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Abstract: European countries have recently started experimenting with growing and producing their
own teas in small quantities, mainly for the specialty tea sector. To characterize European teas, this
study investigated a set of five tea types obtained from different Camellia sinensis varieties/cultivars,
representing various oxidation grades (green, white, yellow, oolong, black), all grown and processed
in the only tea garden in Europe (in Germany) that focuses on all five types. Hot and cold brews
were studied by measuring the total phenolic (TPC) and flavonoid contents (TFC), the antioxidant
capacity and UV-Vis spectra, also with the objective of discriminating between the different tea
types and the different plant varieties. The dried leaves were analyzed to measure the content of
essential and toxic elements and by ATR-FTIR spectroscopy to determine a chemical fingerprint
for identifying the tea varieties and types. The average levels of TPC (hot brew = 5.82 ± 2.06; cold
brew = 5.4 ± 2.46 mM GAEq), TFC (hot brew = 0.87 ± 0.309; cold brew = 0.87 ± 0.413 mM CAEq),
and antioxidant capacity (ORAC assay-hot brew = 20.9± 605; cold brew = 21.8± 8.0 mM TXEq, ABTS
assay-hot brew = 15.2 ± 5.09; cold brew = 15.1 ± 5.8 mM TXEq, FRAP assay-hot brew = 9.2 ± 3.84;
cold brew = 10.4 ± 5.23 mM AAEq) observed compared well with those from other parts of the world
such as China, Africa, and Taiwan. The hazard quotient <1 and the hazard index of 0.14 indicate
that there is no non-carcinogenic risk from consumption of these teas. The obtained information is
essential for elucidating the characteristics and the impact of tea processing and tea variety on the
health benefits of these tea products coming from a single European tea garden. This multifaceted
approach would help tea growers in Europe increase their knowledge on the health attributes of the
teas they grow, ultimately leading to optimization of the nutraceutical properties of these teas.

Keywords: Camellia sinensis; single-estate German teas; hot and cold brews; total polyphenol content;
antioxidant profile; elemental content analysis

1. Introduction

Camellia sinensis (L.) O. Kuntze is a species of plant whose leaves and leaf buds are
used to produce tea, one of the most popular non-alcoholic beverages consumed in all
corners of the globe. Two major varieties of this species exist: the small-leafed Chinese
one, Camellia sinensis var. sinensis, which originated in South-East China and whose leaves
are mainly processed to give green, white, yellow, and oolong teas, and the large-leafed
Indian variety, Camellia sinensis var. assamica, originating in the Assam region and whose
leaves are mainly used for processing into black teas [1,2]. A minor, less common variety
is pubilimba, characterized by dense slivery-haired leaves, mainly processed for green tea
by the local people of its growing areas of Guangxi province (China) [3]. Indeed, it is the
distinctive processing methods, i.e., extent of oxidation that give rise to the different types
of tea mentioned above. The oxidation process is sometimes inappropriately referred to as
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fermentation, although this is an entirely different process which does not use molecular
oxygen for its reactions and where microorganisms (bacteria) are involved [4]. Black tea is
a fully oxidized tea where the polyphenols (catechins) are oxidized by polyphenol oxidases
to oligomeric theaflavins and polymeric thearubigins which impart the dark colour and
aroma of this tea. Green tea instead does not undergo oxidation since the polyphenol
oxidases are heat inactivated [5]. Between these two extremes, are placed white and yellow
teas which are only mildly oxidized, and oolong teas which are semi-oxidized [6].

Globally, the most consumed tea types are black tea and green tea, with black tea
accounting for over 70% of the annual tea production followed by green tea accounting
for around 20% [7]. India and China are the major producing countries for these two
tea types, respectively, followed by Sri Lanka, Japan, Taiwan, and Kenya [8,9], although
tea is grown in a smaller scale in over 50 countries throughout different parts of the
world from the Americas to Australia [10]. Among these are several European countries
that have recently started experimenting with growing and producing their own teas
in small quantities, directed mainly for the specialty tea sector. Unlike mass-market or
commodity tea, specialty tea is considered a high-grade, organic, loose-leaf tea, usually
from small tea gardens, that has been masterfully hand-crafted to deliver a unique flavour
profile. In 2016, the “Tea Grown in Europe” Association (EuT) was founded with the aim
of promoting an economic activity in this new agricultural sector since parts of Europe
(currently 10 countries) are potentially suitable for tea growing [11]. Being in its infancy,
there is a lack of scientific data on the nutritional characteristics of European teas, therefore,
we recently undertook studies to cover this unexplored tea region. We investigated both
the antioxidant properties of hot and cold brews of black, green, and white teas produced
across the European territory as well as the content in phytocompounds [12]. In this regard,
there is a wealth of scientific evidence showcasing teas’ many health benefits related to
the quality and quantity of its phytocompounds [13]. Indeed, the beneficial properties of
drinking tea date back to thousands of years, where the Chinese Tang Dynasty considered
tea as a medicine able to prevent diseases before their manifestation [14]. We also undertook
an elemental analysis study to determine the presence of 15 elements (both potentially toxic
and essential) in tea leaves collected from the same tea gardens that participated in the
antioxidant study, and to determine the potential risk of exposure to toxic elements from
the consumption of European teas [15]. The present study now takes the characterization
of European teas a step further, by exploring a set of different types of tea representing
various oxidation grades (black, oolong, white, yellow, green) all produced from the same
tea garden (Tschanara Tea Garden, Wirtsspezard, Germany) using different Camellia sinensis
varieties and cultivars. The goal of this tea garden is to optimize the quality of its teas
in terms of taste and growth properties, and it is the only tea garden in Europe which
primarily focuses on the production of not only green, oolong, and black tea, but also white
and yellow tea.

