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a b s t r a c t

Ordinal problems are those where the label to be predicted from the input data is selected from
a group of categories which are naturally ordered. The underlying order is determined by the
implicit characteristics of the real problem. They share some characteristics with nominal or standard
classification problems but also with regression ones. In the real world, there are many problems of
this type in different knowledge areas, such as medical diagnosis, risk prediction or quality control.
The latter has gained an increasing interest in the Industry 4.0 scenario. Some weapons manufacturer
follow an aesthetic quality control process to determine the quality of the wood used to produce
the stock of the weapons they manufacture. This process is an ordinal classification problem that can
be automatised using machine learning techniques. Deep learning methods have been widely used for
multiples types of tasks including image aesthetic quality control, where convolutional neural networks
are the most common alternative, given that they are focused on solving problems where the input
data are images. In this work, we propose a new exponential regularised loss function that is usedto
improve the classification performance for ordinal problems when using deep neural networks. The
proposed methodology is applied to a real-world aesthetic quality control problem. The results and
statistical analysis prove that the proposed methodology outperforms other state-of-the-art methods,
obtaining very robust results.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning models [1] have been widely used in the last
ears since they were proposed for the first time. These kind
f models can be applied to multiple types of problems, includ-
ng: standard classification [2], regression [3], ordinal classifica-
ion [4], segmentation [5], image aesthetic assessment [6], image
etrieval [7], medical diagnosis [8–10], Internet of Things [11],
mong others. They are mainly focused on solving problems
here a large amount of data is available, such as problems where
ata are images, text or time series. However, thanks to data
ugmentation techniques, it is possible to train complex models
ith a reduced amount of data.
The most common type of deep learning model is the convo-

utional neural network (CNN) [12], which is an artificial neural
etwork that is mainly focused on working with input data that
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nc-nd/4.0/).
comes in the shape of an image. The main purpose of this model
is to extract relevant features from the images and use them to
classify each pattern in the correct category or obtain an accurate
prediction on regression problems. This process is carried out
by stacking multiple convolutional blocks, which extract higher
level features from low level characteristics (groups of pixels)
and reduce the dimensionality of the initial data. The main el-
ement of these blocks is the convolutional layer, which applies
convolution operations with multiple filters to the input received
from the input images or the previous block output. Pooling
operations reduce the number of features, by summarising them
with maximum, minimum or average operations. In the same way
it is done in shallow neural network, each convolutional block
also contains an activation function that introduces non-linear
transformations in the model, increasing its expressive capability.
Finally, in the last years, the batch normalisation [13] operation
has been included in most of the CNN models as it accelerates
the training process by reducing the covariance shift. The features
obtained from these convolutional blocks are used to obtain a
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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rediction by using standard dense (fully-connected) layers and
output layer, which is often a softmax function.
Ordinal classification [14,15] problems are those problems

here the label that we aim to predict from the input data is cho-
en between a series of categories that follow a natural order. This
rder is determined by the characteristics of the real problem that
s being solved. The main difference between ordinal and nominal
lassification is the aforementioned order between categories.
rdinal classification, also named ordinal regression, shares some
spects with regression, as, in both types of problems, there is an
nderlying order. However, in regression problems, the predicted
ariable is continuous while in ordinal classification it is discrete
nd limited to a set of labels [16].
In the Industry 4.0, there are interesting applications related

o image classification [17] within ordinal problems [18]. Benelli
rmi Spa is a widely known weapons manufacturer. When build-
ng a shotgun, they want to measure the quality of the wood
hat is used to create the stock of the weapon. Traditionally, a
pecialised quality technician has done this task, checking each of
he stocks one by one. However, it is possible to automatise and
educe the intrinsic inter-operator and intra-operator variability
f this process by taking pictures of both sides of the stock, which
llows a subsequent classification by a CNN model. Also, this
roblem is an ordinal classification one as the different categories
hat should be taken into account are the different commercial
uality grades which are usually expressed in an ordinal scale.
In this work, we propose a new regularisation function 1 that

transforms the standard one-hot (0/1) encoding of the labels into
a soften alternative, enhancing the classification quality and re-
flecting possible noise or errors in the labelling process. The main
novelty of the proposed regularisation approach is that it provides
enhanced flexibility and robustness by introducing a parameter
that leads to better classification performance in ordinal problems
compared to previously proposed alternatives. Also, it is worth
noting that the proposed methodology is applied to a novel real-
world problem that is related to the manufacturing industry and
was generated by the demand of a specific company. Our proposal
is compared with a baseline approach and other state-of-the-art
methods, and the average results of three different metrics are
statistically analysed.

The rest of the paper is organised as follows: in Section 2,
previous proposals related to this work are analysed; in Section 3
the proposed method is described; in Section 4, the dataset re-
lated to the stocks aesthetic quality control problem is described
and the experimental design along with the model are explained;
in Section 5, the results of the experiments are presented; and,
finally, in Section 6, the conclusions of this work are presented.

2. Related works

2.1. Ordinal classification

Any given classification problem can be defined as the prob-
lem of predicting the real class y from an input data x, where x is
a K -dimensional vector x ∈ X ⊆ RK , and y is chosen from a set
f labels Y = {C0, C1, C2, . . . , CQ−1}, being Q the total number

of categories defined for the problem. Ordinal classification or
ordinal regression problems can be defined as a special case of
standard classification problems, where an order constraint is
included between the categories. In this way, for this kind of
problems, the labels satisfy the expression C0 ≺ C1 ≺ C2 ≺ ... ≺

Q−1. The precedence operator (≺) indicates that the categories
ollow a natural order but, in contrast to a regression problem,
hey are discrete labels instead of continuous. Moreover, the

1 https://github.com/victormvy/ur-exponential-loss
 t

2

distance between each category does not necessarily need to be
the same. In these terms, we can define the position of each class
in the ordinal scale as an integer like O(Cq) = q.

Thus, in any ordinal problem, the order information described
an be accounted to obtain better classification performance,
educing the errors in distant classes while trying to maximise
he number of patterns correctly classified. Also, examples that
re misclassified in adjacent classes should produce a lower error
hen evaluating the classification performance of any ordinal
odel.

