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Abstract  

Consumers are increasingly aware of the importance of regular consumption of fresh fruit in  

their diet. Since fresh fruit are highly sensitive to postharvest decay, several investigations  

focused on the study natural compounds alternative to synthetic fungicides, to extend their shelf  

life. A long list of studies reported the effectiveness of the natural biopolymer chitosan in  

control of postharvest diseases of fresh fruit. However, these findings remain controversial,  

with many mixed claims in the literature. In this work, we used random-effects meta-analysis  

to investigate the effects of 1% chitosan on (i) postharvest decay incidence; (ii) mycelium  

growth of fungal pathogens Botrytis cinerea, Penicillium spp., Colletotrichum spp. and  

Alternaria spp.; and (iii) phenylalanine ammonia-lyase, chitinase and β-1,3-glucanase  

activities. Chitosan significantly reduced postharvest disease incidence (mean difference [MD],  

–30.22; P <0.00001) and in-vitro mycelium growth (MD, –54.32; P <0.00001). For host  

defence responses, there were significantly increased activities of β-1,3-glucanase (MD,  

115.06; P = 0.003) and chitinase (MD, 75.95; P <0.0002). This systematic review contributes  

to confirm the multiple mechanisms of mechanisms of action of chitosan, which has unique  

properties in the natural compound panorama. Chitosan thus represents a model plant protection  

biopolymer for sustainable control of postharvest decay of fresh fruit.  

  

Keywords: defence related enzymes; fungal pathogens; natural antifungal compounds; plant  

protection; sustainable control of plant pathogens  

   
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1 INTRODUCTION  

  

Postharvest fungal diseases can limit the storage period and shelf life, and thus market life, of  

fruit and vegetables, which results in serious economic losses worldwide (Oerke & Dehne,  

2004; Romanazzi, Smilanick, Feliziani, & Droby, 2016; Palou & Smilanick, 2020). The global  

average loss due to the food postharvest reported by Food and Agriculture Organization, was  

estimated in North America, Europe and Oceania about 29%, compared to an average of about  

38% in industrialized Asia, Africa, Latin America and South East Asia (Parfitt, Barthel, &  

Macnaughton, 2010; Food and Agriculture Organization of the United Nations, 2011; Sawicka,  

2019).  

The main fungal diseases (and their associated fungal pathogen) include: gray mold  

(Botrytis cinerea Pers.); Rhizopus rot (Rhizopus stolonifer Ehrenb.); anthracnose  

(Colletotrichum spp.); green mold (Penicillium digitatum Pers.); blue mold (Penicillium  

italicum Wehmer on citrus fruit, P. expansum Link on other fruit); and Alternaria rot  

(Alternaria spp.). The control of the causal fungal pathogens is therefore critical to extend the  

shelf-life of these fresh products (Prusky, 2011; Arah, Amaglo, Kumah, & Ofori, 2015). Despite  

the efficacy of synthetic fungicides in the control of postharvest decay, public concerns about  

chemical and toxic residues in food (Belden, McMurry, Smith, & Reilley, 2010; Mebdoua,  

2018; Gonçalves et al., 2019; Liu, Yamdeu, Gong, & Orfila, 2020) and the increase in drug- 

resistant strains of many pathogens (Zuccolo et al., 2019) indicate the need for development of  

new strategies. Over the last few decades, there has been an increasing interest in the study of  

postharvest control methods that make use of natural resources (Palou, Smilanick & Droby,  

2008; Talibi, Boubaker, Boudyach, & Ait Ben Aoumar, 2014; Souza, Yuk, Khoo, & Zhou,  

2015; Guimarães, Abrunhosa, Pastrana, & Cerqueira, 2018; Ebrahimzadeh & Abrinbana, 2019;  

Liu et al., 2019; Liu, et al., 2020). Such alternative compounds can act as resistance inducers  

https://setac.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Belden%2C+Jason
https://setac.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=McMurry%2C+Scott
https://setac.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Smith%2C+Loren
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gon%C3%A7alves%2C+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Liu%2C+Yue
https://www.semanticscholar.org/author/Llu%C3%ADs-Palou/4055471
https://www.semanticscholar.org/author/Joseph-L.-Smilanick/9920936
https://www.semanticscholar.org/author/Samir-Droby/6197735
https://sfamjournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Talibi%2C+I
https://sfamjournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Boubaker%2C+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=D%27Souza%2C+Craig
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Yuk%2C+Hyun-Gyun
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Khoo%2C+Gek+Hoon
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Zhou%2C+Weibiao
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Guimar%C3%A3es%2C+Ana
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abrunhosa%2C+Lu%C3%ADs
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Pastrana%2C+Lorenzo+M
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Cerqueira%2C+Miguel+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ebrahimzadeh%2C+Fatemeh
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abrinbana%2C+Masoud
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and/or activators of plant defence mechanisms, or they can have strong antimicrobial activities  

against the main postharvest fungal pathogens (Romanazzi, Feliziani, Baños, & Sivakumar,  

2017; Ribes, Fuentes, Talens, & Barat, 2018). However, only a few such natural fungicides  

have been approved for use as control agents for postharvest diseases, due to the strict  

regulatory policies for food safety. Among these, chitosan is a natural biocompatible  

polysaccharide emerged as a promising eco-friendly alternative to synthetic fungicides  

(Muzzarelli,1983; Romanazzi, Feliziani, & Sivakumar, 2018; Betchem, Johnson, & Wang,  

2019). To give some background, chitosan is a common name for the polysaccharide N-aceyl- 

D-glucosamine (Zargar, Asghari, & Dashti, 2015). The chitosan compound is obtained by  

deacetilation of chitin through exposure to NaOH solutions or to the enzyme chitinase. It is a  

functional cationic biopolymer that is widely studied and used across the world. Chitosan have  

many applications included food industry (Gutiérrez, 2017; da Silva, de Souza, & Dantas  

Lacerda, 2019; Morin-Crini, Lichtfouse, Torri, & Crini, 2019; Kabanov, & Novinyuk, 2020),  

cosmetology (Aranaz et al., 2018; Kaczmarek, Struszczyk-Swita, Li, Szczęsna-Antczak, &  

Daroch, 2019) and human medicine (Tungland & Meyer, 2002; Leung, Liu, Koon, & Fung,  

2006; Kofuji et al., 2010; Zhao et al., 2018).  

