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Abstract

Consumers are increasingly aware of the importance of regular consumption of fresh fruit in
their diet. Since fresh fruit are highly sensitive to postharvest decay, several investigations
focused on the study natural compounds alternative to synthetic fungicides, to extend their shelf
life. A long list of studies reported the effectiveness of the natural biopolymer chitosan in
control of postharvest diseases of fresh fruit. However, these findings remain controversial,
with many mixed claims in the literature. In this work, we used random-effects meta-analysis
to investigate the effects of 1% chitosan on (i) postharvest decay incidence; (ii) mycelium
growth of fungal pathogens Botrytis cinerea, Penicillium spp., Colletotrichum spp. and
Alternaria spp.; and (iii) phenylalanine ammonia-lyase, chitinase and p-1,3-glucanase
activities. Chitosan significantly reduced postharvest disease incidence (mean difference [MD],
—-30.22; P <0.00001) and in-vitro mycelium growth (MD, —54.32; P <0.00001). For host
defence responses, there were significantly increased activities of B-1,3-glucanase (MD,
115.06; P = 0.003) and chitinase (MD, 75.95; P <0.0002). This systematic review contributes
to confirm the multiple mechanisms of mechanisms of action of chitosan, which has unique
properties in the natural compound panorama. Chitosan thus represents a model plant protection

biopolymer for sustainable control of postharvest decay of fresh fruit.

Keywords: defence related enzymes; fungal pathogens; natural antifungal compounds; plant

protection; sustainable control of plant pathogens
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1 INTRODUCTION

Postharvest fungal diseases can limit the storage period and shelf life, and thus market life, of
fruit and vegetables, which results in serious economic losses worldwide (Oerke & Dehne,
2004; Romanazzi, Smilanick, Feliziani, & Droby, 2016; Palou & Smilanick, 2020). The global
average loss due to the food postharvest reported by Food and Agriculture Organization, was
estimated in North America, Europe and Oceania about 29%, compared to an average of about
38% in industrialized Asia, Africa, Latin America and South East Asia (Parfitt, Barthel, &
Macnaughton, 2010; Food and Agriculture Organization of the United Nations, 2011; Sawicka,
2019).

The main fungal diseases (and their associated fungal pathogen) include: gray mold
(Botrytis cinerea Pers.); Rhizopus rot (Rhizopus stolonifer Ehrenb.); anthracnose
(Colletotrichum spp.); green mold (Penicillium digitatum Pers.); blue mold (Penicillium
italicum Wehmer on citrus fruit, P. expansum Link on other fruit); and Alternaria rot
(Alternaria spp.). The control of the causal fungal pathogens is therefore critical to extend the
shelf-life of these fresh products (Prusky, 2011; Arah, Amaglo, Kumah, & Ofori, 2015). Despite
the efficacy of synthetic fungicides in the control of postharvest decay, public concerns about
chemical and toxic residues in food (Belden, McMurry, Smith, & Reilley, 2010; Mebdoua,
2018; Goncalves et al., 2019; Liu, Yamdeu, Gong, & Orfila, 2020) and the increase in drug-
resistant strains of many pathogens (Zuccolo et al., 2019) indicate the need for development of
new strategies. Over the last few decades, there has been an increasing interest in the study of
postharvest control methods that make use of natural resources (Palou, Smilanick & Droby,
2008; Talibi, Boubaker, Boudyach, & Ait Ben Aoumar, 2014; Souza, Yuk, Khoo, & Zhou,
2015; Guimardaes, Abrunhosa, Pastrana, & Cerqueira, 2018; Ebrahimzadeh & Abrinbana, 2019;

Liu et al., 2019; Liu, et al., 2020). Such alternative compounds can act as resistance inducers
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and/or activators of plant defence mechanisms, or they can have strong antimicrobial activities
against the main postharvest fungal pathogens (Romanazzi, Feliziani, Bafios, & Sivakumar,
2017; Ribes, Fuentes, Talens, & Barat, 2018). However, only a few such natural fungicides
have been approved for use as control agents for postharvest diseases, due to the strict
regulatory policies for food safety. Among these, chitosan is a natural biocompatible
polysaccharide emerged as a promising eco-friendly alternative to synthetic fungicides
(Muzzarelli,1983; Romanazzi, Feliziani, & Sivakumar, 2018; Betchem, Johnson, & Wang,
2019). To give some background, chitosan is a common name for the polysaccharide N-aceyl-
D-glucosamine (Zargar, Asghari, & Dashti, 2015). The chitosan compound is obtained by
deacetilation of chitin through exposure to NaOH solutions or to the enzyme chitinase. It is a
functional cationic biopolymer that is widely studied and used across the world. Chitosan have
many applications included food industry (Gutiérrez, 2017; da Silva, de Souza, & Dantas
Lacerda, 2019; Morin-Crini, Lichtfouse, Torri, & Crini, 2019; Kabanov, & Novinyuk, 2020),
cosmetology (Aranaz et al., 2018; Kaczmarek, Struszczyk-Swita, Li, Szczgsna-Antczak, &
Daroch, 2019) and human medicine (Tungland & Meyer, 2002; Leung, Liu, Koon, & Fung,
2006; Kofuji et al., 2010; Zhao et al., 2018).

Concerning the agriculture applications, the chitosan was the first compound in the list
of basic substances approved in the European Union for plant protection purposes (Reg. EU 66
2014/563), for both organic agriculture and integrated pest management. For several years now,
chitosan has been of interest in many studies that have shown that it can be used to prolong
storage of an array of fruit and vegetables worldwide, where it has been shown to have three
major activities: including biofilm formation on treated surfaces (El Ghaouth, Arul,
Ponnampalam, & Boulet, 1991; Valencia-Chamorro, Palou, & Del Rio, 2011; Romanazzi et al.,
2018); as an antimicrobial (Goy, De Britto, & Assis, 2009; Kong, Chen, Xing, & Park, 2010;

Feliziani, Landi, & Romanazzi, 2015; Cheung, Ng, Wong, & Chan, 2015; Wang, Li, & Zhang,
5
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2017; Pétriacq, Lopez, & Luna, 2018; Duan et al., 2019); and as an elicitor of host defence
mechanisms (Landi, Feliziani, & Romanazzi, 2014; Coqueiro et al., 2015; Landi et al., 2017,
Colmanetal., 2019; Xoca-Orozco et al., 2019; Obianom, Romanazzi, & Sivakumar, 2019). For
these reasons, chitosan can be used as a biodegradable fungicide (Rebelo, Vila, & Fangueiro,
R., 2016; Liang et al., 2017).

However, the heterogeneity of chitosan activities and its effectiveness across a wide
range of experimental conditions have led to different interpretations of its primary use/
mechanism/ actions. As a result, different recommendations for chitosan treatments have been
provided (Ramos-Garcia et al., 2012; Bill, Sivakumar, Korsten, & Thompson, 2014; Xing et
al., 2016; Floreset al., 2018; Betchem et al., 2019; de Souza, Lundgren, de Oliveira, Berger, &
Magnani, 2019). Furthermore, based on reports of the evaluation of chitosan across similar and
different fungal strains, its value for disease reduction can vary (Herrera-Romero, Ruales, &
Caviedes, 2017; Hua et al., 2019; Zahid, Magbool, Ali, Siddiqui, & Bhatti, 2019). Also, despite
the many studies in the literature that have investigated a wide range of chitosan treatments and
their influences, no single study has made all of the appropriate comparisons for a full
evaluation. Thus, given the mixed claims in the literature, there is the need to define the overall
effectiveness of chitosan, to highlight useful aspects for its future investigation.

