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Abstract
An efficient supply chain (SC) management requires that decisions are taken
to minimize the effects of parametric uncertainties and unpredictable exter-
nal disturbances. In this article, we consider this problem with reference to
a multi-stage SC (MSSC) whose dynamics is characterized by the following
elements of complexity: perishable goods with uncertain perishability rate, an
uncertain future customer demand that is only known to fluctuate inside a given
compact set. The problem we face is to define a resilient and robust Replenish-
ment Policy (RP) such that at any stage the following requirements are satisfied:
the fulfilled demand is maximized, overstocking is avoided, the bullwhip effect
(BE) is mitigated. These objectives should be pursued despite the mentioned
uncertainties and unexpected customer demand behaviors violating the bounds
of the compact set. Robustness is here intended with respect to uncertainty
on the perishability rate, and resiliency as the ability to quickly react to the
mentioned unforeseen customer demands. We propose a method based on a dis-
tributed resilient robust model predictive control (DRRMPC) approach. Each
local robust MPC (RMPC) involves solving a Min-Max constrained optimiza-
tion problem (MMCOP). To drastically reduce the numerical complexity of each
MMCOP, we parametrize its solution by means of B-spline functions.

K E Y W O R D S

distributed resilient robust model predictive control, min-max optimization, optimal inventory
management, supply chain

1 INTRODUCTION

Efficient SC management requires maximizing the satisfied customer demand without incurring excessive inventory
levels. The antagonism of these requirements calls for a control policy based on an optimality criterion. In this regard,
the importance of MPC is widely recognized and documented.1,2 This is due to the natural ability in handling physical
constraints and to the receding horizon nature of the control law.3 The first feature allows limiting the inventory level
and the replenishment orders, the second one allows determining appropriate on line corrections to the actual control
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action according to the incoming observations. This second property is particularly useful in SC design where only a
time-varying forecast of customer demand is available over a limited time interval.

For large scale systems, the research on MPC techniques was directed toward the application of three different con-
trol architectures4: centralized, decentralized and distributed. The first two are applied to MSSCs in References 5–10. The
main limitations of centralized approach are the numerical complexity of the optimization problem, the costs associated to
communication channels, the barriers to information sharing among supply chain partners. The decentralized approach
does not have these drawbacks but causes a loss of performance in the supply chain management because control agents
decide control actions independently on each other. This motivated the recent interest toward distributed model predic-
tive control (DMPC) strategies, see for example, References 11–15. They make a compromise between centralized and
decentralized architectures because some information exchange among local agents is allowed.

The above papers do not face the problem raised by the presence of deteriorating items. On the other hand manage-
ment of perishable products is quite important because it has a direct impact on factors determining profitability like:
price, sales, inventory level, deterioration cost, product availability.

MPC of inventory level in the case of perishable goods has been investigated in References 16 and 17 for single-echelon
SCs and in References 18–20, for multi-echelon SCs. The importance of this topic also motivated many alternative control
methods outside the MPC framework: for example, single-stage SCs the optimal inventory control problem with perish-
able goods has been considered in References 21–26 from different points of view. A Smith predictor based approach has
been proposed in References 27–29. The case of an MSSC with perishable goods has been considered in Reference 30
using genetic algorithms.

The common factor of all the above mentioned approaches (MPC and non-MPC) dealing with perishable goods
is the assumption of an exactly known decaying factor. However, this simplifying assumption is not satisfied in the
overwhelming part of practical cases due to unstable and variable storage conditions.31

MPC of single stage SC’s with perishable good and uncertain deterioration rate has been considered in Refer-
ences 32–34.

Besides the robustness requirement, resilience is another very important property required to SCs. Resilience is usually
defined as the ability of an SC to quickly react to unexpected events. With reference to the purpose of this article we
define the resilience property as the capacity of promptly restore operational normality in response to sudden unpredicted
changes of demand patterns.

Based on the foregoing considerations and cited literature, the purpose of this article is to propose a DRRMPC strategy
for the optimal inventory control problem of an MSSC working in the following operating conditions:

1. perishable goods with an interval type uncertainty on the perishability rate;
2. an uncertain future customer demand that may show unforeseen behaviors with respect to some “a priori” assump-

tions on its uncertainty.

