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Abstract  

Consumers are increasingly aware of the importance of regular consumption of fresh fruit in  

their diet. Since fresh fruit are highly sensitive to postharvest decay, several investigations  

focused on the study natural compounds alternative to synthetic fungicides, to extend their shelf  

life. A long list of studies reported the effectiveness of the natural biopolymer chitosan in  

control of postharvest diseases of fresh fruit. However, these findings remain controversial,  

with many mixed claims in the literature. In this work, we used random-effects meta-analysis  

to investigate the effects of 1% chitosan on (i) postharvest decay incidence; (ii) mycelium  

growth of fungal pathogens Botrytis cinerea, Penicillium spp., Colletotrichum spp. and  

Alternaria spp.; and (iii) phenylalanine ammonia-lyase, chitinase and β-1,3-glucanase  

activities. Chitosan significantly reduced postharvest disease incidence (mean difference [MD],  

–30.22; P <0.00001) and in-vitro mycelium growth (MD, –54.32; P <0.00001). For host  

defence responses, there were significantly increased activities of β-1,3-glucanase (MD,  

115.06; P = 0.003) and chitinase (MD, 75.95; P <0.0002). This systematic review contributes  

to confirm the multiple mechanisms of mechanisms of action of chitosan, which has unique  

properties in the natural compound panorama. Chitosan thus represents a model plant protection  

biopolymer for sustainable control of postharvest decay of fresh fruit.  

  

Keywords: defence related enzymes; fungal pathogens; natural antifungal compounds; plant  

protection; sustainable control of plant pathogens  

   



 

 

1 INTRODUCTION  

  

Postharvest fungal diseases can limit the storage period and shelf life, and thus market life, of  

fruit and vegetables, which results in serious economic losses worldwide (Oerke & Dehne,  

2004; Romanazzi, Smilanick, Feliziani, & Droby, 2016; Palou & Smilanick, 2020). The global  

average loss due to the food postharvest reported by Food and Agriculture Organization, was  

estimated in North America, Europe and Oceania about 29%, compared to an average of about  

38% in industrialized Asia, Africa, Latin America and South East Asia (Parfitt, Barthel, &  

Macnaughton, 2010; Food and Agriculture Organization of the United Nations, 2011; Sawicka,  

2019).  

The main fungal diseases (and their associated fungal pathogen) include: gray mold  

(Botrytis cinerea Pers.); Rhizopus rot (Rhizopus stolonifer Ehrenb.); anthracnose  

(Colletotrichum spp.); green mold (Penicillium digitatum Pers.); blue mold (Penicillium  

italicum Wehmer on citrus fruit, P. expansum Link on other fruit); and Alternaria rot  

(Alternaria spp.). The control of the causal fungal pathogens is therefore critical to extend the  

shelf-life of these fresh products (Prusky, 2011; Arah, Amaglo, Kumah, & Ofori, 2015). Despite  

the efficacy of synthetic fungicides in the control of postharvest decay, public concerns about  

chemical and toxic residues in food (Belden, McMurry, Smith, & Reilley, 2010; Mebdoua,  

2018; Gonçalves et al., 2019; Liu, Yamdeu, Gong, & Orfila, 2020) and the increase in drug- 

resistant strains of many pathogens (Zuccolo et al., 2019) indicate the need for development of  

new strategies. Over the last few decades, there has been an increasing interest in the study of  

postharvest control methods that make use of natural resources (Palou, Smilanick & Droby,  

2008; Talibi, Boubaker, Boudyach, & Ait Ben Aoumar, 2014; Souza, Yuk, Khoo, & Zhou,  

2015; Guimarães, Abrunhosa, Pastrana, & Cerqueira, 2018; Ebrahimzadeh & Abrinbana, 2019;  

Liu et al., 2019; Liu, et al., 2020). Such alternative compounds can act as resistance inducers  

https://setac.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Belden%2C+Jason
https://setac.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=McMurry%2C+Scott
https://setac.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Smith%2C+Loren
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Gon%C3%A7alves%2C+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Liu%2C+Yue
https://www.semanticscholar.org/author/Llu%C3%ADs-Palou/4055471
https://www.semanticscholar.org/author/Joseph-L.-Smilanick/9920936
https://www.semanticscholar.org/author/Samir-Droby/6197735
https://sfamjournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Talibi%2C+I
https://sfamjournals.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Boubaker%2C+H
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=D%27Souza%2C+Craig
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Yuk%2C+Hyun-Gyun
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Khoo%2C+Gek+Hoon
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Zhou%2C+Weibiao
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Guimar%C3%A3es%2C+Ana
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abrunhosa%2C+Lu%C3%ADs
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Pastrana%2C+Lorenzo+M
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Cerqueira%2C+Miguel+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ebrahimzadeh%2C+Fatemeh
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Abrinbana%2C+Masoud


 

 

and/or activators of plant defence mechanisms, or they can have strong antimicrobial activities  

against the main postharvest fungal pathogens (Romanazzi, Feliziani, Baños, & Sivakumar,  

2017; Ribes, Fuentes, Talens, & Barat, 2018). However, only a few such natural fungicides  

have been approved for use as control agents for postharvest diseases, due to the strict  

regulatory policies for food safety. Among these, chitosan is a natural biocompatible  

polysaccharide emerged as a promising eco-friendly alternative to synthetic fungicides  

(Muzzarelli,1983; Romanazzi, Feliziani, & Sivakumar, 2018; Betchem, Johnson, & Wang,  

2019). To give some background, chitosan is a common name for the polysaccharide N-aceyl- 

D-glucosamine (Zargar, Asghari, & Dashti, 2015). The chitosan compound is obtained by  

deacetilation of chitin through exposure to NaOH solutions or to the enzyme chitinase. It is a  

functional cationic biopolymer that is widely studied and used across the world. Chitosan have  

many applications included food industry (Gutiérrez, 2017; da Silva, de Souza, & Dantas  

Lacerda, 2019; Morin-Crini, Lichtfouse, Torri, & Crini, 2019; Kabanov, & Novinyuk, 2020),  

cosmetology (Aranaz et al., 2018; Kaczmarek, Struszczyk-Swita, Li, Szczęsna-Antczak, &  

Daroch, 2019) and human medicine (Tungland & Meyer, 2002; Leung, Liu, Koon, & Fung,  

2006; Kofuji et al., 2010; Zhao et al., 2018).  