.2. Cumulative link models

One common approach to address ordinal classification prob-
ems taking into account the ordinal information is to use
hreshold-based models. Cumulative Link Models (CLM) [19] are
ne type of thresholds models which try to predict the probability
or each of the categories accounting for the order information
mplicit to the problem using a set of thresholds that separate
ifferent categories and a projection obtained from the input data.
oncretely, these models create a 1-dimensional linear projection
rom the input data, which can be denoted as f (x) ∈ R. This 1-
space is divided in Q segments by using a set of thresholds
hich can be conveniently defined to suit the classes distribution
f the current ordinal problem. However, they are often learned
rom the training data instead of setting them manually. Thus,
he threshold vector can be defined as βββ = {β0, β1, . . . , βQ }. To
ivide the output space properly, these thresholds should be in
scending order, satisfying the expression β0 < β1 < · · · < βQ .
he first threshold is always −∞ and the last one +∞. To take
nto account the constraint when using learnable thresholds, they
re commonly redefined using an unconstrained scalar value, that
epresents the first threshold, and a vector of Q −2 elements that
epresent the square root of the increment that must be applied
o any threshold to obtain the next one. More specifically, this
eformulation can be expressed as:

q =

⎧⎨⎩
−∞, q = 0,
a +

∑q−1
i=1 b2i , 0 < q < Q ,

+∞, q = Q
(1)

here a is the scalar representing the first threshold and b =

b1, b2, . . . , bQ−2} is the aforementioned vector. The square that is
pplied to the bi term guarantees that the thresholds will always
e in ascending order.
Using the 1-D mapping and the thresholds that have just

een defined, the CLM predicts the class Cq if and only if f (x) ∈

βq−1, βq]. In this way, the probability obtained from the CLM for
ny given class and input data can be calculated as follows:

(y ≺ Cq|x) = g(βq − f (x)), (2)

where g(x) is a monotonic function that is known as the link func-
tion. In previous works [14], different alternatives were explored
to be used as link functions:

• logit(p) = log
p

1 − p
,

• probit(p) = Φ−1(p),
• cloglog(p) = log(− log(1 − p)),

here p is the probability of the ith category, Φ =
1
2 (1+

erf
(

x−µ

σ
√
2

))
is the normal distribution cumulative distribution

function and erf(z) =
2

√
π

∫ z
0 e−t2dt is the Gauss error function.

The described CLM usually achieves good performance when
lassifying ordinal categories. However, there are some limita-
ions: this kind of models are affected by the optimal choice of the

https://github.com/victormvy/ur-exponential-loss


V.M. Vargas, P.A. Gutiérrez, R. Rosati et al. Applied Soft Computing 138 (2023) 110191

s
i
p
o

2

a
a
s
o
i
u
a
c
t
o
o
m
o

f
u
b

t

P

b
c
a
f
f

f

w
p
t
i
c
F
r

2

f
c
n
o
t
u
s
t
a

a
a
p
a
n
w
H
h
f
g
t
t

p
o
c

3
c

t
t
i
t
I
c
i

f

w
m
m
i
g
S
m
r
b
d

t

L

w
a
w
r
a
t

L

elected parameters, i.e. the performance of this model is highly
nfluenced by the learned or fixed thresholds. For this reason, we
ropose to combine the CLM with a soft labelling approach based
n a unimodal regularisation which is described in Section 2.3.

.3. Soft labels and unimodal regularisation

Label smoothing [20] is a regularisation technique that is
pplied to the representation of the labels. When used to train
model, it encourages the classifier to be less confident, giving
ome probability to the other classes instead of focusing only
n the true category. This enhances the robustness of the model
n the presence of noisy labels. Label smoothing can be very
seful for ordinal problems, where misclassifying a pattern in
n adjacent class is more probable than predicting a distant
ategory. The way the label smoothing is performed depends on
he characteristics of the problem and is a way to introduce the
rdinal information of the problem into the model. This extra
rdinal information usually accelerates the convergence of the
odel and reduces the number of training examples needed to
ptimise the model.
The authors of [21] proposed to sample ordinal smooth labels

rom a Poisson distribution and a binomial one. Then, they also
sed an exponential function to obtain soft labels. The proba-
ility for class Cq when the target class is Cj using the Poisson

distribution is given by:

Pj(q) =
λ
j
qe−λq

j!
, (3)

where λq ∈ R+ is the parameter of the distribution associated
with class Cq. Its mean and variance is determined by the value
of its parameter λq. Thus, for some classes, it is not possible to
obtain a distribution that is centred in the middle of the class
interval while keeping the variance low. For this reason, this
kind of distributions are not very appropriate and usually have
severe performance pitfalls. Therefore, the authors introduced the
binomial distribution, which they stated that is more flexible and
provides better results. This probability for class Cj when the
arget class is Cq using this distribution is given by:

j(q) =

(
Q
q

)
pjq(1 − pq)Q−q, (4)

where pq is the parameter associated with the distribution of class
Cq. In this case, the binomial distribution has two parameters:
Q , or the number of classes, and the probability of the event
(belong to a specific class). Note that, even though the mean
(E[x] = Q ·p) and the variance (V [x] = Q ·p(1−p)) are determined
y different expressions, it is not easy to achieve distributions
orrectly centred in the middle of the class interval and with
small variance. Finally, they proposed to use a exponential

unction as a third alternative. Using this function, the probability
or class Cj when the true class is Cq is obtained as follows:

j(q) = e−|j−q|, (5)

here j = O(Cj) and q = O(Cq). Given that said function is not a
robability function, a softmax normalisation is applied to obtain
he required probabilities. The main drawback of this function
s that, in some cases, the probability mass is not sufficiently
oncentrated in the class interval due to the lack of flexibility.
or that reason, in Section 3, an improved version of this loss
egularisation is proposed.
3

.4. Lp norm

Lp norms have been used in optimisation algorithms in several
ields as a generalisation of L2 and L1 norms, including binary
lassification [22], feature selection [23] or generative adversarial
etworks [24], among others. Depending on the value of p, the
bjective varies. In [25], the authors proved that L2 normmethods
end to expand or bleed out over natural boundaries. Therefore,
sing a Lp norm where 1 < p < 2 should provide a more
uitable alternative when it is optimised properly. The use of this
ype of generalised norms has drawn a huge attention in multiple
pplications, such as 3D medical image super-resolution [26].
More specifically, multiple works have discussed the potential

dvantages of the alternatives to the L2 or L1 norm. In [27], the
uthors presented an Lp norm alternative to Least Squares Sup-
ort Vector Machine (LSSVM) [28]. The authors of [29] proposed
new method that achieves better robustness by replacing the L2
orm in conventional linear discriminant analysis by Lp norm in
ithin-class distances and by Ls norm in between-class distances.
owever, for several of these tasks, the Lp norms have raised a
uge attention. Bregman divergences is one of the standard tools
or analysing online machine learning algorithms [30], allowing a
eneralisation of the least mean squared algorithm. In this sense,
he loss bounds for these Lp norm algorithms involve others than
he standard L2 or L1 norms [22].

In this work, we propose to apply the Lp norm to the ex-
onential regularisation that was described in Section 2.3 to
btain soft labels with a more flexible distribution for an ordinal
lassification problem.