Concerning the agriculture applications, the chitosan was the first compound in the list  

of basic substances approved in the European Union for plant protection purposes (Reg. EU 66  

2014/563), for both organic agriculture and integrated pest management. For several years now,  

chitosan has been of interest in many studies that have shown that it can be used to prolong  

storage of an array of fruit and vegetables worldwide, where it has been shown to have three  

major activities: including biofilm formation on treated surfaces (El Ghaouth, Arul,  

Ponnampalam, & Boulet, 1991; Valencia-Chamorro, Palou, & Del Río, 2011; Romanazzi et al.,  

2018); as an antimicrobial (Goy, De Britto, & Assis, 2009; Kong, Chen, Xing, & Park, 2010;  

Feliziani, Landi, & Romanazzi, 2015; Cheung, Ng, Wong, & Chan, 2015; Wang, Li, & Zhang,  

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Zargar%2C+Vida
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Dashti%2C+Amir
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2017; Pétriacq, López, & Luna, 2018; Duan et al., 2019); and as an elicitor of host defence  

mechanisms (Landi, Feliziani, & Romanazzi, 2014; Coqueiro et al., 2015; Landi et al., 2017;  

Colman et al., 2019; Xoca-Orozco et al., 2019; Obianom, Romanazzi, & Sivakumar, 2019). For  

these reasons, chitosan can be used as a biodegradable fungicide (Rebelo, Vila, & Fangueiro,  

R., 2016; Liang et al., 2017).  

However, the heterogeneity of chitosan activities and its effectiveness across a wide  

range of experimental conditions have led to different interpretations of its primary use/  

mechanism/ actions. As a result, different recommendations for chitosan treatments have been  

provided (Ramos-García et al., 2012; Bill, Sivakumar, Korsten, & Thompson, 2014; Xing et  

al., 2016; Flores et al., 2018; Betchem et al., 2019; de Souza, Lundgren, de Oliveira, Berger, &  

Magnani ). Furthermore, based on reports of the evaluation of chitosan across similar and  

different fungal strains, its value for disease reduction can vary (Herrera-Romero, Ruales, &  

Caviedes, 2017; Hua et al., 2019; Zahid, Maqbool, Ali, Siddiqui, & Bhatti, 2019). Also, despite  

the many studies in the literature that have investigated a wide range of chitosan treatments and  

their influences, no single study has made all of the appropriate comparisons for a full  

evaluation. Thus, given the mixed claims in the literature, there is the need to define the overall  

effectiveness of chitosan, to highlight useful aspects for its future investigation.   

Meta-analyses can be applied as a tool for analysis of large amounts of data across many  

primary studies, in which the main purpose is to integrate and interpret the findings, to provide  

conclusions that the individual studies alone cannot show clearly. This statistical procedure  

provides an integration of the data across several to many independent studies (Maestri,  

Pavlicevic, Montorsi, & Marmiroli, 2019). The combination of the resulting outcomes can also  

increase the statistical power, and make it possible to detect relatively small effects (Rosenberg,  

Garrett, Su, & Bowden, 2004; Nelson, Gent, & Grove., 2015; Schwingshackl, Hoffmann, Iqbal,  

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Souza%2C+Evandro+L
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lundgren%2C+Giovanna+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Oliveira%2C+Kataryne+%C3%81+R
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Berger%2C+L%C3%BAcia+R+R
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Magnani%2C+Marciane
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Maestri%2C+Elena
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Pavlicevic%2C+Milica
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Montorsi%2C+Michela
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Marmiroli%2C+Nelson
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Schwedhelm, & Boeing, 2018; Chen, Chen, Chen, & Huang, 2019; González-Domínguez et  

al., 2019).  

The aim of the present study was to carry out a meta-analysis to quantitatively review  

the data across the available studies on the effectiveness of 1% chitosan, the most common  

concentration that has been tested in the control of postharvest decay (Romanazzi et al., 2018).  

Hence, the objectives were to determine the effectiveness of 1% chitosan on: (i) reduction of  

postharvest diseases of fresh fruit; (ii) in-vitro mycelium growth of the causal agents of  

postharvest decay; and (iii) phenylalanine ammonia-lyase (PAL), β-1,3-glucanase and chitinase  

activities associated with host defence mechanisms against these causal agents at 24 h post- 

treatment (hpt).  

  

2. METHODS  

2.1 Search strategy and study selection   

A systematic literature search from 2007 to 2019 was performed using the databases of Scopus  

and Web of Science and the following terms: ‘chitosan’ and ‘fruit’. Studies that used chitosan  

mixed with other compounds were not considered. The selection of studies was conducted  

according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses  

(PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & PRISMA Group, 2009).  

Article selection for the meta-analysis used the following inclusion criteria: 1%  

chitosan; disease incidence; in-vitro mycelium growth according to specific postharvest fungi;  

and activity of the enzymes involved in plant defence mechanisms. The eligibility of the articles  

was assessed, with the exclusion of the studies with different chitosan concentrations, with no  

information on disease incidence, mycelium growth or defence enzymes, and with no known  

fungal species.   



