horticulture

4310 Dairy 3630 Fruits 6130 Mixed 2310 Horticulture

4500 Dairy 3640 Fruits 7410 Mixed 2320 Horticulture

4700 Dairy 3650 Fruits 7420 Mixed 2330 Horticulture

1310 Cereals 3800 Fruits 8310 Mixed 6110 Horticulture

1320 Cereals 5011 Granivores 8320 Mixed 1410 Arable crops

1330 Cereals 5012 Granivores 8330 Mixed 1420 Arable crops

1510 Cereals 5013 Granivores 8340 Mixed 1441 Arable crops

1520 Cereals 5021 Granivores 8410 Mixed 1443 Arable crops

1530 Cereals 5022 Granivores 8420 Mixed 6040 Arable crops

4210 Grazing livestock 5023 Granivores 8430 Mixed 6050 Arable crops

4220 Grazing livestock 5031 Granivores 8440 Mixed 6062 Arable crops

4320 Grazing livestock 5032 Granivores 3300 Olives 1610 Arable crops

4410 Grazing livestock 7230 Granivores 3700 Olives 1620 Arable crops

4420 Grazing livestock 5110 Granivores 1430 Horticulture 1640 Arable crops

4430 Grazing livestock 5120 Granivores 2011 Horticulture 1650 Arable crops

4440 Grazing livestock 5130 Granivores 2012 Horticulture 1660 Arable crops

7110 Grazing livestock 5210 Granivores 2013 Horticulture 6140 Arable crops

7120 Grazing livestock 5220 Granivores 2021 Horticulture 6150 Arable crops

4600 Grazing livestock 5230 Granivores 2022 Horticulture 6160 Arable crops

4810 Grazing livestock 5300 Granivores 2023 Horticulture 3110 Wine

4820 Grazing livestock 6020 Mixed 2031 Horticulture 3120 Wine

4830 Grazing livestock 6030 Mixed 2032 Horticulture 3130 Wine

4840 Grazing livestock 7210 Mixed 2033 Horticulture 3141 Wine

7310 Grazing livestock 7220 Mixed 2034 Horticulture 3143 Wine

7320 Grazing livestock 8110 Mixed 6010 Horticulture 3510 Wine

3211 Fruits 8120 Mixed 6061 Horticulture 3520 Wine

3212 Fruits 8130 Mixed 1630 Horticulture 3530 Wine

3213 Fruits 8140 Mixed 2110 Horticulture 3540 Wine

3220 Fruits 8210 Mixed 2120 Horticulture

3230 Fruits 8220 Mixed 2130 Horticulture

3400 Fruits 8231 Mixed 2210 Horticulture

Table F.1: Link between TF code and Types of farming as defined within
the Italian FADN
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Appendix G

Definition of size classes

According to the Italian FADN, under the classification ”Dim Economica BDR”,
three classes are used for the definition of the economic size of farms: small,
medium-sized and large. In the period 2008-2009 these classes are defined as
a function of the Standard Gross Margins of farms. In the period 2010-2014
they are defined on the basis of the Standard Output.

Table G.1 presents the links between the SGM and SO classification with
the classification provided in the Italian FADN.

The temporal distribution of the sampled farms using this classification
is presented in Table G.2.

It is possible to notice that the number of sampled farms across the three
classes changes remarkably in the two sub-periods in which the definition of
economic size differs. The number of small farms in the period 2008-2009
stands at around 1,400 farms, the number of medium-sized farms stands at
around 5,000 while the number of sampled large farms stands at around 4,500
farms. There seems to be a consistent reshuffling of sampled farms in the
subsequent period as the annual number of small farms sampled increases
at around 3,000, the number of medium-sized one decreases to around 4,400
farms and the number of sampled large farms decreases to around 3,600.

This reshuffling is due to two factors. From one side, it is due to the
changing definition of economic size of farms. In 2008-2009 the concept of
Standard Gross Margins were used to define the economic size of farms while
in 2010-2014 the SGM was substituted with the concept of Standard Output.
The second reason is due to the update, in 2010, of the standard coefficient for
the measurement of the standard unit value for crop and livestock products.
These two methodological changes resulted in the uneven distribution of
sampled farms.