. Proposed methodology: Lp norm exponential regularised
ross-entropy loss

The exponential regularised soft labelling presented in Sec-
ion 2.3 (Eq. (5)) applies a L1 norm. In this work, we propose
o sample on a more flexible exponential function based on the
ntroduction of the Lp norm, which means that there is an extra
unable parameter that can be adjusted by the learning algorithm.
n this way, a more flexible Lp normalised exponential function
an be defined. The probability for Cj when the target class is Cq
s defined as:

j(p, q) = e−|j−q|p , 1 ≤ p ≤ 2, (6)

here j = O(Cj), q = O(Cq), and p parameter can be tweaked
anually or cross-validated. Hence, the p parameter controls how
uch a pattern is penalised when it is classified in class Cj and

ts real class is Cq. Lower values of p mean that less relevance is
iven to that error. In this context, cost functions other than the
quared Euclidean norm (L2) or the Manhattan Distance norm (L1)
ight provide better results due to its enhanced flexibility. The

ange of possible values for the aforementioned parameter should
e restricted to the interval of real numbers to respect the formal
efinition of a geometrical norm, i.e. p ∈ [1, 2].
This regularisation of the labels is applied as an alternative to

he standard categorical cross-entropy loss function:

(x, q) =

Q∑
j=1

h(j, q)[− log P(y = Cj|x)], (7)

here h(j, q) = δj,q, j = O(Cj) and q = O(Cq) are the predicted
nd ground truth classes, respectively, and δj,q is the Dirac delta,
hich equals to 1 for j = q, and 0 otherwise. h(j, q) can be
eplaced with a soft version h′(j, q), which can be obtained by
pplying the aforementioned exponential function. In this way,
he standard definition of the loss function can be replaced by:

(x, q) =

Q∑
h′(j, q)[− log P(y = Cj|x)], (8)
j=1
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Fig. 1. Different types of distributions for a problem with 5 classes. The x-axis represents the evaluated class, the y axis represents the value of the smooth label given
or the class and the colours are associated to the true class (red: 0, green: 1, blue: 2, pink: 3, and cyan: 4). Thus, each line represents the probability distribution
or one real label. In the Lp Exponential plot, different intensities of the colour show different values of the p parameter (1.0, 1.5 and 2.0, where a lighter colour
eans higher value).
here h′(j, q) = (1 − η)δj,q + ηfj(p, q) and η is a parameter that
ranges from 0 to 1 controlling the smoothness of the labels. When
η = 0, no smooth factor is applied. On the other side, when η = 1,
the labels are completely smooth and the standard labels are not
used.

Fig. 1 shows classes distributions for the proposed exponential
function along with the Poisson, binomial and standard exponen-
tial distributions that were described before. The colour repre-
sents the true class of the pattern, while the x-axis represents
the class being examined and the y-axis represents the soft la-
bel applied. In the case of the Lp exponential, the distributions
obtained with the lower and upper bounds, and an intermediate
value of the parameter are considered. Therefore, for each class,
the distributions for p ∈ {1.0, 1.5, 2.0} are shown. Any other
istribution that can be obtained by tweaking this parameter
ill be in-between the lower and upper bounds distributions.
= 1.0 is represented with the darkest colours while p = 2.0

has the lightest colours in the plot. As mentioned before, the
L1 exponential is equivalent to using the Lp exponential with
p = 1, as the latter is a more general and flexible version of the
exponential function.

4. Experiments

In this Section, the details relative to the experimental design
are described. First, the dataset available for the problem that is
being solved is characterised. Then, the model used to solve this
problem is described. Finally, the test and validation scheme, the
optimisation procedure, the loss and output functions, and the
hyperparameters used are shown.

4.1. Data

The wooden stocks of shotguns are commercially classified in
categories ranging from grade 1, which indicates almost veinless
4

Table 1
Benelli dataset classes distribution.
Label 1 2− 2 2+ 3− 3 3+ 4− 4 4+

Images 165 148 212 177 179 306 344 208 275 106

wood, up to grade 5, which refers to a very twisted and var-
iegated grain pattern. Nowadays, the quality control process of
these stocks is performed by human eye. However, Benelli Armi
Spa has created a dataset composed of images of these wooden
stocks that have been labelled by a highly specialised quality
control technician. The detention and conservation of this dataset
are regulated by an agreement between Benelli Armi Spa and
Università Politecnica delle Marche.

The dataset contains both left and right side images belonging
to different shotguns, which comprises a total of 2120 1000 × 500
colour images. Each of these pictures was assigned one of ten
ordinal categories, which are ordered according to the existing
commercial grades. In this way, 4 main grades have been de-
fined (1, 2, 3, 4) and their relative minor grades (2−, 2+, 3−, 3+,

4−, 4+). The number of patterns belonging to each class is repre-
sented in Table 1.

The original images have been cropped to 470 × 270 and
the background has been removed and replaced by a plain black
colour. In these terms, the percentage of wooden stock in the
image have been maximised. Fig. 2 shows two images that belong
to this dataset and have already been preprocessed.

Given that the dataset was directly provided to Università
Politecnica delle Marche by Benelli Armi Spa, there are no dataset
splits defined, which allows us to perform the partitioning from
scratch. The test and validation schemes will be discussed in

Section 4.3.
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Fig. 2. Cropped dataset images from class 1 (left) and 2+ (right).
h
t
t
a

.2. Model

The method proposed in this paper will be applied to a con-
olutional neural network (CNN) model. Specifically, the well-
nown VGG-16 architecture is used. For the convolutional part of
he model, the pre-trained ImageNet weights (included in Ten-
orFlow Keras applications module) are used and the parameters
f these layers are set to be non-learnable. Therefore, only the
op part of the model is adjusted. The same architecture with
he same pre-trained weights was used in [18] for solving this
roblem. This method accelerates the convergence and reduces
he computational time significantly. In the fully-connected part
f the model, a 50% dropout is applied before two dense layers
ith 4096 units and ReLU activation. The function used in the
utput layer is the softmax, for the baseline experiments, and the
LM with different link types for the rest of the experiments.
The model comprises a total of 266M of parameters where

51M are trainable, and the remaining are fixed parameters that
elong to the convolutional layers that use the pre-trained Ima-
eNet weights.

.3. Experimental design

The performed experiments follow a 10-fold cross-validation
cheme that is repeated 3 times (with 3 different seeds) to
chieve 30 executions. Each of these partitions defines different
nd non-overlapping train and test splits with 90% of data for
raining and 10% for test. Also, for each of the training partitions,
hold-out is performed to divide this whole set into train and
alidation. In this way, the validation set can be used to lead the
arly-stopping strategy that prevents the overfitting by stopping
he training process when the validation loss has not improved
or several epochs. Moreover, validation metrics are used to
djust the hyperparameters.
Training data is fed into the model during the training process

sing a generator that performs data augmentation based on ran-
om horizontal flips and also creates balanced batches regarding
he different classes of the problem. For the problem considered,
t is important to use balanced batches as the dataset is fairly
mbalanced.

The Adam [31] algorithm is used to optimise the model, and
he learning rate is fixed to 0.01 for the whole learning process.
uring the training process, the training data is processed in
atches of size 16 and the learning stage is run for a maxi-
um of 50 epochs. For comparison purposes, different sets of
xperiments are performed:

1. Baseline. Softmax in the output layer and standard categor-
ical cross-entropy (CCE) as loss function.

2. CLM with logit, probit and complementary log–log links in
the output layer, and Poisson regularised CCE.

3. CLM with logit, probit and complementary log–log links in
the output layer, and binomial regularised CCE.
5

4. CLM with logit, probit and complementary log–log links in
the output layer, and exponential regularised CCE.

5. Proposed method. CLM with logit, probit and complemen-
tary log–log links, and Lp exponential regularised CCE.

As shown in Section 3, the proposed loss function has an
yperparameter (p) that must be adjusted. In this work, men-
ioned hyperparameter is cross-validated monitoring the valida-
ion Quadratic Weighted Kappa (QWK) [32] metric for each fold
nd seed. Therefore, different values of the p parameter can be

obtained for different folds and seeds, as we noticed that the
optimal value of p depends on the data considered. Thus, the ex-
perimental procedure to adjust this hyperparameter is described
in Algorithm 1.

foreach seed do
Split whole dataset in 10 folds that will be used for
training and test.

foreach p do
foreach fold do

Split all the data not included in the current fold
into 80% for training and 20% for validation.