Thus, to characterize the teas produced in this garden, the antioxidants and spectro-
scopic characteristics of hot and cold brews were studied by measuring the total phenolics
and flavonoids content, the antioxidant capacity, and the UV-Vis spectra, also with the
objective of discriminating between the different types of tea and the different plant vari-
eties. Furthermore, the dried leaves used to obtain the infusions were analyzed to measure
the content of essential and toxic elements and by ATR-FTIR spectroscopy to determine a
chemical fingerprint for identifying the tea varieties and types. The obtained information is
essential for elucidating the characteristics and the impact of tea processing and tea variety
on the health benefits of these tea products coming from a single European tea garden.
This multifaceted approach would help tea growers in Europe increase their knowledge
on the health attributes of the teas they grow, ultimately leading to optimization of the
nutraceutical properties of these teas.
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2. Materials and Methods
2.1. Chemicals and Equipment

All chemicals used were purchased from Merck KGaA (Darmstadt, Germany): [2,2′-
azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] (ABTS), 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (TX), gallic acid (GA), Folin-Ciocalteu reagent
(2N solution), potassium persulfate (K2S2O8), sodium carbonate (Na2CO3), 3′,6′-dihydrosyspiro[
isobenzofuran-1[3H],9′[9H]-xanthen]-3-one (fluorescein), [2,2′-azobis(2-methylpropionamidine)
dihydrochloride] (AAPH), (+)-Catechin hydrate, sodium nitrite (NaNO2), aluminum chlo-
ride hexahydrate (AlCl3·6H2O), sodium hydroxide (NaOH), 2,4,6-tripyridyl s-triazine
(TPTZ), iron(III) chloride (FeCl3), ascorbic acid (AA), sodium acetate (CH3COONa), acetic
acid (CH3COOH), hydrochloric acid (HCl), potassium dihydrogen phosphate (KH2PO4),
dipotassium hydrogen phosphate (K2HPO4), ethanol absolute RPE grade. Ultrapure wa-
ter was generated from a Milli-Q system by Merck Millipore (Merck KGaA, Darmstadt,
Germany) and was used for all the experiments. For the tea infusions, mineral water
ACQUA SANT’ANNA S.p.A. (Vinadio, Italy) with a fixed residue at 180 ◦C of 22 mg/L
and total hardness of 0.98 ◦f was used, purchased from the local supermarkets. The mineral
composition of this water is reported in Table S1 of the Supplementary.

2.2. Tea Samples

Eight tea samples were obtained from the Tschanara Tea Garden whose leaves had
been harvested in the 2021 season. Apart from 2 tea samples (WV and OA), all the other
6 teas tested in the study were a blend of a minimum of 2 to a maximum of 7 tea batches,
all plucked between May and September 2021 from different rows in the same field (BA:
3 batches, BV: 4 batches, BK: 3 batches, GK: 7 batches, YK: 7 batches, OK: 2 batches, OA:
1 batch, WV: 1 batch). The Tschanara Tea Garden is located in Germany, situated on
a shielded hillside (213 m above sea level) in Odenthal-Scheuren, in the middle of the
Bergische Land and covers an area of 4000 m2. Tea has been growing here since 1999,
favored by a mild climate, good soil (pH 4.7–5.9) and good drainage. Details regarding
the temperature range, growing season, altitude, and average rainfall of this tea garden
can be found in the EuT Association 2023 leaflet [11]. The tea samples are described in
Table 1 where they are identified with an acronym of two letters indicating the type of tea
(W = White; Y = Yellow; G = Green; O = Oolong; B = Black), followed by the country of
origin of the cultivar (V = Vietnam; K = Korea; A = Azores). Furthermore, for the brews, a
letter indicating the type of brew (C = cold, H = hot) was added at the end when describing
the results reported in the tables and figures. A general outline of the steps adopted for
processing of the tea leaves to produce the different tea types is reported in Figure 1, which
follow the guidelines of the Compendium for tea production in Europe [16].

Table 1. List of Camellia sinensis teas. Type, variety, cultivar, and labeling of the teas studied.

Type Variety Cultivar Label

White pubilimba Vietnam WV

Yellow sinensis Korea YK

Green sinensis Korea GK

Oolong assamica Azores OA
sinensis Korea OK

Black assamica Azores BA
pubilimba Vietnam BV
sinensis Korea BK
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Figure 1. General outline of the different processing steps adopted by Tschanara Tea Garden (Ger-
many) to produce the five tea types.

2.3. Preparation of Tea Brews

The tea brews were prepared essentially as described in [12] using 1.0 g of tea leaves
and 50 mL of mineral water. Mineral water instead of tap water was used since its com-
position is stable and known, therefore, it would not be expected to influence the results
obtained. Before preparing the infusions, the dry tea samples were all milled utilizing a
hand-mill to obtain a homogeneous fine powder for each type of tea. This is essential for
reducing the variability in extraction efficiency that could arise from different leaf sizes.
Briefly, hot brews were prepared using boiled water (95–100 ◦C) and an infusion time of
5 min, whereas cold brews were prepared using water at room temperature (20–25 ◦C),
followed by agitation for 5 s and refrigeration (4–6 ◦C) for 16 h. Both types of brews were
then filtered through filter paper (Whatman No. 4), aliquoted, and stored at −20 ◦C until
analyzed. For each tea sample, the two brewing methods were performed in triplicate on
three separate days.

2.4. Determination of Total Phenolic Content (TPC)

Total phenolic content in 50 µL of the tea infusions diluted 30× was determined using
the Folin–Ciocalteu reagent [17] using the same methodology as described by us [12] and
optimized for reading the absorbance at 760 nm on a microplate reader (Synergy HT, Biotek,
Winooski, VT, USA). The results are expressed as mM Gallic acid equivalents (mM GAEq),
using the linear regression value calculated from the gallic acid calibration curve.

2.5. Total Flavonoid Content (TFC)

The total flavonoid content in 50 µL of the tea infusions diluted 10× was determined
using a colorimetric assay according to the method of Kim et al. [18] using the same
methodology as already described in detail by us [12]. The results are expressed as mM
Catechin equivalents (mM CEq) using the linear regression value calculated from the
catechin calibration curve.
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2.6. Determination of In Vitro Antioxidant Capacity (ABTS, FRAP, ORAC)

A panel of three different assays were used to evaluate the in vitro antioxidant capacity:
oxygen radical absorbance capacity (ORAC), ABTS, and ferric reducing antioxidant power
(FRAP) assays [19–21].

The ORAC assay was carried out on 50 µL of tea infusion diluted 800× following the
method exactly as recently described by us [12]. The antioxidant capacity is expressed as
mM Trolox Equivalents (mM TXEq), using the linear regression value calculated from the
Trolox calibration curve. The ABTS assay was performed on 30 µL of each brew previously
diluted 120×, following the procedure exactly as described in [12]. For this assay, the
antioxidant capacity was determined as inhibition percentage and is expressed as mM
Trolox Equivalents (mM TXEq), using the linear regression value calculated from the Trolox
calibration curve. The FRAP assay was also performed following the procedure just as it is
described in [12] on 50 µL of each brew previously diluted 40×. The results are expressed
as mM ascorbic acid equivalents (mM AAEq), using the linear regression value calculated
from the ascorbic acid calibration curve.

