

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Chitosan and postharvest decay of fresh fruit: Meta-analysis of disease control and antimicrobial and eliciting activities

This is a pre print version of the following article:

Original

Chitosan and postharvest decay of fresh fruit: Meta-analysis of disease control and antimicrobial and eliciting activities / Rajestary, R.; Landi, L.; Romanazzi, G.. - In: COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY. - ISSN 1541-4337. - 20:1(2021), pp. 563-582. [10.1111/1541-4337.12672]

Availability:

This version is available at: 11566/286700 since: 2024-05-24T12:26:34Z

Publisher:

Published DOI:10.1111/1541-4337.12672

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

Publisher copyright:

Wiley - Preprint/ Author's submitted Manuscript

This is the pre-peer reviewed version of the above quoted article which has been published in final form at 10.1111/1541-4337.12672. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html.

- 1 Table of contents
- 2 Title: Chitosan and Postharvest Decay of Fresh Fruit: Meta-Analysis of Disease Control
- 3 and Antimicrobial and Eliciting Activities
- 4 Abstract
- 5 1. INTRODUCTION
- 6 2. **METHODS**
- 7 2.1 Search strategy and study selection
- 8 2.2 Data extraction
- 9 2.3 **Data analysis**
- 10 3 RESULTS OF THE REVIEW
- 11 **3.1 Chitosan-microbe interactions**
- 12 **3.2** Chitosan-plant interactions
- 13 3.3 Description of included studies
- 14 3.4 Effects of 1% chitosan on disease incidence
- 15 3.5 Effects of 1% chitosan on in-vitro mycelium growth
- 16 3.6 Effects of 1% chitosan on enzyme activities associated with host defence
- 17 4 DISCUSSION
- 18 5 CONCLUSIONS
- 19 **References**
- 20 Acknowledgements
- 21 Author Contributions
- 22 Conflicts of Interest

24	Chitosan and Postharvest Decay of Fresh Fruit: Meta-Analysis of Disease Control and
25	Antimicrobial and Eliciting Activities
26	
27	Razieh Rajestary†, Lucia Landi† & Gianfranco Romanazzi*
28	
29	Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic
30	University, Via Brecce Bianche 10, 60131 Ancona, Italy
31	
32	*Corresponding author: Gianfranco Romanazzi
33	Tel: +39-071-2204336
34	Email: g.romanazzi@univpm.it
35	
36	†Razieh Rajestary and Lucia Landi contributed equally to the paper
37	
38	Word count of text: 11401
39	
40	Short version of title: Chitosan and Postharvest Decay of Fruit
41	
42	

43 Abstract

Consumers are increasingly aware of the importance of regular consumption of fresh fruit in 44 their diet. Since fresh fruit are highly sensitive to postharvest decay, several investigations 45 focused on the study natural compounds alternative to synthetic fungicides, to extend their shelf 46 life. A long list of studies reported the effectiveness of the natural biopolymer chitosan in 47 control of postharvest diseases of fresh fruit. However, these findings remain controversial, 48 49 with many mixed claims in the literature. In this work, we used random-effects meta-analysis to investigate the effects of 1% chitosan on (i) postharvest decay incidence; (ii) mycelium 50 51 growth of fungal pathogens Botrytis cinerea, Penicillium spp., Colletotrichum spp. and 52 Alternaria spp.; and (iii) phenylalanine ammonia-lyase, chitinase and β -1,3-glucanase activities. Chitosan significantly reduced postharvest disease incidence (mean difference [MD], 53 -30.22; P <0.00001) and *in-vitro* mycelium growth (MD, -54.32; P <0.00001). For host 54 defence responses, there were significantly increased activities of β -1,3-glucanase (MD, 55 115.06; P = 0.003) and chitinase (MD, 75.95; P < 0.0002). This systematic review contributes 56 to confirm the multiple mechanisms of mechanisms of action of chitosan, which has unique 57 properties in the natural compound panorama. Chitosan thus represents a model plant protection 58 59 biopolymer for sustainable control of postharvest decay of fresh fruit.

60

Keywords: defence related enzymes; fungal pathogens; natural antifungal compounds; plant
protection; sustainable control of plant pathogens

64 **1 INTRODUCTION**

65

Postharvest fungal diseases can limit the storage period and shelf life, and thus market life, of 66 fruit and vegetables, which results in serious economic losses worldwide (Oerke & Dehne, 67 2004; Romanazzi, Smilanick, Feliziani, & Droby, 2016; Palou & Smilanick, 2020). The global 68 average loss due to the food postharvest reported by Food and Agriculture Organization, was 69 estimated in North America, Europe and Oceania about 29%, compared to an average of about 70 38% in industrialized Asia, Africa, Latin America and South East Asia (Parfitt, Barthel, & 71 Macnaughton, 2010; Food and Agriculture Organization of the United Nations, 2011; Sawicka, 72 73 2019).

74 The main fungal diseases (and their associated fungal pathogen) include: gray mold (Botrytis cinerea Pers.); Rhizopus rot (Rhizopus stolonifer Ehrenb.); anthracnose 75 (Colletotrichum spp.); green mold (Penicillium digitatum Pers.); blue mold (Penicillium 76 italicum Wehmer on citrus fruit, P. expansum Link on other fruit); and Alternaria rot 77 (Alternaria spp.). The control of the causal fungal pathogens is therefore critical to extend the 78 shelf-life of these fresh products (Prusky, 2011; Arah, Amaglo, Kumah, & Ofori, 2015). Despite 79 80 the efficacy of synthetic fungicides in the control of postharvest decay, public concerns about 81 chemical and toxic residues in food (Belden, McMurry, Smith, & Reilley, 2010; Mebdoua, 2018; Goncalves et al., 2019; Liu, Yamdeu, Gong, & Orfila, 2020) and the increase in drug-82 resistant strains of many pathogens (Zuccolo et al., 2019) indicate the need for development of 83 84 new strategies. Over the last few decades, there has been an increasing interest in the study of postharvest control methods that make use of natural resources (Palou, Smilanick & Droby, 85 2008; Talibi, Boubaker, Boudyach, & Ait Ben Aoumar, 2014; Souza, Yuk, Khoo, & Zhou, 86 2015; Guimarães, Abrunhosa, Pastrana, & Cerqueira, 2018; Ebrahimzadeh & Abrinbana, 2019; 87 Liu et al., 2019; Liu, et al., 2020). Such alternative compounds can act as resistance inducers 88

and/or activators of plant defence mechanisms, or they can have strong antimicrobial activities 89 90 against the main postharvest fungal pathogens (Romanazzi, Feliziani, Baños, & Sivakumar, 91 2017; Ribes, Fuentes, Talens, & Barat, 2018). However, only a few such natural fungicides have been approved for use as control agents for postharvest diseases, due to the strict 92 93 regulatory policies for food safety. Among these, chitosan is a natural biocompatible polysaccharide emerged as a promising eco-friendly alternative to synthetic fungicides 94 (Muzzarelli,1983; Romanazzi, Feliziani, & Sivakumar, 2018; Betchem, Johnson, & Wang, 95 2019). To give some background, chitosan is a common name for the polysaccharide N-aceyl-96 D-glucosamine (Zargar, Asghari, & Dashti, 2015). The chitosan compound is obtained by 97 98 deacetilation of chitin through exposure to NaOH solutions or to the enzyme chitinase. It is a 99 functional cationic biopolymer that is widely studied and used across the world. Chitosan have many applications included food industry (Gutiérrez, 2017; da Silva, de Souza, & Dantas 100 101 Lacerda, 2019; Morin-Crini, Lichtfouse, Torri, & Crini, 2019; Kabanov, & Novinyuk, 2020), cosmetology (Aranaz et al., 2018; Kaczmarek, Struszczyk-Swita, Li, Szczęsna-Antczak, & 102 Daroch, 2019) and human medicine (Tungland & Meyer, 2002; Leung, Liu, Koon, & Fung, 103 2006; Kofuji et al., 2010; Zhao et al., 2018). 104

105 Concerning the agriculture applications, the chitosan was the first compound in the list 106 of basic substances approved in the European Union for plant protection purposes (Reg. EU 66 107 2014/563), for both organic agriculture and integrated pest management. For several years now, 108 chitosan has been of interest in many studies that have shown that it can be used to prolong 109 storage of an array of fruit and vegetables worldwide, where it has been shown to have three major activities: including biofilm formation on treated surfaces (El Ghaouth, Arul, 110 111 Ponnampalam, & Boulet, 1991; Valencia-Chamorro, Palou, & Del Río, 2011; Romanazzi et al., 2018); as an antimicrobial (Goy, De Britto, & Assis, 2009; Kong, Chen, Xing, & Park, 2010; 112 Feliziani, Landi, & Romanazzi, 2015; Cheung, Ng, Wong, & Chan, 2015; Wang, Li, & Zhang, 113

2017; Pétriacq, López, & Luna, 2018; Duan et al., 2019); and as an elicitor of host defence
mechanisms (Landi, Feliziani, & Romanazzi, 2014; Coqueiro et al., 2015; Landi et al., 2017;
Colman et al., 2019; Xoca-Orozco et al., 2019; Obianom, Romanazzi, & Sivakumar, 2019). For
these reasons, chitosan can be used as a biodegradable fungicide (Rebelo, Vila, & Fangueiro,
R., 2016; Liang et al., 2017).

However, the heterogeneity of chitosan activities and its effectiveness across a wide 119 120 range of experimental conditions have led to different interpretations of its primary use/ mechanism/ actions. As a result, different recommendations for chitosan treatments have been 121 provided (Ramos-García et al., 2012; Bill, Sivakumar, Korsten, & Thompson, 2014; Xing et 122 123 al., 2016; Flores et al., 2018; Betchem et al., 2019; de Souza, Lundgren, de Oliveira, Berger, & 124 Magnani, 2019). Furthermore, based on reports of the evaluation of chitosan across similar and different fungal strains, its value for disease reduction can vary (Herrera-Romero, Ruales, & 125 Caviedes, 2017; Hua et al., 2019; Zahid, Maqbool, Ali, Siddiqui, & Bhatti, 2019). Also, despite 126 127 the many studies in the literature that have investigated a wide range of chitosan treatments and their influences, no single study has made all of the appropriate comparisons for a full 128 evaluation. Thus, given the mixed claims in the literature, there is the need to define the overall 129 130 effectiveness of chitosan, to highlight useful aspects for its future investigation.

Meta-analyses can be applied as a tool for analysis of large amounts of data across many primary studies, in which the main purpose is to integrate and interpret the findings, to provide conclusions that the individual studies alone cannot show clearly. This statistical procedure provides an integration of the data across several to many independent studies (Maestri, Pavlicevic, Montorsi, & Marmiroli, 2019). The combination of the resulting outcomes can also increase the statistical power, and make it possible to detect relatively small effects (Rosenberg, Garrett, Su, & Bowden, 2004; Nelson, Gent, & Grove., 2015; Schwingshackl, Hoffmann, Iqbal, 138 Schwedhelm, & Boeing, 2018; Chen, Chen, Chen, & Huang, 2019; González-Domínguez et139 al., 2019).

140 The aim of the present study was to carry out a meta-analysis to quantitatively review the data across the available studies on the effectiveness of 1% chitosan, the most common 141 142 concentration that has been tested in the control of postharvest decay (Romanazzi et al., 2018). Hence, the objectives were to determine the effectiveness of 1% chitosan on: (i) reduction of 143 postharvest diseases of fresh fruit; (ii) in-vitro mycelium growth of the causal agents of 144 postharvest decay; and (iii) phenylalanine ammonia-lyase (PAL), β-1,3-glucanase and chitinase 145 activities associated with host defence mechanisms against these causal agents at 24 h post-146 147 treatment (hpt).

148

149 **2. METHODS**

150

2.1 Search strategy and study selection

A systematic literature search from 2007 to 2019 was performed using the databases of Scopus and Web of Science and the following terms: 'chitosan' and 'fruit'. Studies that used chitosan mixed with other compounds were not considered. The selection of studies was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & PRISMA Group, 2009).

Article selection for the meta-analysis used the following inclusion criteria: 1% chitosan; disease incidence; *in-vitro* mycelium growth according to specific postharvest fungi; and activity of the enzymes involved in plant defence mechanisms. The eligibility of the articles was assessed, with the exclusion of the studies with different chitosan concentrations, with no information on disease incidence, mycelium growth or defence enzymes, and with no known fungal species.

In more detail, three categories were included for the studies related to: (i) disease 162 incidence published from 2010 to 2019, caused by gray mold, Rhizopus rot, anthracnose, 163 green/blue mold and/or Alternaria rot, considered as subgroups; (ii) in-vitro mycelium growth 164 published from 2007 to 2019 for the decay causing fungal pathogens B. cinerea, Penicillium 165 spp., Colletotrichum spp. and Alternaria spp., considered as subgroups; (iii) enzyme activities 166 associated with host defence mechanisms analysed at 24 hpt published from 2009 to 2018, for 167 PAL, chitinase and β -1,3-glucanase, considered as subgroups. All of the studies included at 168 169 least two treatments, as an untreated control and the 1% chitosan treatment. The fruit varieties, the 1% chitosan application and the detection timing varied across these studies. In some 170 171 studies, the treatment application times and rates were reported. In such cases, only the treatments applied at the same time as the standard treatment were considered in the meta-172 analysis. The risk of bias and test for asymmetry for the funnel plots were used to evaluate the 173 publication bias. Cochran's I² indices, Tau² and χ^2 tests were used to estimate the statistical 174 heterogeneity of the studies (Tufanaru, Munn, Stephenson, & Aromataris, 2015). If the 175 heterogeneity was significant (I² >75%; and/or P <0.05), a random effects model was applied 176 to all of the subgroups included in the postharvest decay disease incidence, the decay causing 177 fungi mycelium growth, and the defence enzyme activity categories. 178

179

180 2.2 Data extraction

Data were recorded from the same days of chitosan treatments in each study. All of the studies that were related to the effects of chitosan towards disease incidence were calculated as percentage effects. The studies on the effects on mycelium growth resulted on three different measurement units (percentage, mm, cm), and again these were converted to percentages. To unify the different measurement units used across the studies of the defence enzyme activities, the values were converted into percentage of the mean (% mean) with respect to the normal

187 control ([treatment mean/ normal control mean] \times 100) (Viswanatha, Shylaj, & Moolemath, 188 2017). If the standard deviations (SDs) or standard errors (SEs) were not reported, the data were 189 transformed according to the P values (Weir et al., 2018). Data were extracted from the Figures presented in the papers using Plot Digitiser software (Kadic, Vucic, Dosenovic, Sapunar, & 190 191 Puljak, 2016). The change scores with the corresponding standard deviations were used, as based the Cochrane handbook 192 on guidelines of the 193 (https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD012276/epdf/full).

194

195 **2.3 Data analysis**

196 All of these meta-analyses were conducted using the Review Manager (RevMan) software, 197 version 5.3. (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014; http://tech.cochrane.org/revman). The data type was selected as continuous. The statistical 198 199 method was considered as inverse variance. Weighted means, effect sizes, 95% confidence 200 intervals (CIs), which included 0, were calculated. In all of these analyses, P-value <0.05 was considered statistically significant. Differences among the groups were defined when the 95% 201 CIs overlapped a vertical line. If the 95% CIs did not overlap, it can be suggested that the 202 203 differences were significant (Yang, Scott, Mao, Tang, & Farmer, 2014; Dardiotis et al., 2018). 204 The studies are presented as Forrest plots in the order of the statistical power.

205

206

3

RESULTS OF THE REVIEW

207

3.1 Chitosan-microbe interactions

The antimicrobial activity of chitosan is a complex process that depends significantly from intrinsic properties and environmental factors (Yilmaz Atay, 2019) as well as the type of bacteria, fungi or virus involved (Chirkov, 2002; Kong, et al., 2010; Hosseinnejad, & Jafari, 2016). The precise mechanism of chitosan antimicrobial activity is still not completely

understood. Several studies have suggested that the antimicrobial action is mainly due to the 212 213 polycationic structure of the chitosan. Several studies have suggested that the antimicrobial 214 action is mainly due to the polycationic structure of the chitosan. This activity is carried out in a pH range among 5.6 and 6 (Romanazzi, Gabler, Margosan, Mackey, & Smilanick, 2009) that 215 216 is below the pKa of chitosan. The chitosan, positively charged, reacts with negatively charged microbial cell membranes (Rabea, Badawy, Stevens, Smagghe, & Steurbaut, 2003; Goy et al., 217 218 2009; Kong et al., 2010). This bond alters the permeability of the membrane which is followed by an inhibition of DNA replication and subsequently cell death (Nagy et al., 2011; Divya, 219 Vijayan, George, & Jisha, 2017). A chelating action was also observed. The chitosan molecule 220 221 binds to the metallic elements present in the trace causing the inhibit of toxins production and 222 microbial growth (Cuero, Osuji, & Washington, 1991; Chung, Wang, Chen, & Li, 2003). The effect of chitosan on fungal pathogens was to inhibits the radial growth, spore germination, and 223 224 the elongation of the germ tube as well as the production of virulence factors (Palma-Guerrero, Jansson, Salinas, & Lopez-Llorca, 2008; Badawy, & Rabea, 2011). 225

226

227 **3.2** Chitosan-plant interactions

The chitosan acts as a powerful elicitor able to inducing a defense response against pathogens 228 in plant tissues by activating both, a local (Zuppini et al., 2003; Iriti, & Varoni, 2015) and 229 230 systemic plant defense (Benhamou, Lafontaine, & Nicole, 1994; Xing, Zhu, Peng, & Qin, 2015) with the involvement several molecules related to defense mechanisms as pathogenesis-related 231 (PR) proteins (Lopez-Moya et al., 2017; Corsi, Forni, Riccioni, & Linthorst, 2017), Reactive 232 Oxygen Species (ROS) (Singh et al., 2019) and secondary metabolites with active roles in 233 defense as lignin, callose, phytoalexins, PAL, peroxidases and chitinase (Ma, Yang, Yan, 234 Kennedy, & Meng, 2013; Landi et al., 2014; Malerba, & Cerana, 2016). However, the chitosan 235 236 elicitation activity depends on the reactivity of the host tissues (Romanazzi et al., 2016) as well

as from the acetylation and degree polymerization of chitosan (Cord-Landwehr, Melcher, 237 238 Kolkenbrock, & Moerschbacher, 2016; Li, Xing, Liu, & Li, 2016). Until now the chitosan binding receptors are undefined (Iriti & Faoro 2009; Hidangmayum, Dwivedi, Katiyar, & 239 Hemantaranjanm, 2019). Some researches proposed that chitosan could also interact with 240 chromatin and directly affect gene expression (Hadwiger & Polashock, 2013; Katiyar, 241 Hemantaranjan, Bharti, & Nishant Bhanu, 2014). However, chitosan molecular signals are 242 transduced by messengers such as ROS or phytohormones able to induce physiological and 243 defense response by host (Yin, Li, Zhao, Du, & Ma, 2006; Hidangmayum et al., 2019). 244

An effect often observed on plants tissue after chitosan treatment was the inhibition of light-induced stomatal opening (Lee et al., 1999; Iriti et al., 2009). On this regard, the transcriptome analysis performed on sweet orange (Coqueiro et al., 2015) and strawberry (Landi et al., 2017) after chitosan treatments underline early impact of compound on the light photosynthetic process affecting imbalance/balance of ROS/redox signaling (Landi et al., 2017). These entire signaling molecules contribute to the adaptive mechanism in chitosan treated plants in response to stress.