Train for the number of epochs determined by
early stopping and evaluate on the validation
set.

end
end

end
foreach seed do

foreach fold do
Find p value that achieved the best validation QWK
for this fold and seed.

Evaluate on the test set (current fold) with the best
validation p value.

end
end

Algorithm 1: p parameter cross-validation procedure.
The η parameter has been fixed to η = 1.0, which achieves

fully soft labels, instead of combining the standard labels with
the soft labels obtained through the unimodal distributions.

5. Results

In this Section, the results of the experiments described in
Section 4 are shown. We considered three metrics that are appro-
priate for ordinal problems and imbalanced datasets: Quadratic
Weighted Kappa (QWK) [32], Minimum Sensitivity (MS) [33] and
Minimum Absolute Error (MAE) [33].

The QWK can be calculated according to the following expres-
sion:

QWK = 1 −

∑N
i,j ωi,jOi,j∑N , (9)

i,j ωi,jEi,j
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Table 2
Mean results for 30 executions of each of the alternatives on the test set.
Loss Output N Mean p QWK MS MAE

CCE Softmax 30 – 0.88712 0.14839 0.76572

CCE-Poisson CLM Logit 30 – 0.78042 0.00000 1.73867
CCE-Poisson CLM Probit 30 – 0.77503 0.00000 1.78581
CCE-Poisson CLM CLogLog 30 – 0.77921 0.00000 1.65733

CCE-Binomial CLM Logit 30 – 0.92068 0.19775 0.70338
CCE-Binomial CLM Probit 30 – 0.91929 0.20380 0.71846
CCE-Binomial CLM CLogLog 30 – 0.89189 0.06812 0.86134

CCE-Exp-Lp CLM Logit 30 1.61 0.92391 0.21883 0.70563
CCE-Exp-Lp CLM Probit 30 1.70 0.92391 0.19875 0.71013
CCE-Exp-Lp CLM CLogLog 30 1.66 0.91368 0.15572 0.77624

CCE-Exp-L1 CLM Logit 30 – 0.92237 0.18290 0.72664
CCE-Exp-L1 CLM Probit 30 – 0.91596 0.10117 0.78666
CCE-Exp-L1 CLM CLogLog 30 – 0.89992 0.04978 0.85809
=

e

where N is the number of samples rated, ω is the penalisation
atrix (in this case, quadratic weights are considered, ωi,j =

(i−j)2

(Q−1)2
, ωi,j ∈ [0, 1]), Q is the number of classes, O is the confusion

matrix, Eij =
Oi•O•j

N , Oi• is the sum of the i-th row and O•j is the
sum of the j-th column of the matrix.

The MS metric is defined as

MS = min
{
Sq =

Oqq

Oq•
, q = 1, . . . ,Q

}
, (10)

here Sq is the sensitivity of the class Cq, O is the confusion matrix
nd Q is the number of classes.
The ordinal MAE can be calculated as follows:

AE =
1
N

Q∑
i,j=1

|i − j|Oij, (11)

here N is the number of samples, Q is the number of classes
nd O is the confusion matrix.
Table 2 contains the mean results for 30 executions of each of

he experiments. For the experiments where the Lp-exponential
egularised categorical cross-entropy is used, the value of the p
arameter was adjusted through cross-validation for each fold
nd seed, and the mean value is displayed under the Mean p
olumn. The best value for each metric is highlighted with bold
ont face and the second best with italic font.

As can be observed from the results in said table, the Lp-
xponential regularised categorical cross-entropy with the logit
ink obtained the best result for QWK and MS and the second-
est for MAE. Also, the same loss function with the probit link
chieved the same result for QWK.
The confusion matrices of the best proposed alternative (CCE-

xp-Lp + CLM Logit) and the baseline method (CCE + Softmax)
re shown in Figs. 3, 4 and 5, for seeds 0, 1 and 2, respectively.
ach figure represents the confusion matrices of each of the 3
eeds considered. Each matrix is obtained by accumulating the
onfusion matrices of all the 10 folds.
From these matrices, it can be observed that the baseline

ethod misclassifies some patterns in distant classes, which im-
lies an important cost for this real problem, while the proposed
rdinal method has almost all the errors in the adjacent classes.

.1. Statistical analysis

In this Section, a statistical analysis has been performed to
heck whether the proposed alternative provides significantly
etter results than the baseline and previous proposed methods.
o do that, each of the metrics has been analysed separately.
First, using the QWK metric, a Kolmogorov–Smirnov [34] test
as been performed to check if the 30 QWK test values are

6

Table 3
Friedman test results for the QWK metric. The best method according to this
metric is highlighted in bold.
Method Rank

CCE + Softmax (Baseline) 5.43
CCE-Exp-Lp + CLM CLogLog 8.20
CCE-Exp-Lp + CLM Logit 10.87
CCE-Exp-Lp + CLM Probit 10.90
CCE-Exp-L1 + CLM CLogLog 5.77
CCE-Exp-L1 + CLM Logit 10.17
CCE-Exp-L1 + CLM Probit 8.73
CCE-Poisson + CLM Probit 2.00
CCE-Poisson + CLM Logit 1.97
CCE-Poisson + CLM CLogLog 2.07
CCE-Binomial + CLM Probit 9.70
CCE-Binomial + CLM Logit 10.13
CCE-Binomial + CLM CLogLog 5.07

normally distributed. The test confirmed that the values of this
metric follow a normal distribution (p-value < 0.05). After that,
a Friedman rank test [35] has been performed to obtain the rank
related to each method. The results of this test are shown in
Table 3. Note that the highest rank value represents the best
method.

The results of the Friedman test show that the proposed Lp
Exponential regularised CCE with the probit link achieved the
best rank concerning the QWK metric. Also, the same loss with
the logit link obtained the second-best rank, which is very close
to the first one.

Given that the CCE-Exp-Lp + CLM Logit and the CCE-Exp-
Lp + CLM Logit have similar ranks, and the logit link function
has better overall results considering all the methods, the Lp
Exponential regularised CCE with logit link has been compared
with the other methods using a paired sample t-test. The results
of this test are shown in Table 4. The Paired differences columns
show the mean and standard deviation of the differences between
both methods indicated in the first column. The t column shows
the value of the statistical, the df column indicates the degrees of
freedom and, finally those p-values lower than α = 0.05 indicate
that there are significant differences between both methods.