Concerning the agriculture applications, the chitosan was the first compound in the list  

of basic substances approved in the European Union for plant protection purposes (Reg. EU 66  

2014/563), for both organic agriculture and integrated pest management. For several years now,  

chitosan has been of interest in many studies that have shown that it can be used to prolong  

storage of an array of fruit and vegetables worldwide, where it has been shown to have three  

major activities: including biofilm formation on treated surfaces (El Ghaouth, Arul,  

Ponnampalam, & Boulet, 1991; Valencia-Chamorro, Palou, & Del Río, 2011; Romanazzi et al.,  

2018); as an antimicrobial (Goy, De Britto, & Assis, 2009; Kong, Chen, Xing, & Park, 2010;  

Feliziani, Landi, & Romanazzi, 2015; Cheung, Ng, Wong, & Chan, 2015; Wang, Li, & Zhang,  

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Zargar%2C+Vida
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Dashti%2C+Amir


 

 

2017; Pétriacq, López, & Luna, 2018; Duan et al., 2019); and as an elicitor of host defence  

mechanisms (Landi, Feliziani, & Romanazzi, 2014; Coqueiro et al., 2015; Landi et al., 2017;  

Colman et al., 2019; Xoca-Orozco et al., 2019; Obianom, Romanazzi, & Sivakumar, 2019). For  

these reasons, chitosan can be used as a biodegradable fungicide (Rebelo, Vila, & Fangueiro,  

R., 2016; Liang et al., 2017).  

However, the heterogeneity of chitosan activities and its effectiveness across a wide  

range of experimental conditions have led to different interpretations of its primary use/  

mechanism/ actions. As a result, different recommendations for chitosan treatments have been  

provided (Ramos-García et al., 2012; Bill, Sivakumar, Korsten, & Thompson, 2014; Xing et  

al., 2016; Flores et al., 2018; Betchem et al., 2019; de Souza, Lundgren, de Oliveira, Berger, &  

Magnani ). Furthermore, based on reports of the evaluation of chitosan across similar and  

different fungal strains, its value for disease reduction can vary (Herrera-Romero, Ruales, &  

Caviedes, 2017; Hua et al., 2019; Zahid, Maqbool, Ali, Siddiqui, & Bhatti, 2019). Also, despite  

the many studies in the literature that have investigated a wide range of chitosan treatments and  

their influences, no single study has made all of the appropriate comparisons for a full  

evaluation. Thus, given the mixed claims in the literature, there is the need to define the overall  

effectiveness of chitosan, to highlight useful aspects for its future investigation.   

Meta-analyses can be applied as a tool for analysis of large amounts of data across many  

primary studies, in which the main purpose is to integrate and interpret the findings, to provide  

conclusions that the individual studies alone cannot show clearly. This statistical procedure  

provides an integration of the data across several to many independent studies (Maestri,  

Pavlicevic, Montorsi, & Marmiroli, 2019). The combination of the resulting outcomes can also  

increase the statistical power, and make it possible to detect relatively small effects (Rosenberg,  

Garrett, Su, & Bowden, 2004; Nelson, Gent, & Grove., 2015; Schwingshackl, Hoffmann, Iqbal,  

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Souza%2C+Evandro+L
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lundgren%2C+Giovanna+A
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Oliveira%2C+Kataryne+%C3%81+R
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Berger%2C+L%C3%BAcia+R+R
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Magnani%2C+Marciane
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Maestri%2C+Elena
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Pavlicevic%2C+Milica
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Montorsi%2C+Michela
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Marmiroli%2C+Nelson


 

 

Schwedhelm, & Boeing, 2018; Chen, Chen, Chen, & Huang, 2019; González-Domínguez et  

al., 2019).  

The aim of the present study was to carry out a meta-analysis to quantitatively review  

the data across the available studies on the effectiveness of 1% chitosan, the most common  

concentration that has been tested in the control of postharvest decay (Romanazzi et al., 2018).  

Hence, the objectives were to determine the effectiveness of 1% chitosan on: (i) reduction of  

postharvest diseases of fresh fruit; (ii) in-vitro mycelium growth of the causal agents of  

postharvest decay; and (iii) phenylalanine ammonia-lyase (PAL), β-1,3-glucanase and chitinase  

activities associated with host defence mechanisms against these causal agents at 24 h post- 

treatment (hpt).  

  

2. METHODS  

2.1 Search strategy and study selection   

A systematic literature search from 2007 to 2019 was performed using the databases of Scopus  

and Web of Science and the following terms: ‘chitosan’ and ‘fruit’. Studies that used chitosan  

mixed with other compounds were not considered. The selection of studies was conducted  

according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses  

(PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & PRISMA Group, 2009).  

Article selection for the meta-analysis used the following inclusion criteria: 1%  

chitosan; disease incidence; in-vitro mycelium growth according to specific postharvest fungi;  

and activity of the enzymes involved in plant defence mechanisms. The eligibility of the articles  

was assessed, with the exclusion of the studies with different chitosan concentrations, with no  

information on disease incidence, mycelium growth or defence enzymes, and with no known  

fungal species.   