2.7. UV-Vis Spectrophotometric Measurements

To obtain further information that could help characterize and differentiate the tea
brews, spectrophotometric measurements in the UV-visible range were taken [12]. Briefly,
150 µL of each tea infusion diluted 4× was added in each well of a transparent 96-well
microplate and the absorbance spectrum (200–500 nm) was recorded in duplicate at con-
stant intervals (∆λ = 2 nm) against water as a blank. The results are expressed as AU
(arbitrary units).

2.8. ATR-FTIR Measurements and Data Analysis

ATR-FTIR was carried out on a Bruker Invenio-R interferometer equipped with a
Platinum ATR accessory mounting a diamond crystal and a Deuterated TriGlycine Sulfate
(DTGS) detector (Bruker Optics, Ettlingen, Germany). Tea leaves were crushed in a mortar
to obtain a homogeneous powder, which was deposited onto the diamond crystal and
gently pressed to obtain a good adhesion to the crystal surface. Then, on this powder,
the ATR-FTIR spectrum was collected at room temperature in the 4000–600 cm−1 range
(128 scans, 4 cm−1 spectral resolution). Before each sample acquisition, the spectrum of the
background was also collected on the clean diamond crystal under the same conditions.
Seven replicates were analyzed for each experimental group.

Raw spectra were corrected for the contribution of atmospheric CO2 and water vapor
and vector normalized in the whole spectral range (respectively, atmospheric compensa-
tion and vector normalization routines, OPUS 7.5, Bruker Optics, Ettlingen, Germany).
Pre-processed spectra were then cropped in the 1800–700 cm−1 spectral range, baseline
corrected, and submitted to principal component analysis (PCA) with no further pre-
processing (Origin PRO 2018 software). For each experimental group, the average spectrum
(centroids) together with the average spectrum ± S.D. spectrum was also generated (aver-
aging routine, OPUS 7.5, Brucker Optics, Ettlingen, Germany).

2.9. Elemental Analysis

Sample preparation and analysis for the determination of elemental content were
performed according to Girolametti et al. [15]. Briefly, the treatment was conducted in an
ISO 5 clean room laboratory. A specific cleaning procedure with HCl (35.20% Carlo Erba,
Milan, Italy, 1:10 v/v) was adopted for the decontamination of all materials. For the analysis
of 14 elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn), homogenized
samples were mineralized with a MARS–6 system (CEM Corporation, Matthews, NC, USA),
using 3 mL HNO3 and 3 mL H2O2 per 0.5 g of raw sample, diluted to 10 mL with Milli–Q
water (Merck, Darmstadt, Germany) [22]. Determinations were then carried out with a
graphite furnace atomic absorption spectroscopy technique (GFAAS, 240Z AA, Agilent
Technologies, Santa Clara, CA, USA) [23]. As a carrier gas, argon 5.0 (99.99% pure; Sol
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S.p.a., Ancona, Italy) was employed. To improve the signal quality for specific elements, the
use of a matrix modifier (200 µg L−1 Pd in citric acid) was evaluated. Standard solutions
were prepared from 1 g L−1 stock solution (2–5% HNO3, Carlo Erba, Milan, Italy). The
calibration curve method was applied for the elemental quantification. The determination
of Hg was carried out on 0.1 g of raw sample by a thermal decomposition amalgamation
atomic absorption spectrometry (TDA AAS) technique using a direct mercury analyzer
(DMA−1, FKV, Milestone, Sorisole, Italy). All analyses were performed in triplicate (n = 3).
Information on the method’s linearity, the instrumental LOD, and LOQ assessed for the
studied matrix are reported in Girolametti et al. [15]. DORM–2 and 1648a (Dogfish Muscle
CRM and Urban Particulate Matter SRM, National Research Council of Canada, Ottawa,
ON, Canada) were used to evaluate the analytical methodology’s accuracy.

2.10. Health Hazard Estimation

Human safety from the consumption of tea prepared from these tea leaves was eval-
uated by comparing the concentrations obtained with the limits imposed by the various
National Regulations. In addition, the hazard quotient (HQ) was determined following
Girolametti et al. [15] to assess the potential non-carcinogenic health risk associated with
element exposure through tea drinking:

HQ = ADD/RfD

ADD = C × IR/BW

where ADD is the daily intake dose and RfD is the corresponding daily intake reference
dose. C (mg kg−1) is the mean concentration of the element in tea leaves, IR is the average
tea consumption by Europeans (23.48 g person−1 day−1), BW is the average body weight
of a European adult (70 kg), and RfD (mg kg−1 day−1) is the daily intake reference dose
suggested by the United States Environmental Protection Agency (USA EPA) or World
Health Organization (Joint FAO/WHO Expert Committee on Food Additives). Since chil-
dren rarely have the habit of drinking tea, the health risk assessment was only performed
for adults. A value of less than 1 assumes an absence of risk due to the intake of a single
element by consumers. In addition, to assess the simultaneous effect of exposure to all
elements considered, the hazard index (HI) was measured as follows:

HI = HQ1 + HQ2 + HQ3 + . . . + HQn

A value of less than 1 indicates a safe condition against total exposure to the differ-
ent elements.

2.11. Statistical Analysis

The results of TPC, TFC, and antioxidant assays are expressed as mean values with
standard deviation (SD) from at least three independent experiments each performed on the
infusions prepared independently three times (n = 9). Statistical differences were obtained
through an analysis of variance (ANOVA), followed by Tukey’s multiple comparison test at
a 95% confidence level (p ≤ 0.05). The results of UV-Vis spectrophotometric measurements
mediated for each tea infusion were processed using multivariate chemometric techniques
involving principal component analysis (PCA) together with TPC, TFC, and antioxidant
activity data using XLSTAT software (version 2017.1.1, Addinsoft SARL, Paris, France).

For elemental content, each analysis was performed in triplicate. The results are
expressed as mg kg−1, mean ± standard deviation (min–max). Statistical analyses were
performed using the RStudio software (R version 4.2.2) and the “ggplot2” package. Sample
groups were compared using a one-way analysis of variance (ANOVA), followed by the
Tukey’s test, at the 95% confidence level.

For ATR-FTIR, normally distributed data are presented as mean ± SD. Significant
differences between groups were determined by a one-way ANOVA followed by a Tukey
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multiple comparison (software package GraphPad Prism 6.0, San Diego, CA, USA). Statisti-
cal significance was set at p < 0.05 (p > 0.05, n.s.; p < 0.05, *; p < 0.01, **; p < 0.001, ***; and
p < 0.0001, ****).