As can be observed in Table 4, the logit and probit links
perform similarly with the Lp exponential regularisation (p-value

1.0). Also, it shows no significant differences with the standard
xponential with logit link (p-value = 0.129), and the binomial

regularisation with probit (p-value = 0.129) or logit link (p-value
= 0.314). However, it performs significantly different than the
rest of the methods.

Also, in Table 5, the results of the paired t-test comparing the
baseline with the other approaches is shown. These results show
that there are significant differences between the baseline and

all the other methods (except the binomial regularisation with
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Fig. 3. Confusion matrices obtained for the seed 0.
Fig. 4. Confusion matrices obtained for the seed 1.
Fig. 5. Confusion matrices obtained for the seed 2.
he complementary log–log link). The method proposed in this
ork obtained better results than the baseline with all the link

unctions.
The same analysis has been performed accounting for the

S metric results on the test set. The Kolmogorov–Smirnov test
eported that the values are distributed following a normal distri-
ution (p-value < 0.05). Therefore, a Friedman rank test has been
7

performed and the results are shown in Table 6. The highest rank
in this table represents the best method.

In this case, the Lp exponential regularised CCE loss combined
with the CLM with logit link obtained the best rank (10.87). The
same loss function with the probit link obtained also high results.
After this test, a paired sample t-test has been performed to
compare the best alternative according to the ranking with the
other methods. The results of this test are shown in Table 7.
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Table 4
Paired sample t-test to compare Lp Exponential regularised CCE + CLM Logit with other methods regarding QWK. The p-values of
those methods which are significantly different is highlighted in bold font.
Methods Paired differences t df p-value

Mean Std. Dev.

Exp-Lp + Logit - Exp-Lp + CLogLog 0.01023 0.00917 6.110 29 <0.001
Exp-Lp + Logit - Exp-Lp + Probit −0.00001 0.00676 0.000 29 1.000
Exp-Lp + Logit - CCE + Softmax 0.03679 0.02132 9.454 29 <0.001
Exp-Lp + Logit - Exp-L1 + CLogLog 0.02400 0.01069 12.393 29 <0.001
Exp-Lp + Logit - Exp-L1 + Logit 0.00154 0.00620 1.562 29 0.129
Exp-Lp + Logit - Exp-L1 + Probit 0.00795 0.00995 4.377 29 <0.001
Exp-Lp + Logit - Poisson + Probit 0.14888 0.05688 14.336 29 <0.001
Exp-Lp + Logit - Poisson + Logit 0.14350 0.05042 15.587 29 <0.001
Exp-Lp + Logit - Poisson + CLogLog 0.14471 0.06075 13.047 29 <0.001
Exp-Lp + Logit - Binomial + Probit 0.00484 0.16969 1.562 29 0.129
Exp-Lp + Logit - Binomial + Logit 0.00303 0.01619 1.024 29 0.314
Exp-Lp + Logit - Binomial + CLogLog 0.03202 0.01793 9.782 29 <0.001
Table 5
Paired sample t-test to compare Lp CCE + Softmax (baseline) with other methods regarding QWK. The p-values of those methods
which are significantly different is highlighted in bold font.
Methods Paired differences t df p-value

Mean Std. Dev.

CCE + Softmax - Exp-Lp + CLogLog −0.02656 0.02171 −6.702 29 <0.001
CCE + Softmax - Exp-Lp + Logit −0.03679 0.02131 −9.454 29 <0.001
CCE + Softmax - Exp-Lp + Probit −0.03679 0.02132 −9.453 29 <0.001
CCE + Softmax - Exp-L1 + CLogLog −0.01279 0.02208 −3.173 29 0.004
CCE + Softmax - Exp-L1 + Logit −0.03525 0.02157 −8.951 29 <0.001
CCE + Softmax - Exp-L1 + Probit −0.02884 0.02331 −6.776 29 <0.001
CCE + Softmax - Poisson + Probit 0.11209 0.05466 11.232 29 <0.001
CCE + Softmax - Poisson + Logit 0.10670 0.05949 9.824 29 <0.001
CCE + Softmax - Poisson + CLogLog 0.10792 0.05823 10.150 29 <0.001
CCE + Softmax - Binomial + Probit −0.03195 0.03031 −5.774 29 <0.001
CCE + Softmax - Binomial + Logit −0.03376 0.02759 −6.703 29 <0.001
CCE + Softmax - Binomial + CLogLog −0.00477 0.03090 −0.845 29 0.405
Table 6
Friedman test results for the MS metric. The best method according to this
metric is highlighted in bold.
Method Rank

CCE + Softmax (Baseline) 8.02
CCE-Exp-Lp + CLM CLogLog 8.43
CCE-Exp-Lp + CLM Logit 10.87
CCE-Exp-Lp + CLM Probit 10.10
CCE-Exp-L1 + CLM CLogLog 4.78
CCE-Exp-L1 + CLM Logit 9.40
CCE-Exp-L1 + CLM Probit 6.15
CCE-Poisson + CLM Probit 2.50
CCE-Poisson + CLM Logit 2.50
CCE-Poisson + CLM CLogLog 2.50
CCE-Binomial + CLM Probit 10.30
CCE-Binomial + CLM Logit 10.08
CCE-Binomial + CLM CLogLog 5.37

The results related to the Poisson regularisation have been
mitted in this table since all the MS results for this method
btained a value of 0. As can be observed in Table 7, the Lp
xponential regularised loss with logit link resulted significantly
etter than most of the other alternatives. Only the binomial reg-
larised loss with probit and logit links obtained similar results.
nother paired t-test was performed to compare the baseline
ith the rest of the methods. The results of this test shown that
he proposed method obtained better results than the baseline
nd is significantly better when using the logit (p-value = 0.002)
r probit (p-value = 0.036) links.
Finally, the results concerning the MAE metric have been

nalysed in the same way that in the previous analyses. First, a
olmogorov–Smirnov test has been used to confirm that the re-
ults are normally distributed (p-value < 0.05). Then, a Friedman
rank test has been performed to obtain a ranking of the methods
8

regarding the MAE metric. The results are shown in Table 8. Note
that, in this case, the lowest rank shows the method that obtained
the best performance.

The test reported that the best method is the one that uses the
Binomial regularisation combined with the CLM with logit link.
However, the method that uses the Lp exponential regularisation
with the logit link obtained very close results. In these terms,
to compare this method with the rest of alternatives, a paired
sample t-test was performed. The results of the aforementioned
test are shown in Table 9.

The analysed method shows significant differences with al-
most all the other alternatives. However, the Lp exponential reg-
ularisation with the probit link and the binomial regularisation
with probit or logit link are not statistically different. In the
same way we did for the other metrics, another paired t-test was
performed to compare the baseline with the other approaches.
The test reported significant differences between the baseline and
the proposed method when using the logit (p-value = 0.002) or
probit (p-value = 0.001) links.