 

 

In more detail, three categories were included for the studies related to: (i) disease  

incidence published from 2010 to 2019, caused by gray mold, Rhizopus rot, anthracnose,  

green/blue mold and/or Alternaria rot, considered as subgroups; (ii) in-vitro mycelium growth  

published from 2007 to 2019 for the decay causing fungal pathogens B. cinerea, Penicillium  

spp., Colletotrichum spp. and Alternaria spp., considered as subgroups; (iii) enzyme activities  

associated with host defence mechanisms analysed at 24 hpt published from 2009 to 2018, for  

PAL, chitinase and β-1,3-glucanase, considered as subgroups. All of the studies included at  

least two treatments, as an untreated control and the 1% chitosan treatment. The fruit varieties,  

the 1% chitosan application and the detection timing varied across these studies. In some  

studies, the treatment application times and rates were reported. In such cases, only the  

treatments applied at the same time as the standard treatment were considered in the meta- 

analysis. The risk of bias and test for asymmetry for the funnel plots were used to evaluate the  

publication bias. Cochran’s I² indices, Tau2 and χ2 tests were used to estimate the statistical  

heterogeneity of the studies (Tufanaru, Munn, Stephenson, & Aromataris, 2015). If the  

heterogeneity was significant (I² >75%; and/or P <0.05), a random effects model was applied  

to all of the subgroups included in the postharvest decay disease incidence, the decay causing  

fungi mycelium growth, and the defence enzyme activity categories.  

  

2.2  Data extraction  

Data were recorded from the same days of chitosan treatments in each study. All of the studies  

that were related to the effects of chitosan towards disease incidence were calculated as  

percentage effects. The studies on the effects on mycelium growth resulted on three different  

measurement units (percentage, mm, cm), and again these were converted to percentages. To  

unify the different measurement units used across the studies of the defence enzyme activities,  

the values were converted into percentage of the mean (% mean) with respect to the normal  



 

 

control ([treatment mean/ normal control mean] × 100) (Viswanatha, Shylaj, & Moolemath,  

2017). If the standard deviations (SDs) or standard errors (SEs) were not reported, the data were  

transformed according to the P values (Weir et al., 2018). Data were extracted from the Figures  

presented in the papers using Plot Digitiser software (Kadic, Vucic, Dosenovic, Sapunar, &  

Puljak, 2016). The change scores with the corresponding standard deviations were used, as  

based on the guidelines of the Cochrane handbook  

(https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012276/epdf/full).  

  

2.3  Data analysis   

All of these meta-analyses were conducted using the Review Manager (RevMan) software,  

version 5.3. (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014;  

http://tech.cochrane.org/revman). The data type was selected as continuous. The statistical  

method was considered as inverse variance. Weighted means, effect sizes, 95% confidence  

intervals (CIs), which included 0, were calculated. In all of these analyses, P-value <0.05 was  

considered statistically significant. Differences among the groups were defined when the 95%  

CIs overlapped a vertical line. If the 95% CIs did not overlap, it can be suggested that the  

differences were significant (Yang, Scott, Mao, Tang, & Farmer, 2014; Dardiotis et al., 2018).  

The studies are presented as Forrest plots in the order of the statistical power.  

  

3  RESULTS OF THE REVIEW  

3.1 Chitosan-microbe interactions  

The antimicrobial activity of chitosan is a complex process that depends significantly from  

intrinsic properties and environmental factors (Yilmaz Atay, 2019) as well as the type of  

bacteria, fungi or virus involved (Chirkov, 2002; Kong, et al., 2010; Hosseinnejad, & Jafari,  

2016). The precise mechanism of chitosan antimicrobial activity is still not completely  

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012276/epdf/full
http://tech.cochrane.org/revman
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understood. Several studies have suggested that the antimicrobial action is mainly due to the  

polycationic structure of the chitosan. Several studies have suggested that the antimicrobial  

action is mainly due to the polycationic structure of the chitosan. This activity is carried out in  

a pH range among 5.6 and 6 (Romanazzi, Gabler, Margosan, Mackey, & Smilanick, 2009) that  

is below the pKa of chitosan. The chitosan, positively charged, reacts with negatively charged  

microbial cell membranes (Rabea, Badawy, Stevens, Smagghe, & Steurbaut, 2003; Goy et al.,  

2009; Kong et al., 2010). This bond alters the permeability of the membrane which is followed  

by an inhibition of DNA replication and subsequently cell death (Nagy et al., 2011; Divya,  

Vijayan, George, & Jisha, 2017). A chelating action was also observed. The chitosan molecule  

binds to the metallic elements present in the trace causing the inhibit of toxins production and  

microbial growth (Cuero, Osuji, & Washington, 1991; Chung, Wang, Chen, & Li, 2003). The  

effect of chitosan on fungal pathogens was to inhibits the radial growth, spore germination, and  

the elongation of the germ tube as well as the production of virulence factors (Palma-Guerrero,  

Jansson, Salinas, & Lopez-Llorca, 2008; Badawy, & Rabea, 2011).  

  

3.2 Chitosan-plant interactions  

The chitosan acts as a powerful elicitor able to inducing a defense response against pathogens  

in plant tissues by activating both, a local (Zuppini et al., 2003; Iriti, & Varoni, 2015) and  

systemic plant defense (Benhamou, Lafontaine, & Nicole, 1994; Xing, Zhu, Peng, & Qin, 2015)  

with the involvement several molecules related to defense mechanisms as pathogenesis-related  

(PR) proteins (Lopez-Moya et al., 2017; Corsi, Forni, Riccioni, & Linthorst, 2017), Reactive  

Oxygen Species (ROS) (Singh et al., 2019) and secondary metabolites with active roles in  

defense as lignin, callose, phytoalexins, PAL, peroxidases and chitinase (Ma, Yang, Yan,  

Kennedy, & Meng, 2013; Landi et al., 2014; Malerba, & Cerana, 2016). However, the chitosan  

elicitation activity depends on the reactivity of the host tissues (Romanazzi et al., 2016) as well  