252

253 **3.3 Description of included studies**

254 A flow chart of the screening of the studies identified for the effectiveness of 1% chitosan is shown in Figure 1, with a total of 56 articles finally available for the meta-analysis according 255 to the search criteria. These covered 117 studies, of which 49 were related to disease incidence 256 257 (total cases, 8,543 [for each of control and chitosan treatment]) (Figure 2), 41 to in-vitro mycelium growth (total cases, 1,072) (Figure 3), and 27 to changes in defence-mechanism-258 259 related enzymes (total cases, 1,332) (Figure 4). Some of the relevant details of the articles that were included in this meta-analysis are given in Table 1. All of the selected articles were 260 included in the assessment for risk of bias. Also, blinding of outcome assessment in these 261

studies (i.e., performance bias) was not necessary, so it was not included in the analysis for risk 262 of bias. The domains considered for risk of bias were chosen based on each study that reported 263 data and scientific information. All of the studies provided specific indication that the basic 264 characteristics of the control and treatment groups were balanced and were treated under similar 265 environmental conditions. None of these studies included misleading samples. As a result, the 266 selection, detection, attrition and reporting were free of bias, and the publications were defined 267 as at low risk of bias. The funnel plots constructed from the data for disease incidence, 268 mycelium growth and defence enzyme activities did not reveal any significant asymmetry 269 (Figure 5). 270

271

272 **3.4 Effects of 1% chitosan on disease incidence**

Based on this meta-analysis, the overall data demonstrated the significant effectiveness of 1% 273 chitosan over the control treatment for reduction of disease incidence (studies, 49; total cases, 274 8,5473) (mean difference [MD], -30.22; 95% confidence intervals [CI], -36.48 to -23.96; I², 275 90.0%; P <0.00001) (Figure 2). The subgroup analysis here (Figure 2) showed that 1% chitosan 276 was significantly effective for reduction of disease incidence against: gray mold (studies, 12; 277 total cases, 1,473), (Shao, Tu, Tu, & Tu, 2012; Feliziani, Santini, Landi, & Romanazzi, 2013; 278 279 Gao, Zhu, & Zhang, 2013; Romanazzi, Feliziani, Santini, & Landi, 2013; Feliziani et al., 2015; Kanetis, Exarchou, Charalambous, & Goulas, 2017; Zheng, et al., 2017; Gramisci, Lutez, 280 Lopes, & Sangorrína, 2018; Hajji, Younes, Affes, Boufi, & Nasri, 2018) (MD, -23.97; 95% CI, 281 -32.25 to -15.68; I², 77.0%; P < 0.00001), as highly effective in 9 of these studies, (Shao et al., 282 2012; Gao et al., 2013; Romanazzi et al., 2013; Feliziani et al., 2015; Kanetis et al., 2017; 283 Zheng, et al., 2017; Gramisci et al., 2018; Hajji et al., 2018); blue/green molds caused by 284 Penicillium spp. (studies, 16; total cases, 1,968) (Xing, Xu, Che, Li, & Li, 2011; Shao et al., 285 2012; Cháfer, Sánchez-González, González-Martínez & Chiralt, 2012; Feliziani et al., 2013; 286

Romanazzi et al., 2013; Wang, Wu, Qin, & Meng, 2014; Lu et al., 2014; Shao et al., 2015; El 287 288 Guilli, Hamza, Clément, Ibriz, & Ait Barka, 2016; Zheng, et al., 2017; Gramisci et al., 2018; Kharchoufi, et al., 2018; Liu, Sun, Xiu, Huang, & Zhou, 2018; Shi, Wang, Lu, & Deng, 2018) 289 (MD, -30.85; 95% CI, -41.91 to -19.79; I², 90.0%; P <0.00001), as highly effective in 9 of 290 these studies (Xing et al., 2011; Romanazzi et al., 2013; Lu, et al., 2014; Shao et al., 2015; El 291 Guilli et al., 2016; Zheng, et al., 2017; Liu et al., 2018; Shi et al., 2018); *Rhizopus* rot (studies, 292 293 5; total cases, 1,740) (Cia, Benato, Pascholati, & Garcia, 2010; Ramos-García et al., 2012; Romanazzi et al., 2013; Xing et al., 2015) (MD, -28.80; 95% CI, -46.13 to -11.47; I², 87.0%; 294 P = 0.001), as effective in 3 of these studies (Cia et al., 2010; Ramos-García et al., 2012; 295 296 Romanazzi et al., 2013); and anthracnose (11 studies; total cases, 2,134) (Magbool, Ali, 297 Ramachandran, Smith, & Alderson, 2010; Zahid, Ali, Manickam, Siddiqui, & Maqbool, 2012; Bill et al., 2014; Edirisinghe, Ali, Maqbool, & Alderson, 2014; Ali, Noh, & Mustafa, 2015; 298 299 Gutiérrez-Martínez, Bautista-Banos, Berúmen-Varela, Ramos-Guerrero, & Hernández-Ibanez, 2017; Obianom et al., 2019) (MD, -46.64; 95% CI, -61.54 to -31.73; I², 92.0%; P <0.00001), 300 as effective in all of these studies. For Alternaria rot, 1% chitosan was not significantly effective 301 (studies, 5; total cases, 1,228) (Meng, Yang, Kennedy, & Tian, 2010; Yan et al., 2011; López-302 303 Mora, Gutiérrez-Martínez, Bautista-Baños, Jiménez-García, & Zavaleta-Mancera, 2013; 304 Feliziani et al., 2015; Guo, Xing, Yu, Zhao, & Zhu, 2017) (MD, -8.50; 95% CI, -15.75 to -1.25; I^2 , 27.0%; P = 0.24), although in 1 of these studies (Guo et al., 2017) its effect reached 305 significance. 306

307

308 **3.5 Effects of 1% chitosan on in-vitro mycelium growth**

The overall data here showed the significant effectiveness of 1% chitosan over the control treatment against *in-vitro* mycelium growth of these fungal pathogens that are involved in postharvest diseases (studies, 41; total cases, 1,072) (MD, -54.32; 95% CI, -64.35 to -44.28;

 I^2 , 95.0%; P <0.00001) (Figure 3). The subgroup analysis here (Figure 3) showed that 1% 312 313 chitosan was significantly effective against *in-vitro* mycelium growth for: *B. cinerea* (studies, 5; total cases, 37) (Kanetis et al., 2017; Xu et al., 2007; Feliziani et al., 2013; Munhuweyi et al., 314 2017; Flores et al., 2018). (MD, -49.38; 95% CI, -72.98 to -25.79; I², 94.0%; P <0.0001), as 315 medium high effects for all of these studies; Penicillium spp. (studies, 9; total cases, 65) (Xing 316 et al., 2011; Abdel-Kader, El-Mougy & Lashin, 2011; Nisia, Noreña, & Brandelli, 2012; Wang 317 318 et al., 2014; Waewthongrak, Pisuchpen, & Leelasuphakul, 2015; Shao et al., 2015; Munhuweyi et al., 2017; Madanipour, et al., 2019) (MD, -73.00; 95% CI, -89.71 to -56.30; I², 92.0%; P 319 <0.00001), as the highest effects seen, and for all of these studies; *Colletotrichum* spp. (studies, 320 321 24; total cases, 955) (Jitareerat, Paumchai, Kanlayanarat, & Sangchote, 2007; Rahman, 322 Mahmud, Kadir, Abdul Rahman, & Begum, 2008; Munoz, Moret, & Garces, 2009; Maqbool et al., 2010; Zahid et al., 2012; Mohamed, Clementine, Didier, Gérard, & Noëlle, 2013; Ali et al., 323 2014; Bill et al., 2014; Edirisinghe et al., 2014; Ali et al., 2015; Varela, Coronado Partida, 324 Ochoa Jiménez, López, & Martínez, 2015; Gutiérrez-Martínez et al., 2017; de Oliveira, Berger, 325 de Araújo, Camara, & de Souza, 2017; Ramos-Guerrero, González-Estrada, Hanako-Rosas, & 326 Bautista-Banõs, 2018; Xoca-Orozco, Aguilera-Aguirre, López-García, Gutiérrez-Martínez, & 327 Chacón-López, 2018) (MD, -48.18; 95% CI, -62.83 to -33.53; I², 96.0%; P <0.00001), as the 328 329 lowest effects seen based on the point estimate, with the highest effects for 16 of these studies (Jitareerat, et al., 2007; Rahman, et al., 2008; Magbool et al., 2010; Zahid et al., 2012; Bill et 330 al., 2014; Ali et al., 2014; Varela et al., 2015; de Oliveira et al., 2017; Ramos-Guerrero et al., 331 2018; Xoca-Orozco et al., 2018); and Alternaria spp. (3 studies; total cases, 15) (Yan et al., 332 2011; Feliziani et al., 2013; López-Mora et al., 2013) (MD, -55.20; 95% CI, -80.50 to -29.90; 333 I^2 , 90.0%; P <0.0001), as significant for all of these studies. 334

335

336 **3.6 Effects of 1% chitosan on enzyme activities associated with host defence**

The overall data for the effects of 1% chitosan on the activities of the enzymes associated with 337 338 host plant defence at 24 hpt showed significantly increased activity over the control treatment (studies, 27; total cases, 1,332) (MD, 74.58; 95% CI, 41.15 to 108.01; I², 99.0%; P < 0.0001) 339 (Figure 4). For the details of the subgroup analysis here (Figure 4), in the treated fruit, 1% 340 chitosan did not induce any significant difference compared to the control at 24 hpt for the PAL 341 activity (studies, 9; total cases 575) (Zahid et al., 2012; Landi et al., 2014; Bill et al., 2014; Shao 342 et al., 2015; Waewthongrak et al., 2015; Song et al., 2016; Jongsri, Rojsitthisak, 343 Wangsomboondee, & Seraypheapa, 2017; Shen & Yang, 2017; Silva et al., 2018) (MD, 37.06; 344 95% CI, -17.28 to 91.40; I², 99.0%; P = 0.18). However, 5 of these studies (Landi et al., 2014; 345 346 Bill et al., 2014; Shao et al., 2015; Waewthongrak et al., 2015; Shen & Yang, 2017) showed significant increases in PAL activity. Furthermore, significant increases were seen overall for 347 chitinase activity (10 studies; total cases, 491) (Hewajuliage, Sultanbawa, Wijeratnam, & 348 349 Wijesundara, 2009; Feliziani et al., 2013; Bill et al., 2014; Landi et al., 2014; Ali et al., 2014; Shao et al., 2015; Jongsri, et al., 2017; Shen, & Yang, 2017) (MD, 75.95; 95% CI, 36.18 to 350 115.73; I^2 , 99.0%; P = 0.0002), as 8 of these with significance increases (Hewajuliage, et al., 351 2009; Feliziani et al., 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014; Jongsri, et al., 352 353 2017; Shen, & Yang, 2017), and overall for β -1,3-glucanase activity (8 studies; total cases 266) 354 (Hewajuliage, et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014; Shao et al., 2015; Jongsri, et al., 2017; Shen, & Yang, 2017) (MD, 115.06; 95% CI, 355 38.24 to 191.88; I^2 , 100.0%; P = 0.003), as 5 of these with significance increases (Hewajuliage, 356 et al., 2009; Wang & Gao, 2013; Landi et al., 2014; Bill et al., 2014; Ali et al., 2014). 357

358

359 4 **DISCUSSION**

This study brings together and summarises the results from the literature of the effects of 1% chitosan on postharvest diseases and pathogens, according to disease incidence, *in-vitro*

mycelium growth, and induction of host defence responses through monitoring of the most 362 commonly analysed enzymes linked to defence mechanisms. This meta-analysis emphasises 363 the primary role of 1% chitosan against the main diseases and pathogens associated with 364 postharvest decay (Romanazzi et al., 2018; Betchem et al., 2019). These pooled estimates 365 highlighted that 1% chitosan is effective against the main postharvest diseases caused by several 366 fungal pathogens that infect different plant species. Although some of these data show high 367 heterogeneity, they also show low risk of bias and high validity for each study, with no 368 substantial baseline differences seen between the control and treatment groups. Indeed, the 369 funnel plots as a method to assess the potential role of publication bias (Harbord, Egger, & 370 371 Sterne, 2006) indicate that no bias was detected across the studies included. Therefore, these 372 values of $I^2 > 90\%$ indicate real differences in these studies.

Our study underlines the transversal effectiveness of chitosan in postharvest disease management. Here, the subgroup analysis of *in-vitro* mycelium growth emphasises that the most powerful growth reduction was for *Penicillium* spp., followed by *Alternaria* spp. and *B. cinerea*, while lower effectiveness was seen against *Colletotrichum* spp..

These data also show that chitosan has differential effects across these fungal species, 377 378 potentially through the control of fungal development and lytic enzyme activation by chitosan 379 (El Gueddari, Rauchhaus, Moerschbacher & Deising, 2002; Geoghegan & Gurr, 2016; Geoghegan, Steinberg, & Gurr, 2017; Ramos-Guerrero et al., 2018; Ramos-Guerrero, 380 González-Estrada, Romanazzi, Landi, & Gutiérrez-Martínez, 2020). There are direct links 381 382 between the cell wall and cell membranes, as the synthesis of key cell-wall components (e.g., glucans, chitin) occurs at the plasma membrane, with the associated synthase enzyme 383 384 complexes (Maddi, & Free, 2010). The chitin is localized in the membrane proximal portion of the cell wall and is incorporated into the wall matrix by being cross-linked to the glucans (Patel 385 & Free, 2019). Previous studies have investigated the role of plasma membrane in the sensitivity 386

of fungi to chitosan showing that the plasma membrane of chitosan-sensitive fungi is more fluid and richer in polyunsaturated free fatty acids than in chitosan-resistant fungi (Palma-Guerrero et al., 2009 and 2010). The authors evidenced that chitosan binds to negatively charged phospholipids. This alter plasma membrane fluidity to inducing the membrane permeabilization, which was greatest in membranes containing elevated content polyunsaturated lipids.

While this meta-analysis highlights the different reactions between the fungal species and chitosan effectiveness, it also underlines the key role of plant species in this complex relation that significantly affects the outcome of chitosan-pathogen interaction.

396 For this reason, the fungal pathogens can react differently to chitosan in terms of disease 397 incidence and in *in-vitro* tests. Indeed, the meta-analysis summarized studies related to disease incidence, show significantly reducing postharvest disease incidence, although the results 398 399 linked to singular disease show the highest effectiveness of chitosan against anthracnose, while it is less effective against blue/green mold, Rhizopus rot, gray mold, and particularly Alternaria 400 401 rot. Therefore, it is not excluded that the involvement of mainly different fruits species on anthracnose incidence, as banana, papaya, dragon, bell pepper, soursop and avocado, not tested 402 403 for the other diseases, the chitosan, could be elicited a different defence response.

404 This study also confirms that disease incidence is the result of a combination of the 405 chitosan effects on film-forming, plant defence eliciting, and its antimicrobial properties (Romanazzi et al., 2018). In this context, chitosan can be considered to be a modulator of plant 406 407 defences (Lopez-Moya, Suarez-Fernandez, & Lopez-Lorca, 2019). Chitosan application to plants fits into the delicate relationship between the host and pathogenic fungi and involves the 408 409 primary cell-wall defence mechanisms. A link between pathogenicity and the enzymes that synthesise the fungal cell wall has been demonstrated in numerous studies (Arana et al., 2009; 410 Levdansky et al., 2010; Lenardon, Munro, & Gow, 2010; Oliveira-Garcia, & Deising, 2013; 411

Geoghegan et al., 2017; Patel & Free, 2019), and depolymerisation of the cell walls of plant pathogenic fungi following the infection, evading plant immune recognition, has been reported (Geoghegan et al., 2017). It has been reported that the strategy of some fungal pathogens to evade plant immunity is to convert chitin into chitosan (Lopez-Moya, et al., 2019). Thus, both chitosan and chitin will have key roles in the control of plant immunity.