3. Results
3.1. Total Polyphenol and Flavonoid Contents in the Tea Brews

For the tea brews obtained from the five different tea types, both the total polyphenol
content (TPC) and total flavonoid content (TFC) were determined, since the latter represents
the major class of polyphenols found in Camellia sinensis. The results in TPC for both hot
(dark shade) and cold (light shade) brews are reported in Figure 2 and Table 2. Regardless
of the cultivar/variety and type of brew, from Figure 2 it is evident that the green tea has the
highest TPC of all the tea types. It has on average a 2–3-fold higher content than the black
teas (Hot brews = 9.0 vs. 3.9 mM GAEq; Cold brews = 8.9 vs. 2.7 mM GAEq), reflecting the
degree of oxidation. In general, the degree of oxidation is also mirrored by the TPC of the
other tea types, where the white and yellow teas, which are mildly oxidized, have a higher
TPC than the semi-oxidized oolong teas, and where all three tea types display a higher TPC
than the fully oxidized black teas. Regarding the differences between cultivars/variety,
which is only valid for the black and oolong teas, it appears that the assamica variety, Azores
cultivar (BA and OA), is endowed with significantly higher TPC than the sinensis variety,
Korean cultivar (BK and OK), when prepared either as a hot brew or as cold one. For the
black teas, the pubilimba variety, Vietnam cultivar, is more similar to the sinensis variety,
where the only significant difference was observed in the hot BK brew which had a higher
TPC (BKH = 3.7 vs. BVH = 2.5, BVC = 2.1, BKC = 2.4 mM GAEq). Concerning the type of
brew, the only significant differences were observed in the black teas and in the white tea
but with an opposite trend. For the black teas, a significantly higher TPC was observed, as
already mentioned, for the sinensis variety (BK), but also for the assamica one (BAH = 5.5 vs.
BAC = 3.6 mM GAEq). Whereas for the white tea, a higher TPC was noted in the cold brew
compared to the hot one (WVC = 7.1 vs WVH = 6.7 mM GAE). For the green, yellow, and
oolong teas, no significant differences were observed among the types of brews.
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Figure 2. Total polyphenol content (TPC) of the tea brews measured using Folin–Ciocalteu’s reagent.
Bars are coloured according to the type of tea (brown = black tea; green = green tea; yellow = yellow
tea; rust = oolong tea; grey = white tea) and to the type of brew (light shade = cold brew; dark
shade = hot brew). Letters above the bars indicate homogeneous sub-classes resulting from Tukey’s
post hoc multiple comparison test (p < 0.05). Cultivars are described by the second letter in the Code:
A = Azores; V = Vietnam; K = Korea.
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Table 2. Total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity data
(ORAC, ABTS, FRAP) of the studied tea brews. Samples are grouped by type of brew and type of tea
and the means are reported in bold. Letters within each column indicate homogeneous subclasses
resulting from Tukey’s post hoc multiple comparison test (p < 0.05) performed between all samples.

Type Code TPC (mM GAEq) TFC (mM CAEq) ORAC (mM TXEq) ABTS (mM TXEq) FRAP (mM AAEq)

Cold 5.4 ± 2.46 0.87 ± 0.413 21.8 ± 8.0 15.1 ± 5.8 10.4 ± 5.23

black

BA 3.6 ± 0.15 E 0.56 ± 0.028 H 14.6 ± 2.0 I 10.8 ± 1.5 D 6.6 ± 0.87 H
BV 2.1 ± 0.20 F 0.32 ± 0.025 I 11.0 ± 0.8 J 7.2 ± 0.9 F 4.3 ± 0.72 I
BK 2.4 ± 0.14 F 0.36 ± 0.020 I 13.3 ± 0.6 I 7.7 ± 1.3 EF 3.5 ± 0.59 I
All 2.7 ± 0.80 0.41 ± 0.131 13.0 ± 1.8 8.6 ± 2.0 4.8 ± 1.59

green GK 8.9 ± 0.35 A 1.42 ± 0.115 A 33.2 ± 2.5 A 21.8 ± 3.1 A 17.5 ± 1.78 A

yellow YK 6.9 ± 0.33 BC 1.06 ± 0.088 D 25.8 ± 1.8 DE 18.7 ± 1.7 B 13.4 ± 1.56 C

oolong
OK 5.4 ± 0.23 D 0.87 ± 0.066 EF 22.5 ± 0.9 FG 15.6 ± 1.8 C 9.6 ± 1.43 F
OA 6.8 ± 0.56 BC 1.25 ± 0.114 B 27.9 ± 2.2 C 18.7 ± 2.5 B 12.9 ± 1.83 CD
All 6.1 ± 1.44 1.06 ± 0.240 25.2 ± 4.5 17.1 ± 2.5 11.2 ± 3.26

white WV 7.1 ± 0.36 B 1.10 ± 0.046 CD 26.5 ± 1.8 CD 20.6 ± 2.2 A 15.4 ± 2.01 B

Hot 5.8 ± 2.06 0.87 ± 0.309 20.9 ± 6.5 15.2 ± 5.0 9.2 ± 3.84

black

BA 5.5 ± 0.36 D 0.79 ± 0.052 G 16.9 ± 1.1 H 14.0 ± 1.1 C 7.6 ± 0.53 GH
BV 2.5 ± 0.21 F 0.38 ± 0.028 I 10.5 ± 0.5 J 7.6 ± 0.4 F 4.2 ± 0.23 I
BK 3.7 ± 0.16 E 0.52 ± 0.036 H 14.7 ± 1.1 I 9.2 ± 0.7 DE 4.4 ± 0.35 I
All 3.9 ± 1.54 0.56 ± 0.211 14.1 ± 3.2 10.3 ± 3.3 5.4 ± 1.92

green GK 9.0 ± 0.66 A 1.30 ± 0.093 B 30.4 ± 1.7 B 22.2 ± 2.7 A 15.2 ± 1.14 B

yellow YK 6.7 ± 0.39 C 1.03 ± 0.075 D 24.3 ± 1.4 EF 18.6 ± 0.8 B 11.8 ± 0.86 DE

oolong
OK 5.3 ± 0.29 D 0.84 ± 0.071 FG 21.8 ± 0.8 G 14.0 ± 1.0 C 8.2 ± 0.53 G
OA 7.2 ± 0.49 B 1.16 ± 0.074 C 26.6 ± 1.5 CD 18.6 ± 1.0 B 11.0 ± 0.79 E
All 6.3 ± 1.44 1.00 ± 0.180 24.2 ± 3.5 16.3 ± 3.0 9.6 ± 2.65