To sum up, the Exp-Lp + Logit obtained the best overall results
for most of the metrics. It is the best method in terms of QWK
and MS metrics, showing significant differences for the latter.
Also, it is better than the standard exponential regularisation (L1)
in all the three metrics and provides significant improvements
for MS and MAE. Finally, the Binomial regularisation with logit
link achieved slightly better results than the Exp-Lp with the
same link concerning the MAE metric, but there are no sig-
nificant differences between these methods. Nevertheless, it is
worth mentioning that the Lp exponential improved not only the
baseline results but also the results of the standard exponential
function.
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Table 7
Paired sample t-test to compare Lp Exponential regularised CCE + CLM Probit with other methods regarding MS. The p-values of
those methods which are significantly different is highlighted in bold font.
Methods Paired differences t df p-value

Mean Std. Dev.

Exp-Lp + Logit - Exp-Lp + CLogLog 0.06311 0.07868 4.393 29 <0.001
Exp-Lp + Logit - Exp-Lp + Probit 0.02009 0.05444 2.021 29 0.049
Exp-Lp + Logit - CCE + Softmax 0.07044 0.11548 3.341 29 0.002
Exp-Lp + Logit - Exp-L1 + CLogLog 0.16905 0.07357 12.585 29 <0.001
Exp-Lp + Logit - Exp-L1 + Logit 0.03593 0.05634 3.494 29 0.002
Exp-Lp + Logit - Exp-L1 + Probit 0.11766 0.07202 8.949 29 <0.001
Exp-Lp + Logit - Binomial + Probit 0.02193 0.10174 1.181 29 0.247
Exp-Lp + Logit - Binomial + Logit 0.01418 0.10152 0.765 29 0.450
Exp-Lp + Logit - Binomial + CLogLog 0.15071 0.08263 9.990 29 <0.001
Table 8
Friedman test results for the MAE metric. The best method according to this
metric is highlighted in bold.
Method Rank

CCE + Softmax (Baseline) 5.75
CCE-Exp-Lp + CLM CLogLog 6.48
CCE-Exp-Lp + CLM Logit 3.23
CCE-Exp-Lp + CLM Probit 3.48
CCE-Exp-L1 + CLM CLogLog 9.13
CCE-Exp-L1 + CLM Logit 4.13
CCE-Exp-L1 + CLM Probit 7.20
CCE-Poisson + CLM Probit 12.17
CCE-Poisson + CLM Logit 12.17
CCE-Poisson + CLM CLogLog 11.67
CCE-Binomial + CLM Probit 3.87
CCE-Binomial + CLM Logit 2.90
CCE-Binomial + CLM CLogLog 8.82

6. Conclusions

The main contribution of this work was to propose a novel
ore flexible exponential regularisation method based on intro-
ucing a Lp norm into a previously proposed exponential reg-
larised loss. This loss regularisation is appropriate for ordinal
roblems where the misclassification errors should be in adjacent
lasses instead of distant classes, encouraging labels distribution
o be soft and unimodal, being centred in the middle of the real
lass interval. Moreover, the softmax that is commonly used in
he output of the model was replaced with the cumulative link
odel with different types of links, which is also more adequate

or ordinal problems.
The described method was applied to solve a novel real-world

roblem that was generated by the specific demand of an indus-
rial manufacturing company and consists in classifying shotgun
tocks accounting for the quality of the wood that they are made
f. Different categories reference different levels of quality, which
re naturally ordered. The method proposed was compared with
baseline approach, which uses the standard categorical cross-
ntropy loss and the softmax at the output of the model. Also,
xperiments using previously proposed regularisation methods
ere run to do further comparisons. Three ordinal metrics were
sed to compare all these methods: QWK, MS and MAE.
The results demonstrated that the proposed alternative

chieved the best result for QWK and MS, and the second-
est result for MAE. Also, the statistical tests demonstrated the
obustness and the effectiveness of the proposed approach and
he gain with respect to previous alternatives, which is significant
nd not caused by a random component or noise in the data.
oreover, the results obtained for the application problem that
e aimed to solve have been very successful, achieving a high
WK value, which implies small classification errors, where most
f them occur in the adjacent classes. In this way, this method can
e applied in Industry 4.0 as a Decision Support System (DSS) to
9

help classify weapon stocks according to their quality. Also, it can
be used on other industrial problems where the input data are
images and the categories are naturally ordered. The setup of the
system is fairly simple, as it only requires the acquisition box,
which takes the pictures of the stocks, and the deep learning-
based DSS. It helps the human operator in the task of classifying
each shotgun stock, significantly reducing the inference time.
Moreover, the current dataset can be complemented with every
new stock that is classified, increasing the robustness of the
model and providing excellent scalability properties.

In future works, the regularised loss function and the ordinal
output model described in this manuscript can be applied to
more complex CNN models, which could lead to enhanced per-
formance. Also, the same model used in this work can be applied
to different ordinal problems where the input data are images
and the categories follow an order. In these terms, new DSS for
other real problems can be developed.

CRediT authorship contribution statement

Víctor Manuel Vargas: Methodology, Software, Writing
– original draft, Investigation, Visualization. Pedro Antonio
Gutiérrez: Conceptualization, Methodology, Validation, Writing
– review & editing. Riccardo Rosati: Methodology, Validation,
Data curation, Writing – review & editing. Luca Romeo:
Methodology, Data curation, Resources, Writing – review
& editing. Emanuele Frontoni: Formal analysis, Supervision,
Writing – review & editing, Project administration, Funding ac-
quisition. César Hervás-Martínez: Formal analysis, Supervision,
Writing – review & editing, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

The authors do not have permission to share data.

Acknowledgements

This work has been supported by ‘‘Agencia Española de In-
vestigación (España)’’ (grant reference: PID2020-115454GB-C22
/AEI/10.13039/501100011033). This work has been also supported
within the research agreement between Università Politecnica
delle Marche and Benelli Armi Spa for the ‘‘4USER Project’’ (User
and Product Development: from Virtual Experience to Model Re-
generation) funded on the POR MARCHE FESR 2014-2020-ASSE 1-
OS 1-ACTION 1.1-INT. 1.1.1. Promotion of industrial research and



V.M. Vargas, P.A. Gutiérrez, R. Rosati et al. Applied Soft Computing 138 (2023) 110191
Table 9
Paired sample t-test to compare Lp Exponential regularised CCE + CLM Probit with other methods regarding MAE. The p-values of
those methods which are significantly different is highlighted in bold font.
Methods Paired differences t df p-value

Mean Std. Dev.