We aim at obtaining a resilient and robust RP conciliating the following antagonist control requirements (CR) at each
stage:

(CR1) the satisfied demand coming from the neighboring downstream stage should be maximized;
(CR2) overstocking should be avoided;
(CR3) the replenishment orders issued by each stage should take values inside intervals with a predetermined

amplitude that is slowly increasing in the upward direction;
(CR4) the RP should not incur sharp and frequent order quantity changes.
The first step to satisfy CR1 is defining a suitable predictive information on the end customer demand. According

to the interval prediction approach (see e.g., References 35 and 36 and references therein), we only assume that at any
time instant k ∈ Z+ and over an M1-steps prediction horizon, the future end customer demand entering the first stage
of the MSSC is arbitrarily time varying inside a given compact set D1,k. This assumption is general enough to include all
situations of a practical interest and is independent of the sources of uncertainty on the future customer demand.

Owing to its intuitive nature, the interval prediction approach has been attracting a lot of interest as an alternative to
point forecast based on time series analysis. Its advantageousness is particularly evident when the data sequence shows
large randomness and volatility: in this case, point forecast methods based on time series analysis are not able to capture
several statistical phenomena underlying the nature of the demand generation process.37 Interval prediction prescinds
from this information and can better capture the uncertain trend of the data sequence and is a more effective reference
for formulating robust control strategies.
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JETTO and ORSINI 2385

CR1 and CR2 are conciliated defining a time-varying target inventory level for the first stage given by the upper bound-
ing trajectory of D1,k. Going in the upwards direction, we iteratively define suitable time-varying target inventory levels
and keep the actual inventory of any stage as close as possible to the respective desired trajectory (see Section 4.1 for
details).

Meeting CR3 and CR4 is necessary to counteract the BE, that is, the continuous upwards amplification of amplitude
and frequency of small changes in the end customer demand. This is a problem of a paramount importance in MSSC
management as testified by the impressive amount of relevant literature. See for example, References 38 and 39, and
references therein.

As for CR3, we limit the progressive upstream amplification of demand imposing suitable hard constraints on the
optimal robust RP solution of the local RMPC problem defined at each stage of the MSSC. In this regard our approach
reveals an important fact: the presence of deteriorating items contributes to the progressive amplification proportionally
to the perishability rate (see Section 4.2). The interesting corollary is that, in the case of nonperishable goods, our approach
allows us to contain the values of orders issued by all stages in the same fixed amplitude interval.

As for CR4, we define an RP through a parametrized solution of the optimization problem in terms of smooth functions
and define a cost functional penalizing excessive differences between consecutive orders.

To address the problem described so far we propose a DRRMPC based on a set of MMCOPs: the control law (i.e., the
replenishment order) of any stage is obtained through a receding horizon implementation of a predicted control sequence
minimizing the worst case of a local quadratic cost functional on the basis of the information coming from the downstream
stage. The worst case is computed as the maximum with respect to all the possible perishability rate values belonging to
a known compact set.

We introduce a coordination requirement between contiguous agents: the constraints on the replenishment orders
issued by each agent are related to the analogous constraints relative to the neighboring downstream agent. This allows us
to strictly control the BE (see Section 4.2). Resilience w.r.t. anomalous end customer demands is achieved by introducing
an agile adjustment mechanism of D1,k (see Section 4.3).

Another significant novelty of our approach is the use of polynomial B-spline functions to parametrize the solution
of each MMCOP. The main reasons for this choice are: (1) polynomial B-splines are smooth functions that can be used
as universal approximators of curves which exhibit different shapes over different time-intervals; (2) B-splines admit a
parsimonious parametric representation given by a time varying, linear, convex combination of some parameters named
“control points.”40

Property 1 allows us to obtain a predicted replenishment order signal with a smooth waveform. Property 2 allow us
to transfer any hard constraint on the predicted control sequence to its control points and to reformulate the MMCOP
as a Constrained Robust LS estimation problem with only constraints on the unknowns (the control points defining the
admissible B-spline function). The Constrained Robust LS problem can be efficiently solved using interior point meth-
ods.41 Finally, as shown in the theorem of Section 5, Property 2 allows us to rigorously prove both stability and feasibility
of the MMCOP without any further assumption.