 

 

In more detail, three categories were included for the studies related to: (i) disease  

incidence published from 2010 to 2019, caused by gray mold, Rhizopus rot, anthracnose,  

green/blue mold and/or Alternaria rot, considered as subgroups; (ii) in-vitro mycelium growth  

published from 2007 to 2019 for the decay causing fungal pathogens B. cinerea, Penicillium  

spp., Colletotrichum spp. and Alternaria spp., considered as subgroups; (iii) enzyme activities  

associated with host defence mechanisms analysed at 24 hpt published from 2009 to 2018, for  

PAL, chitinase and β-1,3-glucanase, considered as subgroups. All of the studies included at  

least two treatments, as an untreated control and the 1% chitosan treatment. The fruit varieties,  

the 1% chitosan application and the detection timing varied across these studies. In some  

studies, the treatment application times and rates were reported. In such cases, only the  

treatments applied at the same time as the standard treatment were considered in the meta- 

analysis. The risk of bias and test for asymmetry for the funnel plots were used to evaluate the  

publication bias. Cochran’s I² indices, Tau2 and χ2 tests were used to estimate the statistical  

heterogeneity of the studies (Tufanaru, Munn, Stephenson, & Aromataris, 2015). If the  

heterogeneity was significant (I² >75%; and/or P <0.05), a random effects model was applied  

to all of the subgroups included in the postharvest decay disease incidence, the decay causing  

fungi mycelium growth, and the defence enzyme activity categories.  

  

2.2  Data extraction  

Data were recorded from the same days of chitosan treatments in each study. All of the studies  

that were related to the effects of chitosan towards disease incidence were calculated as  

percentage effects. The studies on the effects on mycelium growth resulted on three different  

measurement units (percentage, mm, cm), and again these were converted to percentages. To  

unify the different measurement units used across the studies of the defence enzyme activities,  

the values were converted into percentage of the mean (% mean) with respect to the normal  



 

 

control ([treatment mean/ normal control mean] × 100) (Viswanatha, Shylaj, & Moolemath,  

2017). If the standard deviations (SDs) or standard errors (SEs) were not reported, the data were  

transformed according to the P values (Weir et al., 2018). Data were extracted from the Figures  

presented in the papers using Plot Digitiser software (Kadic, Vucic, Dosenovic, Sapunar, &  

Puljak, 2016). The change scores with the corresponding standard deviations were used, as  

based on the guidelines of the Cochrane handbook  

(https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012276/epdf/full).  

  

2.3  Data analysis   

All of these meta-analyses were conducted using the Review Manager (RevMan) software,  

version 5.3. (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014;  

http://tech.cochrane.org/revman). The data type was selected as continuous. The statistical  

method was considered as inverse variance. Weighted means, effect sizes, 95% confidence  

intervals (CIs), which included 0, were calculated. In all of these analyses, P-value <0.05 was  

considered statistically significant. Differences among the groups were defined when the 95%  

CIs overlapped a vertical line. If the 95% CIs did not overlap, it can be suggested that the  

differences were significant (Yang, Scott, Mao, Tang, & Farmer, 2014; Dardiotis et al., 2018).  

The studies are presented as Forrest plots in the order of the statistical power.  

  

3  RESULTS OF THE REVIEW  

3.1 Chitosan-microbe interactions  

The antimicrobial activity of chitosan is a complex process that depends significantly from  

intrinsic properties and environmental factors (Yilmaz Atay, 2019) as well as the type of  

bacteria, fungi or virus involved (Chirkov, 2002; Kong, et al., 2010; Hosseinnejad, & Jafari,  

2016). The precise mechanism of chitosan antimicrobial activity is still not completely  

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012276/epdf/full
http://tech.cochrane.org/revman


 

 

understood. Several studies have suggested that the antimicrobial action is mainly due to the  

polycationic structure of the chitosan. Several studies have suggested that the antimicrobial  

action is mainly due to the polycationic structure of the chitosan. This activity is carried out in  

a pH range among 5.6 and 6 (Romanazzi, Gabler, Margosan, Mackey, & Smilanick, 2009) that  

is below the pKa of chitosan. The chitosan, positively charged, reacts with negatively charged  

microbial cell membranes (Rabea, Badawy, Stevens, Smagghe, & Steurbaut, 2003; Goy et al.,  

2009; Kong et al., 2010). This bond alters the permeability of the membrane which is followed  

by an inhibition of DNA replication and subsequently cell death (Nagy et al., 2011; Divya,  

Vijayan, George, & Jisha, 2017). A chelating action was also observed. The chitosan molecule  

binds to the metallic elements present in the trace causing the inhibit of toxins production and  

microbial growth (Cuero, Osuji, & Washington, 1991; Chung, Wang, Chen, & Li, 2003). The  

effect of chitosan on fungal pathogens was to inhibits the radial growth, spore germination, and  

the elongation of the germ tube as well as the production of virulence factors (Palma-Guerrero,  

Jansson, Salinas, & Lopez-Llorca, 2008; Badawy, & Rabea, 2011).  

  

3.2 Chitosan-plant interactions  

The chitosan acts as a powerful elicitor able to inducing a defense response against pathogens  

in plant tissues by activating both, a local (Zuppini et al., 2003; Iriti, & Varoni, 2015) and  

systemic plant defense (Benhamou, Lafontaine, & Nicole, 1994; Xing, Zhu, Peng, & Qin, 2015)  

with the involvement several molecules related to defense mechanisms as pathogenesis-related  

(PR) proteins (Lopez-Moya et al., 2017; Corsi, Forni, Riccioni, & Linthorst, 2017), Reactive  

Oxygen Species (ROS) (Singh et al., 2019) and secondary metabolites with active roles in  

defense as lignin, callose, phytoalexins, PAL, peroxidases and chitinase (Ma, Yang, Yan,  

Kennedy, & Meng, 2013; Landi et al., 2014; Malerba, & Cerana, 2016). However, the chitosan  

elicitation activity depends on the reactivity of the host tissues (Romanazzi et al., 2016) as well  



 

 

as from the acetylation and degree polymerization of chitosan (Cord-Landwehr, Melcher,  

Kolkenbrock, & Moerschbacher, 2016; Li, Xing, Liu, & Li, 2016). Until now the chitosan  

binding receptors are undefined (Iriti & Faoro 2009; Hidangmayum, Dwivedi, Katiyar, &  

Hemantaranjanm, 2019). Some researches proposed that chitosan could also interact with  

chromatin and directly affect gene expression (Hadwiger & Polashock, 2013; Katiyar,  

Hemantaranjan, Bharti, & Nishant Bhanu, 2014). However, chitosan molecular signals are  

transduced by messengers such as ROS or phytohormones able to induce physiological and  

defense response by host (Yin, Li, Zhao, Du, & Ma, 2006; Hidangmayum et al., 2019).   