Meta-analyses can be applied as a tool for analysis of large amounts of data across many
primary studies, in which the main purpose is to integrate and interpret the findings, to provide
conclusions that the individual studies alone cannot show clearly. This statistical procedure
provides an integration of the data across several to many independent studies (Maestri,
Pavlicevic, Montorsi, & Marmiroli, 2019). The combination of the resulting outcomes can also
increase the statistical power, and make it possible to detect relatively small effects (Rosenberg,

Garrett, Su, & Bowden, 2004; Nelson, Gent, & Grove., 2015; Schwingshackl, Hoffmann, Igbal,
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Schwedhelm, & Boeing, 2018; Chen, Chen, Chen, & Huang, 2019; Gonzalez-Dominguez et
al., 2019).

The aim of the present study was to carry out a meta-analysis to quantitatively review
the data across the available studies on the effectiveness of 1% chitosan, the most common
concentration that has been tested in the control of postharvest decay (Romanazzi et al., 2018).
Hence, the objectives were to determine the effectiveness of 1% chitosan on: (i) reduction of
postharvest diseases of fresh fruit; (i) in-vitro mycelium growth of the causal agents of
postharvest decay; and (iii) phenylalanine ammonia-lyase (PAL), B-1,3-glucanase and chitinase
activities associated with host defence mechanisms against these causal agents at 24 h post-

treatment (hpt).

2. METHODS

2.1  Search strategy and study selection
A systematic literature search from 2007 to 2019 was performed using the databases of Scopus
and Web of Science and the following terms: ‘chitosan’ and ‘fruit’. Studies that used chitosan
mixed with other compounds were not considered. The selection of studies was conducted
according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & PRISMA Group, 2009).

Article selection for the meta-analysis used the following inclusion criteria: 1%
chitosan; disease incidence; in-vitro mycelium growth according to specific postharvest fungi;
and activity of the enzymes involved in plant defence mechanisms. The eligibility of the articles
was assessed, with the exclusion of the studies with different chitosan concentrations, with no
information on disease incidence, mycelium growth or defence enzymes, and with no known

fungal species.
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In more detail, three categories were included for the studies related to: (i) disease
incidence published from 2010 to 2019, caused by gray mold, Rhizopus rot, anthracnose,
green/blue mold and/or Alternaria rot, considered as subgroups; (ii) in-vitro mycelium growth
published from 2007 to 2019 for the decay causing fungal pathogens B. cinerea, Penicillium
spp., Colletotrichum spp. and Alternaria spp., considered as subgroups; (iii) enzyme activities
associated with host defence mechanisms analysed at 24 hpt published from 2009 to 2018, for
PAL, chitinase and B-1,3-glucanase, considered as subgroups. All of the studies included at
least two treatments, as an untreated control and the 1% chitosan treatment. The fruit varieties,
the 1% chitosan application and the detection timing varied across these studies. In some
studies, the treatment application times and rates were reported. In such cases, only the
treatments applied at the same time as the standard treatment were considered in the meta-
analysis. The risk of bias and test for asymmetry for the funnel plots were used to evaluate the
publication bias. Cochran’s I2 indices, Tau? and y? tests were used to estimate the statistical
heterogeneity of the studies (Tufanaru, Munn, Stephenson, & Aromataris, 2015). If the
heterogeneity was significant (12 >75%; and/or P <0.05), a random effects model was applied
to all of the subgroups included in the postharvest decay disease incidence, the decay causing

fungi mycelium growth, and the defence enzyme activity categories.

2.2  Data extraction

Data were recorded from the same days of chitosan treatments in each study. All of the studies
that were related to the effects of chitosan towards disease incidence were calculated as
percentage effects. The studies on the effects on mycelium growth resulted on three different
measurement units (percentage, mm, cm), and again these were converted to percentages. To
unify the different measurement units used across the studies of the defence enzyme activities,

the values were converted into percentage of the mean (% mean) with respect to the normal

8
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control ([treatment mean/ normal control mean] x 100) (Viswanatha, Shylaj, & Moolemath,
2017). If the standard deviations (SDs) or standard errors (SEs) were not reported, the data were
transformed according to the P values (Weir et al., 2018). Data were extracted from the Figures
presented in the papers using Plot Digitiser software (Kadic, Vucic, Dosenovic, Sapunar, &
Puljak, 2016). The change scores with the corresponding standard deviations were used, as
based on the guidelines of the Cochrane handbook

(https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012276/epdf/full).

2.3  Data analysis
All of these meta-analyses were conducted using the Review Manager (RevMan) software,

version 5.3. (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014;

http://tech.cochrane.org/revman). The data type was selected as continuous. The statistical
method was considered as inverse variance. Weighted means, effect sizes, 95% confidence
intervals (CIs), which included 0, were calculated. In all of these analyses, P-value <0.05 was
considered statistically significant. Differences among the groups were defined when the 95%
Cls overlapped a vertical line. If the 95% Cls did not overlap, it can be suggested that the
differences were significant (YYang, Scott, Mao, Tang, & Farmer, 2014; Dardiotis et al., 2018).

The studies are presented as Forrest plots in the order of the statistical power.

3 RESULTS OF THE REVIEW

3.1 Chitosan-microbe interactions

The antimicrobial activity of chitosan is a complex process that depends significantly from
intrinsic properties and environmental factors (Yilmaz Atay, 2019) as well as the type of
bacteria, fungi or virus involved (Chirkov, 2002; Kong, et al., 2010; Hosseinnejad, & Jafari,

2016). The precise mechanism of chitosan antimicrobial activity is still not completely
9
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understood. Several studies have suggested that the antimicrobial action is mainly due to the
polycationic structure of the chitosan. Several studies have suggested that the antimicrobial
action is mainly due to the polycationic structure of the chitosan. This activity is carried out in
a pH range among 5.6 and 6 (Romanazzi, Gabler, Margosan, Mackey, & Smilanick, 2009) that
is below the pKa of chitosan. The chitosan, positively charged, reacts with negatively charged
microbial cell membranes (Rabea, Badawy, Stevens, Smagghe, & Steurbaut, 2003; Goy et al.,
2009; Kong et al., 2010). This bond alters the permeability of the membrane which is followed
by an inhibition of DNA replication and subsequently cell death (Nagy et al., 2011; Divya,
Vijayan, George, & Jisha, 2017). A chelating action was also observed. The chitosan molecule
binds to the metallic elements present in the trace causing the inhibit of toxins production and
microbial growth (Cuero, Osuji, & Washington, 1991; Chung, Wang, Chen, & Li, 2003). The
effect of chitosan on fungal pathogens was to inhibits the radial growth, spore germination, and
the elongation of the germ tube as well as the production of virulence factors (Palma-Guerrero,

Jansson, Salinas, & Lopez-Llorca, 2008; Badawy, & Rabea, 2011).

3.2 Chitosan-plant interactions

The chitosan acts as a powerful elicitor able to inducing a defense response against pathogens
in plant tissues by activating both, a local (Zuppini et al., 2003; Iriti, & Varoni, 2015) and
systemic plant defense (Benhamou, Lafontaine, & Nicole, 1994; Xing, Zhu, Peng, & Qin, 2015)
with the involvement several molecules related to defense mechanisms as pathogenesis-related
(PR) proteins (Lopez-Moya et al., 2017; Corsi, Forni, Riccioni, & Linthorst, 2017), Reactive
Oxygen Species (ROS) (Singh et al., 2019) and secondary metabolites with active roles in
defense as lignin, callose, phytoalexins, PAL, peroxidases and chitinase (Ma, Yang, Yan,
Kennedy, & Meng, 2013; Landi et al., 2014; Malerba, & Cerana, 2016). However, the chitosan

elicitation activity depends on the reactivity of the host tissues (Romanazzi et al., 2016) as well

10
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as from the acetylation and degree polymerization of chitosan (Cord-Landwehr, Melcher,
Kolkenbrock, & Moerschbacher, 2016; Li, Xing, Liu, & Li, 2016). Until now the chitosan
binding receptors are undefined (Iriti & Faoro 2009; Hidangmayum, Dwivedi, Katiyar, &
Hemantaranjanm, 2019). Some researches proposed that chitosan could also interact with
chromatin and directly affect gene expression (Hadwiger & Polashock, 2013; Katiyar,
Hemantaranjan, Bharti, & Nishant Bhanu, 2014). However, chitosan molecular signals are
transduced by messengers such as ROS or phytohormones able to induce physiological and
defense response by host (Yin, Li, Zhao, Du, & Ma, 2006; Hidangmayum et al., 2019).