According to the concepts of systemic acquired resistance (Pieters et al., 1998; Durrant 417 418 & Dong, 2004) and induced systemic resistance (Heil & Bostock, 2002; Timmermann, 419 González, & Ruz, 2020), chitosan can induce resistance in the plants to control postharvest fungal pathogens of their fruit and as vegetables (Nandeeshkumar et al., 2008; Jia, Meng, Zeng, 420 421 Wang, & Yin, 2016; Jia, Zeng, Wang, Zhang, & Yin, 2018). On this basis, the meta-analysis 422 data related to the eliciting of the host defence enzymes by chitosan through activation of induced resistance can help us to understand this aspect (Mandal, Kar, Mukherjee, & Acharya, 423 424 2013; Walters, Ratsep, & Havis, 2013).

Although a meta-analysis of publicly available data, related to transcriptome 425 investigations of plants defense priming, evidenced a common set of conserved transcriptional 426 changes on plants upon stress conditions, (Baccelli, Benny, Caruso, & Martinelli, 2020), the 427 428 detailed role of the chitosan in the induction of defence mechanisms has been shown for sweet 429 oranges (Coqueiro et al., 2015) and strawberries (Landi et al., 2017). The most common approaches related to the study of enzyme activities (Wang & Gao, 2013; Ali et al., 2014; 430 Pasquariello et al., 2015; Shao et al., 2015; Adiletta, Zampella, Coletta, & Petriccione, 2019) 431 and the expression of individual genes (Ma et. al., 2013; Landi et al., 2014; Petriccione et al., 432 2017; Fooladi vanda, Shabani, & Razavizadeh, 2019; Chun & Chandrasekaran, 2019) have 433 434 been investigated, both of which are associated with reactive oxygen species, specific PR proteins, cell-wall enzymes and secondary metabolites. Usually, these individual studies have 435

shown wide variability associated with host fruit species, application methods and times oftreatment.

In the present study, we analysed the most studied of the plant defence enzymes, PAL, 438 which is associated with the phenylpropanoid pathway (Dixon, Lapthorn, & Edwards, 2002; 439 Yadav et al., 2020), and chitinase and β -1,3-glucanase, which are linked to cell-wall hydrolysis 440 (Gupta et al., 2015; Pusztahelyi, 2018), at the main analysis time point of 24 hpt. These data do 441 not show any significant effects of chitosan on PAL activity at 24 hpt, while high increases in 442 the activities of chitinase and β -1,3-glucanase were detected, independent of the host species. 443 These findings are in agreement with the plant immunity mechanisms that indicate that 444 445 chitinase and β -1,3-glucanase release the glucan oligomers from the chitin of the fungal cell 446 walls to trigger the plant immune responses (Jones & Dang, 2006; Fesel & Zuccaro, 2016; Lopez-Moya et al., 2019;), although the induction of these defence mechanisms can vary greatly 447 448 according to the time of treatment. The present study suggests that the analysis of the chitinase and β -1,3-glucanase activities at 24 hpt represents a marker for verification of induction of the 449 plant defences by chitosan, while activation of PAL has generally been reported to occur at later 450 times (Landi et al., 2014; Bill et al., 2014). 451

452

453 **5 CONCLUSIONS**

The present work established the first comprehensive investigation of chitosan effectiveness on postharvest pathogens using meta-analysis approach. This study provides knowledge based on three robust findings, as the effects of 1% chitosan on disease incidence, mycelium growth of decay-causing fungi, and the activities of two important defence enzymes in particular, chitinase and β -1,3-glucanase. This investigation shown the chitosan have antifungal properties against different phytopathogens highlight the versatile properties of this natural biopolymer. 460 It was demonstrated there are enough data about the effectiveness of chitosan in the control of461 postharvest diseases, also inducing resistance on fruit to postharvest pathogens.

The outcomes of this study aim to contribute to a better understanding concerning the role of chitosan in the control of postharvest decay of fresh fruit, that will be relevant for the conceptualization and measurement of future studies. Collectively, these data confirm the multiple mechanisms of action of chitosan, which has unique properties in the panorama of activities of natural compounds that define it as a model plant-protection agent for sustainable control of postharvest decay of fruit and vegetables.

468

469

471 **References**

- 472 Abdel-Kader, M., El-Mougy, N., & Lashin, S. (2011). Evaluation of grapefruit coating with
- 473 chemical preservatives as control measure against postharvest decay. *Phytopathologia*, 59,
- 474 25-38. http://www.up.poznan.pl/~ptfit1/pdf/P59/P59_03.pdf
- 475 Adiletta, G., Zampella, L., Coletta, C., & Petriccione, M. (2019). Chitosan coating to
- 476 preserve the qualitative traits and improve antioxidant system in fresh figs (*Ficus carica*
- 477 L.). Agriculture, 9(4), 84. https://doi.org/10.3390/agriculture9040084
- 478 Ali, A., Zahid, N., Manickam, S., Siddiqui, Y., Alderson, P. G., & Maqbool, M. (2014).
- 479 Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to
- 480 submicron chitosan dispersions. Crop Protection, 63, 83-88.
 481 https://doi.org/10.1016/j.cropro.2014.05.009
- 482 Ali, A., Noh, N. M., & Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched
- 483 with lemongrass oil against anthracnose of bell pepper. *Food Packaging and Shelf Life*, 3,
- 484 56-61. https://doi.org/10.1016/j.fpsl.2014.10.003
- 485 Arah, I. K., Amaglo, H., Kumah, E. K., & Ofori, H. (2015). Preharvest and postharvest
- 486 factors affecting the quality and shelf life of harvested tomatoes. A mini review.
- 487 International Journal of Agronomy, 2015, 6. https://doi.org/10.1155/2015/478041
- 488 Arana, D. M., Prieto, D., Román, E., Nombela, C., Alonso-Monge, R., & Pla, J. (2009). The
- 489 role of the cell wall in fungal pathogenesis. *Microbial Biotechnology*, 2(3), 308–320.
- 490 https://doi.org/10.1111/j.1751-7915.2008.00070.x
- 491 Aranaz, I., Acosta, N., Civera, C., Elorza, B., Mingo, J., Castro, C., ... Heras-Caballero, A.
- 492 (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives.
- 493 *Polymers*, *10*, 213. https://doi.org/10.3390/polym10020213.

- Baccelli, I., Benny, J., Caruso, T., & Martinelli, F. (2020). The priming fingerprint on the
 plant transcriptome investigated through meta-analysis of RNA-seq data. *European Journal of Plant Pathology*, *156*(3), 779-797. https://doi.org/10.1007/s10658-019-01928-3
- 497 Badawy, M. E. I., & Rabea, E. I. (2011). A biopolymer chitosan and its derivatives as
- 498 promising antimicrobial agents against plant pathogens and their applications in crop
- 499 protection. International Journal of Carbohydrate Chemistry, ID 460381,
- 500 https://doi.org/10.1155/2011/460381
- 501 Belden, J., McMurry, S., Smith, L., & Reilley, P. (2010). Acute toxicity of fungicide
- 502 formulations to amphibians at environmentally relevant concentrations. *Environmental*
- 503 *Toxicology and Chemistry*, 29(11), 2477-2780. https://doi.org/10.1002/etc.297
- 504 Benhamou, N., Lafontaine, P. J., & Nicole, M. (1994). Seed treatment with chitosan induces
- 505 systemic resistance to *Fusarium* crown and root rot in tomato plants. *Phytopathology*,

506 84(12), 1432-1444. https://doi.org/10.1094/phyto-84-1432

- 507 Betchem, G., Johnson, N. A. N., & Wang, Y. (2019). The application of chitosan in the 508 control of postharvest diseases: a review. *Journal of Plant Diseases and Protection*, *126*,
- 509 495-597. https://doi.org/10.1007/s41348-019-00248-2
- 510 Bill, M., Sivakumar, D., Korsten, L., & Thompson, K. (2014). The efficacy of combined
- 511 application of edible coatings and thyme oil in inducing resistance components in avocado
- 512 (*Persea americana* Mill.) against anthracnose during postharvest storage. Crop Protection,
- 513 64, 159-167. https://doi.org/10.1016/j.cropro.2014.06.015
- 514 Cháfer, M., Sánchez-González, L., González-Martínez, C., & Chiralt A. (2012). Fungal
- 515 decay and shelf life of oranges coated with chitosan and bergamot, thyme, and tea tree
- stience, 77, 182-187. https://doi.org/10.1111/j.1750-
- 517 3841.2012.02827.x

- 518 Chen, C., Chen, H. Y. H., Chen, X., & Huang Z. (2019). Meta-analysis shows positive
- 519 effects of plant diversity on microbial biomass and respiration. *Nature Communications*,
- 520 *10*, 1332. https://doi.org/10.1038/s41467-019-09258-y
- 521 Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan W. Y. (2015). Chitosan: an update on
- 522 potential biomedical and pharmaceutical applications. *Marine Drugs*, 13(8), 5156-5186.
- 523 https://doi.org/10.3390/md13085156
- Chirkov, S. N. (2002). The antiviral activity of chitosan (review). *Applied Biochemistry and Microbiology*, *38*, 1–8. https://doi.org/10.1023/A:1013206517442
- 526 Chun, S. C., & Chandrasekaran, M. (2019). Chitosan and chitosan nanoparticles induced
- 527 expression of pathogenesis-related proteins genes enhances biotic stress tolerance in
- 528 tomato. International Journal of Biological Macromolecules, 125, 948-954.
- 529 https://doi.org/10.1016/j.ijbiomac.2018.12.167
- Chung, Y. C., Wang, H. L., Chen, Y. M., & Li, S. L. (2003). Effect of abiotic factors on the
 antibacterial activity of chitosan against waterborne pathogens. *Bioresource Technology*88(3), 179–184. https://doi.org/10.1016/S0960-8524(03)00002-6
- 533 Cia, P., Benato, E. A., Pascholati, S. F., & Garcia, E. O. (2010). Chitosan on the postharvest
- 534 control of soft rot in 'Rama Forte' persimmon. Bragantia, 69, 745-
- 535 752. https://doi.org/10.1590/S0006-87052010000300028
- 536 Colman, S. L., Salcedo, M. F., Mansilla, A. Y., Iglesias M. J., Fiol, D. F., Saldaña, S. M.,
- 537 ... Casalongué, C. A. (2019). Chitosan microparticles improve tomato seedling biomass
- and modulate hormonal, redox and defense pathways. *Plant Physiology and Biochemistry*,
- 539 *143*, 203-211. https://doi.org/10.1016/j.plaphy.2019.09.002
- 540 Coqueiro, D. S., de Souza, A. A., Takita, M. A., Rodrigues, C. M., Kishi, L. T., & Machado,
- 541 M. A. (2015). Transcriptional profile of sweet orange in response to chitosan and salicylic
- 542 acid. BMC Genomics, 16, 288. https://doi.org/10.1186/s12864-015-1440-5

- 543 Cord-Landwehr S., Melcher R. L. J., Kolkenbrock S., & Moerschbacher B. M. (2016). A
 544 chitin deacetylase from the endophytic fungus *Pestalotiopsis* sp. efficiently inactivates the
 545 elicitor activity of chitin oligomers in rice cells. *Scientific Reports*, *6,38018*.
 546 https://doi.org/10.1038/srep38018
- 547 Corsi, B., Forni, C., Riccioni, L. & Linthorst, J. M. H. (2017). Enhancement of *PR1* and
- 548 PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with
- 549 *Pseudomonas syringae* pv. *actinidiae*. *European Journal of Plant Pathology*, 148, 163–179.
- 550 https://doi.org/10.1007/s10658-016-1080-x
- 551 Cuero, R. G., Osuji, G., & Washington, A. (1991) N-carboxymethylchitosan inhibition of
- aflatoxin production: Role of zinc. *Biotechnology Letters*, 13,441–444.
 https://doi.org/10.1007/BF01030998
- da Silva, S. B., de Souza, D., & Dantas Lacerda, L. (2019). Food applications of chitosan
- and its derivatives. In L. A. M. van den Broek, & C. G. Boeriu (Eds.), *Chitin and chitosan:*
- 556 properties and applications (1st ed., pp. 315–347). John Wiley & Sons Ltd.
 557 https://doi.org/10.1002/9781119450467.ch13
- 558 Dardiotis, E. Tsouris, Z., Mentis, A. F. A., Siokas, V., Michalopoulou, A., Sokratous, M., ...
- 559 Kountouras, J. (2018). H. pylori and Parkinson's disease: meta-analyses including clinical
- severity. Clinical Neurology and Neurosurgery, 175, 16-24.
 https://doi.org/10.1016/j.clineuro.2018.09.039
- de Oliveira, K. A. R., Berger, L. R. R., de Araújo, S. A., Camara, M. P. S., & de Souza, E.
- 563 L. (2017). Synergistic mixtures of chitosan and *Menta piperita* L. essential oil to inhibit
- 564 *Colletotrichum* species and anthracnose development in mango cultivar Tommy Atkins.
- 565 *Food Microbiology*, *66*, 96-103. https://doi.org/10.1016/j.fm.2017.04.012
- de Souza, E. L., Lundgren, G A., de Oliveira, K. Á. R., Berger, L. R. R., & Magnani, M.
- 567 (2019). An Analysis of the Published Literature on the Effects of Edible Coatings Formed

- 568 by Polysaccharides and Essential Oils on Postharvest Microbial Control and Overall Quality
- of Fruit. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1947,1967.
- 570 https://doi.org/10.1111/1541-4337.12498.
- 571 Divya, K., Vijayan, S., George, T.K., & Jisha, M. S. (2017). Antimicrobial properties of
- 572 chitosan nanoparticles: Mode of action and factors affecting activity. *Fibers and Polymers*,
- 573 *18*, 221–230. https://doi.org/10.1007/s12221-017-6690-1
- 574 Dixon, D. P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. *Genome*
- 575 *Biology. 3*, reviews3004.1. https://doi.org/10.1186/gb-2002-3-3-reviews3004.
- 576 Duan, C., Meng, X., Meng, J., Khan, I. H., Dai, L., Khan, A., ... Ni, Y. (2019). Chitosan as
- 577 a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties.
- 578 Journal of Bioresources and Bioproducts, 4(1), 11-21. 579 https://doi.org/10.21967/jbb.v4i1.189.
- 580 Durrant, W. E., & Dong, X. (2004). Systemic Acquired Resistance. Annual Review of
- 581 *Phytopathol*ogy, *42*, 185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
- 582 Ebrahimzadeh, F., & Abrinbana, M. (2019). Activity of fungicide mixtures against *Botrytis*
- 583 *cinerea* isolates resistant to benzimidazoles, strobilurins and dicarboximides. Annals of

584 Applied Biology, 174(3), 301-312. https://doi.org/10.1111/aab.12497

- Edirisinghe, M., Ali, A., Maqbool, M., & Alderson, P. G. (2014). Chitosan controls
 postharvest anthracnose in bell pepper by activating defense-related enzymes. *Journal of Food Science and Technology*, *51*(12), 4078-4083. https://doi.org/10.1007/s13197-012-
- 588 0907-51
- El Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Use of chitosan coating
- 590 to reduce water loss and maintain quality of cucumbers and bell pepper fruits. *Journal of*
- 591 Food Processing and Preservation, 15(5), 359-368. https://doi.org/10.1111/j.1745-
- 592 4549.1991.tb00178.x

593	El Gueddari, N. E., Rauchhaus, U., Moerschbacher, B. M., & Deising, H. B. (2002).
594	developmentally regulated conversion of surface exposed chitin to chitosan in cell walls of
595	plant pathogenic fungi. New Phytologist, 156(1), 103-112. https://doi.org/10.1046/j.1469-
596	8137.2002.00487.x
597	El Guilli, M., Hamza, A., Clément, C., Ibriz, M., & Ait Barka, E. (2016). Effectiveness of

- postharvest treatment with chitosan to control citrus green mold. *Agriculture*, 6(2), 12.
 https://doi.org/ 10.3390/agriculture6020012.
- 600 Feliziani, E., Santini, M., Landi, L., & Romanazzi, G. (2013). Pre- and postharvest
- 601 treatments with alternatives to synthetic fungicides to control postharvest decay of sweet
- 602 cherry. *Postharvest Biology and Technology*, 78, 133-138.
 603 https://doi.org/10.1016/j.postharvbio.2012.12.004
- Feliziani, E., Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and
 other alternatives to conventional fungicides to control postharvest decay of strawberry.
- 606 *Carbohydrate Polymers*, *132*, 111-117. https://doi.org/10.1016/j.carbpol.2015.05.078
- 607 Fesel, P. H., & Zuccaro, A. (2016). β-glucan: Crucial component of the fungal cell wall and
- elusive MAMP in plants. *Fungal Genetics and Biology*, 90, 53-60.
 https://doi.org/10.1016/j.fgb.2015.12.004
- 610 Flores, C. Flores, C., Lopez, M., Tabary, N., Neut, C., Chai, F., ... Blanchemaina, N. (2018).
- 611 Preparation and characterization of novel chitosan and cyclodextrin polymer sponges for
- 612 wound dressing applications. *Carbohydrate Polymers*, 173, 535-546.
- 613 https://doi.org/10.1016/j.carbpol.2017.06.026
- 614 Food and Agriculture Organization of the United Nations. *Global Food Losses and Food*
- 615 *Waste: Extent, Causes and Prevention*; FAO: Rome, Italy, 2011.