An effect often observed on plants tissue after chitosan treatment was the inhibition of  

light-induced stomatal opening (Lee et al., 1999; Iriti et al., 2009). On this regard, the  

transcriptome analysis performed on sweet orange (Coqueiro et al., 2015) and strawberry  

(Landi et al., 2017) after chitosan treatments underline early impact of compound on the light  

photosynthetic process affecting imbalance/balance of ROS/redox signaling (Landi et al.,  

2017). These entire signaling molecules contribute to the adaptive mechanism in chitosan  

treated plants in response to stress.  

  

3.3  Description of included studies  

A flow chart of the screening of the studies identified for the effectiveness of 1% chitosan is  

shown in Figure 1, with a total of 56 articles finally available for the meta-analysis according  

to the search criteria. These covered 117 studies, of which 49 were related to disease incidence  

(total cases, 8,543 [for each of control and chitosan treatment]) (Figure 2), 41 to in-vitro  

mycelium growth (total cases, 1,072) (Figure 3), and 27 to changes in defence-mechanism- 

related enzymes (total cases, 1,332) (Figure 4). Some of the relevant details of the articles that  

were included in this meta-analysis are given in Table 1. All of the selected articles were  

included in the assessment for risk of bias. Also, blinding of outcome assessment in these  



 

 

studies (i.e., performance bias) was not necessary, so it was not included in the analysis for risk  

of bias. The domains considered for risk of bias were chosen based on each study that reported  

data and scientific information. All of the studies provided specific indication that the basic  

characteristics of the control and treatment groups were balanced and were treated under similar  

environmental conditions. None of these studies included misleading samples. As a result, the  

selection, detection, attrition and reporting were free of bias, and the publications were defined  

as at low risk of bias. The funnel plots constructed from the data for disease incidence,  

mycelium growth and defence enzyme activities did not reveal any significant asymmetry  

(Figure 5).  

  

3.4  Effects of 1% chitosan on disease incidence   

Based on this meta-analysis, the overall data demonstrated the significant effectiveness of 1%  

chitosan over the control treatment for reduction of disease incidence (studies, 49; total cases,  

8,5473) (mean difference [MD], –30.22; 95% confidence intervals [CI], –36.48 to –23.96; I2,  

90.0%; P <0.00001) (Figure 2). The subgroup analysis here (Figure 2) showed that 1% chitosan  

was significantly effective for reduction of disease incidence against: gray mold (studies, 12;  

total cases, 1,473), (Shao, Tu, Tu, & Tu, 2012; Feliziani, Santini, Landi, & Romanazzi, 2013;  

Gao, Zhu, & Zhang, 2013; Romanazzi, Feliziani, Santini, & Landi, 2013; Feliziani et al., 2015;  

Kanetis, Exarchou, Charalambous, & Goulas, 2017; Zheng, et al., 2017; Gramisci, Lutez,  

Lopes, & Sangorrína, 2018; Hajji, Younes, Affes, Boufi, & Nasri, 2018) (MD, –23.97; 95% CI,  

–32.25 to –15.68; I2, 77.0%; P <0.00001), as highly effective in 9 of these studies, (Shao et al.,  

2012; Gao et al., 2013; Romanazzi et al., 2013; Feliziani et al., 2015; Kanetis et al., 2017;  

Zheng, et al., 2017; Gramisci et al., 2018; Hajji et al., 2018); blue/green molds caused by  

Penicillium spp. (studies, 16; total cases, 1,968) (Xing, Xu, Che, Li, & Li, 2011; Shao et al.,  

2012; Cháfer, Sánchez‐González, González‐Martínez & Chiralt, 2012; Feliziani et al., 2013;  



 

 

Romanazzi et al., 2013; Wang, Wu, Qin, & Meng, 2014; Lu et al., 2014; Shao et al., 2015; El  

Guilli, Hamza, Clément, Ibriz, & Ait Barka, 2016; Zheng, et al., 2017; Gramisci et al., 2018;  

Kharchoufi, et al., 2018; Liu, Sun, Xiu, Huang, & Zhou, 2018; Shi, Wang, Lu, & Deng, 2018)  

(MD, –30.85; 95% CI, –41.91 to –19.79; I2, 90.0%; P <0.00001), as highly effective in 9 of  

these studies (Xing et al., 2011; Romanazzi et al., 2013; Lu, et al., 2014; Shao et al., 2015; El  

Guilli et al., 2016; Zheng, et al., 2017; Liu et al., 2018; Shi et al., 2018); Rhizopus rot (studies,  

5; total cases, 1,740) (Cia, Benato, Pascholati, & Garcia, 2010; Ramos-García et al., 2012;  

Romanazzi et al., 2013; Xing et al., 2015) (MD, –28.80; 95% CI, –46.13 to –11.47; I2, 87.0%;  

P = 0.001), as effective in 3 of these studies (Cia et al., 2010; Ramos-García et al., 2012;  

Romanazzi et al., 2013); and anthracnose (11 studies; total cases, 2,134) (Maqbool, Ali,  