An effect often observed on plants tissue after chitosan treatment was the inhibition of
light-induced stomatal opening (Lee et al., 1999; Iriti et al., 2009). On this regard, the
transcriptome analysis performed on sweet orange (Coqueiro et al., 2015) and strawberry
(Landi et al., 2017) after chitosan treatments underline early impact of compound on the light
photosynthetic process affecting imbalance/balance of ROS/redox signaling (Landi et al.,
2017). These entire signaling molecules contribute to the adaptive mechanism in chitosan

treated plants in response to stress.

3.3 Description of included studies

A flow chart of the screening of the studies identified for the effectiveness of 1% chitosan is
shown in Figure 1, with a total of 56 articles finally available for the meta-analysis according
to the search criteria. These covered 117 studies, of which 49 were related to disease incidence
(total cases, 8,543 [for each of control and chitosan treatment]) (Figure 2), 41 to in-vitro
mycelium growth (total cases, 1,072) (Figure 3), and 27 to changes in defence-mechanism-
related enzymes (total cases, 1,332) (Figure 4). Some of the relevant details of the articles that
were included in this meta-analysis are given in Table 1. All of the selected articles were

included in the assessment for risk of bias. Also, blinding of outcome assessment in these

11
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studies (i.e., performance bias) was not necessary, so it was not included in the analysis for risk
of bias. The domains considered for risk of bias were chosen based on each study that reported
data and scientific information. All of the studies provided specific indication that the basic
characteristics of the control and treatment groups were balanced and were treated under similar
environmental conditions. None of these studies included misleading samples. As a result, the
selection, detection, attrition and reporting were free of bias, and the publications were defined
as at low risk of bias. The funnel plots constructed from the data for disease incidence,
mycelium growth and defence enzyme activities did not reveal any significant asymmetry

(Figure 5).

3.4  Effects of 1% chitosan on disease incidence

Based on this meta-analysis, the overall data demonstrated the significant effectiveness of 1%
chitosan over the control treatment for reduction of disease incidence (studies, 49; total cases,
8,5473) (mean difference [MD], —30.22; 95% confidence intervals [CI], —36.48 to —23.96; 12,
90.0%; P <0.00001) (Figure 2). The subgroup analysis here (Figure 2) showed that 1% chitosan
was significantly effective for reduction of disease incidence against: gray mold (studies, 12;
total cases, 1,473), (Shao, Tu, Tu, & Tu, 2012; Feliziani, Santini, Landi, & Romanazzi, 2013;
Gao, Zhu, & Zhang, 2013; Romanazzi, Feliziani, Santini, & Landi, 2013; Feliziani et al., 2015;
Kanetis, Exarchou, Charalambous, & Goulas, 2017; Zheng, et al., 2017; Gramisci, Lutez,
Lopes, & Sangorrina, 2018; Hajji, Younes, Affes, Boufi, & Nasri, 2018) (MD, —23.97; 95% ClI,
—32.25t0 —15.68; 12, 77.0%; P <0.00001), as highly effective in 9 of these studies, (Shao et al.,
2012; Gao et al., 2013; Romanazzi et al., 2013; Feliziani et al., 2015; Kanetis et al., 2017;
Zheng, et al., 2017; Gramisci et al., 2018; Hajji et al., 2018); blue/green molds caused by
Penicillium spp. (studies, 16; total cases, 1,968) (Xing, Xu, Che, Li, & Li, 2011; Shao et al.,

2012; Chafer, Sdnchez-Gonzélez, Gonzalez-Martinez & Chiralt, 2012; Feliziani et al., 2013;
12
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Romanazzi et al., 2013; Wang, Wu, Qin, & Meng, 2014; Lu et al., 2014; Shao et al., 2015; El
Guilli, Hamza, Clément, Ibriz, & Ait Barka, 2016; Zheng, et al., 2017; Gramisci et al., 2018;
Kharchoufi, et al., 2018; Liu, Sun, Xiu, Huang, & Zhou, 2018; Shi, Wang, Lu, & Deng, 2018)
(MD, —30.85; 95% CI, —41.91 to —19.79; 12, 90.0%; P <0.00001), as highly effective in 9 of
these studies (Xing et al., 2011; Romanazzi et al., 2013; Lu, et al., 2014; Shao et al., 2015; El
Guilli et al., 2016; Zheng, et al., 2017; Liu et al., 2018; Shi et al., 2018); Rhizopus rot (studies,
5; total cases, 1,740) (Cia, Benato, Pascholati, & Garcia, 2010; Ramos-Garcia et al., 2012;
Romanazzi et al., 2013; Xing et al., 2015) (MD, —28.80; 95% Cl, —46.13 to —11.47; 12, 87.0%;
P = 0.001), as effective in 3 of these studies (Cia et al., 2010; Ramos-Garcia et al., 2012;
Romanazzi et al., 2013); and anthracnose (11 studies; total cases, 2,134) (Magbool, Ali,
Ramachandran, Smith, & Alderson, 2010; Zahid, Ali, Manickam, Siddiqui, & Magbool, 2012;
Bill et al., 2014; Edirisinghe, Ali, Magbool, & Alderson, 2014; Ali, Noh, & Mustafa, 2015;
Gutiérrez-Martinez, Bautista-Banos, Berimen-Varela, Ramos-Guerrero, & Hernandez-1banez,
2017; Obianom et al., 2019) (MD, —46.64; 95% CI, —61.54 to —31.73; 12, 92.0%; P <0.00001),
as effective in all of these studies. For Alternaria rot, 1% chitosan was not significantly effective
(studies, 5; total cases, 1,228) (Meng, Yang, Kennedy, & Tian, 2010; Yan et al., 2011; Lépez-
Mora, Gutiérrez-Martinez, Bautista-Bafios, Jiménez-Garcia, & Zavaleta-Mancera, 2013;
Feliziani et al., 2015; Guo, Xing, Yu, Zhao, & Zhu, 2017) (MD, -8.50; 95% CI, —15.75 to —
1.25; 12, 27.0%; P = 0.24), although in 1 of these studies (Guo et al., 2017) its effect reached

significance.