As for the stability of MPC, two main approaches exist in the literature: finite, sufficiently large, prediction horizon
with terminal constraints (see e.g., References 42 and 43), infinite prediction horizon (see e.g., References 44 and 45). On
the contrary, we achieve stability and feasibility regardless of the prediction horizon length (see Theorem 1, Section 5).
This is very important because allows us to limit the future knowledge on the end customer demand to prediction horizons
whose length is inferiorly limited by considerations only involving the architecture of the MSSC (see Section 4.1).

We also remark that although, stability and feasibility are fundamental issues of MPC approach, most MPC techniques
for SCs do not explicitly address these topics.

A preliminary version of this contribution was presented at Reference 46. Here we provide more theoretical and
implementation insights answering many issues not addressed in the previous version:

1. a more general description of the MSSC dynamics: for example, here we remove the assumption that the demand is
fully satisfied starting from a specific time instant;

2. a different formulation of the cost functional where large deviations between two consecutive control actions are
penalized as to meet CR4 (see (16));

3. definition of an RP endowed with an agile adjustment mechanism to achieve resilience w.r.t. unexpected patterns of
the end customer demand

4. much more extensive numerical results: centralized and decentralized implementation of our approach and compar-
ison.
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T A B L E 1 Acronyms.

SC Supply chain

MSSC Multi-stage SC

RP Replenishment policy

BE Bullwhip effect

MPC Model predictive control

RMPC Robust MPC

DRMPC Distributed RMPC

DRRMPC Distributed resilient RMPC

CR Control requirement

MMCOP Min-max constrained optimization problem

LS Least squares

UD Unsatisfied demand

IL Inventory level

IO Issued orders

WG Wasted goods

MNLCS Modified non-linear control strategy

The article is structured as follows. Brief mathematical preliminaries on B-splines and Robust LS are provided in
Section 2. The plant model is described in Section 3. The control problem is stated in Section 4 and reformulated as a
Constrained Robust LS estimation problem in Section 5. The numerical results of Section 6 include a comparison with
Reference 29 and with the decentralized and centralized versions of our approach. Concluding remarks are reported in
Section 7. The Appendix explains the mathematical derivation of decentralized and centralized architectures. Acronyms
and nomenclature are reported in Tables 1 and 2, respectively.

2 MATHEMATICAL BACKGROUND

2.1 B-splines

A scalar, continuous time, B-spline curve bs(t) is defined as a linear combination of B-splines basis functions and control
points40:

bs(t) =
𝓁∑

i=1
ciBi,d(t), t ∈ [̂t1, ̂t𝓁+d+1] ⊆ R, (1)

where: the ci’s are real numbers representing the control points of bs(t), the integer d is the degree of the B-spline, the
knot sequence (̂ti)𝓁+d+1

i=1 is a nondecreasing sequence of time instants and the Bi,d(t) are the uniformly bounded B-spline
basis functions that can be computed by the Cox-de Boor recursion formula

Bi,d(t) =
t − ̂ti

̂ti+d − ̂ti
Bi,d−1(t) +

̂ti+1+d − t
̂ti+1+d − ̂ti+1

Bi+1,d−1(t), d ≥ 1, (2)

with Bi,0(t) = 1 if ̂ti ≤ t < ̂ti+1, otherwise 0.
In (2) we use the convention that “fractions with zero denominator have value zero.”47

An equivalent representation of bs(t) in (1) is

bs(t) = Bd(t)c, t ∈ [̂t1, ̂t𝓁+d+1] ⊆ R, (3)
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JETTO and ORSINI 2387

T A B L E 2 Parameters/sets/variables of the MSSC network.