 

 

as from the acetylation and degree polymerization of chitosan (Cord-Landwehr, Melcher,  

Kolkenbrock, & Moerschbacher, 2016; Li, Xing, Liu, & Li, 2016). Until now the chitosan  

binding receptors are undefined (Iriti & Faoro 2009; Hidangmayum, Dwivedi, Katiyar, &  

Hemantaranjanm, 2019). Some researches proposed that chitosan could also interact with  

chromatin and directly affect gene expression (Hadwiger & Polashock, 2013; Katiyar,  

Hemantaranjan, Bharti, & Nishant Bhanu, 2014). However, chitosan molecular signals are  

transduced by messengers such as ROS or phytohormones able to induce physiological and  

defense response by host (Yin, Li, Zhao, Du, & Ma, 2006; Hidangmayum et al., 2019).   

An effect often observed on plants tissue after chitosan treatment was the inhibition of  

light-induced stomatal opening (Lee et al., 1999; Iriti et al., 2009). On this regard, the  

transcriptome analysis performed on sweet orange (Coqueiro et al., 2015) and strawberry  

(Landi et al., 2017) after chitosan treatments underline early impact of compound on the light  

photosynthetic process affecting imbalance/balance of ROS/redox signaling (Landi et al.,  

2017). These entire signaling molecules contribute to the adaptive mechanism in chitosan  

treated plants in response to stress.  

  

3.3  Description of included studies  

A flow chart of the screening of the studies identified for the effectiveness of 1% chitosan is  

shown in Figure 1, with a total of 56 articles finally available for the meta-analysis according  

to the search criteria. These covered 117 studies, of which 49 were related to disease incidence  

(total cases, 8,543 [for each of control and chitosan treatment]) (Figure 2), 41 to in-vitro  

mycelium growth (total cases, 1,072) (Figure 3), and 27 to changes in defence-mechanism- 

related enzymes (total cases, 1,332) (Figure 4). Some of the relevant details of the articles that  

were included in this meta-analysis are given in Table 1. All of the selected articles were  

included in the assessment for risk of bias. Also, blinding of outcome assessment in these  
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studies (i.e., performance bias) was not necessary, so it was not included in the analysis for risk  

of bias. The domains considered for risk of bias were chosen based on each study that reported  

data and scientific information. All of the studies provided specific indication that the basic  

characteristics of the control and treatment groups were balanced and were treated under similar  

environmental conditions. None of these studies included misleading samples. As a result, the  

selection, detection, attrition and reporting were free of bias, and the publications were defined  

as at low risk of bias. The funnel plots constructed from the data for disease incidence,  

mycelium growth and defence enzyme activities did not reveal any significant asymmetry  

(Figure 5).  

  

3.4  Effects of 1% chitosan on disease incidence   

Based on this meta-analysis, the overall data demonstrated the significant effectiveness of 1%  

chitosan over the control treatment for reduction of disease incidence (studies, 49; total cases,  

8,5473) (mean difference [MD], –30.22; 95% confidence intervals [CI], –36.48 to –23.96; I2,  

90.0%; P <0.00001) (Figure 2). The subgroup analysis here (Figure 2) showed that 1% chitosan  

was significantly effective for reduction of disease incidence against: gray mold (studies, 12;  

total cases, 1,473), (Shao, Tu, Tu, & Tu, 2012; Feliziani, Santini, Landi, & Romanazzi, 2013;  

Gao, Zhu, & Zhang, 2013; Romanazzi, Feliziani, Santini, & Landi, 2013; Feliziani et al., 2015;  

Kanetis, Exarchou, Charalambous, & Goulas, 2017; Zheng, et al., 2017; Gramisci, Lutez,  

Lopes, & Sangorrína, 2018; Hajji, Younes, Affes, Boufi, & Nasri, 2018) (MD, –23.97; 95% CI,  

–32.25 to –15.68; I2, 77.0%; P <0.00001), as highly effective in 9 of these studies, (Shao et al.,  

2012; Gao et al., 2013; Romanazzi et al., 2013; Feliziani et al., 2015; Kanetis et al., 2017;  

Zheng, et al., 2017; Gramisci et al., 2018; Hajji et al., 2018); blue/green molds caused by  

Penicillium spp. (studies, 16; total cases, 1,968) (Xing, Xu, Che, Li, & Li, 2011; Shao et al.,  

2012; Cháfer, Sánchez‐González, González‐Martínez & Chiralt, 2012; Feliziani et al., 2013;  
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Romanazzi et al., 2013; Wang, Wu, Qin, & Meng, 2014; Lu et al., 2014; Shao et al., 2015; El  

Guilli, Hamza, Clément, Ibriz, & Ait Barka, 2016; Zheng, et al., 2017; Gramisci et al., 2018;  

Kharchoufi, et al., 2018; Liu, Sun, Xiu, Huang, & Zhou, 2018; Shi, Wang, Lu, & Deng, 2018)  

(MD, –30.85; 95% CI, –41.91 to –19.79; I2, 90.0%; P <0.00001), as highly effective in 9 of  

these studies (Xing et al., 2011; Romanazzi et al., 2013; Lu, et al., 2014; Shao et al., 2015; El  

Guilli et al., 2016; Zheng, et al., 2017; Liu et al., 2018; Shi et al., 2018); Rhizopus rot (studies,  

5; total cases, 1,740) (Cia, Benato, Pascholati, & Garcia, 2010; Ramos-García et al., 2012;  

Romanazzi et al., 2013; Xing et al., 2015) (MD, –28.80; 95% CI, –46.13 to –11.47; I2, 87.0%;  

P = 0.001), as effective in 3 of these studies (Cia et al., 2010; Ramos-García et al., 2012;  