white WV 6.7 ± 0.53 C 0.92 ± 0.058 E 21.7 ± 0.9 G 17.6 ± 1.2 B 11.5 ± 0.98 E

With regards to TFC, the results reported in Table 2 follow exactly the same trend
as those of TPC as would be predicted being flavonoids, in particular the sub-class of
flavanols, the most abundant class of polyphenols found in tea [24]. These observations are
supported by the significant correlation between TPC and TFC obtained using Pearson’s
correlation coefficient reported in Table 3. However, it is worth noting that there are more
significant differences between the hot and cold brews compared to TPC. Indeed, higher
TFC was observed in cold brews of both the green tea and the oolong tea OA, compared to
their hot-brewed counterparts, whereas the same significant differences between the hot
and cold brews for the black and white teas were still present.

3.2. Antioxidant Capacity of the Tea Brews

To obtain an overall depiction of the potential health benefits of the German teas in
terms of antioxidant capacity, a panel of three independent and well-recognized assays
were used which are based on slightly different principles [25]. The ORAC assay is a direct
competition method which mainly relies on hydrogen atom transfer (HAT) mechanism,
whereas the ABTS and FRAP assays are considered indirect methods, where the underlying
mechanisms are based on HAT and single-electron transfer (SET) for the ABTS assay and
SET for the FRAP assay [26].
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Table 3. Matrix of Pearson’s correlation coefficients (a) and (b) relative p-values (values are all
different from 0 with a significance level alpha = 0.05).

(a) Variables TPC TFC ORAC ABTS FRAP

TPC 1 0.981 0.966 0.987 0.956
TFC 0.981 1 0.986 0.977 0.955

ORAC 0.966 0.986 1 0.967 0.957
ABTS 0.987 0.977 0.967 1 0.976
FRAP 0.956 0.955 0.957 0.976 1

(b) Variables TPC TFC ORAC ABTS FRAP

TPC 0 <0.0001 <0.0001 <0.0001 <0.0001
TFC <0.0001 0 <0.0001 <0.0001 <0.0001

ORAC <0.0001 <0.0001 0 <0.0001 <0.0001
ABTS <0.0001 <0.0001 <0.0001 0 <0.0001
FRAP <0.0001 <0.0001 <0.0001 <0.0001 0

The results obtained using the ORAC assay are reported in Figure 3, whereas those
obtained using the other two assays are reported in Table 2. Knowing that polyphenols
elicit strong antioxidant properties, the results reported in Figure 3 are as expected, since
they reflect the TPC content measured in the teas, corroborated also by the high correlation
coefficient (Table 3). The antioxidant capacity follows, in general, the extent of oxidation,
with the highest antioxidant capacity measured in the unoxidized green tea, and the lowest
in the oxidized black teas, and with the other mild and semi-oxidized teas falling in between.
Concerning the differences between the two brewing methods, significant findings were
observed in only one black tea, BA, where the hot brew had a higher antioxidant capacity
than the cold one (16.9 vs. 14.6 mM TXEq), and in the green and white teas, where the
cold brew appeared to have a significantly higher antioxidant capacity than the hot one
(GKC = 33.2 vs. GKH = 30.4 mM TXEq; WVC = 26.5 vs. WVH = 21.7). For the other tea
types, no statistical differences were observed between the two brewing methods.
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Figure 3. Antioxidant activity of the tea brews measured with the ORAC assay. Bars are coloured
according to the type of tea (brown = black tea; green = green tea; yellow = yellow tea; rust = oolong
tea; grey = white tea) and to the type of brew (light shade = cold brew; dark shade = hot brew).
Letters above the bars indicate homogeneous sub-classes resulting from Tukey’s post hoc multiple
comparison test (p < 0.05).

Upon using the other two assays (ABTS and FRAP), the results obtained and reported
in Table 2 follow a very similar trend with regards to antioxidant profile as the ORAC
assay, despite being both based on indirect methods but with different mechanisms for
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determining antioxidant capacity. Indeed, the results obtained using these two assays
strongly correlate with those from the ORAC assay, TPC and TFC. However, with regards
to the brewing method, the FRAP assay was able to show more differences among the two
brewing techniques. In fact, in all cases, with the exception of the black teas, the antioxidant
capacity was always significantly higher in the cold brew. Instead for the black teas, no
differences were observed amongst the hot and cold brews.

3.3. UV-Visible Spectral Characteristics of Tea Brews

The UV-Vis spectra of the samples are reported in the Supplementary (Table S2). Two
absorption bands can be detected in the ranges from 220 to 240 nm and from 260 to 300 nm,
and another broad absorption band appears around 300–400 nm. These bands can be related
to phenolic compounds present in the tea infusions. In addition, caffeine shows a maximum
absorption at around 275 nm, so the spectrum in this region could also be related to the
presence of this compound [27]. On closer analysis (Figure S1) of the spectra of the different
tea types produced from the sinensis variety (Korea), the intensity of absorption around
226 nm appears to be strongly related to the type of tea and diminishes with the degree of
oxidation; furthermore, the broad absorbance between 300 and 440 nm seems to follow a
different pattern. These observations prompted us to check a possible differentiation of tea
types according to their UV-Vis spectra and, with the aim of confirming these tendencies, a
PCA analysis was performed using the entire spectral range together with total phenols
and flavonoids and antioxidant activity data.

3.4. Principal Component Analysis (PCA) on Tea Brews

Multivariate analysis was applied on data obtained from the analysis of cold tea brews
to understand if these variables can be used to differentiate the samples according to the
type of tea or to the type of variety/cultivar used. With this aim, the spectral data obtained
from the UV-Vis analysis between 200 and 500 nm of the cold tea brews were statistically
elaborated together with the results obtained on the quantification of total phenols, total
flavonoids, and antioxidant activity assays using a PCA analysis for the reduction of the
data dimension and visualisation of similarities and differences among samples.

The PCA model that was used led to five significant principal components (PC) with
an eigenvalue >1 that explained the 99% of the total system variability as shown in the
Supplementary (Table S3) where the eigenvalues and the variance explained are reported.