i The ith node

i The ith agent for i

d1(k) The actual customer demand

Ni The length of control horizon Hi,k fori

Mi The length of prediction horizon Pi,k fori

1,k The compact set containing the future customer demand over [k, k +M1]

i,k, i = 2, … ,n The compact set containing the forecasted demand fori

̂1(k) The predicted customer demand for1

Ui,k, i = 1, … ,n The predicted optimal RP determined byi

̂i(k) = Ui−1,k, i = 2, … ,n The forecasted demand fori

ui(k), i = 1, … ,n The order issued by Si

u−i,k and u+i,k The lower and upper bounds on Ui,k

di(k) = ui−1(k), i = 2, … ,n The demand issued by Si−1 for Si

si(k − Li) The goods delivered to i fromi+1 with time delay Li

hi(k) The amount of demand issued by Si−1 for Si and delivered to Si−1 from Si

yi(k) The on hand inventory level of Si

𝛼i, 𝜌i The perishability rate and the decay factor of Si

where c ≜ [c1, … , c𝓁]T and Bd(t) ≜
[
B1,d(t), … ,B𝓁,d(t)

]
.

Convex hull property. Any value assumed by bs(t), ∀t ∈ [̂tj, ̂tj+1], j > d, lies in the convex hull of its d + 1 control points
cj−d, … , cj.

Smoothness property. Suppose that ̂ti < ̂ti+1 = · · · = ̂ti+m <
̂ti+m+1, with 1 ≤ m ≤ d + 1 then the B-spline function bs(t)

has continuous derivative up to order d −m at knot ̂ti+1. This property implies that the spline smoothness can be changed
using multiple knot points. It is common choice to set m = d + 1 multiple knot points for the initial and the last knot
points and to evenly distribute the other ones. In this way (1) assumes the first and the final control points as initial and
final values.

Remark 1. From (3) it is apparent that, once the degree d and the knot points ̂ti have been fixed, the scalar
B spline function bs(t), t ∈ [̂t1, ̂t𝓁+d+1], is completely determined by the corresponding vector c of 𝓁 control
points.

2.2 The robust LS problem

Consider the overdetermined set of linear equations Df ≈ b, where D ∈ Rr×m is the design matrix and b ∈ Rr is the obser-
vations vector. Both D and b are subject to unknown but bounded errors41: ||𝛿D|| ≤ 𝛽 and ||𝛿b|| ≤ 𝜉 (where the matrix
norm is the spectral norm). The robust least squares estimate ̂f ∈ Rm is the value of f minimizing

min
f

max
||𝛿D||≤𝛽, ||𝛿b||≤𝜉

||(D + 𝛿D)f − (b + 𝛿b)||, (4)

Using norm properties, it can be shown that

max
||𝛿D||≤𝛽, ||𝛿b||≤𝜉

||(D + 𝛿D)f − (b + 𝛿b)|| = ||D f − b|| + 𝛽||f || + 𝜉. (5)
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2388 JETTO and ORSINI

Hence (4) is equivalent to minimize the following sum of euclidean norms

min
f
||D f − b|| + 𝛽||f || + 𝜉, (6)

The constrained robust LS problem also requires that f satisfies the following conditions

f ≤ f ≤ f . (7)

Remark 2. Note that the term ||𝛿b|| in (4) only appears in (6) through its norm upper bound 𝜉, which is inde-
pendent of f . Hence 𝜉 can be removed from the objective function without affecting the value of f solving
the minimization problem. As shown in Section 5, this allows us to solve the MMCOP implied by the RMPC
algorithm even in the case of uncertain future customer demand.

3 THE SYSTEM MODEL

As shown in Figure 1, we consider an MSSC network consisting of a cascade of stages (nodes) i, i = 1, … ,n, character-
ized by counter-current order and material streams. Orders are propagated upstream from 1 to n and the products are
shipped along the opposite direction.

Management decisions for each node are taken periodically at equally distributed time instants kT where k ∈ Z+ and
T is the review period. At the beginning of each review period [kT, (k + 1)T) the operations across the SC network are
performed sequentially from 1 to n.