Romanazzi et al., 2013); and anthracnose (11 studies; total cases, 2,134) (Maqbool, Ali,  

Ramachandran, Smith, & Alderson, 2010; Zahid, Ali, Manickam, Siddiqui, & Maqbool, 2012;  

Bill et al., 2014; Edirisinghe, Ali, Maqbool, & Alderson, 2014; Ali, Noh, & Mustafa, 2015;  

Gutiérrez-Martínez, Bautista-Banos, Berúmen-Varela, Ramos-Guerrero, & Hernández-Ibanez,  

2017; Obianom et al., 2019) (MD, –46.64; 95% CI, –61.54 to –31.73; I2, 92.0%; P <0.00001),  

as effective in all of these studies. For Alternaria rot, 1% chitosan was not significantly effective  

(studies, 5; total cases, 1,228) (Meng, Yang, Kennedy, & Tian, 2010; Yan et al., 2011; López- 

Mora, Gutiérrez-Martínez, Bautista-Baños, Jiménez-García, & Zavaleta-Mancera, 2013;  

Feliziani et al., 2015; Guo, Xing, Yu, Zhao, & Zhu, 2017) (MD, –8.50; 95% CI, –15.75 to – 

1.25; I2, 27.0%; P = 0.24), although in 1 of these studies (Guo et al., 2017) its effect reached  

significance.   

  

3.5  Effects of 1% chitosan on in-vitro mycelium growth  

The overall data here showed the significant effectiveness of 1% chitosan over the control  

treatment against in-vitro mycelium growth of these fungal pathogens that are involved in  

postharvest diseases (studies, 41; total cases, 1,072) (MD, –54.32; 95% CI, –64.35 to –44.28;  

https://www.cabdirect.org/cabdirect/search/?q=au%3a%22L%c3%b3pez-Mora%2c+L.+I.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22L%c3%b3pez-Mora%2c+L.+I.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Guti%c3%a9rrez-Mart%c3%adnez%2c+P.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Bautista-Ba%c3%b1os%2c+S.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Jim%c3%a9nez-Garc%c3%ada%2c+L.+F.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Zavaleta-Mancera%2c+H.+A.%22
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I2, 95.0%; P <0.00001) (Figure 3). The subgroup analysis here (Figure 3) showed that 1%  

chitosan was significantly effective against in-vitro mycelium growth for: B. cinerea (studies,  

5; total cases, 37) (Kanetis et al., 2017; Xu et al., 2007; Feliziani et al., 2013; Munhuweyi et al.,  

2017; Flores et al., 2018). (MD, -49.38; 95% CI, –72.98 to –25.79; I2, 94.0%; P <0.0001), as  

medium high effects for all of these studies; Penicillium spp. (studies, 9; total cases, 65) (Xing  

et al., 2011; Abdel-Kader, El-Mougy & Lashin, 2011; Nisia, Noreña, & Brandelli, 2012; Wang  

et al., 2014; Waewthongrak, Pisuchpen, & Leelasuphakul, 2015; Shao et al., 2015; Munhuweyi  

et al., 2017; Madanipour, et al., 2019) (MD, –73.00; 95% CI, –89.71 to –56.30; I2, 92.0%; P  

<0.00001), as the highest effects seen, and for all of these studies; Colletotrichum spp. (studies,  

24; total cases, 955) (Jitareerat, Paumchai, Kanlayanarat, & Sangchote, 2007; Rahman,  

Mahmud, Kadir, Abdul Rahman, & Begum, 2008; Munoz, Moret, & Garces, 2009; Maqbool et  

al., 2010; Zahid et al., 2012; Mohamed, Clementine, Didier, Gérard, & Noëlle, 2013; Ali et al.,  

2014; Bill et al., 2014; Edirisinghe et al., 2014; Ali et al., 2015; Varela, Coronado Partida,  

Ochoa Jiménez, López, & Martínez, 2015; Gutiérrez-Martínez et al., 2017; de Oliveira, Berger,  

de Araújo, Camara, & de Souza, 2017; Ramos-Guerrero, González-Estrada, Hanako-Rosas, &  

Bautista-Banõs, 2018; Xoca-Orozco, Aguilera-Aguirre, López-García, Gutiérrez-Martínez, &  

Chacón-López, 2018) (MD, –48.18; 95% CI, –62.83 to –33.53; I2, 96.0%; P <0.00001), as the  

lowest effects seen based on the point estimate, with the highest effects for 16 of these studies  

(Jitareerat, et al., 2007; Rahman, et al., 2008; Maqbool et al., 2010; Zahid et al., 2012; Bill et  

al., 2014; Ali et al., 2014; Varela et al., 2015; de Oliveira et al., 2017; Ramos-Guerrero et al.,  

2018; Xoca-Orozco et al., 2018); and Alternaria spp. (3 studies; total cases, 15) (Yan et al.,  

2011; Feliziani et al., 2013; López-Mora et al., 2013) (MD, –55.20; 95% CI, –80.50 to –29.90;  

I2, 90.0%; P <0.0001), as significant for all of these studies.  