- 616 Fooladi vanda, G., Shabani, L. & Razavizadeh, R. (2019). Chitosan enhances rosmarinic
- 617 acid production in shoot cultures of *Melissa officinalis* L. through the induction of methyl

618 jasmonate. *Botanical Studies*, 60, 26. https://doi.org/10.1186/s40529-019-0274-x

- Gao, P., Zhu, Z., & Zhang, P. (2013). Effects of chitosan-glucose complex coating on
- 620 postharvest quality and shelf life of table grapes. *Carbohydrate Polymers*, 95(1), 371-378.
- 621 https://doi.org/10.1016/j.carbpol.2013.03.029
- 622 Geoghegan, I. A., & Gurr, S. J. (2016). Chitosan mediates germling adhesion in
- 623 *Magnaporthe oryzae* and is required for surface sensing and germling morphogenesis.
- 624 *PLOS Pathogens*, *12*(6), e1005703. https://doi.org/10.1371/journal.ppat.1005703
- Geoghegan, I., Steinberg, G., & Gurr, S. (2017). The role of the fungal cell wall in the
 infection of plants. *Trends in Microbiology*, 25, 957-967.
 https://doi.org/10.1016/j.tim.2017.05.015
- 628 Gonçalves, A., .Gkrillas, A., Dorne J. L., Dall'Asta, C., Palumbo, R., Lima, N., ... Giorni,
- 629 P. (2019). Pre- and postharvest strategies to minimize mycotoxin contamination in the rice
- 630 food chain. Comprehensive Reviews in Food Science and Food Safety, 18(2), 441-454.
- 631 https://doi.org/10.1111/1541-4337.12420
- 632 González-Domínguez, E., Fedele, G., Caffi, T., Delière, L., Sauris, P., Gramaje, D., ...
- 633 Rossi, V. (2019). A network meta-analysis provides new insight into fungicide scheduling
- 634 for the control of *Botrytis cinerea* in vineyards. *Pest Management Science*, 75(2), 324–332.
- 635 https://doi.org/ 10.1002/ps.5116.
- Goy, R. C., De Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity
- 637 of chitosan. *Polímeros*, 19(3), 241–247. https://doi.org/10.1590/S0104638 14282009000300013
- 639 Gramisci, B. R., Lutez, C., Lopes, C. A., & Sangorrína, M. P. (2018). Enhancing the
- 640 efficacy of yeast biocontrol agents against postharvest pathogens through nutrient profiling

and the use of other additives. *Biological Control*, *121*, 151-158.
https://doi.org/10.1016/j.biocontrol.2018.03.001.

- Guimarães, A., Abrunhosa, L., Pastrana, L. M., & Cerqueira, M. A. (2018). Edible Films
 and Coatings as Carriers of Living Microorganisms: a new strategy towards biopreservation
 and healthier foods. *Comprehensive Reviews in Food Science and Food Safety*, 17(3), 594-
- 646 614. https://doi.org/10.1111/1541-4337.12345
- Guo, H., Xing, Z., Yu, Q., Zhao, Y., & Zhu, E. (2017). Effectiveness of preharvest
 application of submicron chitosan dispersions for controlling *Alternaria* rot in postharvest
 jujube fruit. *Journal of Phytopathology*, *165*(7-8), 425-431.
 https://doi.org/10.1111/jph.12576.
- Gupta, S., Banerjee, S. K., Chatterjee, A., Sharma, A. K., Kundu, M., & Basu, J. (2015).
- The essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell
- 653 growth and division. *Microbiology*, *16*, 1627-1638. https://doi.org/10.1099/mic.0.000108
- 654 Gutiérrez, T. J. (2017). Chitosan applications for the food industry. In S. Ahmed & S. Ikram
- (Eds.), Chitosan: derivatives, composites and applications (1st ed., pp. 183–232). Wiley-
- 656 Scrivener. https://doi.org/10.1002/9781119364849.ch8
- 657 Gutiérrez-Martínez, P., Bautista-Banos, S., Berúmen-Varela, G., Ramos-Guerrero, A., &
- 658 Hernández-Ibanez, A. M. (2017). *In-vitro* response of *Colletotrichum* to chitosan. Effect on
- 659 incidence and quality on tropical fruit. enzymatic expression in mango. Acta Agronómica,
- 660 66(2), 282-289. http://dx.doi.org/10.15446/acag.v66n2.53770
- Hadwiger, L. A. & Polashock, J. (2013). Fungal mitochondrial DNases: effectors with the
- 662 potential to activate plant defences in non-host resistance. *Phytopathology*, *103*, 81–90.
- 663 http://dx.doi.org/10.1094 / PHYTO-04-12-0085-R
- Hajji, S., Younes, I., Affes, S., Boufi, S., & Nasri, M. (2018). Optimization of the
- 665 formulation of chitosan edible coatings supplemented with carotenoproteins and their use

- for extending strawberries postharvest life. *Food Hydrocolloid*, 83, 375-392.
 https://doi.org/10.1016/j.foodhyd.2018.05.013.
- 668 Harbord, R. M., Egger, M., & Sterne, J. (2006). A modified test for small-study effects in
- 669 meta-analyses of controlled trials with binary endpoints. *Statistics in Medicine*, 25, 3443-
- 670 3457. https://doi.org/10.1002/sim.2380
- Heil, M., & Bostock, R. M. (2002). Induced systemic resistance (ISR) against pathogens in
- the context of induced plant defense. *Annals of Botany*, 89, 503-512. https://doi.org/
 10.1093/aob/mcf076
- Herrera-Romero, I., Ruales, C., & Caviedes, M. (2017). Postharvest evaluation of natural
 coatings and antifungal agents to control *Botrytis cinerea* in *Rosa* sp. *Phytoparasitica*, 45,
- 676 9-20. https://doi.org/10.1007/s12600-017-0565-2
- Hewajuliage, I. G. N., Sultanbawa, Y., Wijeratnam, R. W., & Wijesundara, R. L. C. (2009).
- Mode of action of chitosan coating on anthracnose disease control in papaya. *Phytoparasitica*, *37*, 437-444. https://doi.org/ 10.1007/s12600-009-0052-5
- 680 Hidangmayum, A., Dwivedi, P., Katiyar, & D. Hemantaranjanm A. (2019). Application of
- 681 chitosan on plant responses with special reference to abiotic stress. *Physiology and*
- 682 *Molecular Biology of Plants*, 25, 313–326. https://doi.org/10.1007/s12298-018-0633-1
- 683 Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting
- antimicrobial properties of chitosan. International Journal of Biological Macromolecules,
- 685 85, 467–475. https://doi.org/10.1016/j.ijbiomac.2016.01.022
- 686 Hua, C., Li, Y., Wang, X., Kai, K., Su, M., Shia, W., ... Liu, Y. (2019). The effect of low
- 687 and high molecular weight chitosan on the control of gray mold (*Botrytis cinerea*) on kiwi
- 688 fruit and host response. Scientia Horticulturae. 246 (2), 700-709.
- 689 https://doi.org/10.1016/j.scienta.2018.11.038.

- 690 Iriti, M., & Faoro, F. (2009). Chitosan as a MAMP, searching for a PRR. *Plant Signaling*
- 691 & Behavior, 4, 66–68. https://doi.org/10.4161/psb.4.1.7408
- 692 Iriti, M., & Varoni, E. M. (2015). Chitosan-induced antiviral activity and innate immunity
- in plants. *Environmental Science and Pollution Research*, 22, 2935–2944.
 https://doi.org/10.1007/s11356-014-3571-7
- 695 Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M, & Faoro, F.
- 696 (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure.
- 697 Environmental and Experimental Botany, 66, 493–500.
 698 http://dx.doi.org/0.1016/j.envexpbot.2009.01.004
- Jia, X., Meng, Q., Zeng, H., Wang, W., & Yin, H. (2016). Chitosan oligosaccharide induces
- resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling

pathway. Scientific Reports, 6, 26144. https://doi.org/10.1038/srep26144

- Jia, X, Zeng, H, Wang, W, Zhang, F., & Yin H. (2018). Chitosan oligosaccharide induces
- resistance to *Pseudomonas syringae* pv. tomato DC3000 in Arabidopsis thaliana by

activating both salicylic acid- and jasmonic acid-mediated pathways. *Molecular Plant-*

705 *Microbe Interaction*, *31*(12), 1271-1279. https://doi.org/10.1094/MPMI-03-18-0071-R

- Jitareerat, P., Paumchai, S., Kanlayanarat, S., & Sangchote, S. (2007). Effect of chitosan on
- ripen Rehmaing, enzymatic activity and disease development in mango (*Mangifera indica*)
- fruit. New Zealand Journal of Crop and Horticultural Science, 35 (2), 211-218.
 https://doi.org/10.1080/01140670709510187.
- Jones, J. D. G., & Dang, J. L. (2006). The plant immune system. *Nature*, 444, 323-329.
 https://doi.org/10.1038/nature05286
- Jongsri, P., Rojsitthisak, P., Wangsomboondee, P., & Seraypheapa, K. (2017). Influence of
- chitosan coating combined with spermidine on anthracnose disease and qualities of 'Nam

- 714 Dok Mai' mango after harvest. Scientia Horticulturae, 224, 180-187.
 715 https://doi.org/10.1016/j.scienta.2017.06.011
- 716 Kabanov V. L., & Novinyuk L. V. (2020). Chitosan application in food technology: a
- 717 review of recent advances. *Food Systems*, *3*, 10-15. https://doi.org/10.21323/2618-9771-
- 718 2020-3-1-10-15
- 719 Kaczmarek, M. B., Struszczyk-Swita, K., Li, X., Szczęsna-Antczak, M., & Daroch, M.
- 720 (2019). Enzymatic modifications of chitin, chitosan, and chitooligosaccharides. *Frontiers*
- *in Bioengineering and Biotechnology*, 7, 243. https://doi.org/10.3389/fbioe.2019.00243
- 722 Kadic, A. J., Vucic, K., Dosenovic, S., Sapunar, D., & Puljak, L. (2016). Extracting data
- from Figures with software was faster, with higher interrater reliability than manual
 extraction. *Journal of Clinical Epidemiology*, 74, 119-123.
 https://doi.org/10.1016/j.jclinepi.2016.01.002
- Kanetis, L., Exarchou, V., Charalambous, Z., & Goulas, V. (2017). Edible coating
 composed of chitosan and *Salvia fruticosa* Mill. extract for the control of grey mould of
 table grapes. *Journal of the Science of Food and Agriculture*, 97(2), 452-460.
 https://doi.org/10.1002/jsfa.7745
- Katiyar, D., Hemantaranjan, A., Bharti, S., & Nishant Bhanu, A. (2014). A future
 perspective in crop protection: chitosan and its oligosaccharides. *Advances in Plants &*
- 732 *Agriculture Research*, *1*, *23-30*. http://dx.doi.org/10.15406/apar.2014.01.00006
- 733 Kharchoufi, S., Parafati, L., Licciardello, F., Muratore, G., Hamdi, M., Cirvilleri, G., &
- 734 Restuccia. C. (2018). Edible coatings incorporating pomegranate peel extract and biocontrol
- yeast to reduce *Penicillium digitatum* postharvest decay of oranges. *Food Microbiology*, 74,
- 736 107-112. https://doi.org/10.1016/j.fm.2018.03.011
- 737 Kofuji, K., Huang, Y., Tsubaki, K., Kokido, F., Nishikawa, K, Takashi I., & Murata, Y.
- (2010). Preparation and evaluation of a novel wound dressing sheet comprised of β -glucan-

- chitosan complex. *Reactive and Functional Polymers*, 70, 784-789.
 https://doi.org/110.1016/j.reactfunctpolym.2010.07.014
- 741 Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan
- and mode of action: a state-of-the-art review. *International Journal of Food Microbiology*,
- 743 *144*(1), 51-63. https://doi.org/ 10.1016/j.ijfoodmicro.2010.09.012
- Landi, L., De Miccolis Angelini, R. M., Pollastro, S., Feliziani, E., Faretra, F., &
- 745 Romanazzi, G. (2017). Global transcriptome analysis and identification of differentially
- expressed genes in strawberry after preharvest application of benzothiadiazole and chitosan.
- 747 Frontiers of Plant Science, 8, 235. https://doi.org/ 10.3389/fpls.2017.00235.
- Landi, L., Feliziani, E., & Romanazzi, G. (2014). Expression of defense genes in strawberry
- fruit treated with different resistance inducers. *Journal of Agricultural and Food Chemistry*,
- 750 62(14), 3047-3056. http://doi.org/10.1021/jf404423x
- 751 Lee, S., Choi, H., Suh, S., Doo, I-S., Oh, K-Y., Choi, E. J. ... Lee., Y. (1999).
- Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of
 reactive oxygen species from guard cells of tomato and *Commelina communis*. *Plant Physiolpogy*, *121*, 147-152. http://dx.doi.org/10.1104/pp.121.1.147
- 755 Lenardon, M. D., Munro, C. A., & Gow, N. A. (2010). Chitin synthesis and fungal
- pathogenesis. *Current Opinion in Microbiology*, *13*(4), 416–423.
 https://doi.org/10.1016/j.mib.2010.05.002
- Leung, M. Y. K., Liu, C., Koon, J. C. M., & Fung, K. P (2006). Polysaccharide biological
- 759
 response
 modifiers.
 Immunology
 Letters,
 105(2),
 101

 760
 114. https://doi.org/10.1016/j.imlet.2006.01.009
 105(2),
 101
- 761 Levdansky, E., Kashi, O., Sharon, H., Shadkchan, Y., & Osherov, N. (2010). The
- 762 Aspergillus fumigatus cspA gene encoding a repeat-rich cell wall protein is important for

- normal conidial cell wall architecture and interaction with host cells. *Eukaryotic Cell*, 9,
 1403–1415. https://doi.org/10.1128/EC.00126-10.
- Li, K., Xing, R., Liu, S., & Li P. (2016). Advances in preparation, analysis and biological
 activities of single chitooligosaccharides. *Carbohydrate Polymers*, *139*, 178–190.
 https://doi.org/10.1016/j.carbpol.2015.12.016
- Liang, J., Yan, H., Puligundla, P., Gao, X., Zhou, Y., & Wan, X. (2017). Applications of

chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a

- review. *Food Hydrocolloids*, 69, 286-292. https://doi.org/10.1016/j.foodhyd.2017.01.041
- Liu, H., Zhao, H., Lyu, L., Huang, Z., Fan, S., Wu, W., & Li, W. (2019). Synergistic effect
- of natural antifungal agents for postharvest diseases of blackberry fruits. *Journal of the Science of Food and Agriculture*, *99*(7), 3343–3349. https://doi.org/10.1002/jsfa.9551
- Liu, Y., Sun, Z, Xiu, L., Huang, J., & Zhou, F. (2018). Selective antifungal activity of
 chitosan and sulfonated chitosan against postharvest fungus isolated from blueberry.
- Journal of Food Biochemistry, 42(6), e12658. https://doi.org/10.1111/jfbc.12658
- 1777 Liu, Y., Yamdeu, J. H. G., Gong, Y.Y., & Orfila, C. (2020). A review of postharvest
- approaches to reduce fungal and mycotoxin contamination of foods. *Comprehensive*
- 779 *Reviews in Food Science and Food Safety*, 19(4), 1521-1560. https://doi.org/10.1111/1541-
- 780 4337.12562

- 781 López-Mora, L. I., Gutiérrez-Martínez, P., Bautista-Baños, S., Jiménez-García, L. F., &
- 782 Zavaleta-Mancera, H. A. (2013). Evaluation of antifungal activity of chitosan in *Alternaria*
- 783 *alternata* and in the quality of 'Tommy Atkins' mango during storage. *Revista Chapingo*.
- 784 Serie Horticultura, 19(3), 315-331. http://dx.doi.org/10.5154/r.rchsh.2012.07.038
- 785 Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve-Bruna, D., Blázquez, M.
- A., Alabadí, D., & Lopez-Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5

- repression mediate changes in root development in Arabidopsis exposed to chitosan.
 Scientific Reports, 7,16813. https://doi.org/ 10.1038/s41598-017-16874-5.
- Lopez-Moya, F., Suarez-Fernandez, M., & Lopez-Lorca, L.V. (2019). Molecular
 mechanisms of chitosan interactions with fungi and plants. *International Journal of Molecular Sciences*, 20(2), 332. https://doi.org/10.3390/ijms20020332.
- Lu, L., Liu, Y., Yang, J., Azat, R., Yu, T., & Zheng, X. (2014). Quaternary chitosan
- oligomers enhance resistance and biocontrol efficacy of *Rhodosporidium paludigenum* to
 green mold in satsuma orange. *Carbohydrate Polymers*, *113*, 174-181.
 https://doi.org/10.1016/j.carbpol.2014.06.077
- Ma, Z., Yang, L., Yan, H., Kennedy, J. F., & Meng, X. (2013). Chitosan and oligochitosan
- enhance the resistance of peach fruit to brown rot. *Carbohydrate Polymers*, 94(1), 272-
- 798 277. https://doi.org/10.1016/j.carbpol.2013.01.012
- Madanipour, S., Alimohammadi, M., Rezaie, S., Nabizadeh, R., Jahed Khaniki, G., Hadi,
- 800 M., ... Yousefzadeh, S. (2019). Influence of postharvest application of chitosan combined
- 801 with ethanolic extract of liquorice on shelf life of apple fruit. *Journal of Environmental*
- 802 *Health Science and Engineering*, *17*(1), *331-336*. https://doi.org/10.1007/s4020
- 803 Maddi, A., & Free, S. J. (2010). 1,6-Mannosylation of N-linked oligosaccharide present on
- 804 cell wall proteins is required for their incorporation into the cell wall in the filamentous
- 805 fungus *Neurospora crassa. Eukaryotic Cell*, 9(11), 1766-1775.
 806 http://doi.org/10.1128/EC.00134-10
- 807 Maestri, E. Pavlicevic, M., Montorsi, M., & Marmiroli, N. (2019). Meta-Analysis for

correlating structure of bioactive peptides in foods of animal origin with regard to effect

- and stability. Comprehensive Reviews in Food Science and Food Safety, 18(1), 3-3
- 810 https://doi.org/10.1111/1541-4337.12402

811 Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. *International Journal*

812 of Molecular Sciences, 17(7), 996. https://doi.org/10.3390/ijms17070996

- 813 Mandal, S., Kar, I., Mukherjee, A. K., & Acharya, P. (2013). Elicitor-induced defense
- 814 responses in Solanum lycopersicum against Ralstonia solanacearum. Science World
- 815 *Journal*, 2013, 1-9. https://doi.org/10.1155/2013/561056
- 816 Maqbool, M., Ali, A., Ramachandran, S., Smith, D., & Alderson, P. (2010). Control of
- postharvest anthracnose of banana using a new edible composite coating. *Crop Protection*,