3.5  Effects of 1% chitosan on in-vitro mycelium growth
The overall data here showed the significant effectiveness of 1% chitosan over the control
treatment against in-vitro mycelium growth of these fungal pathogens that are involved in

postharvest diseases (studies, 41; total cases, 1,072) (MD, -54.32; 95% CI, —64.35 to —44.28;
13
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12, 95.0%; P <0.00001) (Figure 3). The subgroup analysis here (Figure 3) showed that 1%
chitosan was significantly effective against in-vitro mycelium growth for: B. cinerea (studies,
5; total cases, 37) (Kanetis et al., 2017; Xu et al., 2007; Feliziani et al., 2013; Munhuweyi et al.,
2017; Flores et al., 2018). (MD, -49.38; 95% CI, —72.98 to —25.79; 12, 94.0%; P <0.0001), as
medium high effects for all of these studies; Penicillium spp. (studies, 9; total cases, 65) (Xing
etal., 2011; Abdel-Kader, EI-Mougy & Lashin, 2011; Nisia, Norefia, & Brandelli, 2012; Wang
et al., 2014; Waewthongrak, Pisuchpen, & Leelasuphakul, 2015; Shao et al., 2015; Munhuweyi
et al., 2017; Madanipour, et al., 2019) (MD, —73.00; 95% Cl, —89.71 to —56.30; 12, 92.0%; P
<0.00001), as the highest effects seen, and for all of these studies; Colletotrichum spp. (studies,
24; total cases, 955) (Jitareerat, Paumchai, Kanlayanarat, & Sangchote, 2007; Rahman,
Mahmud, Kadir, Abdul Rahman, & Begum, 2008; Munoz, Moret, & Garces, 2009; Magbool et
al., 2010; Zahid et al., 2012; Mohamed, Clementine, Didier, Gérard, & Noélle, 2013; Ali et al.,
2014; Bill et al., 2014; Edirisinghe et al., 2014; Ali et al., 2015; Varela, Coronado Partida,
Ochoa Jiménez, Lopez, & Martinez, 2015; Gutiérrez-Martinez et al., 2017; de Oliveira, Berger,
de Araujo, Camara, & de Souza, 2017; Ramos-Guerrero, Gonzalez-Estrada, Hanako-Rosas, &
Bautista-Bands, 2018; Xoca-Orozco, Aguilera-Aguirre, Lopez-Garcia, Gutiérrez-Martinez, &
Chacon-Ldpez, 2018) (MD, —48.18; 95% ClI, —62.83 to —33.53; 12, 96.0%; P <0.00001), as the
lowest effects seen based on the point estimate, with the highest effects for 16 of these studies
(Jitareerat, et al., 2007; Rahman, et al., 2008; Magbool et al., 2010; Zahid et al., 2012; Bill et
al., 2014; Ali et al., 2014; Varela et al., 2015; de Oliveira et al., 2017; Ramos-Guerrero et al.,
2018; Xoca-Orozco et al., 2018); and Alternaria spp. (3 studies; total cases, 15) (Yan et al.,
2011; Feliziani et al., 2013; Lépez-Mora et al., 2013) (MD, -55.20; 95% CI, —80.50 to —29.90;

12, 90.0%; P <0.0001), as significant for all of these studies.

3.6 Effects of 1% chitosan on enzyme activities associated with host defence
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The overall data for the effects of 1% chitosan on the activities of the enzymes associated with
host plant defence at 24 hpt showed significantly increased activity over the control treatment
(studies, 27; total cases, 1,332) (MD, 74.58; 95% Cl, 41.15 to 108.01; 1%, 99.0%; P <0.0001)
(Figure 4). For the details of the subgroup analysis here (Figure 4), in the treated fruit, 1%
chitosan did not induce any significant difference compared to the control at 24 hpt for the PAL
activity (studies, 9; total cases 575) (Zahid et al., 2012; Landi et al., 2014; Bill et al., 2014; Shao
et al.,, 2015; Waewthongrak et al., 2015; Song et al., 2016; Jongsri, Rojsitthisak,
Wangsomboondee, & Seraypheapa, 2017;.Shen & Yang, 2017; Silva et al., 2018) (MD, 37.06;
95% Cl, —17.28 to 91.40; 12, 99.0%; P = 0.18). However, 5 of these studies (Landi et al., 2014;
Bill et al., 2014; Shao et al., 2015; Waewthongrak et al., 2015; Shen & Yang, 2017) showed
significant increases in PAL activity. Furthermore, significant increases were seen overall for
chitinase activity (10 studies; total cases, 491) (Hewajuliage, Sultanbawa, Wijeratnam, &
Wijesundara, 2009; Feliziani et al., 2013; Bill et al., 2014; Landi et al., 2014; Ali et al., 2014;
Shao et al., 2015; Jongsri, et al., 2017;. Shen, & Yang, 2017) (MD, 75.95; 95% CI, 36.18 to
115.73; 12, 99.0%; P = 0.0002), as 8 of these with significance increases (Hewajuliage, et al.,
2009; Feliziani et al., 2013; Landi et al., 2014, Bill et al., 2014; Ali et al., 2014; Jongsri, et al.,
2017; Shen, & Yang, 2017), and overall for -1,3-glucanase activity (8 studies; total cases 266)
(Hewajuliage, et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al.,
2014; Shao et al., 2015; Jongsri, et al., 2017;. Shen, & Yang, 2017) (MD, 115.06; 95% ClI,
38.24 t0 191.88; 12, 100.0%; P = 0.003), as 5 of these with significance increases (Hewajuliage,

etal., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014).

4 DISCUSSION
This study brings together and summarises the results from the literature of the effects of 1%

chitosan on postharvest diseases and pathogens, according to disease incidence, in-vitro
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mycelium growth, and induction of host defence responses through monitoring of the most
commonly analysed enzymes linked to defence mechanisms. This meta-analysis emphasises
the primary role of 1% chitosan against the main diseases and pathogens associated with
postharvest decay (Romanazzi et al., 2018; Betchem et al., 2019). These pooled estimates
highlighted that 1% chitosan is effective against the main postharvest diseases caused by several
fungal pathogens that infect different plant species. Although some of these data show high
heterogeneity, they also show low risk of bias and high validity for each study, with no
substantial baseline differences seen between the control and treatment groups. Indeed, the
funnel plots as a method to assess the potential role of publication bias (Harbord, Egger, &
Sterne, 2006) indicate that no bias was detected across the studies included. Therefore, these
values of 12 >90% indicate real differences in these studies.

Our study underlines the transversal effectiveness of chitosan in postharvest disease
management. Here, the subgroup analysis of in-vitro mycelium growth emphasises that the
most powerful growth reduction was for Penicillium spp., followed by Alternaria spp. and B.
cinerea, while lower effectiveness was seen against Colletotrichum spp..

These data also show that chitosan has differential effects across these fungal species,
potentially through the control of fungal development and lytic enzyme activation by chitosan
(El Gueddari, Rauchhaus, Moerschbacher & Deising, 2002; Geoghegan & Gurr, 2016;
Geoghegan, Steinberg, & Gurr, 2017; Ramos-Guerrero et al., 2018; Ramos-Guerrero,
Gonzélez-Estrada, Romanazzi, Landi, & Gutiérrez-Martinez, 2020). There are direct links
between the cell wall and cell membranes, as the synthesis of key cell-wall components (e.g.,
glucans, chitin) occurs at the plasma membrane, with the associated synthase enzyme
complexes (Maddi, & Free, 2010). The chitin is localized in the membrane proximal portion of
the cell wall and is incorporated into the wall matrix by being cross-linked to the glucans (Patel

& Free, 2019). Previous studies have investigated the role of plasma membrane in the sensitivity
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of fungi to chitosan showing that the plasma membrane of chitosan-sensitive fungi is more fluid
and richer in polyunsaturated free fatty acids than in chitosan-resistant fungi (Palma-Guerrero
et al., 2009 and 2010). The authors evidenced that chitosan binds to negatively charged
phospholipids. This alter plasma membrane fluidity to inducing the membrane
permeabilization, which was greatest in membranes containing elevated content
polyunsaturated lipids.

While this meta-analysis highlights the different reactions between the fungal species
and chitosan effectiveness, it also underlines the key role of plant species in this complex
relation that significantly affects the outcome of chitosan-pathogen interaction.