  

3.6 Effects of 1% chitosan on enzyme activities associated with host defence  
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The overall data for the effects of 1% chitosan on the activities of the enzymes associated with  

host plant defence at 24 hpt showed significantly increased activity over the control treatment  

(studies, 27; total cases, 1,332) (MD, 74.58; 95% CI, 41.15 to 108.01; I2, 99.0%; P <0.0001)  

(Figure 4). For the details of the subgroup analysis here (Figure 4), in the treated fruit, 1%  

chitosan did not induce any significant difference compared to the control at 24 hpt for the PAL  

activity (studies, 9; total cases 575) (Zahid et al., 2012; Landi et al., 2014; Bill et al., 2014; Shao  

et al., 2015; Waewthongrak et al., 2015; Song et al., 2016; Jongsri, Rojsitthisak,  

Wangsomboondee, & Seraypheapa, 2017;.Shen & Yang, 2017; Silva et al., 2018) (MD, 37.06;  

95% CI, –17.28 to 91.40; I2, 99.0%; P = 0.18). However, 5 of these studies (Landi et al., 2014;  

Bill et al., 2014; Shao et al., 2015; Waewthongrak et al., 2015; Shen & Yang, 2017) showed  

significant increases in PAL activity. Furthermore, significant increases were seen overall for  

chitinase activity (10 studies; total cases, 491) (Hewajuliage, Sultanbawa, Wijeratnam, &  

Wijesundara, 2009; Feliziani et al., 2013; Bill et al., 2014; Landi et al., 2014; Ali et al., 2014;  

Shao et al., 2015; Jongsri, et al., 2017;. Shen, & Yang, 2017) (MD, 75.95; 95% CI, 36.18 to  

115.73; I2, 99.0%; P = 0.0002), as 8 of these with significance increases (Hewajuliage, et al.,  

2009; Feliziani et al., 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014; Jongsri, et al.,  

2017; Shen, & Yang, 2017), and overall for β-1,3-glucanase activity (8 studies; total cases 266)  

(Hewajuliage, et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al.,  

2014; Shao et al., 2015; Jongsri, et al., 2017;. Shen, & Yang, 2017) (MD, 115.06; 95% CI,  

38.24 to 191.88; I2, 100.0%; P = 0.003), as 5 of these with significance increases (Hewajuliage,  

et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014).  

  

4  DISCUSSION  

This study brings together and summarises the results from the literature of the effects of 1%  

chitosan on postharvest diseases and pathogens, according to disease incidence, in-vitro  
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mycelium growth, and induction of host defence responses through monitoring of the most  

commonly analysed enzymes linked to defence mechanisms. This meta-analysis emphasises  

the primary role of 1% chitosan against the main diseases and pathogens associated with  

postharvest decay (Romanazzi et al., 2018; Betchem et al., 2019). These pooled estimates  

highlighted that 1% chitosan is effective against the main postharvest diseases caused by several  

fungal pathogens that infect different plant species. Although some of these data show high  

heterogeneity, they also show low risk of bias and high validity for each study, with no  

substantial baseline differences seen between the control and treatment groups. Indeed, the  

funnel plots as a method to assess the potential role of publication bias (Harbord, Egger, &  

Sterne, 2006) indicate that no bias was detected across the studies included. Therefore, these  

values of I² >90% indicate real differences in these studies.  

Our study underlines the transversal effectiveness of chitosan in postharvest disease  

management. Here, the subgroup analysis of in-vitro mycelium growth emphasises that the  

most powerful growth reduction was for Penicillium spp., followed by Alternaria spp. and B.  

cinerea, while lower effectiveness was seen against Colletotrichum spp..   

These data also show that chitosan has differential effects across these fungal species,  

potentially through the control of fungal development and lytic enzyme activation by chitosan  

(El Gueddari, Rauchhaus, Moerschbacher & Deising, 2002; Geoghegan & Gurr, 2016;  

Geoghegan, Steinberg, & Gurr, 2017; Ramos-Guerrero et al., 2018; Ramos-Guerrero,  

González-Estrada, Romanazzi, Landi, & Gutiérrez-Martínez, 2020). There are direct links  

between the cell wall and cell membranes, as the synthesis of key cell-wall components (e.g.,  

glucans, chitin) occurs at the plasma membrane, with the associated synthase enzyme  

complexes (Maddi, & Free, 2010). The chitin is localized in the membrane proximal portion of  

the cell wall and is incorporated into the wall matrix by being cross-linked to the glucans (Patel  

& Free, 2019). Previous studies have investigated the role of plasma membrane in the sensitivity  

https://pubag.nal.usda.gov/?q=%22Rauchhaus%2C+U.%22&search_field=author
https://pubag.nal.usda.gov/?q=%22Moerschbacher%2C+B.M.%22&search_field=author
https://pubag.nal.usda.gov/?q=%22Deising%2C+H.B.%22&search_field=author
https://pubag.nal.usda.gov/?q=%22Deising%2C+H.B.%22&search_field=author
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of fungi to chitosan showing that the plasma membrane of chitosan-sensitive fungi is more fluid  

and richer in polyunsaturated free fatty acids than in chitosan-resistant fungi (Palma-Guerrero  

et al., 2009 and 2010). The authors evidenced that chitosan binds to negatively charged  

phospholipids. This alter plasma membrane fluidity to inducing the membrane  

permeabilization, which was greatest in membranes containing elevated content  

polyunsaturated lipids.   

While this meta-analysis highlights the different reactions between the fungal species  

and chitosan effectiveness, it also underlines the key role of plant species in this complex  

relation that significantly affects the outcome of chitosan-pathogen interaction.  

For this reason, the fungal pathogens can react differently to chitosan in terms of disease  

incidence and in in-vitro tests. Indeed, the meta-analysis summarized studies related to disease  

incidence, show significantly reducing postharvest disease incidence, although the results  

linked to singular disease show the highest effectiveness of chitosan against anthracnose, while  

it is less effective against blue/green mold, Rhizopus rot, gray mold, and particularly Alternaria  

rot. Therefore, it is not excluded that the involvement of mainly different fruits species on  

anthracnose incidence, as banana, papaya, dragon, bell pepper, soursop and avocado, not tested  

for the other diseases, the chitosan, could be elicited a different defence response.  