818 29, 1136-1141. https://doi.org/10.1016/j.cropro.2010.06.005

- 819 Mebdoua S. (2018) Pesticide Residues in Fruits and Vegetables. In: Mérillon JM.,
- Ramawat K. (eds) *Bioactive Molecules in Food*. Reference Series in Phytochemistry.
- 821 Springer, Cham.
- Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan and oligo chitosan on growth of two fungal pathogens and physiological properties in pear fruit.
- 824 *Carbohydrate Polymers*, 81(1), 70-75. https://doi.org/10.1016/j.carbpol.2010.01.057
- 825 Mohamed, C., Clementine, K. A., Didier, M., Gérard, L., & Noëlle, D. C. M. (2013).
- 826 Antimicrobial and physical properties of edible chitosan films enhanced by lactoperoxidase
- 827 system. Food hydrocolloids, 30(2), 576-
- 828 580. https://doi.org/10.1016/j.foodhyd.2012.07.018
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred
 reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Medicine* 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
- 832 Morin-Crini, N., Lichtfouse, E., Torri, G., & Crini, G. (2019). Applications of chitosan in
- 833 food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper,
- biotechnology, and environmental chemistry. *Environmental Chemistry Letters*, 17, 1667-
- 835 1692. https://doi.org/10.1007/s10311-019-00904-x

- 836 Munhuweyi, K., Lennox, C.L., Meitz-Hopkins, J. C., Caleb, O. J., Sigged, G. O., & Opara,
- U. L. (2017). Investigating the effects of crab shell chitosan on fungal mycelial growth and
- postharvest quality attributes of pomegranate whole fruit and arils. *Scientia Horticulturae*,
- 839 220, 78-89. https://doi.org/10.1016/j.scienta.2017.03.038
- Munoz, Z., Moret, A., & Garces, S. (2009). Assessment of chitosan for inhibition of *Colletotrichum* spp. on tomatoes and grapes. *Crop Protection*, 28(1), 36-40.
 http://doi.org/10.1016/j.cropro.2008.08.015
- 843 Muzzarelli, R. A. A. (1983). Chitin and its derivatives: new trends of applied research.
- 844 *Carbohydrate Polymers*, *3*(1), 53-75. https://doi.org/10.1016/0144-8617(83)90012-7
- Nagy, A., Harrison, A., Sabbani, S., Munson, R. S. Jr., Dutta, P. K., & Waldman, W. J.
- 846 (2011). Silver nanoparticles embedded in zeolite membranes: release of silver ions and
- 847 mechanism of antibacterial action. *International Journal of Nanomedicine*, *6*, 1833-1852.
- 848 https://doi.org/10.2147/IJN.S24019
- 849 Nandeeshkumar, P, Sudisha, J, Ramachandra, K. K., Prakash, H. S., Niranjana, S. R., &
- 850 Shekar, S. H. (2008). Chitosan induced resistance to downy mildew in sunflower caused by
- 851 Plasmopara halstedii. Physiological and Molecular Plant Pathology, 72(4-6), 188-194.
- 852 http://www.sciencedirect.com/science/journal/08855765
- Nelson, M. E., Gent, D. H., & Grove., G. (2015). Meta-analysis reveals a critical period for
 management of powdery mildew on hopcones. *Plant Disease*, *99*(5), 632640. https://doi.org/10.1094/PDIS-04-14-0396-RE
- 856 Nisia C, Noreña, C.P.Z., & Brandelli, A. (2012). Antimicrobial activity of chitosan films
- containing nisin, peptide P34, and natamycin. Journal of Food, 10, 21-
- 858 26. https://doi.org/10.1080/19476337.2010.537371
- Obianom, C., Romanazzi, G., & Sivakumar, D. (2019). Effects of chitosan treatment on
 avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase

- and lipoxygenase genes. *Postharvest Biology and Technology*, 147, 214221. https://doi.org/10.1016/j.postharvbio.2018.10.004
- 863 Oerke, E. C., & Dehne, H. W. (2004). Safeguarding production-losses in major crops and
 864 the role of crop protection. *Crop Protection*, 23, 275-285.
 865 https://doi.org/10.1016/j.cropro.2003.10.001
- 866 Oliveira-Garcia, E., & Deising, H. B. (2013). Infection structure- specific expression of β-
- 867 1,3-glucan synthase is essential for pathogenicity of *Colletotrichum graminicola* and
- 868 evasion of β -glucan-triggered immunity in maize. *Plant Cell*, 25(6), 2356-2378.
- 869 http://doi.org/10.1105/tpc.112.103499
- 870 Palma-Guerrero, J., Jansson, H. B., Salinas, J., & Lopez-Llorca, L. V. (2008). Effect of
- 871 chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi.
- 872 Journal of Applied Microbiology, 104, 541-553. https://doi.org/10.1111/j.1365873 2672.2007.03567.x
- Palma-Guerrero, J., Huang, I. C., Jansson, H. B., Salinas, J., Lopez-Llorca, L. V., & Read
- N. D. (2009). Chitosan permeabilizes the plasma membrane and kills cells of Neurospora
- 876 crassa in an energy dependent manner. Fungal Genetics Biology, 46(8), 585-594.
- 877 http://doi.org/10.1016/j.fgb.2009.02.010. Epub 2009 Apr 21.
- 878 Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A.J., Huang, I. C., Jansson, H. B.,
- Salinas, J., ... Lopez-Llorca, L. V. (2010). Membrane fluidity determines sensitivity of
 filamentous fungi to chitosan. *Molecular Microbiology*, 75(4), 1021–
- 881 1032. https://doi.org/10.1111/j.1365-2958.2009.07039.x.
- Palou, L., Smilanick J. L., & Droby, S. (2008). Alternatives to conventional fungicides for
- the control of citrus postharvest green and blue moulds. *Stewart Postharvest Review*, 4(2),
- 884 1-16. https://doi.org/10.2212/spr.2008.2.2

- Palou, L., & Smilanick J. L. (2020). Postharvest Pathology of Fresh Horticultural Produce.
- In. Palou, L., & Smilanick, J. (Eds.) (1st ed., pp. 1–842). Boca Raton: CRC Press,
 https://doi.org/10.1201/9781315209180
- 888 Parfitt, J., Barthel, M., & Macnaughton, S. (2010). Food waste within food supply chains:
- 889 Quantification and potential for change to 2050. *Philosophical Transactions of the Royal*
- 890 Society B: Biological Sciences, 365, 3065-3081. https://doi.org/10.1098/rstb.2010.0126
- 891 Pasquariello, M. S., Di Patre, D., Mastrobuoni, F., Zampella, L., Scortichini, M., &
- 892 Petriccione, M. (2015). Influence of postharvest chitosan treatment on enzymatic browning
- and antioxidant enzyme activity in sweet cherry fruit. *Postharvest Biology and Technology*,
- 894 109, 45-56. https://doi.org/10.1016/j.postharvbio.2015.06.007
- 895 Patel, P. K. & Free, S. J. (2019). The genetics and biochemistry of cell wall structure and
- synthesis in *Neurospora crassa*, a model filamentous fungus. *Frontiers in Microbiology*,
- 897 10, 2294. https://doi.org/10.3389/fmicb.2019.02294
- Pétriacq, P., López, A. & Luna, S. (2018). Fruit decay to diseases: can induced resistance
 and priming help? *Plants*, 7(4), 77. https://doi.org/10.3390/plants7040077
- 900 Petriccione, M., Mastrobuoni, F., Zampella, L., Nobis, E., Capriolo, G., & Scortichini, M.
- 901 (2017). Effect of chitosan treatment on strawberry allergen-related gene expression during
- 902 ripening stages. Journal of Food Science and Technology, 54(5), 1340–1345.
- 903 https://doi.org/10.1007/s13197-017-2554-3
- 904 Pieterse, C. M. J., Van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., ...
- 905 van Loon, L. C. (1998). A novel signaling pathway controlling induced systemic resistance
- 906 in Arabidopsis. *Plant Cell*, 10(9), 1571–1580. https://doi.org/ 10.1105/tpc.10.9.1571
- 907 Prusky, D. (2011). Reduction of the incidence of postharvest quality losses, and future
- 908 prospects. Journal of Food Security, 3(4), 463-474. https://doi.org/10.1007/s12571-011-
- 909 0147-y

- 910 Pusztahelyi T. (2018). Chitin and chitin-related compounds in plant-fungal interactions.
- 911 *Mycology*, 9(3), 189–201. https://doi.org/10.1080/21501203.2018.1473299
- 912 Rabea, E. I., Badawy, M. E., Stevens, C. V., Smagghe, G, & Steurbaut, W. (2003). Chitosan
- 913 as antimicrobial agent: applications and mode of action. *Biomacromolecules*, *4*, 1457-1465.
- 914 https://doi.org/10.1021/bm034130m
- Rahman, M. A., Mahmud, T. M. M., Kadir, J., Abdul Rahman, R., & Begum, M. M. (2008).
- 916 Antimicrobial activities of chitosan and calcium chloride on *in-vitro* growth of
- 917 Colletotrichum gloeosporioides from Papaya. Pertanika. Journal of Tropical Agricultural
 918 Science, 31(2), 223-232.
- 919 Ramos-García, M., Bosquez-Molina, E., Hernández-Romano, J., Zavala-Padilla, G.,
- 920 Terrés-Rojas, E., Alia-Tejacal, ... Bautista-Baños, S. (2012). Use of chitosan-based edible
- 921 coatings in combination with other natural compounds, to control *Rhizopus stolonifer* and
- 922 Escherichia coli DH5a in fresh tomatoes. Crop Protection, 38, 1-
- 923 6. https://doi.org/10.1016/j.cropro.2012.02.01
- 924 Ramos-Guerrero, A., González-Estrada, R. R, Hanako-Rosas, G., & Bautista-Banõs, S.
- 925 (2018). Use of inductors in the control of *Colletotrichum gloeosporioides* and *Rhizopus*
- stolonifer isolated from soursop fruits: in vitro tests. The Food Science and Biotechnology,
- 927 27(3), 755-763. https://doi.org/10.1007/s10068-018-0305-5
- 928 Ramos-Guerrero, A., González-Estrada, A. A., Romanazzi, G., L. Landi, L. & Gutiérrez-
- 929 Martínez, P. (2020). Effect of chitosan in the control of postharvest anthracnose of soursop
- 930 (Annona muricata) fruit. Revista Mexicana de Ingenieria Quimica, 19(1), 99-
- 931 108. https://doi.org/10.24275/rmiq/Bio527
- Rebelo, R., Vila, N. & Fangueiro, R. (2016). Poly lactic acid fibre based biodegradable
 stents and their functionalization techniques, in: R. Fangueiro, S. Rana (Eds.), Natural

- 934 fibres: advances in science and technology towards industrial applications. to Mark.,
 935 RILEM Book series, pp. 331-342.
- Ribes, S., Fuentes, A., Talens, P., & Barat, J. (2018). Prevention of fungal spoilage in food
 products using natural compounds: A review. *Critical Reviews in Food Science and Nutrition*, 58(12), 2002-2016. https://doi.org/10.1080/10408398.2017.1295017
- 939 Romanazzi, G., Feliziani, E., Santini, M., & Landi, L. (2013). Effectiveness of postharvest
- 940 treatment with chitosan and other resistance inducers in the control of storage decay of
- 941 strawberry. *Postharvest Biology and Technology*, 75, 24-27.
 942 https://doi.org/10.1016/j.postharvbio.2012.07.007
- 943 Romanazzi, G., Gabler, F. M., Margosan, D., Mackey, B. E., & Smilanick, J. L. (2009).
- 944 Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold
- 945 of table grape. *Phytopathology*. 99(9), 1028-1036. https://doi.org/10.1094/PHYTO-99-9946 1028.
- 947 Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutierrez-Martinez, P., & Alkan, N. (2016).
- 948 Induced resistance to control postharvest decay of fruit and vegetables. *Postharvest Biology*
- 949 and Technology122, 82–94. https://doi.org/ 10.1016/j.postharvbio.2016.08.003
- 950 Romanazzi, G., Smilanick, J. L., Feliziani, E., & Droby, S. (2016). Integrated management
- 951 of postharvest gray mold on fruit crops. *Postharvest Biology and Technology*, *113*, 69-76.
- 952 https://doi.org/10.1016/j.postharvbio.2015.11.003
- 953 Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2017). Shelf life extension of
- 954 fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and
- 955 *Nutrition*, 57, 579-601. https://doi.org/10.1080/10408398.2014.900474
- Romanazzi, G., Feliziani, E., & Sivakumar, D. (2018). Chitosan, a biopolymer with triple
 action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film-

958 forming

Frontiers

Microbiology,

959 2745. https://doi.org/10.3389/fmicb.2018.02745

properties.

- 960 Rosenberg, M. S., Garrett, K. A., Su, Z. & Bowden, R. L. (2004). Meta-analysis in plant
- pathology: synthesizing research results. *Phytopathology*, *94*(9), 10131017. https://doi.org/10.1094/PHYTO.2004.94.9.1013
- 963 Sawicka B. (2019). Post-harvest Losses of Agricultural Produce. In: Leal Filho W., Azul
- A., Brandli L., Özuyar P., Wall T. (Eds.) Zero Hunger. Encyclopedia of the UN
- 965 Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319966 69626-3_40-1
- 967 Schwingshackl, L., Hoffmann, G., Iqbal, K., Schwedhelm, K. & Boeing, H. (2018). Food
- 968 groups and intermediate disease markers: a systematic review and network meta-analysis
- 969 of randomized trials. The American Journal of Clinical Nutrition, 108(3), 576-
- 970 586. https://doi.org/10.1093/ajcn/nqy151
- 971 Shao, X. F. Tu, K., Tu, S., & Tu, J. (2012). A combination of heat treatment and chitosan
- 972 coating delays ripening and reduces decay in (Gala) apple fruit. *Journal of Food Quality*,
- 973 *35*, 83-92 https://doi.org/10.1111/j.1745-4557.2011.00429.x
- 974 Shao, X., Cao, B., Xu, F., Xie, S., Yu, D., & Wang, H. (2015). effect of postharvest
- application of chitosan combined with clove oil against citrus green mold. *Postharvest*
- 976 Biology and Technology. 99, 37-43. https://doi.org/10.1016/j.postharvbio.2014.07.014
- 977 Shen, Y., & Yang, H. (2017). Effect of preharvest chitosan-g-salicylic acid treatment on
- 978 postharvest table grape quality, shelf life, and resistance to Botrytis cinerea induced
- 979 spoilage. Scientia Horticulturae. 224, 367-
- 980 373. https://doi.org/10.1016/j.scienta.2017.06.046

- 981 Shi, Z., Wang, F., Lu, Y., & Deng, J. (2018). Combination of chitosan and salicylic acid to
- 982 control postharvest green mold caused by *Penicillium digitatum* in grapefruit fruit. *Scientia*.

983 *Horticulturae*, 233, 54-60. http://dx.doi.org/10.1016/j.scienta.2018.01.039

- 984 Silva W. B, Silva G. M. C., Santana D. B., Salvador, A. R., Medeiros, D. B, Belghith, I., ...
- 985 Misobutsi, G. P. (2018). Chitosan delays ripening and ROS production in guava (*Psidium*
- 986 *guajava* L.) fruit. *Food Chemistry*, 242, 232-238.
- 987 https://doi.org/10.1016/j.foodchem.2017.09.052
- 988 Singh, R. K., Soares, B., Goufo, P., Castro, I., Cosme, F., Pinto-Sintra, A. L., ... Falco, V.
- (2019). Chitosan upregulates the genes of the ROS pathway and enhances the antioxidant
 potential of grape (*Vitis vinifera* L. 'Touriga Franca' and 'Tinto Cão') tissues. *Antioxidants*,
- 991 8, 11. https://doi.org/10.3390/antiox8110525
- Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yanga, L., & Zhang, Y. (2016). Effects 992 of chitosan/ nano-silica on postharvest quality and antioxidant capacity of loquat fruit 993 994 during cold storage. **Postharvest** Biology and Technology, 119, 41-48. https://doi.org/10.1016/j.postharvbio.2016.04.015 995
- 996 Souza, C. D., Yuk, H. G., Khoo, G. H., & Zhou, W. (2015). Application of light-emitting
- 997 diodes in food production, postharvest preservation, and microbiological food safety.
- 998 Comprehensive Reviews in Food Science and Food Safety, 14(6), 719-740.
- 999 https://doi.org/10.1111/1541-4337.12155
- 1000 Talibi, I., Boubaker, H., Boudyach, E. H., & Ait Ben Aoumar, A. (2014). Alternative
- 1001 methods for the control of postharvest citrus diseases. *Journal of Applied Microbiology*,
- 1002 *117*(1), 1-17. https://doi.org/10.1111/jam.12495
- 1003 Timmermann, T., González, B. & Ruz, G.A. (2020). Reconstruction of a gene regulatory
- 1004 network of the induced systemic resistance defense response in Arabidopsis using boolean
- 1005 networks. *BMC Bioinformatics*, 21, 142. https://doi.org/10.1186/s12859-020-3472-3

- Tufanaru, C., Munn, Z., Stephenson, M., & Aromataris, E. (2015). Fixed or random effects
 meta-analysis? Common methodological issues in systematic reviews of effectiveness. *International Journal of Evidence-Based Healthcare*, *13*, 196-207.
 https://doi.org/10.1097/XEB.00000000000065
- 1010 Tungland, B. C., & Meyer, D. (2002). Non-digestible oligo- and polysaccharides (dietary
- 1011 fiber): their physiology and role in human health and food. *Comprehensive Reviews in Food*
- 1012
 Science and Food Safety, 1(3), 90-109.
 https://doi.org/10.1111/j.1541