Exp-Lp + Logit - Exp-Lp + CLogLog −0.07061 0.06233 −6.205 29 <0.001
Exp-Lp + Logit - Exp-Lp + Probit −0.00450 0.04988 −0.494 29 0.625
Exp-Lp + Logit - CCE + Softmax −0.06009 0.09471 −3.475 29 0.002
Exp-Lp + Logit - Exp-L1 + CLogLog −0.15246 0.06992 −11.943 29 <0.001
Exp-Lp + Logit - Exp-L1 + Logit −0.02101 0.03605 −3.192 29 0.003
Exp-Lp + Logit - Exp-L1 + Probit −0.08103 0.06855 −6.475 29 <0.001
Exp-Lp + Logit - Poisson + Probit −1.08018 0.32809 −18.033 29 <0.001
Exp-Lp + Logit - Poisson + Logit −1.03304 0.28901 −19.578 29 <0.001
Exp-Lp + Logit - Poisson + CLogLog −0.95170 0.34386 −15.159 29 <0.001
Exp-Lp + Logit - Binomial + Probit −0.01324 0.09093 −0.798 29 0.432
Exp-Lp + Logit - Binomial + Logit 0.00266 0.07882 0.185 29 0.854
Exp-Lp + Logit - Binomial + CLogLog −0.15571 0.07550 −11.296 29 <0.001
experimental development in the areas of smart specialisation -
LINEA 2 -Bando 2019, approved with DDPF 293 of 22/11/2019.
Víctor Manuel Vargas’s research has been subsidised by the FPU
Predoctoral Program of the Spanish Ministry of Science, Innova-
tion and Universities (MCIU), grant references FPU18/00358 and
EST22/00163. Funding for open access charge: Universidad de
Córdoba / CBUA.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444, http://dx.doi.org/10.1038/nature14539.

[2] A. Gupta, S. Gupta, R. Katarya, et al., InstaCovNet-19: A deep learning
classification model for the detection of COVID-19 patients using Chest
X-ray, Appl. Soft Comput. 99 (2021) 106859, http://dx.doi.org/10.1016/j.
asoc.2020.106859.

[3] Y. Dong, X. Ma, T. Fu, Electrical load forecasting: A deep learning approach
based on K-nearest neighbors, Appl. Soft Comput. 99 (2021) 106900,
http://dx.doi.org/10.1016/j.asoc.2020.106900.

[4] M. Pérez-Ortiz, M. Cruz-Ramírez, M.D. Ayllón-Terán, N. Heaton, R. Ciria,
C. Hervás-Martínez, An organ allocation system for liver transplantation
based on ordinal regression, Appl. Soft Comput. 14 (2014) 88–98, http:
//dx.doi.org/10.1016/j.asoc.2013.07.017.

[5] L. Li, X. Zhao, W. Lu, S. Tan, Deep learning for variational multimodality
tumor segmentation in PET/CT, Neurocomputing 392 (2019) 1–19, http:
//dx.doi.org/10.1016/j.neucom.2018.10.099.

[6] H. Zeng, Z. Cao, L. Zhang, A.C. Bovik, A unified probabilistic formulation
of image aesthetic assessment, IEEE Trans. Image Process. 29 (2019)
1548–1561, http://dx.doi.org/10.1109/TIP.2019.2941778.

[7] A. Qayyum, S.M. Anwar, M. Awais, M. Majid, Medical image retrieval using
deep convolutional neural network, Neurocomputing 266 (2017) 8–20,
http://dx.doi.org/10.1016/j.neucom.2017.05.025.

[8] S. Zhou, B. Tan, Electrocardiogram soft computing using hybrid deep
learning CNN-ELM, Appl. Soft Comput. 86 (2020) 105778, http://dx.doi.
org/10.1016/j.asoc.2019.105778.

[9] D. Ezzat, A.E. Hassanien, H.A. Ella, An optimized deep learning architecture
for the diagnosis of COVID-19 disease based on gravitational search
optimization, Appl. Soft Comput. (2020) 106742, http://dx.doi.org/10.1016/
j.asoc.2020.106742.

[10] T. Zhou, H. Lu, Z. Yang, S. Qiu, B. Huo, Y. Dong, The ensemble deep learning
model for novel COVID-19 on CT images, Appl. Soft Comput. 98 (2021)
106885, http://dx.doi.org/10.1016/j.asoc.2020.106885.

[11] Y.-S. Su, C.-F. Ni, W.-C. Li, I.-H. Lee, C.-P. Lin, Applying deep learning
algorithms to enhance simulations of large-scale groundwater flow in
IoTs, Appl. Soft Comput. 92 (2020) 106298, http://dx.doi.org/10.1016/j.asoc.
2020.106298.

[12] G. Marques, D. Agarwal, I. de la Torre Díez, Automated medical diagnosis
of COVID-19 through EfficientNet convolutional neural network, Appl. Soft
Comput. 96 (2020) 1–11, http://dx.doi.org/10.1016/j.asoc.2020.106691.

[13] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: Proceedings of the 32nd
International Conference on Machine Learning, Vol. 37, 2015, pp. 448–456.

[14] V.M. Vargas, P.A. Gutiérrez, C. Hervás, Deep ordinal classification based on
the proportional odds model, in: Proceedings of the International Work-
Conference on the Interplay Between Natural and Artificial Computation,
Springer, 2019, pp. 441–451, http://dx.doi.org/10.1007/978-3-030-19651-
6_43.

[15] J.L. Suárez, S. García, F. Herrera, Ordinal regression with explainable
distance metric learning based on ordered sequences, Machine Learning
110 (10) (2021) 2729–2762, http://dx.doi.org/10.1007/s10994-021-06010-

w.

10
[16] P. Bellmann, F. Schwenker, Ordinal classification: Working definition and
detection of ordinal structures, IEEE Access 8 (2020) 164380–164391.

[17] J. Villalba-Diez, D. Schmidt, R. Gevers, J. Ordieres-Meré, M. Buchwitz, W.
Wellbrock, Deep learning for industrial computer vision quality control in
the printing industry 4.0, Sensors 19 (18) (2019) 3987, http://dx.doi.org/
10.3390/s19183987.

[18] R. Rosati, L. Romeo, G. Cecchini, F. Tonetto, L. Perugini, L. Ruggeri, P. Viti,
E. Frontoni, Bias from the wild industry 4.0: Are we really classifying
the quality or shotgun series? in: Pattern Recognition. ICPR International
Workshops and Challenges: Virtual Event, January 10–15, 2021, Proceed-
ings, Part IV, Springer, 2021, pp. 637–649, http://dx.doi.org/10.1007/978-
3-030-68799-1_46.

[19] A. Agresti, Analysis of Ordinal Categorical Data, Vol. 656, J. Wiley & Sons,
2010.

[20] C.-B. Zhang, P.-T. Jiang, Q. Hou, Y. Wei, Q. Han, Z. Li, M.-M. Cheng,
Delving deep into label smoothing, IEEE Trans. Image Process. 30 (2021)
5984–5996, http://dx.doi.org/10.1109/TIP.2021.3089942.

[21] X. Liu, F. Fan, L. Kong, Z. Diao, W. Xie, J. Lu, J. You, Unimodal regularized
neuron stick-breaking for ordinal classification, Neurocomputing 388 (7)
(2020) 34–44, http://dx.doi.org/10.1016/j.neucom.2020.01.025.

[22] C. Gentile, The robustness of the p-norm algorithms, Mach. Learn. 53 (3)
(2003) 265–299, http://dx.doi.org/10.1023/A:1026319107706.

[23] Y.-F. Ye, Y.-H. Shao, C.-N. Li, Wavelet Lp-norm support vector regression
with feature selection, J. Adv. Comput. Intell. Intell. Inform. 19 (3) (2015)
407–416, http://dx.doi.org/10.20965/jaciii.2015.p0407.