This study also confirms that disease incidence is the result of a combination of the  

chitosan effects on film-forming, plant defence eliciting, and its antimicrobial properties  

(Romanazzi et al., 2018). In this context, chitosan can be considered to be a modulator of plant  

defences (Lopez-Moya, Suarez-Fernandez, & Lopez-Lorca, 2019). Chitosan application to  

plants fits into the delicate relationship between the host and pathogenic fungi and involves the  

primary cell-wall defence mechanisms. A link between pathogenicity and the enzymes that  

synthesise the fungal cell wall has been demonstrated in numerous studies (Arana et al., 2009;  

Levdansky et al., 2010; Lenardon, Munro, & Gow, 2010; Oliveira-Garcia, & Deising, 2013;  
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Geoghegan et al., 2017; Patel & Free, 2019), and depolymerisation of the cell walls of plant  

pathogenic fungi following the infection, evading plant immune recognition, has been reported  

(Geoghegan et al., 2017). It has been reported that the strategy of some fungal pathogens to  

evade plant immunity is to convert chitin into chitosan (Lopez-Moya, et al., 2019). Thus, both  

chitosan and chitin will have key roles in the control of plant immunity.   

According to the concepts of systemic acquired resistance (Pieters et al., 1998; Durrant  

& Dong, 2004) and induced systemic resistance (Heil & Bostock, 2002; Timmermann,  

González, & Ruz, 2020), chitosan can induce resistance in the plants to control postharvest  

fungal pathogens of their fruit and as vegetables (Nandeeshkumar  et al., 2008; Jia, Meng, Zeng,  

Wang, & Yin, 2016; Jia, Zeng, Wang, Zhang, & Yin, 2018). On this basis, the meta-analysis  

data related to the eliciting of the host defence enzymes by chitosan through activation of  

induced resistance can help us to understand this aspect (Mandal, Kar, Mukherjee, & Acharya,  

2013; Walters, Ratsep, & Havis, 2013).   

Although a meta-analysis of publicly available data, related to transcriptome  

investigations of plants defense priming, evidenced a common set of conserved transcriptional  

changes on plants upon stress conditions, (Baccelli, Benny, Caruso, & Martinelli, 2020), the  

detailed role of the chitosan in the induction of defence mechanisms has been shown for sweet  

oranges (Coqueiro et al., 2015) and strawberries (Landi et al., 2017). The most common  

approaches related to the study of enzyme activities (Wang & Gao, 2013; Ali et al., 2014;  

Pasquariello et al., 2015; Shao et al., 2015; Adiletta, Zampella, Coletta, & Petriccione, 2019)  

and the expression of individual genes (Ma et. al.,  2013; Landi et al., 2014; Petriccione et al.,  

2017; Fooladi vanda, Shabani, & Razavizadeh, 2019; Chun & Chandrasekaran, 2019) have  

been investigated, both of which are associated with reactive oxygen species, specific PR  

proteins, cell-wall enzymes and secondary metabolites. Usually, these individual studies have  

https://pubmed.ncbi.nlm.nih.gov/?term=Durrant+WE&cauthor_id=15283665
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shown wide variability associated with host fruit species, application methods and times of  

treatment.   

In the present study, we analysed the most studied of the plant defence enzymes, PAL,  

which is associated with the phenylpropanoid pathway (Dixon, Lapthorn, & Edwards, 2002;  

Yadav et al., 2020), and chitinase and β-1,3-glucanase, which are linked to cell-wall hydrolysis  

(Gupta et al., 2015; Pusztahelyi, 2018), at the main analysis time point of 24 hpt. These data do  

not show any significant effects of chitosan on PAL activity at 24 hpt, while high increases in  

the activities of chitinase and β-1,3-glucanase were detected, independent of the host species.  

These findings are in agreement with the plant immunity mechanisms that indicate that  

chitinase and β-1,3-glucanase release the glucan oligomers from the chitin of the fungal cell  

walls to trigger the plant immune responses (Jones & Dang, 2006; Fesel & Zuccaro, 2016;  

Lopez-Moya et al., 2019;), although the induction of these defence mechanisms can vary greatly  

according to the time of treatment. The present study suggests that the analysis of the chitinase  

and β-1,3-glucanase activities at 24 hpt represents a marker for verification of induction of the  

plant defences by chitosan, while activation of PAL has generally been reported to occur at later  

times (Landi et al., 2014; Bill et al., 2014).   

  

5 CONCLUSIONS  

The present work established the first comprehensive investigation of chitosan effectiveness on  

postharvest pathogens using meta-analysis approach. This study provides knowledge based on  

three robust findings, as the effects of 1% chitosan on disease incidence, mycelium growth of  

decay-causing fungi, and the activities of two important defence enzymes in particular,  

chitinase and β-1,3-glucanase. This investigation shown the chitosan have antifungal properties  

against different phytopathogens highlight the versatile properties of this natural biopolymer.  

https://www.sciencedirect.com/science/article/pii/S1087184515300529?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S1087184515300529?via%3Dihub#!


 

 

It was demonstrated there are enough data about the effectiveness of chitosan in the control of  

postharvest diseases, also inducing resistance on fruit to postharvest pathogens.  

The outcomes of this study aim to contribute to a better understanding concerning the  

role of chitosan in the control of postharvest decay of fresh fruit, that will be relevant for the  

conceptualization and measurement of future studies. Collectively, these data confirm the  

multiple mechanisms of action of chitosan, which has unique properties in the panorama of  

activities of natural compounds that define it as a model plant-protection agent for sustainable  

control of postharvest decay of fruit and vegetables.   

  

  

   
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TABLE 1. Main characteristics of datasets that have included 1% chitosan effects on  

postharvest fungal pathogens.  