Ramachandran, Smith, & Alderson, 2010; Zahid, Ali, Manickam, Siddiqui, & Maqbool, 2012;  

Bill et al., 2014; Edirisinghe, Ali, Maqbool, & Alderson, 2014; Ali, Noh, & Mustafa, 2015;  

Gutiérrez-Martínez, Bautista-Banos, Berúmen-Varela, Ramos-Guerrero, & Hernández-Ibanez,  

2017; Obianom et al., 2019) (MD, –46.64; 95% CI, –61.54 to –31.73; I2, 92.0%; P <0.00001),  

as effective in all of these studies. For Alternaria rot, 1% chitosan was not significantly effective  

(studies, 5; total cases, 1,228) (Meng, Yang, Kennedy, & Tian, 2010; Yan et al., 2011; López- 

Mora, Gutiérrez-Martínez, Bautista-Baños, Jiménez-García, & Zavaleta-Mancera, 2013;  

Feliziani et al., 2015; Guo, Xing, Yu, Zhao, & Zhu, 2017) (MD, –8.50; 95% CI, –15.75 to – 

1.25; I2, 27.0%; P = 0.24), although in 1 of these studies (Guo et al., 2017) its effect reached  

significance.   

  

3.5  Effects of 1% chitosan on in-vitro mycelium growth  

The overall data here showed the significant effectiveness of 1% chitosan over the control  

treatment against in-vitro mycelium growth of these fungal pathogens that are involved in  

postharvest diseases (studies, 41; total cases, 1,072) (MD, –54.32; 95% CI, –64.35 to –44.28;  

https://www.cabdirect.org/cabdirect/search/?q=au%3a%22L%c3%b3pez-Mora%2c+L.+I.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22L%c3%b3pez-Mora%2c+L.+I.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Guti%c3%a9rrez-Mart%c3%adnez%2c+P.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Bautista-Ba%c3%b1os%2c+S.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Jim%c3%a9nez-Garc%c3%ada%2c+L.+F.%22
https://www.cabdirect.org/cabdirect/search/?q=au%3a%22Zavaleta-Mancera%2c+H.+A.%22


 

 

I2, 95.0%; P <0.00001) (Figure 3). The subgroup analysis here (Figure 3) showed that 1%  

chitosan was significantly effective against in-vitro mycelium growth for: B. cinerea (studies,  

5; total cases, 37) (Kanetis et al., 2017; Xu et al., 2007; Feliziani et al., 2013; Munhuweyi et al.,  

2017; Flores et al., 2018). (MD, -49.38; 95% CI, –72.98 to –25.79; I2, 94.0%; P <0.0001), as  

medium high effects for all of these studies; Penicillium spp. (studies, 9; total cases, 65) (Xing  

et al., 2011; Abdel-Kader, El-Mougy & Lashin, 2011; Nisia, Noreña, & Brandelli, 2012; Wang  

et al., 2014; Waewthongrak, Pisuchpen, & Leelasuphakul, 2015; Shao et al., 2015; Munhuweyi  

et al., 2017; Madanipour, et al., 2019) (MD, –73.00; 95% CI, –89.71 to –56.30; I2, 92.0%; P  

<0.00001), as the highest effects seen, and for all of these studies; Colletotrichum spp. (studies,  

24; total cases, 955) (Jitareerat, Paumchai, Kanlayanarat, & Sangchote, 2007; Rahman,  

Mahmud, Kadir, Abdul Rahman, & Begum, 2008; Munoz, Moret, & Garces, 2009; Maqbool et  

al., 2010; Zahid et al., 2012; Mohamed, Clementine, Didier, Gérard, & Noëlle, 2013; Ali et al.,  

2014; Bill et al., 2014; Edirisinghe et al., 2014; Ali et al., 2015; Varela, Coronado Partida,  

Ochoa Jiménez, López, & Martínez, 2015; Gutiérrez-Martínez et al., 2017; de Oliveira, Berger,  

de Araújo, Camara, & de Souza, 2017; Ramos-Guerrero, González-Estrada, Hanako-Rosas, &  

Bautista-Banõs, 2018; Xoca-Orozco, Aguilera-Aguirre, López-García, Gutiérrez-Martínez, &  

Chacón-López, 2018) (MD, –48.18; 95% CI, –62.83 to –33.53; I2, 96.0%; P <0.00001), as the  

lowest effects seen based on the point estimate, with the highest effects for 16 of these studies  

(Jitareerat, et al., 2007; Rahman, et al., 2008; Maqbool et al., 2010; Zahid et al., 2012; Bill et  

al., 2014; Ali et al., 2014; Varela et al., 2015; de Oliveira et al., 2017; Ramos-Guerrero et al.,  

2018; Xoca-Orozco et al., 2018); and Alternaria spp. (3 studies; total cases, 15) (Yan et al.,  

2011; Feliziani et al., 2013; López-Mora et al., 2013) (MD, –55.20; 95% CI, –80.50 to –29.90;  

I2, 90.0%; P <0.0001), as significant for all of these studies.  