For this reason, the fungal pathogens can react differently to chitosan in terms of disease
incidence and in in-vitro tests. Indeed, the meta-analysis summarized studies related to disease
incidence, show significantly reducing postharvest disease incidence, although the results
linked to singular disease show the highest effectiveness of chitosan against anthracnose, while
it is less effective against blue/green mold, Rhizopus rot, gray mold, and particularly Alternaria
rot. Therefore, it is not excluded that the involvement of mainly different fruits species on
anthracnose incidence, as banana, papaya, dragon, bell pepper, soursop and avocado, not tested
for the other diseases, the chitosan, could be elicited a different defence response.

This study also confirms that disease incidence is the result of a combination of the
chitosan effects on film-forming, plant defence eliciting, and its antimicrobial properties
(Romanazzi et al., 2018). In this context, chitosan can be considered to be a modulator of plant
defences (Lopez-Moya, Suarez-Fernandez, & Lopez-Lorca, 2019). Chitosan application to
plants fits into the delicate relationship between the host and pathogenic fungi and involves the
primary cell-wall defence mechanisms. A link between pathogenicity and the enzymes that
synthesise the fungal cell wall has been demonstrated in numerous studies (Arana et al., 2009;

Levdansky et al., 2010; Lenardon, Munro, & Gow, 2010; Oliveira-Garcia, & Deising, 2013;
17
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Geoghegan et al., 2017; Patel & Free, 2019), and depolymerisation of the cell walls of plant
pathogenic fungi following the infection, evading plant immune recognition, has been reported
(Geoghegan et al., 2017). It has been reported that the strategy of some fungal pathogens to
evade plant immunity is to convert chitin into chitosan (Lopez-Moya, et al., 2019). Thus, both
chitosan and chitin will have key roles in the control of plant immunity.

According to the concepts of systemic acquired resistance (Pieters et al., 1998; Durrant
& Dong, 2004) and induced systemic resistance (Heil & Bostock, 2002; Timmermann,
Gonzélez, & Ruz, 2020), chitosan can induce resistance in the plants to control postharvest
fungal pathogens of their fruit and as vegetables (Nandeeshkumar et al., 2008; Jia, Meng, Zeng,
Wang, & Yin, 2016; Jia, Zeng, Wang, Zhang, & Yin, 2018). On this basis, the meta-analysis
data related to the eliciting of the host defence enzymes by chitosan through activation of
induced resistance can help us to understand this aspect (Mandal, Kar, Mukherjee, & Acharya,
2013; Walters, Ratsep, & Havis, 2013).

Although a meta-analysis of publicly available data, related to transcriptome
investigations of plants defense priming, evidenced a common set of conserved transcriptional
changes on plants upon stress conditions, (Baccelli, Benny, Caruso, & Martinelli, 2020), the
detailed role of the chitosan in the induction of defence mechanisms has been shown for sweet
oranges (Coqueiro et al., 2015) and strawberries (Landi et al., 2017). The most common
approaches related to the study of enzyme activities (Wang & Gao, 2013; Ali et al., 2014;
Pasquariello et al., 2015; Shao et al., 2015; Adiletta, Zampella, Coletta, & Petriccione, 2019)
and the expression of individual genes (Ma et. al., 2013; Landi et al., 2014; Petriccione et al.,
2017; Fooladi vanda, Shabani, & Razavizadeh, 2019; Chun & Chandrasekaran, 2019) have
been investigated, both of which are associated with reactive oxygen species, specific PR

proteins, cell-wall enzymes and secondary metabolites. Usually, these individual studies have
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shown wide variability associated with host fruit species, application methods and times of
treatment.

In the present study, we analysed the most studied of the plant defence enzymes, PAL,
which is associated with the phenylpropanoid pathway (Dixon, Lapthorn, & Edwards, 2002;
Yadav et al., 2020), and chitinase and -1,3-glucanase, which are linked to cell-wall hydrolysis
(Gupta et al., 2015; Pusztahelyi, 2018), at the main analysis time point of 24 hpt. These data do
not show any significant effects of chitosan on PAL activity at 24 hpt, while high increases in
the activities of chitinase and B-1,3-glucanase were detected, independent of the host species.
These findings are in agreement with the plant immunity mechanisms that indicate that
chitinase and B-1,3-glucanase release the glucan oligomers from the chitin of the fungal cell
walls to trigger the plant immune responses (Jones & Dang, 2006; Fesel & Zuccaro, 2016;
Lopez-Moyaetal., 2019;), although the induction of these defence mechanisms can vary greatly
according to the time of treatment. The present study suggests that the analysis of the chitinase
and B-1,3-glucanase activities at 24 hpt represents a marker for verification of induction of the
plant defences by chitosan, while activation of PAL has generally been reported to occur at later

times (Landi et al., 2014, Bill et al., 2014).

5 CONCLUSIONS

The present work established the first comprehensive investigation of chitosan effectiveness on
postharvest pathogens using meta-analysis approach. This study provides knowledge based on
three robust findings, as the effects of 1% chitosan on disease incidence, mycelium growth of
decay-causing fungi, and the activities of two important defence enzymes in particular,
chitinase and B-1,3-glucanase. This investigation shown the chitosan have antifungal properties

against different phytopathogens highlight the versatile properties of this natural biopolymer.
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It was demonstrated there are enough data about the effectiveness of chitosan in the control of
postharvest diseases, also inducing resistance on fruit to postharvest pathogens.

The outcomes of this study aim to contribute to a better understanding concerning the
role of chitosan in the control of postharvest decay of fresh fruit, that will be relevant for the
conceptualization and measurement of future studies. Collectively, these data confirm the
multiple mechanisms of action of chitosan, which has unique properties in the panorama of
activities of natural compounds that define it as a model plant-protection agent for sustainable

control of postharvest decay of fruit and vegetables.
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1125

1126

TABLE 1. Main characteristics of datasets that have included 1% chitosan effects on

postharvest fungal pathogens.

First author Year Fungal pathogen Chitosan effects measures Defence
Disease In-vitro Plant enzyme
incidence mycelium  defence
(fruit) growth mechanism

(fruit)

Xu 2007  B.cinerea Yes -

Jitareerat 2007  Colletotrichum spp. Yes -

Rahman 2008  Colletotrichum spp. Yes -

Hewajulige 2009 - Papaya Chitinase,

B-1,3-
glucanase

Munoz 2009  Colletotrichum spp. Yes -

Meng 2010  Alternaria spp. Pear -

Magbool 2010 Colletotrichum spp  Banana -

Cia 2010  Rhizopus spp. Yes -

Yan 2011  Alternaria spp. Jujube Yes -

Abdel-Kader 2011  Penicillium spp. Yes -

Xing 2011  Penicillium spp Jujube -

Nisia 2012  Penicillium spp. Yes -

Ramos-Garcia 2012  Rhizopus spp. Tomato -

Shao 2012  Penicillium spp., B.  Apple -

cinerea
Chéfer 2012  Penicillium spp. Orange -
Zahid 2012  Colletotrichum spp. Banana, Yes -
Papaya,
Dragon
Feliziani 2013 B. cinerea, Yes Table grape  Chitinase
Alternaria spp.,
Penicillium spp.
Wang 2013 - Strawberry B-1,3-
Glucanase

Mohamed 2013  Colletotrichum spp. Yes -

Gao 2013 B. cinerea Table grape -

Lopez-Mora 2013  Alternaria spp. Mango Yes -
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Romanazzi 2013  Penicillium spp., B.  Strawberry -
cinerea, Rhizopus
spp.