[24] C. Zhou, J. Zhang, J. Liu, Lp-WGAN: Using lp-norm normalization to
stabilize Wasserstein generative adversarial networks, Knowl.-Based Syst.
161 (2018) 415–424, http://dx.doi.org/10.1016/j.knosys.2018.08.004.

[25] M. Liu, D.F. Gleich, Strongly local p-norm-cut algorithms for semi-
supervised learning and local graph clustering, 2020, arXiv preprint arXiv:
2006.08569.

[26] K. Thurnhofer-Hemsi, E. López-Rubio, N. Roe-Vellve, M.A. Molina-Cabello,
Multiobjective optimization of deep neural networks with combinations
of Lp-norm cost functions for 3D medical image super-resolution, Integr.
Comput.-Aided Eng. (Preprint) (2020) 1–19, http://dx.doi.org/10.3233/ICA-
200620.

[27] T. Ke, L. Zhang, X. Ge, H. Lv, M. Li, Construct a robust least squares support
vector machine based on Lp-norm and L∞-norm, Eng. Appl. Artif. Intell. 99
(2021) 104134, http://dx.doi.org/10.1016/j.engappai.2020.104134.

[28] J.A. Suykens, J. Vandewalle, Least squares support vector machine classi-
fiers, Neural Process. Lett. 9 (3) (1999) 293–300, http://dx.doi.org/10.1023/
A:1018628609742.

[29] Q. Ye, L. Fu, Z. Zhang, H. Zhao, M. Naiem, Lp-and Ls-norm distance based
robust linear discriminant analysis, Neural Netw. 105 (2018) 393–404,
http://dx.doi.org/10.1016/j.neunet.2018.05.020.

[30] J. Kivinen, M.K. Warmuth, B. Hassibi, The p-norm generalization of the LMS
algorithm for adaptive filtering, IEEE Trans. Signal Process. 54 (5) (2006)
1782–1793, http://dx.doi.org/10.1109/TSP.2006.872551.

[31] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
Proceedings of the International Conference on Learning Representations,
2015, pp. 1–15.

[32] J. de la Torre, D. Puig, A. Valls, Weighted kappa loss function for multi-class
classification of ordinal data in deep learning, Pattern Recognit. Lett. 105
(2018) 144–154, http://dx.doi.org/10.1016/j.patrec.2017.05.018.

[33] M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero, P.A. Gutiérrez,
Metrics to guide a multi-objective evolutionary algorithm for ordinal clas-
sification, Neurocomputing 135 (2014) 21–31, http://dx.doi.org/10.1016/j.
neucom.2013.05.058.

[34] F.J. Massey Jr., The Kolmogorov-Smirnov test for goodness of fit, J. Amer.
Statist. Assoc. 46 (253) (1951) 68–78, http://dx.doi.org/10.1080/01621459.
1951.10500769.

[35] G.A. Mack, J.H. Skillings, A Friedman-type rank test for main effects in
a two-factor ANOVA, J. Amer. Statist. Assoc. 75 (372) (1980) 947–951,
http://dx.doi.org/10.1080/01621459.1980.10477577.

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.asoc.2020.106859
http://dx.doi.org/10.1016/j.asoc.2020.106859
http://dx.doi.org/10.1016/j.asoc.2020.106859
http://dx.doi.org/10.1016/j.asoc.2020.106900
http://dx.doi.org/10.1016/j.asoc.2013.07.017
http://dx.doi.org/10.1016/j.asoc.2013.07.017
http://dx.doi.org/10.1016/j.asoc.2013.07.017
http://dx.doi.org/10.1016/j.neucom.2018.10.099
http://dx.doi.org/10.1016/j.neucom.2018.10.099
http://dx.doi.org/10.1016/j.neucom.2018.10.099
http://dx.doi.org/10.1109/TIP.2019.2941778
http://dx.doi.org/10.1016/j.neucom.2017.05.025
http://dx.doi.org/10.1016/j.asoc.2019.105778
http://dx.doi.org/10.1016/j.asoc.2019.105778
http://dx.doi.org/10.1016/j.asoc.2019.105778
http://dx.doi.org/10.1016/j.asoc.2020.106742
http://dx.doi.org/10.1016/j.asoc.2020.106742
http://dx.doi.org/10.1016/j.asoc.2020.106742
http://dx.doi.org/10.1016/j.asoc.2020.106885
http://dx.doi.org/10.1016/j.asoc.2020.106298
http://dx.doi.org/10.1016/j.asoc.2020.106298
http://dx.doi.org/10.1016/j.asoc.2020.106298
http://dx.doi.org/10.1016/j.asoc.2020.106691
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb13
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb13
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb13
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb13
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb13
http://dx.doi.org/10.1007/978-3-030-19651-6_43
http://dx.doi.org/10.1007/978-3-030-19651-6_43
http://dx.doi.org/10.1007/978-3-030-19651-6_43
http://dx.doi.org/10.1007/s10994-021-06010-w
http://dx.doi.org/10.1007/s10994-021-06010-w
http://dx.doi.org/10.1007/s10994-021-06010-w
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb16
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb16
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb16
http://dx.doi.org/10.3390/s19183987
http://dx.doi.org/10.3390/s19183987
http://dx.doi.org/10.3390/s19183987
http://dx.doi.org/10.1007/978-3-030-68799-1_46
http://dx.doi.org/10.1007/978-3-030-68799-1_46
http://dx.doi.org/10.1007/978-3-030-68799-1_46
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb19
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb19
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb19
http://dx.doi.org/10.1109/TIP.2021.3089942
http://dx.doi.org/10.1016/j.neucom.2020.01.025
http://dx.doi.org/10.1023/A:1026319107706
http://dx.doi.org/10.20965/jaciii.2015.p0407
http://dx.doi.org/10.1016/j.knosys.2018.08.004
http://arxiv.org/abs/2006.08569
http://arxiv.org/abs/2006.08569
http://arxiv.org/abs/2006.08569
http://dx.doi.org/10.3233/ICA-200620
http://dx.doi.org/10.3233/ICA-200620
http://dx.doi.org/10.3233/ICA-200620
http://dx.doi.org/10.1016/j.engappai.2020.104134
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1016/j.neunet.2018.05.020
http://dx.doi.org/10.1109/TSP.2006.872551
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb31
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb31
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb31
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb31
http://refhub.elsevier.com/S1568-4946(23)00209-0/sb31
http://dx.doi.org/10.1016/j.patrec.2017.05.018
http://dx.doi.org/10.1016/j.neucom.2013.05.058
http://dx.doi.org/10.1016/j.neucom.2013.05.058
http://dx.doi.org/10.1016/j.neucom.2013.05.058
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1080/01621459.1980.10477577

	Exponential loss regularisation for encouraging ordinal constraint to shotgun stocks quality assessment
	Introduction
	Related works
	Ordinal classification
	Cumulative Link Models
	Soft labels and unimodal regularisation
	Lp norm

	Proposed methodology: Lp norm exponential regularised cross-entropy loss
	Experiments
	Data
	Model
	Experimental design

	Results
	Statistical analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