  

3.6 Effects of 1% chitosan on enzyme activities associated with host defence  



 

 

The overall data for the effects of 1% chitosan on the activities of the enzymes associated with  

host plant defence at 24 hpt showed significantly increased activity over the control treatment  

(studies, 27; total cases, 1,332) (MD, 74.58; 95% CI, 41.15 to 108.01; I2, 99.0%; P <0.0001)  

(Figure 4). For the details of the subgroup analysis here (Figure 4), in the treated fruit, 1%  

chitosan did not induce any significant difference compared to the control at 24 hpt for the PAL  

activity (studies, 9; total cases 575) (Zahid et al., 2012; Landi et al., 2014; Bill et al., 2014; Shao  

et al., 2015; Waewthongrak et al., 2015; Song et al., 2016; Jongsri, Rojsitthisak,  

Wangsomboondee, & Seraypheapa, 2017;.Shen & Yang, 2017; Silva et al., 2018) (MD, 37.06;  

95% CI, –17.28 to 91.40; I2, 99.0%; P = 0.18). However, 5 of these studies (Landi et al., 2014;  

Bill et al., 2014; Shao et al., 2015; Waewthongrak et al., 2015; Shen & Yang, 2017) showed  

significant increases in PAL activity. Furthermore, significant increases were seen overall for  

chitinase activity (10 studies; total cases, 491) (Hewajuliage, Sultanbawa, Wijeratnam, &  

Wijesundara, 2009; Feliziani et al., 2013; Bill et al., 2014; Landi et al., 2014; Ali et al., 2014;  

Shao et al., 2015; Jongsri, et al., 2017;. Shen, & Yang, 2017) (MD, 75.95; 95% CI, 36.18 to  

115.73; I2, 99.0%; P = 0.0002), as 8 of these with significance increases (Hewajuliage, et al.,  

2009; Feliziani et al., 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014; Jongsri, et al.,  

2017; Shen, & Yang, 2017), and overall for β-1,3-glucanase activity (8 studies; total cases 266)  

(Hewajuliage, et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al.,  

2014; Shao et al., 2015; Jongsri, et al., 2017;. Shen, & Yang, 2017) (MD, 115.06; 95% CI,  

38.24 to 191.88; I2, 100.0%; P = 0.003), as 5 of these with significance increases (Hewajuliage,  

et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014).  

  

4  DISCUSSION  

This study brings together and summarises the results from the literature of the effects of 1%  

chitosan on postharvest diseases and pathogens, according to disease incidence, in-vitro  



 

 

mycelium growth, and induction of host defence responses through monitoring of the most  

commonly analysed enzymes linked to defence mechanisms. This meta-analysis emphasises  

the primary role of 1% chitosan against the main diseases and pathogens associated with  

postharvest decay (Romanazzi et al., 2018; Betchem et al., 2019). These pooled estimates  

highlighted that 1% chitosan is effective against the main postharvest diseases caused by several  

fungal pathogens that infect different plant species. Although some of these data show high  

heterogeneity, they also show low risk of bias and high validity for each study, with no  

substantial baseline differences seen between the control and treatment groups. Indeed, the  

funnel plots as a method to assess the potential role of publication bias (Harbord, Egger, &  

Sterne, 2006) indicate that no bias was detected across the studies included. Therefore, these  

values of I² >90% indicate real differences in these studies.  

Our study underlines the transversal effectiveness of chitosan in postharvest disease  

management. Here, the subgroup analysis of in-vitro mycelium growth emphasises that the  

most powerful growth reduction was for Penicillium spp., followed by Alternaria spp. and B.  

cinerea, while lower effectiveness was seen against Colletotrichum spp..   

These data also show that chitosan has differential effects across these fungal species,  

potentially through the control of fungal development and lytic enzyme activation by chitosan  

(El Gueddari, Rauchhaus, Moerschbacher & Deising, 2002; Geoghegan & Gurr, 2016;  

Geoghegan, Steinberg, & Gurr, 2017; Ramos-Guerrero et al., 2018; Ramos-Guerrero,  

González-Estrada, Romanazzi, Landi, & Gutiérrez-Martínez, 2020). There are direct links  

between the cell wall and cell membranes, as the synthesis of key cell-wall components (e.g.,  

glucans, chitin) occurs at the plasma membrane, with the associated synthase enzyme  

complexes (Maddi, & Free, 2010). The chitin is localized in the membrane proximal portion of  

the cell wall and is incorporated into the wall matrix by being cross-linked to the glucans (Patel  

& Free, 2019). Previous studies have investigated the role of plasma membrane in the sensitivity  

https://pubag.nal.usda.gov/?q=%22Rauchhaus%2C+U.%22&search_field=author
https://pubag.nal.usda.gov/?q=%22Moerschbacher%2C+B.M.%22&search_field=author
https://pubag.nal.usda.gov/?q=%22Deising%2C+H.B.%22&search_field=author
https://pubag.nal.usda.gov/?q=%22Deising%2C+H.B.%22&search_field=author


 

 

of fungi to chitosan showing that the plasma membrane of chitosan-sensitive fungi is more fluid  

and richer in polyunsaturated free fatty acids than in chitosan-resistant fungi (Palma-Guerrero  

et al., 2009 and 2010). The authors evidenced that chitosan binds to negatively charged  

phospholipids. This alter plasma membrane fluidity to inducing the membrane  

permeabilization, which was greatest in membranes containing elevated content  

polyunsaturated lipids.   

While this meta-analysis highlights the different reactions between the fungal species  

and chitosan effectiveness, it also underlines the key role of plant species in this complex  

relation that significantly affects the outcome of chitosan-pathogen interaction.  

For this reason, the fungal pathogens can react differently to chitosan in terms of disease  

incidence and in in-vitro tests. Indeed, the meta-analysis summarized studies related to disease  

incidence, show significantly reducing postharvest disease incidence, although the results  

linked to singular disease show the highest effectiveness of chitosan against anthracnose, while  

it is less effective against blue/green mold, Rhizopus rot, gray mold, and particularly Alternaria  

rot. Therefore, it is not excluded that the involvement of mainly different fruits species on  

anthracnose incidence, as banana, papaya, dragon, bell pepper, soursop and avocado, not tested  

for the other diseases, the chitosan, could be elicited a different defence response.  