Bill 2014  Colletotrichum spp. Yes Avocado PAL,
chitinase,
B-1,3-
glucanase

Ali 2014  Colletotrichum spp. Yes Dragon Chitinase,
B-1,3-
glucanase

Wang 2014  Penicillium spp. Jujube Yes -

Lu 2014  Penicillium spp. Orange -

Landi 2014 Strawberry PAL,
chitinase,
B-1,3-
glucanase

Edirisinghe 2014  Colletotrichum spp.  Bell pepper Yes -

Zahid 2015 Dragon PAL

Feliziani 2015 B.cinerea Strawberry -

Waewthongrak 2015  Penicillium spp. Yes Citrus PAL

Varela 2015  Colletotrichum spp. Yes -

Shao 2015  Penicillium spp. Yes Mandarine PAL,
chitinase,
B-1,3-
glucanase

Xing 2015  Rhizopus spp. Jujube -

Ali 2015 Colletotrichum spp.  Bell pepper Yes -

Song 2016 Loquat PAL

El Guilli 2016  Penicillium spp. Citrus -

Zheng 2017  B.cinerea Kiwi -

Gutiérrez- 2017  Colletotrichum spp.  Mango, Yes -

Martinez banana,

soursop

Guo 2017  Alternaria spp. Jujube -

Shen 2017 - Table grape  PAL,
chitinase,
B-1,3-
glucanase
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1127

Jongsri 2017 - Mango PAL,
chitinase,
B-1,3-
glucanase

de Oliveria 2017  Colletotrichum spp. Yes -

Kanetis 2017  B.cinerea Table grape Yes -

Munhuweyi 2017  B.cinerea Yes -

Silva 2018 Guava PAL

Gramisci 2018 B. cinerea, Pear -

Penicillium spp.

Hajji 2018 B. cinerea Strawberry -

Kharchoufi 2018  Penicillium spp. Orange -

Flores 2018 B. cinerea Yes -

Ramos-Guerrero 2018  Colletotrichum spp. Yes -

Liu 2018  Penicillium spp. Blueberry -

Shi 2018  Penicillium spp. Grapefruit -

Xoca-Orozco 2018  Colletotrichum spp. Yes -

Obianom 2019  Colletotrichum spp.  Avocado -

Madanipour 2019  Penicillium spp. Yes -
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Figure 1. Flow chart exhibiting the selection process of eligible studies.
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1133

1134

1135

1136

1137

1138

1139

1% chitosan Control

Study of Mean Difference Mean Difference
Subgreup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
1.1.1 Gray mold
Feliziani 2013.. 23 519615 108 3.9 519615 108 20%  -1.60[-15.46, 12.26] —_
Feliziani 2013, 16 474342 90 25 474342 90  2.0% -9.00 [-22.86, 4.86] -/
Feliziani 2013.. 16 474342 90 23 474342 90 20% -8.00 [-21.86, 5.86] T
Feliziani 2015 65 474342 90 92 474342 00  20% -27.00 [40.86, -13.14] —
Gao 2013 4 19.3649 15 25  19.3649 15 20%  -21.00[-34.86, -7.14] I
Gramisci 2018 70 387298 60 90 387208 60 20%  -20.00[-33.86, -6.14] _
Haiji 2018 50 27.3861 30 B0 27.3861 30 2.0% -30.00[43.86,-16.14] —
Kanetis 2017, 32 67.082 180 55 67.082 180 2.0%  -23.00[-36.86,-9.14) —
Kanetis 2017. 18 67.082 180 39 67.082 180 20%  -21.00[-34.86,-7.14] -
Romanazzi 2013, 20 866025 300 63 B66025 300 2.0% -43.00(-56.86, -29.14] I
Shao 2012 70 387208 60 100 387208 60 2.0% -30.00(<43.86,-16.14] —_—
Zheng 2017, 46 821584 270 100 821584 270  2.0% -54.00 [-67.86, 40.14) —
Subtotal (95% CI) 1473 1473 24.5% -23.97 [-32.25, -15.68] >

Heterogeneity: Tau® = 184.52; Chi* = 47,19, df = 11 (P < 0.00001); I = 77%
Test for overall effect: Z = 5.67 (P < 0.00001)

1.1.2 Blue /IGreen mold

El Guilli 2016 25 50 100 100 50 100 20% -7500([-88.86, -61.14] —

Feliziani 2013,. 33 519615 108 4.8 519615 108 2.0% -1.50 [-15.36, 12.36] -
Gramisci 2018, 75 387298 60 90 38.7298 60 20%  -15.00[-28.86, -1.14] —
Kharchoufi 2018 88 17.3205 12 100 17.3205 12 2.0% -12.00 [-25.86, 1.86) ]
Liu 2018, 1 948683 360 275 094.8683 360 2.0% -26.50(-40.36,-12.64] I

Lu 2014 30 30 36 75 30 38 20% -4500(-58.86, -31.14] I

Lu 2014, 18 30 36 58 30 36  2.0% -40.00(-53.86, -26.14] I

Lu2014, 24 30 36 58 30 36 2.0% -34.00 [-47.86, -20.14] _—
Romanazzi 2013, 4 BBG025 300 48 BBGO25 300 20% -44.00(-57.86, -30.14] I

Chéfer 2012 80 223607 20 90  22.3607 20 20% -10.00 [-23.86, 3.86) T
Shao 2012, 77 387208 60 90 387208 680  2.0% -13.00 [-26.86, 0.86]

Shao 2015 40 273861 30 100 273881 30 20% -60.00[-73.86, 46.14] I

Shi 2018 B0 547723 120 85 547723 120 2.0% -5.00 [-18.86, 8.86] -/
Wang 2014 10 821584 270 23 B21584 270 20% -13.00 [-26.86, 0.86]

Xing 2011 276 612372 150 922 612372 150 2.0% -64.60([-78.46, -50.74] —_—

Zheng 2017, 65 821584 270 100 821584 270 2.0% -35.00[-48.86, -21.14] —
Subtotal (95% CI) 1968 1968 32.7% -30.85[41.91,-19.79] -

Helerogeneity: Tau? = 459.94; Chi* = 152.98, df = 15 (P < 0.00001); I* = 90%
Test for overall effect: Z = 5.46 (P < 0.00001)

1.1.3 Rhizopus rot

Cia 2010 66 316228 40 86 316228 40 20%  -2000[-33.86,-6.14) —_—
Ramos-Garcia 2012, 33 50 100 91 50 100 2.0% -58.00 [-71.86, -44.14] —
Ramos-Garcia 2012, 51 50 100 62 50 100 20%  -11.00[-24,86, 2,86] T
Romanazzi 2013.. 8 B66025 300 48 866025 300 2.0% 40,00 [-53.86, -26.14] —_—

Xing 2015 30 173.2051 1200 45 1732051 1200 2.0%  -15.00[-28.86, -1.14] —
Subtotal (95% Cl) 1740 1740 10.2% -28.80 [46.13, -11.47] i

Heterogeneity: Tau® = 340.70; Ch® = 31.26, df = 4 (P < 0.00001); I* = 87%
Test for overall effect: Z = 3.26 (P = 0.001)

1.1.4 Anthracnose

Al 2015 20 212132 18 70 212132 18  20% -50.00 [-63.86, -36.14] —
Bill 2014 65 316228 40 90 316228 40 20% -25.00[-38.86,-11.14] —_—
Edirsinghe 2014 20 804427 320 70 894427 320 20% -50.00 [-63.86, -36.14] —_—
Gutierrez-Martinez 2017 20 83666 280 100 83666 280 20% -80.00[-93.86, -66.14] ——
Gulierrez-Martinez 2017, 1 83666 280 100 83666 280 20% -99.00[-112.86,-85.14] 4