 1013
 4337.2002.tb00009.x
- 1014 Valencia-Chamorro, S. A., Palou, L., & Del Río, M. A. (2011). Antimicrobial edible films
 1015 and coatings for fresh and minimally processed fruits and vegetables: a review. *Critical*1016 *Reviews in Food Science and Nutrition*, 51(9), 872-900.
 1017 https://doi.org/10.1080/10408398.2010.485705
- 1018 Varela, G. B., Coronado Partida, L. D., Ochoa Jiménez, V. A., López, C. M. A., & Martínez,
- 1019 G. P. (2015). Effect of chitosan on the induction of disease resistance against *Colletotrichum*
- 1020 spp. in mango (*Mangifera indica* L.) cv. Tommy Atkins. *Investigación Ciencia*, 66, 16-21.
- 1021 Viswanatha, G. L., Shylaj, H., & Moolemath, Y. (2017). The beneficial role of naringin, a
- 1022 citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and
- 1023 cognitive dysfunction in rodents: a systematic review and meta-analysis. *Biomedicine and*
- 1024 *Pharmacotherapy*, *94*, 909-929. https://doi.org/10.1016/j.biopha.2017.07.072
- 1025 Waewthongrak, W., Pisuchpen, S., & Leelasuphakul, W. (2015). Effect of Bacillus subtilis
- and chitosan applications on green mold (*Penicilium digitatum* Sacc.) decay in citrus fruit.
- 1027 Postharvest Biology and Technology. 99, 44-49.
- 1028 https://doi.org/10.1016/j.postharvbio.2014.07.016

- 1029 Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced
- 1030 resistance: challenges for the future. *The Journal of Experimental Botany*, 64(5), 1263-
- 1031 1280. https://doi.org/10.1093/jxb/ert026
- 1032 Wang, L., Wu, H., Qin, G., & Meng, X. (2014). Chitosan disrupts Penicillium expansum
- and controls postharvest blue mold of jujube Fruit. Food Control, 41(1), 56-
- 1034 62. https://doi.org/10.1016/j.foodcont.2013.12.028
- 1035 Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants,
- 1036 antioxidant enzyme system, and postharvest fruit quality of strawberries (*Fragaria* \times
- 1037 ananassa Duch). LWT Food Science and Technology, 52, 71-79.
- 1038 https://doi.org/10.1016/j.lwt.2012.05.003
- 1039 Wang, Y. G, Li, B. & Zhang, X. D. (2017). Low molecular weight chitosan is an effective
- 1040 antifungal agent against *Botryosphaeria* sp. and preservative agent for pear (*Pyrus*) fruits.
- 1041 International Journal of Biological Macromolecules, 95, 1135-
- 1042 1143. https://doi.org/10.1016/j.ijbiomac.2016.10.105
- 1043 Weir, C. J., Butcher, I., Assi, V., Lewis, S. C., Murray, G. D., Langhorne, P., & Brady, M.
- 1044 C. (2018). Dealing with missing standard deviation and mean values in meta-analysis of
- 1045 continuous outcomes: a systematic review. *BMC Medical Research Methodology*, 18, 25.
- 1046 https://doi.org/10.1186/s12874-018-0483-0
- 1047 Xing, K., Zhu, X., Peng, X., & Qin S. (2015). Chitosan antimicrobial and eliciting properties
- 1048 for pestcontrol in agriculture: a review. Agronomy for Sustainable Development, 35, 569-
- 1049 588. https://doi.org/0.1007/s13593-014-0252
- 1050 Xing, Y., Xu, Q., Che, Z., Li, X., & Li, W. (2011). Effects of chitosan oil coating on blue
- 1051 mold disease and quality attributes of jujube fruits. *Food & Function*, 2(8), 466-474.
- 1052 http://dx.doi.org/10.1039/c1fo10073d

- 1053 Xing, Y., Lin, H., Cao, D., Xu, Q., Han, W., Wang, R., ... Li, X. (2015). Effect of Chitosan
- 1054 Coating with Cinnamon Oil on the Quality and Physiological Attributes of China Jujube
- 1055 Fruits. *BioMed Research International*, 2015,835151 https://doi.org/10.1155/2015/835151
- 1056 Xing, Y., Xu, Q., Yang, S. X., Chen, C., Tang, Y., Sun, S., ... Li, X. (2016). Preservation
- 1057 mechanism of chitosan-based coating with cinnamon oil for fruits storage based on sensor
- 1058 data. Sensors, 16(7), 1111. https://doi.org/10.3390/s16071111
- 1059 Xoca-Orozco, L. A., Aguilera-Aguirre, S, López-García, U.M., Gutiérrez-Martínez, P., &
- 1060 Chacón-López, A (2018). Effect of chitosan on the *in-vitro* control of *Colletotrichum* spp.
- and its influence on postharvest quality in Hass avocado fruits. *Revista Bio Ciencias*, *5*, 355.
- 1062 http://dx.doi.org/10.15741/revbio.05.01.13
- 1063 Xoca-Orozco L. A., Aguilera-Aguirre, S., Vega-Arreguín J., Acevedo-Hernández, G.,
- 1064 Tovar Pérez, E., Stoll, A., ... Chacón-López, A. (2019). Activation of the phenylpropanoid
- biosynthesis pathway reveals a novel action mechanism of the elicitor effect of chitosan on
- avocado fruit epicarp. *Food Research International*, 121, 586-592.
 http://dx.doi.org/10.1016/j.foodres.2018.12.023
- 1068 Xu, W.T., Huang, K.L., Guo, F., Yang, J., Liang, Z., & Luo, Y. (2007). Postharvest
- 1069 grapefruit seed extract and chitosan treatments of table grapes to control *Botrytis cinerea*.
- 1070PostharvestBiologyandTechnology,46,86-94.1071https://doi.org/10.1016/j.postharvbio.2007.03.019
- Yadav, V., Wang, Z., Wei, Amo, A., Ahmed, B., Yang, X., & Zhang, X. (2020).
 Phenylpropanoid pathway engineering: an emerging approach towards plant defense.
- 1074 *Pathogens*, 9(4), 312. https://doi.org/10.3390/pathogens9040312
- Yan, J., Li, J., Zhao, H., Chen, N., Cao, J., & Jiang, W. (2011). Effects of oligo chitosan on
 postharvest *Alternaria* rot, storage quality, and defense responses in Chinese jujube

- 1077 (*Zizyphus jujuba* Mill. cv. Dongzao) fruit. *Journal of Food Protection*, 74(5), 7831078 788. https://doi.org/10.4315/0362-028X.JFP-10-480
- Yang, Z., Scott, C. A., Mao, C., Tang, J. & Farmer, A. J. (2014). Resistance exercise versus
 aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. *Sports Medicine*, 44(4), 487-499. https://doi.org/10.1007/s40279-013-0128-8
- 1082 Yilmaz Atay, H. (2019) Antibacterial activity of chitosan-based systems. In: Jana S., Jana
- 1083 S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15 1084 0263-7_15
- Yin, H., Li, S., Zhao, X., Du, Y., & Ma, X. (2006) cDNA microarray analysis of gene
 expression in *Brassica napus* treated with oligo chitosan elicitor. *Plant Physiology and Biochemistry*, 44(11-12), 910-916. http://dx.doi.org/10.1016/j.plaphy.2006.10.002
- Zahid, N., Ali, A., Manickam, S., Siddiqui, Y., & Maqbool, M. (2012). Potential of
 chitosan-loaded nanoemulsions to control different *Colletotrichum* spp. and maintain
 quality of tropical fruits during cold storage. *Journal of Applied Microbiology*, *113*, 925-
- 1091 939. https://doi.org/10.1111/j.1365-2672.2012.05398.x
- Zahid, N., Maqbool, M., Ali, A., Siddiqui, Y. & Bhatti, Q. A. (2019). Inhibition in
 production of cellulolytic and pectinolytic enzymes of *Colletotrichum gloeosporioides*
- 1094 isolated from dragon fruit plants in response to submicron chitosan dispersions. *Scientia*
- 1095 *Horticulturae*, 243, 314-319. https://doi.org/10.1016/j.scienta.2018.08.011
- 1096 Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers:
- 1097 structure, chemistry, solubility, derivatives, and applications. *ChemBioEng Reviews*, 2(3),
- 1098 204-226. https://doi.org/10.1002/cben.201400025
- 1099 Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S., & Zhao, K. (2018). Biomedical applications of
- 1100 chitosan and its derivative nanoparticles. *Polymers* (Basel), 10, 462.
- 1101 https://doi.org/10.3390/polym10040462

1102	Zheng, W., Li, L., Pan, S., Liu, M., Zhang, W., Liu, H., & Zhu, C. (2017). Controls
1103	postharvest decay and elicits defense response in kiwi fruit. Food and Bioprocess
1104	Technology, 11, 1937-1945. https://doi.org/10.1007/s11947-017-1957-5
1105	Zuccolo, M., Kunova, A., Musso, L., Forlani, F., Pinto, A., Vistoli G., Dellavalle S.
1106	(2019). Dual-active antifungal agents containing strobilurin and SDHI-based
1107	pharmacophores. Scientific Reports 9, 11377. https://doi.org/10.1038/s41598-019-47752-x
1108	Zuppini, A., Baldan, B., Millioni, R., Favaron, F., Navazio, & L., Mariani, P. (2003).
1109	Chitosan induces Ca ²⁺ mediated programmed cell death in soybean cells. New Phytologist
1110	161, 557–568. https://doi.org/10.1046/j.1469-8137.2003.00969.x
1111	
1112	Acknowledgements

1113 The authors would like to thank COST Action FA1405 "Using three-way interactions between 1114 plants, microbes and arthropods to enhance crop protection and production" for organising a 1115 meta-analysis workshop in July 2016, from led to the idea for this study.

1116

1117 Author Contributions

R.R. performed the literature research, analysed the data, and contributed to write the
manuscript; L.L designed the analysis, analysed the data, and wrote the manuscript; G.R.
designed the analysis, supervised and complemented the writing, and coordinated the study.

1122 **Conflicts of Interest:** The authors declare that they have no competing interests.

1123

1125 TABLE 1. Main characteristics of datasets that have included 1% chitosan effects on1126 postharvest fungal pathogens.

First author	Year	Fungal pathogen	Chito	Defence		
			Disease	In-vitro	Plant	enzyme
			incidence	mycelium	defence	
			(fruit)	growth	mechanism	
					(fruit)	
Xu	2007	B. cinerea		Yes		-
Jitareerat	2007	Colletotrichum spp.		Yes		-
Rahman	2008	Colletotrichum spp.		Yes		-
Hewajulige	2009	-			Papaya	Chitinase,
						β-1,3-
						glucanase
Munoz	2009	Colletotrichum spp.		Yes		-
Meng	2010	Alternaria spp.	Pear			-
Maqbool	2010	Colletotrichum spp	Banana			-
Cia	2010	Rhizopus spp.		Yes		-
Yan	2011	Alternaria spp.	Jujube	Yes		-
Abdel-Kader	2011	Penicillium spp.		Yes		-
Xing	2011	Penicillium spp	Jujube			-
Nisia	2012	Penicillium spp.		Yes		-
Ramos-Garcia	2012	Rhizopus spp.	Tomato			-
Shao	2012	Penicillium spp., B.	Apple			-
		cinerea				
Cháfer	2012	Penicillium spp.	Orange			-
Zahid	2012	Colletotrichum spp.	Banana,	Yes		-
			Papaya,			
			Dragon			
Feliziani	2013	B. cinerea,		Yes	Table grape	Chitinase
		Alternaria spp.,				
		Penicillium spp.				
Wang	2013	-			Strawberry	β-1,3-
						Glucanase
Mohamed	2013	Colletotrichum spp.		Yes		-
Gao	2013	B. cinerea	Table grape			-
López-Mora	2013	Alternaria spp.	Mango	Yes		-

Romanazzi	2013	Penicillium spp., B.	Strawberry			-
		cinerea, Rhizopus				
		spp.				
Bill	2014	Colletotrichum spp.		Yes	Avocado	PAL,
						chitinase,
						β-1,3-
						glucanase
Ali	2014	Colletotrichum spp.		Yes	Dragon	Chitinase,
						β-1,3-
						glucanase
Wang	2014	Penicillium spp.	Jujube	Yes		-
Lu	2014	Penicillium spp.	Orange			-
Landi	2014				Strawberry	PAL,
						chitinase,
						β-1,3-
						glucanase
Edirisinghe	2014	Colletotrichum spp.	Bell pepper	Yes		-
Zahid	2015				Dragon	PAL
Feliziani	2015	B. cinerea	Strawberry			-
Waewthongrak	2015	Penicillium spp.		Yes	Citrus	PAL
Varela	2015	Colletotrichum spp.		Yes		-
Shao	2015	Penicillium spp.		Yes	Mandarine	PAL,
						chitinase,
						β-1,3-
						glucanase
Xing	2015	Rhizopus spp.	Jujube			-
Ali	2015	Colletotrichum spp.	Bell pepper	Yes		-
Song	2016				Loquat	PAL
El Guilli	2016	Penicillium spp.	Citrus			-
Zheng	2017	B. cinerea	Kiwi			-
Gutiérrez-	2017	Colletotrichum spp.	Mango,	Yes		-
Martinez			banana,			
			soursop			
Guo	2017	Alternaria spp.	Jujube			-
Shen	2017	-			Table grape	PAL,
						chitinase,
						β-1,3-
						glucanase

Jongsri	2017	-			Mango	PAL,
						chitinase,
						β-1,3-
						glucanase
de Oliveria	2017	Colletotrichum spp.		Yes		-
Kanetis	2017	B. cinerea	Table grape	Yes		-
Munhuweyi	2017	B. cinerea		Yes		-
Silva	2018				Guava	PAL
Gramisci	2018	B. cinerea,	Pear			-
		Penicillium spp.				
Најјі	2018	B. cinerea	Strawberry			-
Kharchoufi	2018	Penicillium spp.	Orange			-
Flores	2018	B. cinerea		Yes		-
Ramos-Guerrero	2018	Colletotrichum spp.		Yes		-
Liu	2018	Penicillium spp.	Blueberry			-
Shi	2018	Penicillium spp.	Grapefruit			-
Xoca-Orozco	2018	Colletotrichum spp.		Yes		-
Obianom	2019	Colletotrichum spp.	Avocado			-
Madanipour	2019	Penicillium spp.		Yes		-