This study also confirms that disease incidence is the result of a combination of the  

chitosan effects on film-forming, plant defence eliciting, and its antimicrobial properties  

(Romanazzi et al., 2018). In this context, chitosan can be considered to be a modulator of plant  

defences (Lopez-Moya, Suarez-Fernandez, & Lopez-Lorca, 2019). Chitosan application to  

plants fits into the delicate relationship between the host and pathogenic fungi and involves the  

primary cell-wall defence mechanisms. A link between pathogenicity and the enzymes that  

synthesise the fungal cell wall has been demonstrated in numerous studies (Arana et al., 2009;  

Levdansky et al., 2010; Lenardon, Munro, & Gow, 2010; Oliveira-Garcia, & Deising, 2013;  



 

 

Geoghegan et al., 2017; Patel & Free, 2019), and depolymerisation of the cell walls of plant  

pathogenic fungi following the infection, evading plant immune recognition, has been reported  

(Geoghegan et al., 2017). It has been reported that the strategy of some fungal pathogens to  

evade plant immunity is to convert chitin into chitosan (Lopez-Moya, et al., 2019). Thus, both  

chitosan and chitin will have key roles in the control of plant immunity.   

According to the concepts of systemic acquired resistance (Pieters et al., 1998; Durrant  

& Dong, 2004) and induced systemic resistance (Heil & Bostock, 2002; Timmermann,  

González, & Ruz, 2020), chitosan can induce resistance in the plants to control postharvest  

fungal pathogens of their fruit and as vegetables (Nandeeshkumar  et al., 2008; Jia, Meng, Zeng,  

Wang, & Yin, 2016; Jia, Zeng, Wang, Zhang, & Yin, 2018). On this basis, the meta-analysis  

data related to the eliciting of the host defence enzymes by chitosan through activation of  

induced resistance can help us to understand this aspect (Mandal, Kar, Mukherjee, & Acharya,  

2013; Walters, Ratsep, & Havis, 2013).   

Although a meta-analysis of publicly available data, related to transcriptome  

investigations of plants defense priming, evidenced a common set of conserved transcriptional  

changes on plants upon stress conditions, (Baccelli, Benny, Caruso, & Martinelli, 2020), the  

detailed role of the chitosan in the induction of defence mechanisms has been shown for sweet  

oranges (Coqueiro et al., 2015) and strawberries (Landi et al., 2017). The most common  

approaches related to the study of enzyme activities (Wang & Gao, 2013; Ali et al., 2014;  

Pasquariello et al., 2015; Shao et al., 2015; Adiletta, Zampella, Coletta, & Petriccione, 2019)  

and the expression of individual genes (Ma et. al.,  2013; Landi et al., 2014; Petriccione et al.,  

2017; Fooladi vanda, Shabani, & Razavizadeh, 2019; Chun & Chandrasekaran, 2019) have  

been investigated, both of which are associated with reactive oxygen species, specific PR  

proteins, cell-wall enzymes and secondary metabolites. Usually, these individual studies have  

https://pubmed.ncbi.nlm.nih.gov/?term=Durrant+WE&cauthor_id=15283665


 

 

shown wide variability associated with host fruit species, application methods and times of  

treatment.   

In the present study, we analysed the most studied of the plant defence enzymes, PAL,  

which is associated with the phenylpropanoid pathway (Dixon, Lapthorn, & Edwards, 2002;  

Yadav et al., 2020), and chitinase and β-1,3-glucanase, which are linked to cell-wall hydrolysis  

(Gupta et al., 2015; Pusztahelyi, 2018), at the main analysis time point of 24 hpt. These data do  

not show any significant effects of chitosan on PAL activity at 24 hpt, while high increases in  

the activities of chitinase and β-1,3-glucanase were detected, independent of the host species.  

These findings are in agreement with the plant immunity mechanisms that indicate that  

chitinase and β-1,3-glucanase release the glucan oligomers from the chitin of the fungal cell  

walls to trigger the plant immune responses (Jones & Dang, 2006; Fesel & Zuccaro, 2016;  

Lopez-Moya et al., 2019;), although the induction of these defence mechanisms can vary greatly  

according to the time of treatment. The present study suggests that the analysis of the chitinase  

and β-1,3-glucanase activities at 24 hpt represents a marker for verification of induction of the  

plant defences by chitosan, while activation of PAL has generally been reported to occur at later  

times (Landi et al., 2014; Bill et al., 2014).   

  

5 CONCLUSIONS  

The present work established the first comprehensive investigation of chitosan effectiveness on  

postharvest pathogens using meta-analysis approach. This study provides knowledge based on  

three robust findings, as the effects of 1% chitosan on disease incidence, mycelium growth of  

decay-causing fungi, and the activities of two important defence enzymes in particular,  

chitinase and β-1,3-glucanase. This investigation shown the chitosan have antifungal properties  

against different phytopathogens highlight the versatile properties of this natural biopolymer.  

https://www.sciencedirect.com/science/article/pii/S1087184515300529?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S1087184515300529?via%3Dihub#!


 

 

It was demonstrated there are enough data about the effectiveness of chitosan in the control of  

postharvest diseases, also inducing resistance on fruit to postharvest pathogens.  

The outcomes of this study aim to contribute to a better understanding concerning the  

role of chitosan in the control of postharvest decay of fresh fruit, that will be relevant for the  

conceptualization and measurement of future studies. Collectively, these data confirm the  

multiple mechanisms of action of chitosan, which has unique properties in the panorama of  

activities of natural compounds that define it as a model plant-protection agent for sustainable  

control of postharvest decay of fruit and vegetables.   
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TABLE 1. Main characteristics of datasets that have included 1% chitosan effects on  

postharvest fungal pathogens.  