Gulierrez-Martinez 2017 1 83666 280 20 83666 280 20%  -19.00[-32.86, -5.14] —_—
Magbool 2010 5 67082 180 65 67.082 180 20% -60.00 [-73.86, -46.14] —_—

Obianom 2019 40 80 256 70 80 256 20% -30.00 [43.86, -16.14] —_—
Zahid 2012, 40 632456 160 60 632456 160 20%  -20.00[-33.86, -6.14] —_
Zahid 2012, 20 632456 160 60 632456 160 20% ~40.00 [-53.86, -26.14] —_
Zahid 2012., 20 632456 160 60 632456 160 20% -40.00 [-53.86, -26.14] —_—
Subtotal (95% CI) 2134 2134 224% -46.64 [-61.54, -31.73] -

Heterogeneity: Tau® = 586.25; Chi* = 127.25, df = 10 (P < 0.00001); I” = 92%
Test for overall effect: Z = 6.13 (P < 0.00001)

1.1.5 Alternaria rot

Feliziani 2013, 33 519615 108 48 519615 108 20% =1.50 [-15.36, 12.36] e
Guo 2017 6 1224745 600 7 1224745 600 2.0% -1.00 [-14.86, 12.86] -
Lopez-Mora 2013 80 50 100 100 50 100 20%  -20.00[-33.86, -6.14] _—
Meng 2010 86 38.7298 (-] 100 38.7298 60 2.0% =14.00 [-27.88, -0.14] -
Yan 2011 81 948683 360 87 948683 360 2.0% -6.00 [-19.86, 7.86] -1
Subtotal (95% CI) 1228 1228 10.2% -8.50 [-15.75, -1.25] L

Heterogeneity: Tau® = 18,50; Chi* = 5.48, df = 4 (P = 0.24); I* = 27%
Test for overall effect: Z = 2.30 (P = 0.02)

Total (95% CI) 8543 8543 100.0% -30.22 [-36.48, -23.96] L
Heterogeneity: Tau® = 450.36; Chi® = 480.34, df = 48 (P < 0.00001); I* = 90% '510 '55 EIS 5‘0
Test for overall effect: Z = 9.46 (P < 0.00001)

Test for subgroup differences: Chi* = 27.02, df = 4 (P < 0.0001), I’ = 85.2% 1% chitosan Control

Figure 2. Forest plots using the RavMan 5.3 software for random effects analysis related to the
effectiveness of 1% chitosan on disease incidence. Gray mold, blue/ green mold, Rhizopus rot.,
anthracnose and Alternaria rot were considered as subgroups. For Feliziani 2013, Kanetis 2017,
Lu 2014, Shao 2012, Ramos-Garcia 2012, Gutiérrez-Martinez 2017 and Zahid 2012, several
studies were included from each article into the subgroups. 1V, inverse variance; Cl, confidence

interval.
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1140

1141

1142

1143

1144

1145

1146

1% chitosan  Control

Study of Mean Difference Mean Difference

Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
1.1.1 Botrytis cinerea
Feliziani 2013. 10 13.2288 7 70 13.2288 7 24% -60.00 [-73.86, -46.14] —
Flores 2018 1 12,2474 & 58 122474 6 24% -57.00 [-70.86, -43.14] —_
Kanetis 2017 52.4 12.2474 6 90 122474 6 24% -37.60 [-51.46, -23.74] —
Kanetis 2017. 67.3 12.2474 6 90 122474 6 24%  -22.70[-36.56, -8.84] —_
Munhuweyi 2017. 1 12.2474 6 100 12.2474 6 2.4% -99.00[-112.86,-85.14] —
Xu 2007 60 12.2474 6 80 12.2474 6 2.4%  -20.00[-33.86, -6.14] —
Subtotal (95% CI) 37 37  14.6% -49.38 [-72.98, -25.79] ——
Heterogeneity: Tau® = 819.36; Chi* = 86.94, df = 5 (P < 0.00001); I = 94%
Test for overall effect: Z = 4.10 (P < 0.0001)
1.1.2 Penicillium spp.
Abdel-Kader 2011 0.83 11.1803 5 90 11.1803 5§  2.4% -89.17 [-103.03,-75.31]
Abdel-Kader 2011 0.73 11.1803 5 90 11.1803 5§  2.4% -89.27 [-103.13,-7541] ———
Madanipour 2019 25 12.2474 6 100 12.2474 6 2.4% -75.00 [-88.86, -61.14] —_—
Munhuweyi 2017 1 12.2474 6 100 12.2474 6  2.4% -99.00[-112.86,-85.14] —
Nisia ce 2012 10 8.6603 3 100 8.6603 3 2.4% -90.00 [-103.86,-76.14] ~
Shao 2015 30 25 25 100 25 25 24% -70.00 [-83.86, -56.14] —
Waewthongrak 2015 1.1  8.6603 3 222 86603 3 24%  -21.10 [-34.96, -7.24] —_
Wang 2014 58 15 9 100 15 9 24% -42.00 [-55.86, -28.14] I
Xing 2011 18.5 8.6603 3 100 86603 3 24% -81.50[-95.36, -67.64] -
Subtotal (95% CI) 65 65 22.0% -73.00 [-89.71, -56.30] -
Heterogeneity: Tau? = 603.88; Chi* = 104.62, df = 8 (P < 0.00001); I = 92%
Test for overall effect: Z = 8.56 (P < 0.00001)
1.1.3 Colletotrichum spp.
Ali 2014 541 63.2456 160 8B.8 63.2456 160 2.4% -34.70 [-48.56, -20.84] —_
Ali 2015 4.4 11.1803 5 5 11.1803 5 24% -0.60 [-14.46, 13.26) -1
Bill 2014 168 7.0711 2 822 7.0 2 24% -65.40 [-79.26, -51.54] —_
de Oliveira 2017. 1 15 a 90 15 9  2.4% -89.00[-102.86,-75.14] ——
de Oliveria 2017, 1 15 9 90 15 9  2.4% -89.00[-102.86,-75.14]
de Oliveria 2017,, 1 15 a 90 15 9  2.4% -89.00[-102.86,-75.14] ——
de Oliveria 2017., 1 15 9 90 15 9  2.4% -89.00[-102.86,-75.14]
de Oliveria 2017.. 1 15 a 90 15 9  2.4% -89.00[-102.86,-75.14]
Edirisinghe 2014 8.3 63.2456 160 5 §3.2456 160  2.4% 3.30 [-10.56, 17.16] -
Gulierrez-Martinez 2017 55 11.1803 5 6.4 11.1803 5 24% -0.90 [-14.76, 12.96] -
Gutierrez-Martinez 2017, 1.4 11.1803 5 64 11.1803 5 24% -5.00 |-18.86, 8.86] T
Gulierrez-Martinez 2017. 21 11.1803 5 53 11.1803 5 24% -3.20 [-17.06, 10.66) -
Jitareerat 2007 333 158114 10 666 158114 10  24% -33.30 [-47.16, -19.44] —_
Magbool 2010 1 223607 20 B3 223607 20 2.4% -7.30 [-21.16, 6.56] —T
Mohamed 2013 15  B.6603 3 90 86603 3 24% -75.00 [-88.86, -61.14] —_—
Munoz 2009 50.3 27.3861 30 58.08 27.3861 30 24% -7.78 [-21.64, 6.08] T
Ramos-Guerrero 2018 1 12.2474 & 100 12,2474 6 2.4% -99.00[-112.86,-85.14] ——
Rehman 2008 18 15.8114 10 100 158114 10 24% -82.00 [-95.86, -68.14] —
Varela 2015 31,1 12,2474 6 64.4 122474 6  24% -33.30 [-47.16, -19.44] —_—
Xoca-orozco 2018 166 8.6603 3 755 86603 3 2.4% -58.90 [-72.76, -45.04) —
Zahid 2012 42 §3.2456 160 100 63.2456 160  2.4% -58.00 [-71.86, -44.14] —_—
Zahid 2012, 48 63.2456 160 100 63.2456 160 2.4% -52.00 [-65.86, -38.14) —
Zahid 2012, 50 63.2456 160 100 63.2456 160  2.4% -50.00 [-63.86, -36.14] —_—
Subtotal (95% CI) 955 955 56.1% -48.18 [-62.83, -33.53] -
Heterogeneity: Tau® = 1234.91; Chi* = 565.36, df = 22 (P < 0.00001); I = 96%
Test for overall effect: Z = 6.45 (P < 0.00001)
1.1.4 Alternaria spp.
Feliziani 2013, 31 13.2288 7 80 13,2288 7 24% -49.00 [-62.86, -35.14] —
Lopez 2013 22 11.1803 5 38.8 11.1803 5  24% -36.60 [-50.46, -22.74] —_—
Yan 2011 10 8.6603 3 90 86603 3 24% -80.00 [-93.86, -66.14] —
Subtotal (95% CI) 15 15  7.3% -55.20 [-80.50, -29.90] i
Heterogeneity: Tau® = 449.72; Chi* = 19.99, df = 2 (P < 0.0001); I = 90%
Test for overall effect: Z = 4.28 (P < 0.0001)
Total (95% CI) 1072 1072 100.0% -54.32 [-64.35, -44.28] <
Heterogeneity: Tau® = 1025.09; Chi* = 860.07, df = 40 (P < 0.00001); I¥ = 95% 100 50 0 50 100