Inside each review period, each i executes five actions in the following order: receives delivery from supplier Si+1,
logs the demand of customer Si−1, measures its on hand stock level, delivers the goods to meet demand and finally places
an order according to a suitably defined RP. Accordingly, five variables are defined: si(k), di(k), yi(k), hi(k) and ui(k). They
represent the shipment of goods from supplier Si+1, the demand from Si−1, the on hand stock level, the delivery to customer
Si−1 and the replenishment order, respectively.

Each node i is regulated by an agenti that solves a local RMPC problem based on the following assumptions:

• (A1) The end customer demand d1(k), k ∈ Z+, is uniformly bounded. Moreover, at any time instant k, and limitedly to
an M1-steps prediction horizon [k, k +M1] ≜ P1,k, the end-customer demand d1(k + j), j = 0, … ,M1, fluctuates within
a given compact set1,k limited below and above by two boundary trajectories: d−1 (k + j) and d+1 (k + j), j = 0, … ,M1.
The forecasted demand ̂1,k = [d1(k + 1|k), … , d1(k +M1|k)] for agent1 coincides with the central trajectory of1,k.
Figure 2A shows a typical example of an end-customer demand d1(k + j) and of a predicted end-customer demand
d1(k + j|k) over a fixed1,k. The set D1 containing the whole customer demand is given by the consecutive contiguous
overlapping of all the sets D1,k, k ∈ Z+. Figure 2B shows an example of a partial overlapping for k = 0, 1, 2.

F I G U R E 1 Distributed control scheme of the MSSC network.
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JETTO and ORSINI 2389

(A) (B)

F I G U R E 2 (A) Example of a set1,k with known time varying boundaries trajectories: d−1 (k + j) and d+1 (k + j), j = 0, … ,M1. The
sequence of bullets denotes a possible trajectory of the actual end-customer demand d1(k + j), j = 0, … ,M1. The sequence of triangles denotes
the predicted end customer demand d1(k + j|k), j = 1, … ,M1. (B) An example of a partial overlapping of sets1,k for k = 0, 1, 2, with M1 = 7.

F I G U R E 3 Example of a seti,k, i > 1, limited by the known constant boundaries trajectories given by the lower and upper values
u−i−1,k and u+i−1,k respectively. The sequence of triangles denotes the predicted demand di(k + l|k) = ui−1(k + l|k), l = 1, … ,Mi with
Mi = Ni−1 − 1, for agenti, i > 1.

• (A2) At any time instant k, the predicted demand ̂i,k = [di(k + 1|k), … , di(k +Mi|k)] for the other agents i, i =
2, … ,n, coincides with the predicted optimal control sequence (i.e., the optimal predicted RP) Ui−1,k ≜ [ui−1(k +
1|k), … ,ui−1(k + Ni−1 − 1|k)] transmitted byi−1 toi (so that Mi = Ni−1 − 1). Note that also ̂i,k belongs to a given
compact seti,k limited by the imposed lower and upper values u−i−1,k and u+i−1,k respectively (as shown in Figure 3).

How to compute Ui−1,k, u−i−1,k and u+i−1,k is explained in Sections 4.1 and 4.2.
• (A3) Any goods shipped from supplier Si+1 arrive at customer Si with a time delay Li = niT, where ni ∈ Z+. The goods

arrive at customer Si new and deteriorate while kept in stock.
• (A4) Inside each review period, the uncertain perishability rate of the goods stocked in Si is 𝛼i ∈ [𝛼−i , 𝛼

+
i ] ⊂ (0, 1).

Hence the perishable goods are subject to a decay equal to 𝜌i ≜ 1 − 𝛼i ∈ [𝜌−i , 𝜌
+
i ] ⊂ (0, 1). For example, if inside each

review period the uncertain percentage of stock that must be discarded due to deterioration can take values inside the
interval [3%, 5%], then the percentage of still available goods belongs to the range [95%, 97%]. Hence: 𝛼i ∈ [0.03, 0.05]
and 𝜌i ∈ [0.95, 0.97]

• (A5) the operations of inventory replenishment and goods delivery are executed simultaneously at the beginning of
each review period. Sales are not backordered.