Study of	1%	chito	san	C	ontro	I		Mean Differen	ce Mean Difference
	Mean	SD -	Fotal	Mea	n SD T	Fotal	Weight	IV, Random, 95%	
1.1.1 Gray mold									
Feliziani 2013.	2.3	51.9615	108	3.9	51.9615	108	2.0%	-1.60 [-15.46, 12.26]	
Feliziani 2013.	16	47.4342	90	25	47.4342	90	2.0%	-9.00 [-22.86, 4.86]	+
Feliziani 2013	15	47 4342	90	23	47 4342	90	2.0%	-8.00 [-21.86, 5.86]	_ _
Feliziani 2015	65	47.4342	90	92	47.4342	90	2.0%	-27.00 [-40.86, -13.14]	
Gao 2013	4	19.3649	15	25	19.3649	15	2.0%		
					10.0010		ALCO 70	-21.00 [-34.86, -7.14]	
Gramisci 2018	70	38.7298	60	90	38.7298	60	2.0%	-20.00 [-33.86, -6.14]	
Hajji 2018	50	27.3861	30	80	27.3861	30	2.0%	-30.00 [-43.86, -16.14]	
Kanetis 2017,	32	67.082	180	55	67.082	180	2.0%	-23.00 [-36.86, -9.14]	
Kanetis 2017.	18	67.082	180	39	67.082	180	2.0%	-21.00 [-34.86, -7.14]	
Romanazzi 2013,	20	86.6025	300	63	86.6025	300	2.0%	-43.00 [-56.86, -29.14]	
Shao 2012.	70	38.7298	60	100	38.7298	60	2.0%	-30.00 [-43.86, -16.14]	
Zheng 2017.	46	82.1584	270	100	82.1584	270	2.0%	-54.00 [-67.86, -40.14]	
Subtotal (95% CI)			1473			1473	24.5%	-23.97 [-32.25, -15.68]	•
Heterogeneity: Tau ² = 164.5 Test for overall effect: Z = 5.			= 11 (P	< 0.00	001); I ² = 7	7%			-
1.1.2 Blue /Green mole		0.00001)							
1.1.2 Diue/Green mole El Guilli 2016	a 25	50	100	100	50	100	2.0%	75 00 / 00 00 01 11	
								-75.00 [-88.86, -61.14]	
Feliziani 2013,.	3.3	51.9615	108	4.8	51.9615	108	2.0%	-1.50 [-15.36, 12.36]	
Gramisci 2018,	75	38.7298	60	90	38.7298	60	2.0%	-15.00 [-28.86, -1.14]	
Kharchoufi 2018	88	17.3205	12	100	17.3205	12	2.0%	-12.00 [-25.86, 1.86]	
Liu 2018,	1	94.8683	360	27.5	94.8683	360	2.0%	-26.50 [-40.36, -12.64]	
Lu 2014	30	30	36	75	30	36	2.0%	-45.00 [-58.86, -31.14]	
Lu 2014.	18	30	36	58	30	36	2.0%	-40.00 [-53.86, -26.14]	
Lu2014.	24	30	36	58	30	36	2.0%	-34.00 [-47.86, -20.14]	
Romanazzi 2013.	4	86.6025	300	48	86.6025	300	2.0%	-44.00 [-57.86, -30.14]	I
Cháfer 2012	80	22.3607	20	90	22.3607	20	2.0%	-10.00 [-23.86, 3.86]	
Shao 2012.	77	38.7298	60	90	38.7298	60	2.0%	-13.00 [-26.86, 0.86]	
	40	27.3861	30		27.3861	30	2.0%	-13.00 [-20.00, 0.00]	
Shao 2015				100				-60.00 [-73.86, -46.14]	
Shi 2018	80	54.7723	120	85	54.7723	120	2.0%	-5.00 [-18.86, 8.86]	_ _ _
Wang 2014	10	82.1584	270	23	82.1584	270	2.0%	-13.00 [-26.86, 0.86]	
Xing 2011	27.6	61.2372	150	92.2	61.2372	150	2.0%	-64.60 [-78.46, -50.74]	
Zheng 2017,	65	82.1584	270	100	82.1584	270	2.0%	-35.00 [-48.86, -21.14]	
Subtotal (95% CI)			1968			1968	32.7%	-30.85 [-41.91, -19.79]	◆
Heterogeneity: Tau ² = 459.9 Test for overall effect: Z = 5.			f = 15 (P < 0.0	0001); I ² =	90%			
1.1.3 Rhizopus rot									
Cia 2010	66	31.6228	40	86	31.6228	40	2.0%	-20.00 [-33.86, -6.14]	
Ramos-Garcia 2012,	33	50	100	91	50	100	2.0%	-58.00 [-71.86, -44.14]	
Ramos-Garcia 2012.	51	50	100	62	50	100	2.0%	-11.00 [-24.86, 2.86]	
Romanazzi 2013	8	86.6025	300	48	86.6025	300	2.0%	-40.00 [-53.86, -26.14]	
Xing 2015	30	173.2051	1200	45	173.2051	1200	2.0%	-15.00 [-28.86, -1.14]	
						1740	10.2%		
Subtotal (95% CI)		170.2001	1740			1740	10.2%	-28.80 [-46.13, -11.47]	◆
Heterogeneity: Tau ² = 340.7	'0; Chi ² =	= 31.26, df	1740	< 0.000	01); I² = 87		10.2%	-28.80 [-46.13, -11.47]	•
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3.	'0; Chi ² =	= 31.26, df	1740	< 0.000	01); I² = 87		10.2%	-28.80 [-46.13, -11.47]	•
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose	0; Chi² = .26 (P =	= 31.26, df 0.001)	1740 = 4 (P ·			%		-28.80 [-46.13, -11.47]	•
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose Ali 2015	0; Chi ² = 26 (P =	= 31.26, df 0.001) 21.2132	1740 = 4 (P · 18	70	21.2132	% 18	2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose Ali 2015 Bill 2014	20; Chi ² =	= 31.26, df 0.001) 21.2132 31.6228	1740 = 4 (P 18 40	70 90	21.2132 31.6228	% 18 40	2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose Ali 2015 Bill 2014 Edirsinghe 2014	20; Chi ² = 26 (P = 20 65 20	= 31.26, df 0.001) 21.2132 31.6228 89.4427	1740 = 4 (P 18 40 320	70 90 70	21.2132 31.6228 89.4427	% 18 40 320	2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-63.86, -36.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutièrrez-Martinez 2017	20; Chi ² = 26 (P = 20 65 20 20	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666	1740 = 4 (P 18 40 320 280	70 90 70 100	21.2132 31.6228 89.4427 83.666	18 40 320 280	2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-63.86, -36.14] -80.00 [-33.86, -66.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutièrrez-Martinez 2017 Gutièrrez-Martinez 2017,	20; Chi ² = 26 (P = 20 65 20 20 1	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666	1740 = 4 (P 18 40 320 280 280	70 90 70 100	21.2132 31.6228 89.4427 83.666 83.666	18 40 320 280 280	2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-63.86, -66.14] -99.00 [-112.86, -85.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose Ali 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017.	20; Chi ² = 26 (P = 20 65 20 20 1 1	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666	1740 = 4 (P 18 40 320 280 280 280 280	70 90 70 100 100 20	21.2132 31.6228 89.4427 83.666 83.666 83.666	18 40 320 280 280 280	2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-53.86, -36.14] -80.00 [-93.86, -66.14] -99.00 [-112.86, -85.14] -19.00 [-32.86, -5.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4. Anthracnose Ali 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017.	20; Chi ² = 26 (P = 20 65 20 20 1	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666	1740 = 4 (P 18 40 320 280 280	70 90 70 100	21.2132 31.6228 89.4427 83.666 83.666	18 40 320 280 280	2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-63.86, -66.14] -99.00 [-112.86, -85.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutiërrez-Martinez 2017 Gutiërrez-Martinez 2017, Gutiërrez-Martinez 2017. Maqbool 2010 Obianom 2019	20; Chi ² = 26 (P = 20 65 20 20 1 1	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666	1740 = 4 (P 18 40 320 280 280 280 280	70 90 70 100 100 20	21.2132 31.6228 89.4427 83.666 83.666 83.666	18 40 320 280 280 280	2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-53.86, -36.14] -80.00 [-93.86, -66.14] -99.00 [-112.86, -85.14] -19.00 [-32.86, -5.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutiërrez-Martinez 2017 Gutiërrez-Martinez 2017, Gutiërrez-Martinez 2017. Maqbool 2010 Obianom 2019	70; Chi² = 226 (P = 20 65 20 20 1 1 5	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082	1740 = 4 (P 18 40 320 280 280 280 280 180	70 90 70 100 100 20 65	21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082	% 18 40 320 280 280 280 280 180	2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-50.00 [-63.86, -36.14] -25.00 [-38.86, -11.14] -50.00 [-63.86, -36.14] -80.00 [-93.86, -66.14] -99.00 [-112.86, -85.14] -19.00 [-32.86, -5.14] -60.00 [-73.86, -46.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose Ali 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Maqbool 2010 Delanom 2019 Zahid 2012,	'0; Chi ² = 26 (P = 20 65 20 20 1 1 5 40	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80	1740 = 4 (P 18 40 320 280 280 280 280 180 256	70 90 70 100 20 65 70	21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80	% 18 40 320 280 280 280 180 256	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -36.14] -80.00 [-93.86, -36.14] -80.00 [-93.86, -66.14] -99.00 [-712.86, -85.14] -19.00 [-32.86, -51.61] -30.00 [-33.86, -6.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose Ali 2015 Bil 2014 Edirsinghe 2014 Gutierrez-Martinez 2017 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017. Magbool 2010 Obianom 2019 Zahid 2012, Zahid 2012.	'0; Chi ² = 26 (P = 20 65 20 20 1 1 5 40 40 20	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80 63.2456 63.2456	1740 = 4 (P 18 40 320 280 280 280 280 180 256 160	70 90 100 20 65 70 60	21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80 63.2456 63.2456	% 18 40 320 280 280 280 180 256 160	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -80.00 [-33.86, -86.14] -90.00 [-32.86, -85.14] -00.00 [-33.86, -46.14] -30.00 [-43.86, -16.14] -20.00 [-33.86, -86.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Magbool 2010 Obianom 2019 Zahid 2012, Zahid 2012, Zahid 2012,	'0; Chi ² = 26 (P = 20 65 20 20 1 1 5 40 40	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80 63.2456	1740 = 4 (P 18 40 320 280 280 280 280 280 180 160 160 160	70 90 100 100 20 65 70 60	21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80 63.2456	% 18 40 320 280 280 280 180 256 160 160	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -36.14] -80.00 [-93.86, -36.14] -80.00 [-93.86, -66.14] -99.00 [-712.86, -85.14] -19.00 [-32.86, -51.61] -30.00 [-33.86, -6.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Subièrrez-Gutièrez-Martinez Zahid 2012, Zahid 2012, Subiotal (95% CI) Heterogeneity: Tau ² = 586.2	 '0; Chi² = 26 (P = 20 65 20 20 1 1 5 40 40 20 20 20 11² = 	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 63.2456 63.2456 63.2456 = 127.25, c	1740 = 4 (P 18 40 320 280 280 280 280 280 280 180 160 160 160 160 2134	70 90 70 100 20 65 70 60 60	21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80 63.2456 63.2456 63.2456	% 18 40 320 280 280 280 180 256 160 160 2134	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -11.14] -50.00 [-63.86, -36.14] -80.00 [-93.86, -86.14] -99.00 [-112.86, -85.14] -19.00 [-33.86, -6.14] -20.00 [-33.86, -6.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose Ali 2015 Bil 2014 Edirsinghe 2014 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierr	 '0; Chi² = 26 (P = 20 65 20 20 1 1 5 40 40 20 20 20 11² = 	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 63.2456 63.2456 63.2456 = 127.25, c	1740 = 4 (P 18 40 320 280 280 280 280 280 280 180 160 160 160 160 2134	70 90 70 100 20 65 70 60 60	21.2132 31.6228 89.4427 83.666 83.666 83.666 67.082 80 63.2456 63.2456 63.2456	% 18 40 320 280 280 280 180 256 160 160 2134	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -11.14] -50.00 [-63.86, -36.14] -80.00 [-93.86, -86.14] -99.00 [-112.86, -85.14] -19.00 [-33.86, -6.14] -20.00 [-33.86, -6.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Magbool 2010 Oblanom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Subtotal (95% Cl) Heterogeneity: Tau ³ = 586.2 Test for overall effect: Z = 6. 1.1.5 Alternaria rot	²⁰ ; Chi ² = 26 (P = 20 65 20 20 1 1 5 40 40 20 20 25; Chi ² =	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 = 127.25, c 0.00001)	1740 = 4 (P 18 40 280 280 280 280 280 280 180 256 160 160 160 2134 f = 10 (70 90 70 100 20 65 70 60 60 60 60 P < 0.0	21.2132 31.6228 89.4427 83.666 83.666 83.666 63.2456 63.2456 63.2456 63.2456	% 18 40 320 280 280 280 180 256 160 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -36.14] -80.00 [-63.86, -36.14] -80.00 [-33.86, -86.14] -99.00 [-12.86, -85.14] -19.00 [-32.86, -56.14] -20.00 [-33.86, -14] -20.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73]	
Heterogeneity: Tau ² = 340.7 Tost for overall effect: Z = 3. 1.1.4 Anthracnose Al 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Zuhid 2010 Dianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Subtotal (95% CI) Heterogeneity: Tau ² = 586.2 Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013.	²⁰ ; Chi ² = 26 (P = 20 65 20 1 1 5 40 40 20 20 20 25; Chi ² = .13 (P <	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 = 127.25, d 0.00001) 51.9615	1740 = 4 (P 18 40 320 280 280 280 280 280 280 180 256 160 160 2134 if = 10 (70 90 70 100 20 65 70 60 60 60 P < 0.0	21.2132 31.6228 89.4427 83.666 83.666 63.2656 63.2456 63.2456 63.2456 63.2456 00001); I ² =	% 18 40 280 280 280 180 256 160 160 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -36.14] -50.00 [-33.86, -66.14] -90.00 [-32.86, -86.14] -90.00 [-32.86, -85.14] -60.00 [-73.86, -46.14] -30.00 [-33.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Bill 2014 Continere: Martinez 2017. Maqbool 2010 Dianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013., Guo 2017	⁷⁰ ; Chl ² = 226 (P = 20 20 20 1 1 5 40 40 20 20 25; Chl ² = 13 (P < 3.3 6	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 = 127.25, d 0.00001) 51.9615 122.4745	1740 = 4 (P 18 40 320 280 280 280 280 280 180 260 160 160 160 160 160 2134 f = 10 (70 90 70 100 205 70 60 60 60 9 < 0.00 4.8 7	21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 51.9615 122.4745	% 18 40 320 280 280 280 280 180 256 160 256 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -50.00 [-63.86, -61.14] -50.00 [-63.86, -36.14] -80.00 [-63.86, -36.14] -90.00 [-12.86, -85.14] -90.00 [-73.86, -46.14] -20.00 [-33.86, -66.14] -40.00 [-53.86, -26.14] -40.00 [-41.86, 12.86] -1.00 [-14.86, 12.86]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Bill 2014 Continere: Martinez 2017. Maqbool 2010 Dianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013., Guo 2017	²⁰ ; Chi ² = 26 (P = 20 65 20 1 1 5 40 40 20 20 20 25; Chi ² = .13 (P <	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 = 127.25, d 0.00001) 51.9615	1740 = 4 (P 18 40 320 280 280 280 280 280 280 180 256 160 160 2134 if = 10 (70 90 70 100 20 65 70 60 60 60 P < 0.0	21.2132 31.6228 89.4427 83.666 83.666 63.2656 63.2456 63.2456 63.2456 63.2456 00001); I ² =	% 18 40 280 280 280 180 256 160 160 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -36.14] -50.00 [-33.86, -66.14] -90.00 [-32.86, -86.14] -90.00 [-32.86, -85.14] -60.00 [-73.86, -46.14] -30.00 [-33.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose Ali 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Maqbool 2010 Dianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Subtotal (95% Cl) Heterogeneity: Tau ² = 586.2 Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013., Guo 2017 Lopez-Mora 2013	⁷⁰ ; Chl ² = 226 (P = 20 20 20 1 1 5 40 40 20 20 25; Chl ² = 13 (P < 3.3 6	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 = 127.25, d 0.00001) 51.9615 122.4745	1740 = 4 (P 18 40 320 280 280 280 280 280 180 260 160 160 160 160 160 2134 f = 10 (70 90 70 100 205 70 60 60 60 9 < 0.00 4.8 7	21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 51.9615 122.4745	% 18 40 320 280 280 280 280 180 256 160 256 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-38.86, -31.14] -50.00 [-63.86, -36.14] -80.00 [-33.86, -85.14] -99.00 [-112.86, -85.14] -99.00 [-33.86, -66.14] -20.00 [-33.86, -66.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -1.00 [-14.86, 12.26] -1.00 [-14.86, 12.26] -20.00 [-33.86, -8.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose Ali 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017 Gutierrez-Martinez 2017. Magbool 2010 Obianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013. Guo 2017 Lopez-Mora 2013 Meng 2010	⁷⁰ ; Chi ² = 226 (P = 20 65 20 1 1 5 40 40 20 20 25; Chi ² = .13 (P < 3.3 6 80	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 63.2456 63.2456 63.2456 63.2456 = 127.25, c 0.00001) 51.9615 122.4745 50	1740 1740 18 40 320 280 280 280 280 280 280 280 280 280 160 160 160 160 160 160 160 160 160 16	70 90 70 100 20 60 60 60 60 9 < 0.0 4.8 7 100	21.2132 31.6228 89.4427 83.666 83.666 63.666 63.2456 63.2456 63.2456 63.2456 63.2456 122.4455 122.4455 50	% 18 40 320 280 280 280 280 280 180 256 160 160 160 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -80.00 [-33.86, -36.8, -40] -90.00 [-32.86, -55.14] -60.00 [-73.86, -46.14] -20.00 [-33.86, -46.14] -00.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73] -1.50 [-15.36, 12.36] -1.00 [-14.86, 12.86] -20.00 [-33.86, -6.14] -14.00 [-21.86, -0.14] -14.00 [-21.86, -0.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Magbool 2010 Obianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Subtotal (95% CI) Heterogeneity: Tau ² = 586.2 Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feitziani 2013. Guo 2017 Lopez-Mora 2013 Meng 2010 Yan 2011	'0; Chi ² = 26 (P = 20 65 20 20 1 1 5 40 40 20 20 20 25; Chi ² = .13 (P < 3.3 6 80 86	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 = 127.25, c 0.00001) 51.9615 122.4745 50 38.7298	1740 = 4 (P 18 40 320 280 280 280 280 280 280 180 256 160 160 160 160 2134 f = 10 (70 90 70 100 20 65 70 60 60 60 P < 0.0 P < 0.0 70 100	21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 00001); I ² = 51.9615 122.4745 50 38.7298	% 18 40 320 280 280 280 280 280 280 280 280 160 160 160 12134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -36.14] -80.00 [-63.86, -36.14] -80.00 [-33.86, -66.14] -99.00 [-13.86, -86.14] -90.00 [-33.86, -66.14] -20.00 [-33.86, -66.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -10.00 [-15.36, 12.36] -20.00 [-33.86, -6.14] -10.00 [-43.86, -6.14] -10.00 [-43.86, -6.14] -14.00 [-27.86, -0.14] -6.00 [-19.86, 7.86]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Maqbool 2010 Obianom 2019 Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2013, Guo 2017 Lopez-Mora 2013 Meng 2010 Yan 2011 Subtotal (95% CI) Heterogeneity: Tau ² = 18.50	20 Chi ² = 26 (P = 20 20 20 20 20 1 1 5 5 40 20 20 20 20 20 20 20 20 20 20 20 20 20	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 = 127.25, c 0.00001) 51.9615 122.4745 \$0 38.7298 94.8683 5.48, df =	1740 1740 18 40 320 280 280 280 280 280 280 280 280 280 2	70 90 70 100 20 65 70 60 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 0001); I ² =	% 18 40 320 280 280 280 280 256 160 160 160 160 160 2134 92%	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -80.00 [-33.86, -36.8, -40] -90.00 [-32.86, -55.14] -60.00 [-73.86, -46.14] -20.00 [-33.86, -46.14] -00.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73] -1.50 [-15.36, 12.36] -1.00 [-14.86, 12.86] -20.00 [-33.86, -6.14] -14.00 [-21.86, -0.14] -14.00 [-21.86, -0.14]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Gutièrrez-Martinez 2017, Maqbool 2010 Obianom 2019 Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Zahid 2012, Subtotal (95% CI) Heterogeneity: Tau ² = 586.2 Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013, Guo 2017 Van 2011 Subtotal (95% CI) Heterogeneity: Tau ² = 18.50 Test for overall effect: Z = 2.	20 Chi ² = 26 (P = 20 20 20 20 20 1 1 5 5 40 20 20 20 20 20 20 20 20 20 20 20 20 20	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 = 127.25, c 0.00001) 51.9615 122.4745 \$0 38.7298 94.8683 5.48, df =	1740 1740 18 40 320 280 280 280 280 280 180 266 160 160 160 2134 f = 10 (108 600 100 600 100 600 4 (P = C	70 90 70 100 20 65 70 60 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 0001); I ² =	% 18 40 320 280 280 280 280 280 256 160 160 2134 92% 108 600 100 60 1228	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -80.00 [-93.86, -46.14] -90.00 [-12.86, -55.14] -60.00 [-73.86, -46.14] -20.00 [-33.86, -46.14] -00.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73] -1.50 [-15.36, 12.36] -1.00 [-14.86, 12.86] -20.00 [-33.86, -8.14] -14.00 [-72.86, -0.14] -6.00 [-19.86, 7.86] -8.50 [-15.75, -1.25]	
Subtotal (95% CI) Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Magbool 2010 Obianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feliziani 2013. Guo 2017 Lopez-Mora 2013 Meng 2010 Yan 2011 Subtotal (95% CI) Heterogeneity: Tau ² = 18.50 Test for overall effect: Z = 2. Total (95% CI)	20 (Chi ² = 20 (C	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 32.4765 32.4745 50 38.7298 94.8683 5.48, df = 0.02)	1740 1740 18 40 320 280 280 280 280 160 160 160 160 2134 f = 10 (108 600 00 00 00 00 8543	70 90 100 100 65 70 60 60 87 7 100 87 100 87 2.24); ²	21.2132 31.6228 89.4427 33.666 83.666 83.666 63.2456 63.2456 63.2456 0001); I ² = 51.9615 122.4745 50 38.7298 94.8683 = 27%	% 18 40 320 280 280 280 280 180 256 160 160 160 2134 92% 108 600 100 60 360 1228 8543	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -25.00 [-63.86, -36.14] -80.00 [-63.86, -36.14] -80.00 [-33.86, -66.14] -99.00 [-13.86, -86.14] -90.00 [-33.86, -66.14] -20.00 [-33.86, -66.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -10.00 [-15.36, 12.36] -20.00 [-33.86, -6.14] -10.00 [-43.86, -6.14] -10.00 [-43.86, -6.14] -14.00 [-27.86, -0.14] -6.00 [-19.86, 7.86]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2017, Gutierrez-Martinez 2018, Gutierrez-Martinez 2013, Guo 2017 Lopez-Mora 2013 Meng 2010 Yan 2011 Subtotal (95% CI) Heterogeneity: Tau ² = 18.50 Test for overall effect: Z = 2.	20 (Chi ² = 20 (C	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 32.4765 32.4745 50 38.7298 94.8683 5.48, df = 0.02)	1740 1740 18 40 320 280 280 280 280 160 160 160 160 2134 f = 10 (108 600 00 00 00 00 8543	70 90 100 100 65 70 60 60 87 7 100 87 100 87 2.24); ²	21.2132 31.6228 89.4427 33.666 83.666 83.666 63.2456 63.2456 63.2456 0001); I ² = 51.9615 122.4745 50 38.7298 94.8683 = 27%	% 18 40 320 280 280 280 280 180 256 160 160 160 2134 92% 108 600 100 60 360 1228 8543	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -80.00 [-93.86, -46.14] -90.00 [-12.86, -55.14] -60.00 [-73.86, -46.14] -20.00 [-33.86, -46.14] -00.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -46.64 [-61.54, -31.73] -1.50 [-15.36, 12.36] -1.00 [-14.86, 12.86] -20.00 [-33.86, -8.14] -14.00 [-72.86, -0.14] -6.00 [-19.86, 7.86] -8.50 [-15.75, -1.25]	
Heterogeneity: Tau ² = 340.7 Test for overall effect: Z = 3. 1.1.4 Anthracnose All 2015 Bill 2014 Edirsinghe 2014 Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Gutierrez-Martinez 2017. Magbool 2010 Obianom 2019 Zahid 2012. Zahid 2012. Zahid 2012. Zahid 2012. Subtotal (95% CI) Heterogeneity: Tau ² = 586.2 Test for overall effect: Z = 6. 1.1.5 Alternaria rot Feitziani 2013. Guo 2017 Lopez-Mora 2013 Meng 2010 Yan 2011 Subtotal (95% CI) Heterogeneity: Tau ² = 18.50 Test for overall effect: Z = 2. Test for overall effect: Z = 2. Test for overall effect: Z = 2.	20 (Ch) ² = 26 (P = 20 (Ch) ²	= 31.26, df 0.001) 21.2132 31.6228 89.4427 83.666 83.666 63.2456 63.2456 63.2456 63.2456 63.2456 63.2456 127.25, 0 0.00001) 51.9615 122.4745 50 38.7298 94.8683 5.48, df = 0.02) = 480.34, cf	1740 1740 18 40 320 280 280 280 280 160 160 160 160 2134 f = 10 (108 600 00 00 00 00 8543	70 90 100 100 65 70 60 60 87 7 100 87 100 87 2.24); ²	21.2132 31.6228 89.4427 33.666 83.666 83.666 63.2456 63.2456 63.2456 0001); I ² = 51.9615 122.4745 50 38.7298 94.8683 = 27%	% 18 40 320 280 280 280 280 180 256 160 160 160 2134 92% 108 600 100 60 360 1228 8543	2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	-28.80 [-46.13, -11.47] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -50.00 [-63.86, -36.14] -80.00 [-93.86, -46.14] -90.00 [-12.86, -55.14] -60.00 [-73.86, -46.14] -20.00 [-33.86, -46.14] -00.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-53.86, -26.14] -40.00 [-43.86, -16.14] -1.00 [-14.86, 12.86] -1.00 [-14.86, 12.86] -20.00 [-33.86, -8.14] -14.00 [-72.86, -0.14] -6.00 [-19.86, 7.86] -8.50 [-15.75, -1.25]	