First author Year Fungal pathogen Chitosan effects measures Defence 

enzyme    Disease 

incidence 

(fruit) 

In-vitro 

mycelium 

growth 

Plant 

defence 

mechanism 

(fruit) 

Xu  2007 B. cinerea  Yes  - 

Jitareerat  2007 Colletotrichum spp.  Yes  - 

Rahman 2008 Colletotrichum spp.  Yes  - 

Hewajulige  2009 -   Papaya Chitinase, 

β-1,3-

glucanase 

Munoz 2009 Colletotrichum spp.  Yes  - 

Meng 2010 Alternaria spp. Pear   - 

Maqbool 2010 Colletotrichum spp Banana   - 

Cia 2010 Rhizopus spp.  Yes  - 

Yan 2011 Alternaria spp. Jujube Yes  - 

Abdel-Kader 2011 Penicillium spp.  Yes  - 

Xing 2011 Penicillium spp Jujube   - 

Nisia  2012 Penicillium spp.  Yes  - 

Ramos-Garcia 2012 Rhizopus spp. Tomato   - 

Shao 2012 Penicillium spp., B. 

cinerea 

Apple   - 

Cháfer 2012 Penicillium spp. Orange   - 

Zahid 2012 Colletotrichum spp. Banana, 

Papaya, 

Dragon 

Yes  - 

Feliziani 2013 B. cinerea, 

Alternaria spp., 

Penicillium spp. 

 Yes Table grape Chitinase 

Wang 2013 -   Strawberry β-1,3-

Glucanase 

Mohamed 2013 Colletotrichum spp.  Yes  - 

Gao 2013 B. cinerea Table grape   - 

López-Mora 2013 Alternaria spp. Mango Yes  - 



 

 

Romanazzi 2013 Penicillium spp., B. 

cinerea, Rhizopus 

spp. 

Strawberry   - 

Bill 2014 Colletotrichum spp.  Yes Avocado PAL, 

chitinase, 

β-1,3-

glucanase 

Ali 2014 Colletotrichum spp.  Yes Dragon Chitinase, 

β-1,3-

glucanase 

Wang 2014 Penicillium spp. Jujube Yes  - 

Lu 2014 Penicillium spp. Orange   - 

Landi 2014    Strawberry PAL, 

chitinase, 

β-1,3-

glucanase 

Edirisinghe 2014 Colletotrichum spp. Bell pepper Yes  - 

Zahid 2015    Dragon PAL 

Feliziani 2015 B. cinerea Strawberry   - 

Waewthongrak 2015 Penicillium spp.  Yes Citrus PAL 

Varela 2015 Colletotrichum spp.  Yes  - 

Shao 2015 Penicillium spp.  Yes Mandarine PAL, 

chitinase, 

β-1,3-

glucanase 

Xing 2015 Rhizopus spp. Jujube   - 

Ali 2015 Colletotrichum spp. Bell pepper Yes  - 

Song 2016    Loquat PAL 

El Guilli 2016 Penicillium spp. Citrus   - 

Zheng 2017 B. cinerea Kiwi   - 

Gutiérrez-

Martinez 

2017 Colletotrichum spp. Mango, 

banana, 

soursop 

Yes  - 

Guo 2017 Alternaria spp. Jujube   - 

Shen 2017 -   Table grape PAL, 

chitinase, 

β-1,3-

glucanase 



 

 

Jongsri 2017 -   Mango PAL, 

chitinase, 

β-1,3-

glucanase 

de Oliveria 2017 Colletotrichum spp.  Yes  - 

Kanetis 2017 B. cinerea Table grape Yes  - 

Munhuweyi 2017 B. cinerea  Yes  - 

Silva 2018    Guava PAL 

Gramisci 2018 B. cinerea, 

Penicillium spp. 

Pear   - 

Hajji 2018 B. cinerea Strawberry   - 

Kharchoufi 2018 Penicillium spp. Orange   - 

Flores 2018 B. cinerea  Yes  - 

Ramos-Guerrero 2018 Colletotrichum spp.  Yes  - 

Liu 2018 Penicillium spp. Blueberry   - 

Shi 2018 Penicillium spp. Grapefruit   - 

Xoca-Orozco 2018 Colletotrichum spp.  Yes  - 

Obianom 2019 Colletotrichum spp. Avocado   - 

Madanipour 2019 Penicillium spp.  Yes  - 

   
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  

Figure 1. Flow chart exhibiting the selection process of eligible studies.  
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  

Figure 2. Forest plots using the RavMan 5.3 software for random effects analysis related to the  

effectiveness of 1% chitosan on disease incidence. Gray mold, blue/ green mold, Rhizopus rot.,  

anthracnose and Alternaria rot were considered as subgroups. For Feliziani 2013, Kanetis 2017,  

Lu 2014, Shao 2012, Ramos-Garcia 2012, Gutièrrez-Martinez 2017 and Zahid 2012, several  

studies were included from each article into the subgroups. IV, inverse variance; CI, confidence  

interval.   



 

 

  

Figure 3. Forest plot using the RavMan 5.3 software for random effects analysis related to the  

effectiveness of 1% chitosan on in-vitro mycelium growth. Botrytis cinerea, Penicillium spp.,  

Colletotrichum spp. and Alternaria spp. were considered as subgroups. For Kanetis 2017,  

Kader 2011, de Oliveria 2017, Gutièrrez-Martinez 2017 and Zahid 2012, several studies were  

included from each article into the subgroups. IV, inverse variance; CI, confidence interval.  
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 

 

  

Figure 4. Forest plots using the RavMan 5.3 software for random effects analysis related to the  

effectiveness of 1% chitosan on plant defence mechanism enzyme activities. Phenylalanine  

ammonia-lyase (PAL), chitinase and β-1,3-glucanase were considerd as subgroups. For  

Feliziani 2013 several studies were included from each article into the subgroups. IV, inverse  

variance; CI, confidence interval.  
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  

Figure 5. Funnel plots for the detect of publication bias in the studies, for the disease incidence  

(a), mycelium growth (b) and defence enzyme activity (c) detected after 1% chitosan  

treatments, compared to the controls. SE(MD) = standard error (mean difference); MD = mean  

difference.  