The above assumptions imply that the stock level dynamics of the ith node is described by the following uncertain
equation

yi(k + 1) = 𝜌i(yi(k) + si(k − Li) − hi(k)), (8)
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2390 JETTO and ORSINI

where:

- yi(k + 1) is the on hand nondeteriorated stock level of i available at the beginning of the (k + 1)th period;
- si(k − Li) is the goods delivered to the stage i with a time delay Li. For i = n we have sn(k − Ln) ≡ un(k − Ln);
- The sum yi(k) + si(k − Li) represents the effective amount of goods available for sale at the beginning of kth review

period;
- hi(k) is the demand fulfilled by i

hi(k) ≜ min{di(k), yi(k) + si(k − Li)} ∈ [0, di(k)], i = 1, … ,n; (9)

where: d1(k) is the end-customer demand and di(k) = ui−1(k), i = 2, … ,n is the demand issued by i−1 for i.

For future developments we now rewrite equation (8) in a more convenient form where ui(k) is made explicit.
Figure 1 shows that di+1(k) = ui(k) and hi+1(k) = si(k) for i = 0, … ,n − 1, moreover by (9): si(k) = hi+1(k) ∈

[0, di+1(k)] = [0, ui(k)]. Therefore

si(k) = ui(k) − zi(k), i = 0, … ,n − 1, (10)

for some zi(k) ∈ [0 ui(k)], that represents the difference between the ordered and the amount of goods dispatched to the
ith stage (where 0 is the client). For n we have zn(k) = 0 because sn(k) ≡ un(k). Moreover Figure 1 and (10) imply

zi(k) = ui(k) − si(k) = di+1(k) − hi+1(k), i = 0, … ,n − 1. (11)

By (11) it follows that zi(k) = 0 iff Si+1 fully satisfies the demand coming from Si. By (10) and (11), Equation (8) can be
rewritten as

yi(k + 1) = 𝜌i(yi(k) + ui(k − Li) − zi(k − Li) − ui−1(k) + zi−1(k)), i = 1, … ,n (12)

In Section 4.1 we use (12) to formally derive the prediction equation of the on hand stock level yi(k) over the prediction
horizon. The apparent difficulty due to the unknown terms is dealt with in Section 5.

4 PROBLEM SETUP

This section describes the procedure to define the resilient robust RP for the MSSC described in Section 3. Resilience and
robustness are here considered with respect to unforeseen customer demand outliers and to uncertainty on the decay
factor respectively.

Each i exploits the information carried by Equation (8) and by the predicted optimal control policy Ui−1,k coming
from i−1. This information is used to predict the future inventory level of the local subsystem i which in turn is used
to compute Ui,k. This last step is performed minimizing the worst case of a local quadratic cost functional subject to
hard constraints u−i,k and u+i,k. The worst case is computed as the maximum with respect to all the possible values of the
uncertain decay factor 𝜌i ∈ [𝜌−i , 𝜌

+
i ].

Coordination between contiguous agents i and i−1, is imposed by relating the respective constraints u−i,k and u+i,k
with u−i−1,k and u+i−1,k, i = 1, … ,n, with the aim of guaranteeing the satisfaction of CR3 (see Section 4.2).

The proposed DRMPC requires each agenti to repeatedly solve an MMCOP over a future Ni steps control horizon
Hi,k ≜ [k, k + Ni − 1], (for some Ni < Mi), and, according to the receding horizon control, to only apply the first sample of
the computed optimal control sequence Ui,k = [ui(k|k), … ,ui(k + Ni − 1|k)], k ∈ Z+.

The bounds u−i,k and u+i,k on Ui,k, are computed at the beginning of each Hi,k i = 1, … ,n, k ∈ Z+, before solving the
local MMCOP.