Such an uneven distribution could affect the comparability of the three
size classes in the seven-year period considered. Thus, to make the three
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Description Period Size class

1 - less than 2 ESU 2008-2009 Small

2 - between 2 and 4 ESU 2008-2009 Small

3 - between 4 and 8 ESU 2008-2009 Small

4 - between 8 and 16 ESU 2008-2009 Medium

5 - between 16 and 40 ESU 2008-2009 Medium

6 - between 40 and 100 ESU 2008-2009 Large

7 - larger than 100 ESU 2008-2009 Large

less than 4.000 euro 2010-2014 Small

between 4.000 and 8.000 euro 2010-2014 Small

between 8.000 and 25.000 euro 2010-2014 Small

between 25.000 and 50.000 euro 2010-2014 Medium

between 50.000 and 100.000 euro 2010-2014 Medium

between 100.000 and 500.000 euro 2010-2014 Large

between 500.000 and 1.000.000 euro 2010-2014 Large

larger than 1.000.000 euro 2010-2014 Large

Table G.1: Link between size classes within the Italian FADN database

Size class 2008 2009 2010 2011 2012 2013 2014

Large 4, 657 4, 500 3, 662 3, 604 3, 725 3, 728 3, 402

Medium 5, 295 5, 181 4, 352 4, 488 4, 356 4, 548 4, 512

Small 1, 437 1, 348 3, 141 3, 145 3, 097 3, 043 2, 573

Table G.2: Sampled and represented farms, size classes

142



classes comparable throughout the whole period 2008-2014, the Italian FADN
definition of size classes was changed. The changes regards both the concepts
used in the definition of economic size and in the standard coefficient used in
the measurement of the standard value of each crop and livestock product.
First, the definition of economic size was only based on the concept of Stan-
dard Output. Secondly, the standard output for the period 2008-2014 was
computed, when possible, using the unit standard coefficients used in the
period 2010-2014. When the conversion was not possible, the standard unit
coefficient remained unchanged. Afterwards, the aggregate Standard Output
was recalculated at farm-level and farms were classified as small, medium or
large based on the definitions used in the period 2010-2014.

The resulting temporal distribution of sampled farms across the three
classes is presented in Table G.3.

Size class 2008 2009 2010 2011 2012 2013 2014

Large 3, 628 3, 537 3, 662 3, 604 3, 725 3, 728 3, 402

Medium 4, 613 4, 525 4, 352 4, 488 4, 356 4, 548 4, 512

Small 3, 148 2, 967 3, 141 3, 145 3, 097 3, 043 2, 573

Table G.3: Sampled and represented farms, size classes revised
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Appendix H

Time series of productivity

Figure H.1: TFP relative levels using different output aggregation methods,
Italy
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Figure H.2: TFP relative levels, FADN regions
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Figure H.3: TFP relative levels, types of farming

Figure H.4: TFP relative levels, size classes
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Appendix I

BCLSDV estimator

This section takes after the derivation of the BCLSDV estimator presented
the work of Elhorst (Elhorst, 2010).

In the BCLSDV estimator, the variables are first demeaned:

y∗it = yit − 1

T

T∑
i=1

yit X∗
it = Xit − 1

T

T∑
i=1

Xit

Then the concentrated log-likelihood around δ is obtained using the resid-
uals of the following two auxiliary regressions

y∗t = X̃∗
t

′
β0 + e0

(IT ⊗W )y∗t = X̃∗
t

′
β1 + e1

where X̃∗
t = [y∗t−1X

∗
t ]. The resulting concentrated log-likelihood follows

logLc = C − NT

2
log[(e0 − δe1)

′
(e0 − δe1)] + T log|IN − δW |

This log-likelihood can be maximized with respect to δ. With the param-
eter δ̂ it is possible to derive all the remaining parameters of the model. In
particular [

φ̂

β̂

]
= (X̃∗

t

′
X̃∗

t )
−1X̃∗

t

′
[y∗t − δ̂(IT ⊗W )y∗t ]