First author Year Fungal pathogen Chitosan effects measures Defence 

enzyme    Disease 

incidence 

(fruit) 

In-vitro 

mycelium 

growth 

Plant 

defence 

mechanism 

(fruit) 

Xu  2007 B. cinerea  Yes  - 

Jitareerat  2007 Colletotrichum spp.  Yes  - 

Rahman 2008 Colletotrichum spp.  Yes  - 

Hewajulige  2009 -   Papaya Chitinase, 

β-1,3-

glucanase 

Munoz 2009 Colletotrichum spp.  Yes  - 

Meng 2010 Alternaria spp. Pear   - 

Maqbool 2010 Colletotrichum spp Banana   - 

Cia 2010 Rhizopus spp.  Yes  - 

Yan 2011 Alternaria spp. Jujube Yes  - 

Abdel-Kader 2011 Penicillium spp.  Yes  - 

Xing 2011 Penicillium spp Jujube   - 

Nisia  2012 Penicillium spp.  Yes  - 

Ramos-Garcia 2012 Rhizopus spp. Tomato   - 

Shao 2012 Penicillium spp., B. 

cinerea 

Apple   - 

Cháfer 2012 Penicillium spp. Orange   - 

Zahid 2012 Colletotrichum spp. Banana, 

Papaya, 

Dragon 

Yes  - 

Feliziani 2013 B. cinerea, 

Alternaria spp., 

Penicillium spp. 

 Yes Table grape Chitinase 

Wang 2013 -   Strawberry β-1,3-

Glucanase 

Mohamed 2013 Colletotrichum spp.  Yes  - 

Gao 2013 B. cinerea Table grape   - 

López-Mora 2013 Alternaria spp. Mango Yes  - 



 

 

Romanazzi 2013 Penicillium spp., B. 

cinerea, Rhizopus 

spp. 

Strawberry   - 

Bill 2014 Colletotrichum spp.  Yes Avocado PAL, 

chitinase, 

β-1,3-

glucanase 

Ali 2014 Colletotrichum spp.  Yes Dragon Chitinase, 

β-1,3-

glucanase 

Wang 2014 Penicillium spp. Jujube Yes  - 

Lu 2014 Penicillium spp. Orange   - 

Landi 2014    Strawberry PAL, 

chitinase, 

β-1,3-

glucanase 

Edirisinghe 2014 Colletotrichum spp. Bell pepper Yes  - 

Zahid 2015    Dragon PAL 

Feliziani 2015 B. cinerea Strawberry   - 

Waewthongrak 2015 Penicillium spp.  Yes Citrus PAL 

Varela 2015 Colletotrichum spp.  Yes  - 

Shao 2015 Penicillium spp.  Yes Mandarine PAL, 

chitinase, 

β-1,3-

glucanase 

Xing 2015 Rhizopus spp. Jujube   - 

Ali 2015 Colletotrichum spp. Bell pepper Yes  - 

Song 2016    Loquat PAL 

El Guilli 2016 Penicillium spp. Citrus   - 

Zheng 2017 B. cinerea Kiwi   - 

Gutiérrez-

Martinez 

2017 Colletotrichum spp. Mango, 

banana, 

soursop 

Yes  - 

Guo 2017 Alternaria spp. Jujube   - 

Shen 2017 -   Table grape PAL, 

chitinase, 

β-1,3-

glucanase 



 

 

Jongsri 2017 -   Mango PAL, 

chitinase, 

β-1,3-

glucanase 

de Oliveria 2017 Colletotrichum spp.  Yes  - 

Kanetis 2017 B. cinerea Table grape Yes  - 

Munhuweyi 2017 B. cinerea  Yes  - 

Silva 2018    Guava PAL 

Gramisci 2018 B. cinerea, 

Penicillium spp. 

Pear   - 

Hajji 2018 B. cinerea Strawberry   - 

Kharchoufi 2018 Penicillium spp. Orange   - 

Flores 2018 B. cinerea  Yes  - 

Ramos-Guerrero 2018 Colletotrichum spp.  Yes  - 

Liu 2018 Penicillium spp. Blueberry   - 

Shi 2018 Penicillium spp. Grapefruit   - 

Xoca-Orozco 2018 Colletotrichum spp.  Yes  - 

Obianom 2019 Colletotrichum spp. Avocado   - 

Madanipour 2019 Penicillium spp.  Yes  - 

   



 

 

  

  

  

Figure 1. Flow chart exhibiting the selection process of eligible studies.  

   



 

 

  

Figure 2. Forest plots using the RavMan 5.3 software for random effects analysis related to the  

effectiveness of 1% chitosan on disease incidence. Gray mold, blue/ green mold, Rhizopus rot.,  

anthracnose and Alternaria rot were considered as subgroups. For Feliziani 2013, Kanetis 2017,  

Lu 2014, Shao 2012, Ramos-Garcia 2012, Gutièrrez-Martinez 2017 and Zahid 2012, several  

studies were included from each article into the subgroups. IV, inverse variance; CI, confidence  

interval.   



 

 

  

Figure 3. Forest plot using the RavMan 5.3 software for random effects analysis related to the  

effectiveness of 1% chitosan on in-vitro mycelium growth. Botrytis cinerea, Penicillium spp.,  

Colletotrichum spp. and Alternaria spp. were considered as subgroups. For Kanetis 2017,  

Kader 2011, de Oliveria 2017, Gutièrrez-Martinez 2017 and Zahid 2012, several studies were  

included from each article into the subgroups. IV, inverse variance; CI, confidence interval.  

   



 

 

  

Figure 4. Forest plots using the RavMan 5.3 software for random effects analysis related to the  

effectiveness of 1% chitosan on plant defence mechanism enzyme activities. Phenylalanine  

ammonia-lyase (PAL), chitinase and β-1,3-glucanase were considerd as subgroups. For  

Feliziani 2013 several studies were included from each article into the subgroups. IV, inverse  

variance; CI, confidence interval.  

  

  

   



 

 

  

Figure 5. Funnel plots for the detect of publication bias in the studies, for the disease incidence  

(a), mycelium growth (b) and defence enzyme activity (c) detected after 1% chitosan  

treatments, compared to the controls. SE(MD) = standard error (mean difference); MD = mean  

difference.  