The first two coordinates describe most of the total variability (87.5%): PC1 (46.8%)
includes most of the information deriving from the antioxidant tests (FOLIN, FRAP, ABTS,
ORAC, FRAP), together with the contributions of the absorption between 220 and 300 nm;
absorptions between 200 and 220 nm, and between 300 and 400 nm were instead mainly
comprised in PC2 (40.7%), showing that all the variables described by the UV-Vis spectra
contribute to the differentiation of the teas.

Using the tea type as passive variable to represent confidence ellipses corresponding
to the 80% confidence interval enclosing teas of the same type, four well-differentiated
groups of teas (black, oolong, green, and white) are obtained, while yellow tea shows scores
very similar to those of oolong teas (Figure 4a). A similar analysis performed using the tea
cultivar as passive variable shows that teas obtained from the Korean cultivar (var. sinensis)
are well differentiated from samples produced from the Vietnam cultivar (var. pubilimba)
while for tea produced from the Azores cultivar (var. assamica), no clear differentiation of
these tea brews can be observed (Figure 4b).
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3.5. ATR-FTIR Analysis on Tea Leaves

In this study, the eight teas were also analyzed by ATR-FTIR spectroscopy to determine
a chemical fingerprint that would help identify the teas according to the type (processing
method) and variety/cultivar. In Figure 5, the IR spectrum representative of the tea leaves
is shown. The spectrum is displayed in the 3000–2800 cm−1 and 1800–900 cm−1 ranges
both in absorbance (blue line) and second derivative mode (red line); the latter is to better
identify the most significant peaks which are displayed as minima. The peaks assignments,
reported in Table 4, was performed according to the literature data [28,29]. The water
content present in the leaves was irrelevant since the analysis was performed on dry tea
leaves. As confirmation of this, the typical peak at ~2130 cm−1 due to the combination band
of water is absent in all spectra of the teas studied, hence the choice of showing only the two
regions (3000–2800 cm−1 and 1800–900 cm−1) with the most significant peaks (Figure 5).
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Figure 5. Representative IR spectrum of tea leaves from Tschanara Tea Garden. The spectrum is
displayed in the 3000–2800 cm−1 and 1800–900 cm−1 ranges both in absorbance (blue line) and
second derivative (red line) modes, to better identify the most significant peaks which are marked
together with the position (wavenumbers).
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Table 4. List of the most significant IR peaks together with the corresponding vibrational modes and
their biological attribution.

Peak Position (cm−1) Vibrational Mode Biological Attribution

~2921, and ~2849 νasym and νsym CH2 Lipids
~1739 ν C=O ester Pheophytin
~1703 ν C=O Chlorophyll
~1623

(~1644, ~1624, and ~1603)
ν C=O, ν C-N and δ N-H

(Amide I) CONH groups in alkaloids

~1514 ν conjugated C=C Polyphenols
~1237 phenyl ring breathing vibration

~1451, ~1368, and ~1315 δ C-H
Cellulose~1033 ν C-OH

~1147 ν O-C-O Carbohydrates

The spectral data of all the tea leaves were submitted to principal component analysis.
The analysis of the PCA scores plot evidenced only a weak differentiation in the spectral
profiles as regards both tea types and cultivars (Figure 6a); in fact, only the oolong teas, OA
and OK, and the green one from Korea (GK) were partially separated from all the others.
For a deeper analysis, the pairwise PCA of oolong tea leaves was performed (Figure 6b),
displaying a complete segregation between the two varieties/cultivars (PC1 axis, explained
variance 99.5%). Finally, regarding the black tea leaves (Figure 6c), a strong separation was
observed between all three varieties/cultivars (PC2 axis, explained variance 11.3%).
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analysis was performed in the 1800–700 cm−1 spectral range.

3.6. Essential and Potentially Toxic Elements

The comprehensive datasets of the elemental content for essential and potentially toxic
elements in the tea leaves from the German tea garden are provided in Tables S4 and S5,
respectively.

The average levels of essential elements were arranged according to the following
order: Mn > Fe > Zn > Cu > Se > Co (Figure 7). V was always below the instrumental
limit of detection (LOD). Mn, Fe, and Zn were the major elements (684 ± 204, 58 ± 11, and
26 ± 6 mg kg−1, respectively), accounting for 98.4% of the total essential elements analyzed.
Oolong tea of Korean cultivar (OK) showed the highest level in Mn (1086 ± 2 mg kg−1).
With the exception of Se, all samples showed statistically significant differences (p < 0.05)
in the elemental distribution. However, there was not a distinct pattern showing a compre-
hensive higher concentration of essential elements in one type of tea rather than another.
The potentially toxic elements’ concentrations followed the order of Al > Ni > Cr > Pb > As
> Cd > Hg > Ag (Figure 8). The Al fraction significantly dominated the others, accounting
for 99.4% of the total. An extremely high concentration was recorded in the Oolong tea
from the Azores cultivar (OA) (10.5 ± 0.9 g kg−1).
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For the other elements, the concentrations showed a high variability depending on
the type of tea, but as for the essential elements, no consistent trend could be identified.
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The only exception was As, the content of which was statistically similar (p > 0.05) in
all samples.

Multivariate principal component analysis (PCA) performed on the data of essential
and potentially toxic elements, extracted four principal components accounting for 86% of
the total variance (Table S6). The PC1 vs PC2 biplot (54.9% of the total variance, Figure 9)
resulted in a clear clustering of samples according to the variety/cultivar of origin. In
particular, the sinensis variety, Korean cultivar (PC1, positive scores) was associated with
higher levels of Hg, Mn, and Cr. The assamica variety, Azores cultivar, on the other hand,
was in the negative PC1 scores and was associated with higher Al, Zn, Cd, Fe, and Ni
contents. The pubilimba variety, Vietnamese cultivar (BV) was found associated with higher
Co and Cu concentrations in the negative PC1 and PC2 axis. Finally, the white tea (WV)
from the same variety and cultivar as BV did not appear to be associated with any element.
From this analysis, the treatment that the tea leaf undergoes to produce the different tea
types did not appear to affect the distribution of the elements.
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Figure 9. 2D Biplot of PC1 vs PC2 performed on the data of essential and potentially toxic elements
found in differently processed tea leaves from Tschanara Tea Garden.

In order to find potential relationships between the contents of the elements, a corre-
lation analysis was also carried out (Figure S2). This analysis revealed pairs of positively
correlated elements such as Cr-Mn (p = 0.008172, r = 0.8455813) and Al-Zn (p = 0.031,
r = 0.7531089) and pairs of negatively correlated elements such as Cr-Fe (p = 0.01772,
r = −0.7975482), Mn-Fe (p = 0.01255, r =−0.8206391), and Ag-As (p = 0.04322, r =−0.7218066).