σ̂2 =
1

NT
(y∗t − δ̂(IT ⊗W )y∗t − X̃∗

t [φ̂ β̂
′
]
′
)
′
(y∗t − δ̂(IT ⊗W )y∗t − X̃∗

t [φ̂ β̂
′
]
′
)
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The LSDV estimator for a dynamic spatial model as used here is not
consistent. Yu et al. (Yu et al., 2008) has derived the bias of the coefficients
estimates of the dynamic spatial model

bias

⎡⎢⎢⎢⎣
φ̂

δ̂

β̂
σ̂2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
N
tr{[(1− φ̂)IN − δ̂W ]−1}

1
n
tr{W (IN − δ̂W )[(1− φ̂)IN − δ̂W ]−1}+ 1

N
tr{W (IN − δ̂W )}

0
1

2σ̂2

⎤⎥⎥⎥⎦ .

To correct the LSDV estimator the authors suggested the following cor-
rection ⎡⎢⎢⎢⎣

φ̂

δ̂

β̂
σ̂2

⎤⎥⎥⎥⎦
BCLSDV

=

⎡⎢⎢⎢⎣
φ̂

δ̂

β̂
σ̂2

⎤⎥⎥⎥⎦
LSDV

−
(−Σ

NT

)−1
1

T
bias

⎡⎢⎢⎢⎣
φ̂

δ̂

β̂
σ̂2

⎤⎥⎥⎥⎦ .

where Σ is the asymptotic information matrix of the LSDV parameters
estimates under the assumption of normality of ε. Following Elhorst (Elhorst,
2010) notation the information matrix is as follows

⎡⎢⎢⎢⎢⎢⎢⎣

1
σ̂2y

∗
t−1

′
y∗t−1

1
σ̂2y

∗
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′
(
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)
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)
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σ̂2

[
φ̂ β̂
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)
X̃∗

[
φ̂ β̂

′
]′

1
σ̂2X
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1
σ̂2X
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(
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X∗β̂ 1

σ̂2X
∗′X∗

0 T
σ̂2 tr

(
W̃

)
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2σ̂4

⎤⎥⎥⎥⎥⎥⎥⎦

where W̃ = W (IN − δ̂W )−1 and the upper diagonal elements of he matrix
are not shown due to the symmetry of the matrix.

To be noted the difference between this matrix and the matrix presented
in Elhorst (Elhorst, 2010). This is given in the cross-correlation term be-
tween the autoregressive parameter φ and the parameters associated with
the exogenous explanatory variables β. While in Elhorst this term is given
by 1

σ̂2
X∗

−1

′
Y ∗
−1, here it is given by 1

σ̂2
X∗′Y ∗

−1. This update in the formula was
done because, after the differentiation of the likelihood function, we thought
that the specific element of the var-cov matrix presented by Elhorst (Elhorst,
2010) was not correct.
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Appendix J

Diffusion maps for Italian
regions

Figure J.1: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Lombardia
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Figure J.2: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Veneto

Figure J.3: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Toscana
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Figure J.4: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Marche

Figure J.5: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Abruzzo
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Figure J.6: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Campania

Figure J.7: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Basilicata
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Figure J.8: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Puglia

Figure J.9: Geographical space-time representation of the effects of a unitary
productivity shock in the NUTS3 in Sardegna
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Appendix K

Software

This research has been carried using the software R1. Data import, manip-
ulation and analysis have been carried out using user-defined functions and
functions written by other authors and included in packages downloaded from
CRAN2. We would like to thank the whole R community for their support
and provision of such functionalities.

The packages used in this analysis are: sp, rgdal, spacetime, plyr, rgeos,
maptools, spdep, lubridate, splm, reshape2, parallel, lattice, stargazer, max-
Lik, matrixcalc, mFilter, plm, raster, RColorBrewer, tseries, matrixStats, rts,
msm, igraph, ape.

The names of the authors of the packages used here are included in the
Bibliography.

1https://www.r-project.org/
2Mirrors of the Comprehensive R Archive Network are available at https://cran.r-

project.org/mirrors.html
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