Test for overall effect: Z = 10.61 (P < 0.00001)

Test for subgroup differences: Chi* = 5.34, df = 3 (P = 0.15), I = 43.8% 1% chitosan Control

Figure 3. Forest plot using the RavMan 5.3 software for random effects analysis related to the
effectiveness of 1% chitosan on in-vitro mycelium growth. Botrytis cinerea, Penicillium spp.,
Colletotrichum spp. and Alternaria spp. were considered as subgroups. For Kanetis 2017,
Kader 2011, de Oliveria 2017, Gutiérrez-Martinez 2017 and Zahid 2012, several studies were

included from each article into the subgroups. IV, inverse variance; CI, confidence interval.
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1% chitosan Control

Study of Mean Difference Mean Difference
Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI
1.1.1 Phenylalanine ammonia-lyase

Silva 2018 104 77.4597 240 96.15 77.4597 240 3.7% 7.85[-6.01, 21.71] ™

Bill 2014 186.31 31.6228 40 1286 31.6228 40  3.7% 173.45[159.59, 187.31] -
Jongsri 2017 96.29 19.3649 15 103.84 19.3649 15 3.7% -7.55[-21.41,6.31] -

Landi 2014 200 31.6228 40 50 31.6228 40  3.7% 150.00[136.14, 163.86] -
Shao 2015 61 19.3649 15 163 19.3649 15 3.7% -102.00 [-115.86, -88.14] -

Shen 2017 115.38 47.4342 90 8666 474342 90 3.7% 28.72[14.86, 42.58) -

Song 2016 100 43.3013 75 100 43.3013 75 3.7% 0.00 [-13.86, 13.86] T
Waewthongrak 2015 130.76 27.3861 30 T76.47 27.3861 30 37% 54.29 [40.43, 68.15] -
Zahid 2015 115.38 27.3861 30 86.6 27.3861 30 37% 28.78 [14.92, 42.64] -
Subtotal (95% CI) 575 575 33.3% 37.06 [-17.28, 91.40] “"

Heterogeneity: Tau® = 6868.38; Chi* = 1106.94, df = 8 (P < 0.00001); I = 99%
Test for overall effect: Z=1.34 (P = 0.18)

1.1.2 Chitinase

Ali 2014 2222 387298 60 45 387298 60 3.7% 177.20(163.34, 191.06] -
Bill 2014 195.06 316228 40 51 316228 40 3.7% 144.06[130.20, 157.92] -
Feliziani 2013 1233 47.4342 90 8106 47.4342 90 37% 42.24(28.38, 56.10) -
Feliziani 2013, 12481 474342 90 80.11 47.4342 90 37% 44.70 (30.84, 58.56) -
Feliziani 2013. 113.8 47.4342 90 87.26 47.4342 90 37% 26.54 [12.68, 40.40] -~
Hewajulige 2009 17391 27.3861 30 57.5 27.3861 30 3.7% 116.41[102.55, 130.27) -
Jongsri 2017 100 122474 6 100 122474 6 37% 0.00 [-13.86, 13.86) T

Landi 2014 200 316228 40 50 316228 40 3.7% 150.00 [136.14, 163.86] -
Shao 2015 108.23 19.3649 15 92.39 19.3649 15 37% 15.84 [1.98, 29.70) -

Shen 2017 1235 27.3861 30 8095 27.3861 30 3.7% 42.55(28.69, 56.41) -
Subtotal (95% CI) 491 491 37.0%  75.95[36.18, 115.73] o

Heterogeneity: Tau® = 4068.05; Chi* = 741.25, df = 9 (P < 0.00001); I = 99%
Test for overall effect: Z = 3.74 (P = 0.0002)

1.1.3B-1,3-Glucanase

Ali 2014 325 387298 60 3076 387298 60  3.7% 294.24 [280.38, 308.10] -
Bill 2014 2288 31.6228 40 437 316228 40 3.7% 185.10[171.24, 198.96] -
Hewajulige 2009 250 27.3861 30 40 27.3861 30 3.7% 210.00 [196.14, 223.86) -~
Jongsri 2017 100 12.2474 6 100 122474 6 37% 0.00 [-13.86, 13.86) T

Landi 2014 200 316228 40 50 31.6228 40 3.7% 150.00 [136.14, 163.86] -~

Shao 2015 100 19.3649 15 100 19.3649 15 3.7% 0.00 [-13.86, 13.86) T

Shen 2017 108.3 27.3861 30 923 27.3861 30 3.7% 16.00 [2.14, 29.86] ~

Wang 2013 137.73 33541 45 726 33541 45 3.7% 65.13 [51.27, 78.99] -

Subtotal (95% CI) 266 266 29.6% 115.06 [38.24, 191.88] —~l—

Heterogeneity: Tau? = 12239.86; Chi* = 1720.58, df = 7 (P < 0.00001); I* = 100%
Test for overall effect: Z = 2.94 (P = 0.003)

Total (95% CI) 1332 1332 100.0%  74.58 [41.15, 108.01] <

Heterogeneity: Tau® = 7805.21; Chi* = 4084.71, df = 26 (P < 0.00001); I = 99% g t : t t t
Test for overall effect: Z = 4.37 (P < 0.0001) 200 1000 100 200
Test for subaroup differences: Chi* = 2.82, df = 2 (P = 0.24), 1* = 29.1% Control 1% chitosan

1147

1148  Figure 4. Forest plots using the RavMan 5.3 software for random effects analysis related to the
1149  effectiveness of 1% chitosan on plant defence mechanism enzyme activities. Phenylalanine
1150  ammonia-lyase (PAL), chitinase and [-1,3-glucanase were considerd as subgroups. For
1151  Feliziani 2013 several studies were included from each article into the subgroups. 1V, inverse
1152 variance; Cl, confidence interval.
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Figure 5. Funnel plots for the detect of publication bias in the studies, for the disease incidence
(@), mycelium growth (b) and defence enzyme activity (c) detected after 1% chitosan
treatments, compared to the controls. SE(MD) = standard error (mean difference); MD = mean

difference.
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