Exposure Risk Estimation

Currently, there has been no adoption of a European regulation regarding limits on
elemental content in tea leaves. A comparison between the obtained concentrations and
the limit values set by the various National Regulations [15] showed that the content of
potentially toxic elements was lower in almost all cases. The exceptions were Cu with regard
to the extremely restrictive Canadian limit of 2 mg kg−1 and Ni concerning the Indian limit
value of 5 mg kg−1. It is important to note that these values are extremely heterogeneous
as each country sets a different threshold in accordance with its own National Regulation.

The measured HQs showed values in the following order Al > Mn > Ni > Cr > Pb >
Zn > Fe > As > Cd > Cu > Hg > Se > Co > Ag (Table S7). All HQ values did not exceed 1,
indicating that there is no carcinogenic risk from consumption of this product (Figure 10a).
The measured mean value of the hazard index (HI) was 0.14, suggesting that the effect
resulting from synergistic exposure to the considered elements is not significant enough
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to pose a non-carcinogenic risk to European consumers. However, the results suggested
that Al and Mn are the most important contributors, accounting for 97% of the total HI
(Figure 10b).
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4. Discussion

European tea is still in an experimental phase with several small projects scattered in
different countries, with the Azorean islands having the longest tea producing tradition [30].
The teas grown in Europe defy many of the traditional procedures of tea cultivation,
breaking the accepted conventions for tea growing, yet they are able to offer superb quality
and are endowed with nutraceutical properties comparable to those from other parts of
the world [12]. Another interesting aspect is that each of the tea projects underway is not
bound to the traditions of a certain style of tea making, therefore, each garden has the
possibility to develop its own tea style. Indeed, this is exemplified by the teas produced in
Germany in Tschanara Tea Garden, the object of the present study.

For making the different tea types, the tea garden is experimenting with three tea
varieties, the more common Camellia sinensis var. sinensis and assamica, but also with the
less common pubilimba one, and with selected cultivars (from Korea, Vietnam, and Azores)
that have higher frost resistance. The goal is to optimize the quality of teas in terms of taste
and growth properties. From the results of the present study, another dimension can now
be added to the characterization of these teas: nutraceutical properties and the presence of
essential and potentially toxic elements. Firstly, the results undeniably demonstrate that
the degree of oxidation of the tea leaves affects the polyphenol and flavonoid contents
and, consequently, the antioxidant capacity. This should be reassuring to any tea farmer
knowing that whatever personalized procedure is used for obtaining the different tea types,
is confirmed by the nutraceutical properties observed in the tea brew. It is in fact well
known that green tea is endowed with greater antioxidant activity than fully oxidized
black or semi-/partially oxidized oolong, white, and yellow teas as observed by us and
others [4,31,32]. Unoxidized teas maintain higher levels of catechins, the main bioactive
constituents (they account for about 80% of the total polyphenolic content of tea), than
those that undergo any degree of oxidation, as during this process, the simple catechins
oxidize and dimerize/polymerize to yield complex quinonic structures, theaflavins and
thearubigins, which still possess antioxidant activity [33]. The PCA performed on the tea
brews using the biochemical assays data combined with UV-Vis spectroscopy data, also
confirmed the variations among the tea types as four distinct groups were obtained (black,
oolong, green, and white); the yellow tea was similar to the oolong teas. The levels of TPC,
TFC, and antioxidant capacity observed in the German teas compare well with those from
other parts of the world such as China, Africa, and Taiwan. This can be inferred from the
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literature review that we had carried out on our previous investigation regarding European
black, green, and white teas and where the same black and green teas (only Korean cultivar)
and the white tea had been included [12]. Regarding oolong and yellow teas, there are very
few studies on aqueous extracts of these teas, however, the results on TPC are in line with
those found by others, despite slightly different extraction methodologies and water/leaf
ratios. For comparative purposes, when the data reported in the literature was not in the
same units as ours, ours were converted. Zhao et al. found TPC levels in yellow and oolong
teas, respectively, of 192 mg GAE/g dry weight (DW) and 108 mg GAE/g DW compared
to 289 mg GAE/g DW and 263 mg GAE/g DW found in the yellow and oolong teas of
the present study [34]. Chan et al. reported average TPC values on two oolong teas of
8925 mg GAE/100 g tea leaves whereas we found average values of 5254 mg GAE/100 g,
bearing in mind that Chan et al. steeped their tea leaves in 80 ◦C water for 1 h [35]. With
regards to the antioxidant capacity using the ABTS assay, Zhao et al. reported values of
1622 µmol TX/g DW and 1210 µmol TX/g DW on yellow and oolong teas, respectively,
whereas the values found by us were much higher: 4662 µmol TX/g DW for the yellow
tea, and 4177 µmol TX/g DW for the oolong teas [34]. Gramza-Michalowska reported
values of 431 mg TX/g DW and 320 mg TX/g DW for yellow and oolong teas, respectively,
compared to 234 TX/g DW and 208 TX/g DW for the yellow and oolong German teas [36].

With regards to the three different cultivars (each from three different C. sinensis
varieties) used for making black and oolong teas, differences in TPC, TFC, and antioxidant
capacity were observed. Since the plants are all grown on the same terroir, exposed to the
same climatic conditions, and the leaves were harvested and processed in the same way at
the same time, the differences must mainly arise from their different genetic background.
The assamica variety (Azores cultivar) appears to be the most appropriate one in terms
of potential health benefits compared to the sinensis and pubilimba ones as it displayed
higher levels of TPC, TFC, and antioxidant activity. This is in accordance with a study
by Jin et al. who studied the total catechin content in dried tea leaves of 371 accessions
of representative tea germplasms collected in tea-growing provinces of China, and of the
3 varieties, assamica had a significantly higher catechin index, a measure of the difference
in catechin composition, than the other two, and a higher total catechin content than the
sinensis variety [2]. In another study examining 107 cultivars belonging to the same three
varieties, assamica was also shown to be quite different from the sinensis and pubilimba
ones in terms of composition and content of catechins and flavonol glycosides [37]. Other
studies have also reported that, in general, the biochemical composition of tea leaves in
terms of total catechin and polyphenol content is higher in cultivars from the assamica
variety than those from the sinensis one, reflecting botanical/genetic variability [38–40]. The
differences in the cultivars observed were partly confirmed by the PCA statistical analysis
performed on the tea brews, where the Korean (var. sinensis) and Vietnam cultivar (var.
pubilimiba) were well separated; concerning the Azores cultivar (var. assamica) it seems that
the type of treatment of the leaves influences the properties of the tea brews more than the
cultivar. A separate analysis of the different type of tea can also differentiate these varieties
as shown by the pairwise PCA of dry tea leaves of the black and oolong teas performed on
ATR-FTIR data that well discriminate the Korean cultivar (var. sinensis) from the Azores one
(var. assamica). This result proves that the different tea varieties have a different chemical
fingerprint that can be sufficiently and qualitatively detected by FTIR-ATR spectroscopy,
and that these variations can be identified using multivariate analysis with PCA. This is
in line with other studies that showed the potential of FTIR spectroscopy to discriminate
between different tea varieties [41,42].