Figure 2. Forest plots using the RavMan 5.3 software for random effects analysis related to the effectiveness of 1% chitosan on disease incidence. Gray mold, blue/ green mold, *Rhizopus* rot., anthracnose and *Alternaria* rot were considered as subgroups. For Feliziani 2013, Kanetis 2017, Lu 2014, Shao 2012, Ramos-Garcia 2012, Gutièrrez-Martinez 2017 and Zahid 2012, several studies were included from each article into the subgroups. IV, inverse variance; CI, confidence interval.

Study of		% chite	Jouin	Ŭ	ontro			Mean Difference	Mean Difference
Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	
1.1.1 Botrytis cinerea									
Feliziani 2013.	10	13.2288	7	70	13.2288	7		-60.00 [-73.86, -46.14]	
Flores 2018		12.2474	6		12.2474			-57.00 [-70.86, -43.14]	
Kanetis 2017	52.4	12.2474	6	90	12.2474	6	5 2.4%	-37.60 [-51.46, -23.74]	_ _
Kanetis 2017.	67.3	12.2474	6	90	12.2474	6	5 2.4%	-22.70 [-36.56, -8.84]	
Munhuweyi 2017.	1	12.2474	6	100	12.2474	6	5 2.4%	-99.00 [-112.86, -85.14]	
Xu 2007		12.2474	6		12.2474	6		-20.00 [-33.86, -6.14]	
Subtotal (95% CI)			37			37		-49.38 [-72.98, -25.79]	
Heterogeneity: Tau ² = 819. Test for overall effect: Z = 4			df = 5 (F	P < 0.00	001); I² =	94%		,	
1.1.2 Penicillium spp.									
Abdel-Kader 2011	0.83	11.1803	5	90	11.1803	5	5 2.4%	-89.17 [-103.03, -75.31]	
Abdel-Kader 2011.		11.1803	5		11.1803			-89.27 [-103.13, -75.41]	
Madanipour 2019		12.2474	6		12.2474			-75.00 [-88.86, -61.14]	
		12.2474			12.2474	6			
Munhuweyi 2017			6					-99.00 [-112.86, -85.14]	
Nisia ce 2012	10	8.6603	3	100	8.6603	3		-90.00 [-103.86, -76.14]	
Shao 2015	30	25	25	100	25	25		-70.00 [-83.86, -56.14]	
Waewthongrak 2015	1.1	8.6603	3	22.2	8.6603			-21.10 [-34.96, -7.24]	
Wang 2014	58	15	9	100	15	9	2.4%	-42.00 [-55.86, -28.14]	
Xing 2011	18.5	8.6603	3	100	8.6603	3	3 2.4%	-81.50 [-95.36, -67.64]	
Subtotal (95% CI)			65			65	22.0%	-73.00 [-89.71, -56.30]	◆
Heterogeneity: Tau ² = 603 Test for overall effect: Z = 4				(P < 0.0	0001); l²	= 92%		-	
1.1.3 Colletotrichum s	pp.								
Ali 2014	54.1	63.2456	160	88.8	63.2456	160	2.4%	-34.70 [-48.56, -20.84]	
Ali 2015		11.1803	5		11.1803			-0.60 [-14.46, 13.26]	
Bill 2014	16.8	7.0711	2	82.2	7.0711			-65.40 [-79.26, -51.54]	
de Oliveira 2017.	10.0	15	9	90	15			-89.00 [-102.86, -75.14]	
	1	15	9	90	15	9		-89.00 [-102.86, -75.14]	
de Oliveria 2017,			-			-			-
de Oliveria 2017,,	1	15	9	90	15			-89.00 [-102.86, -75.14]	
de Oliveria 2017.,	1	15	9	90	15			-89.00 [-102.86, -75.14]	
de Oliveria 2017	1	15	9	90	15			-89.00 [-102.86, -75.14]	
Edirisinghe 2014		63.2456	160		63.2456			3.30 [-10.56, 17.16]	
Gutièrrez-Martinez 2017	5.5	11.1803	5	6.4	11.1803	5	5 2.4%	-0.90 [-14.76, 12.96]	
Gutièrrez-Martinez 2017,	1.4	11.1803	5	6.4	11.1803	5	5 2.4%	-5.00 [-18.86, 8.86]	
Gutièrrez-Martinez 2017.	2.1	11.1803	5	5.3	11.1803	5	5 2.4%	-3.20 [-17.06, 10.66]	
Jitareerat 2007	33.3	15.8114	10	66.6	15.8114	10	2.4%	-33.30 [-47.16, -19.44]	
Maqbool 2010	1	22.3607	20	8.3	22.3607	20		-7.30 [-21.16, 6.56]	
Mohamed 2013	15	8.6603	3	90	8.6603			-75.00 [-88.86, -61.14]	
Munoz 2009		27.3861			27.3861	30		-7.78 [-21.64, 6.08]	
Ramos-Guerrero 2018		12.2474	- 30 6		12.2474			-99.00 [-112.86, -85.14]	
Rehman 2008		15.8114	10		15.8114			-82.00 [-95.86, -68.14]	-
Varela 2015		12.2474	6		12.2474			-33.30 [-47.16, -19.44]	
Xoca-orozco 2018	16.6	8.6603	3	75.5	8.6603			-58.90 [-72.76, -45.04]	
Zahid 2012		63.2456	160		63.2456			-58.00 [-71.86, -44.14]	
Zahid 2012,	48	63.2456	160	100	63.2456	160	2.4%	-52.00 [-65.86, -38.14]	_ -
Zahid 2012.	50	63.2456	160		63.2456		2.4%	-50.00 [-63.86, -36.14]	
Subtotal (95% CI)			955			955		-48.18 [-62.83, -33.53]	◆
Heterogeneity: Tau ² = 123 Test for overall effect: Z = 0				2 (P < 0	0.00001);	I ² = 96	6%		
1.1.4 Alternaria spp.	-								
Feliziani 2013,	31	13.2288	7	80	13.2288	7	2.4%	-49.00 [-62.86, -35.14]	
Lopez 2013		11.1803	5		11.1803			-36.60 [-50.46, -22.74]	
Yan 2011	10	8.6603	3	90	8.6603			-80.00 [-93.86, -66.14]	
Subtotal (95% CI) Heterogeneity: Tau ² = 449.			15 df = 2 (F	P < 0.00	01); l² = 9	15 90%	7.3%	-55.20 [-80.50, -29.90]	
Test for overall effect: Z =	4.28 (P <	0.0001)							
Total (95% CI)			1072				100.0%	-54.32 [-64.35, -44.28]	•
Heterogeneity: Tau ² = 102	5.09; Chi	² = 860.07	7, df = 4	0 (P < 0	.00001);	I ² = 95	5%		-100 -50 0 50 100
Test for overall effect: Z =					,.				-100 -50 0 50 100

Figure 3. Forest plot using the RavMan 5.3 software for random effects analysis related to the effectiveness of 1% chitosan on *in-vitro* mycelium growth. *Botrytis cinerea*, *Penicillium* spp., *Colletotrichum* spp. and *Alternaria* spp. were considered as subgroups. For Kanetis 2017, Kader 2011, de Oliveria 2017, Gutièrrez-Martinez 2017 and Zahid 2012, several studies were included from each article into the subgroups. IV, inverse variance; CI, confidence interval.

	1	% ch	itosa	n	Cont	rol			
Study of Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl
1.1.1 Phenylalanine	ammon	ia-lyase	;						
Silva 2018	104	77.4597	240	96.15	77.4597	240	3.7%	7.85 [-6.01, 21.71]	+
Bill 2014	186.31	31.6228	40	12.86	31.6228	3 40	3.7%	173.45 [159.59, 187.31]	
Jongsri 2017	96.29	19.3649	15	103.84	19.3649	9 15	3.7%	-7.55 [-21.41, 6.31]	7
Landi 2014	200	31.6228	40	50	31.6228	3 40	3.7%	150.00 [136.14, 163.86]	-
Shao 2015	61	19.3649	15	163	19.3649	9 15	3.7%	-102.00 [-115.86, -88.14]	-
Shen 2017		47.4342			47.4342		3.7%	28.72 [14.86, 42.58]	-
Song 2016	100	43.3013	75	100	43.3013		3.7%	0.00 [-13.86, 13.86]	+
Waewthongrak 2015	130.76	27.3861	30	76.47	27.3861	30	3.7%	54.29 [40.43, 68.15]	-
Zahid 2015 Subtotal (95% CI)	115.38	27.3861	30 575	86.6	27.3861	30 30 575	3.7% 33.3%	28.78 [14.92, 42.64] 37.06 [-17.28, 91.40]	
Heterogeneity: Tau ² =	6868.38; (Chi ² = 11	06.94, c	lf = 8 (P	< 0.0000	1); I ² = 9	9%		
Test for overall effect:	Z = 1.34 (I	P = 0.18)						
1.1.2 Chitinase									
Ali 2014	222.2	38.7298	60	45	38.7298	60	3.7%	177.20 [163.34, 191.06]	-
Bill 2014	195.06	31.6228	40	51	31.6228	3 40	3.7%	144.06 [130.20, 157.92]	-
Feliziani 2013		47.4342			47.4342		3.7%	42.24 [28.38, 56.10]	-
Feliziani 2013,	124.81	47.4342	90	80.11	47.4342	2 90	3.7%	44.70 [30.84, 58.56]	-
Feliziani 2013.	113.8	47.4342	90	87.26	47.4342	2 90	3.7%	26.54 [12.68, 40.40]	~
Hewajulige 2009		27.3861			27.3861		3.7%	116.41 [102.55, 130.27]	
Jongsri 2017		12.2474			12.2474		3.7%	0.00 [-13.86, 13.86]	+
Landi 2014		31.6228			31.6228		3.7%	150.00 [136.14, 163.86]	
Shao 2015		19.3649			19.3649		3.7%	15.84 [1.98, 29.70]	-
Shen 2017 Subtotal (95% CI)	123.5	27.3861	30 491	80.95	27.3861	30 491	3.7% 37.0%	42.55 [28.69, 56.41] 75.95 [36.18, 115.73]	*
Heterogeneity: Tau ² =	4068.05; (Chi² = 74	1.25, df	= 9 (P <	0.00001); I² = 99	%		
Test for overall effect:	Z = 3.74 (I	P = 0.00	02)						
1.1.3β-1,3-G <u>l</u> ucana	se								
Ali 2014		38.7298		30.76	38.7298	60	3.7%	294.24 [280.38, 308.10]	-
Bill 2014		31.6228		43.7	31.6228	3 40	3.7%	185.10 [171.24, 198.96]	-
Hewajulige 2009		27.3861			27.3861		3.7%	210.00 [196.14, 223.86]	· · · ·
Jongsri 2017		12.2474			12.2474		3.7%	0.00 [-13.86, 13.86]	+
Landi 2014		31.6228		50	31.6228	3 40	3.7%	150.00 [136.14, 163.86]	
Shao 2015		19.3649			19.3649		3.7%	0.00 [-13.86, 13.86]	+
Shen 2017		27.3861			27.3861		3.7%	16.00 [2.14, 29.86]	-
Wang 2013 Subtotal (95% CI)	137.73	33.541	45 266	72.6	33.541	45 266	3.7% 29.6%	65.13 [51.27, 78.99] 115.06 [38.24, 191.88]	
Heterogeneity: Tau ² = Test for overall effect:				df = 7 (F	? < 0.000	01); I² =	100%		
Total (95% CI)			1332			1332	100.0%	74.58 [41.15, 108.01]	•
Heterogeneity: Tau ² =			, .	lf = 26 (P	P < 0.000	01); I² =	99%	_	-200 -100 0 100 200
Test for overall effect:			,						Control 1% chitosan
Test for subgroup diffe	erences: C	$hl^2 = 2.82$	2, $df = 2$	(P = 0.2)	4), $I^2 = 29$	9.1%			Control 1% critosan

1148	Figure 4. Forest plots using the RavMan 5.3 software for random effects analysis related to the
1149	effectiveness of 1% chitosan on plant defence mechanism enzyme activities. Phenylalanine
1150	ammonia-lyase (PAL), chitinase and β -1,3-glucanase were considerd as subgroups. For
1151	Feliziani 2013 several studies were included from each article into the subgroups. IV, inverse
1152	variance; CI, confidence interval.

Figure 5. Funnel plots for the detect of publication bias in the studies, for the disease incidence
(a), mycelium growth (b) and defence enzyme activity (c) detected after 1% chitosan
treatments, compared to the controls. SE(MD) = standard error (mean difference); MD = mean
difference.