Two different brewing conditions were used in this study, considering the average
household preparation of a cup of hot tea as well as the preparation of cold tea which
is becoming increasingly popular as a refreshing cold or iced beverage. Cold brews
have a distinct taste and flavour profile, but they still deliver a certain level of beneficial
polyphenols but with less bitterness and lower caffeine and tannins [43]. We did not find
remarkable significant differences between the two brewing methods except for some
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exceptions. In general, hot brewing of black tea (var. assamica, Azores cultivar) always lead
to higher extraction of TPC, TFC, and antioxidant capacity than the other two varieties,
indicating that this brewing method would be the one of choice to maximise its health
benefits. The opposite is true for white tea where the cold brew always showed to be the
more efficient preparation method in terms of health-promoting benefits. These outcomes
are in line with our previous studies [44,45]. The reasons underlying these differences,
could be due to the fact that during cold brewing, the tearubigins and teaflavins present in
fermented and partially fermented teas are likely more difficult to extract since they are
high molecular weight polymerization products of catechins, therefore, they could be more
easily extracted with hot brewing. However, for non-fermented or slightly fermented teas
like white, green tea, and yellow teas, the low molecular weight water-soluble catechins can
be easily extracted with cold brewing. Furthermore, in Figure 3 one can observe that cold
brewed ORAC activity of green tea is higher than the hot brewed one despite their similar
TPC (Figure 2). This peculiarity can be explained by the fact that the ORAC assay measures
mostly the HAT capability of compounds which neutralize the peroxyl radicals generated
by AAPH. The HAT mechanism can be carried out by polyphenols but not exclusively
by them. Hence, other compounds not measured using the Folin–Ciocalteau assay could
contribute to antioxidant capacity, especially in the cold brew, where low molecular weight
compounds are more easily extractable in the cold brew than high molecular weight ones.

With the rise in tea consumption across the globe, the potential presence of chemical
contaminants such as trace elements may raise health concerns [46]. Monitoring the content
of PTEs, particularly aluminium, is crucial due to its potential association with the develop-
ment of Alzheimer’s disease. This is of particular concern because tea has been identified
as a hyperaccumulator of this element [47]. Implementing sound cultivation and handling
practices for tea leaves can effectively regulate the levels of these contaminants. Specifically,
emphasizing the moderate use of pesticides and strategically situating plantations away
from anthropogenic sources of contamination can greatly contribute to this endeavor.

Bearing this in mind, an elemental analysis was also carried out to determine the
presence of 15 elements (both potentially toxic and essential) on the German teas. Inter-
estingly, from the PCA analysis, a clear discrimination was observed for the three tea
varieties with different accumulations of elements. Previous studies have reported that the
geographical origin of tea could be authenticated based on the mineral multi-elements that
are translocated from soil to leaves with a significant correlation [48]. However, the German
teas studied were all grown on the same soil, hence the results obtained seem to indicate
that the different varieties differ in their uptake and concentration of certain elements,
depending on the plants homeostasis which is tightly regulated in plant tissues [49]. No
discriminatory differences were however noted regarding the degree of oxidation, and this
would be expected since the trace elements present in tea leaves cannot be lost during their
processing, although they could be transferred in the aqueous phase during brewing. The
results of the exposure risk assessment (HQ and HI indexes) showed, however, that there
is no carcinogenic risk from consumption of these German teas, hence they would not give
rise to health concerns, which in line with our previous investigation on European teas [15].
In fact, it is worth bearing in mind that these indices are calculated on dry leaves which are
not consumed, and not on the infusions which contain lower contents of elements since the
entire quantity of elements are never fully released in the infusion.

5. Conclusions

Overall, this multi-faceted approach for the characterization of black, green, white,
yellow, and oolong teas from three different Camellia sinensis varieties grown in Tschanara
Tea Garden (Germany) can be a valuable addition to the more commonly known teas
grown outside of the European territory, making European teas a promising and attractive
option for tea lovers. The results obtained could act as a guide for selecting teas with
marked beneficial effects on human health and provide a benchmark for other European
tea growers for maintaining standards and targets in the highly competitive global tea
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market. Furthermore, additional information of the best brewing conditions for maximizing
the health benefits of these German teas are provided. Finally, having tea gardens in Europe
would help Europeans to visit and learn more about the ancient tea culture and the complex
process of producing tea without the need to travel long distances, bridging a gap of
knowledge to both tea connoisseurs and non-connoisseurs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antiox12111943/s1, Figure S1: Averaged UV-Vis spectra (200–500 nm,
∆λ = 2 nm) of the cold tea brews (cultivar: Korea); Figure S2: Correlogram plot on element content in
Tschanara Tea Garden tea leaves; Table S1: Mineral composition of the mineral water “Sant’Anna”;
Table S2: UV-Vis absorption spectra of the hot and cold brews (200–500 nm); Table S3: Eigenvalues
and explained and cumulative variance, for the first five principal components (PC) obtained from
the analysis of the total phenol (TPC) and flavonoid (TFC) content, antioxidant activity (ORAC, ABTS,
FRAP), and UV-Vis absorptions (200–500 nm) of the three cold brews obtained from each of the
eight tea samples; Table S4: Essential elements content (mg kg−1) in differently processed tea leaves
from Tschanara Tea Garden; Table S5: Potentially toxic elements content (mg kg−1) in differently
processed tea leaves from Tschanara Tea Garden; Table S6: Principal component analysis. Eigenvalues,
explained and cumulative variance; Table S7: Estimated hazard quotient (HQ) and hazard index (HI)
of exposure to elements from consumption of Tschanara Tea Garden teas by European consumers.
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