The counterpart of this powerful approach is the numerical complexity of the algorithm.48 As explained in Section 5,
this drawback is drastically reduced through a Constrained Robust LS formulation of the MMCOP.
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JETTO and ORSINI 2391

4.1 The local MMCOP

At each time instant k ∈ Z+ and on the basis of CR1)-CR4), the local MMCOP for anyi, i = 1, … ,n, is formally defined
as follows

min
Ui,k

max
𝜌i∈[𝜌−i ,𝜌

+
i ]

Ni∑

l=1

[
eT

i (k + Li + l|k)qi,l(k)ei(k + Li + l|k)
]
+ 𝜆i(k)(Δui(k|k))2, (13)

subject to: u−i,k ≤ ui(k + j|k) ≤ u+i,k < ∞, j = 0, … ,Ni − 1, (14)

ei(k + Li + l|k) ≜ ri(k + Li + l|k) − yi(k + Li + l|k), (15)

Δui(k|k) ≜ ui(k|k) − ui(k − 1), (16)

By (12) we have

yi(k + Li + l|k) = 𝜌

Li+l
i yi(k) +

Li−1∑

𝓁=0
𝜌

Li+l−𝓁
i ui(k + 𝓁 − Li) +

l−1∑

𝓁=0
𝜌

l−𝓁
i ui(k + 𝓁|k)

−
Li−1∑

𝓁=0
𝜌

Li+l−𝓁
i zi(k + 𝓁 − Li) −

l−1∑

𝓁=0
𝜌

l−𝓁
i zi(k + 𝓁|k)

−
Li+l−1∑

𝓁=0
𝜌

Li+l−𝓁
i ui−1(k + 𝓁|k) +

Li+l−1∑

𝓁=0
𝜌

Li+l−𝓁
i zi−1(k + 𝓁|k).

(17)

Definition of the above predicted quantities implies

[k + Li + 1, k + Li + Ni] ⊆ [k, k +Mi] ≜ Pi,k, i = 1, … ,n. (18)

Inside each Pi,k, the predicted ri(k + Li + l|k), l = 1, … ,Ni is defined as

ri(k + Li + l|k) ≜
{

d+1 (k + L1 + l) i = 1,
u+i−1,k i = 2, … ,n.

(19)

Remark 3. Some considerations on (13) are now in order.

1. By A1) and (19), the number M1 of future steps over which the upper bounding trajectory d+1 (k + j), j =
0, … ,M1 must be known is inferiorly limited as

M1 ≥ N1 + L1. (20)

2. By (18) and recalling that the demand forecasting fori is ̂Di,k = Ui−1,k (see Figure 3), it is easily seen that
Mi = Ni−1 − 1 = Ni + Li, i > 1, namely

Ni−1 = Ni + Li + 1. (21)

By (21), eachi−1 computes Ni−1 on the basis of the information transmitted byi. This iterative procedure
starts from an "a priori" value Nn chosen byn.

3. By (19), the actual time-varying target inventory level ri(k), k ∈ Z+, i = 1, … ,n, is given by:

r1(k) = d+1 (k) and ri(k) = u+i−1,k, i = 2, … ,n, (22)

where d+1 (k) is the "a priori" known upper limit of the actual end-customer demand entering1 inside P1,k.
For i = 2, … ,n, the situation is different because an upper boundary trajectory of the actual future demand
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2392 JETTO and ORSINI

that eachi−1, will forward toi, i = 2, … ,n is not "a priori" known (due to the receding control horizon
philosophy of MPC). Hence, inside each Pi,k, i = 2, … ,n, the predicted reference level ri(k + Li + l|k) is
frozen on the "a priori" computed maximum value u+i−1,k of the predicted demand Ui−1,k that each i−1,
forwards toi, i = 2, … ,n (see Figure 3).

4. The hard constraints (14), computed as explained in Section 4.2, need to guarantee the internal stability
of the MSSC. Moreover, forcing the control effort to fluctuate within a predefined amplitude range allows
us to contain the BE. The term 𝜆i(k)Δu2

i (k|k) has been introduced in order to meet CR4.
5. The terms qi,l(k), l = 1, … ,Ni, and 𝜆i(k), are positive coefficients weighting two conflicting objectives:

small tracking error and small difference between two consecutive control moves. According to the guide-
lines proposed in Reference 49, these coefficients should be inversely proportional to the square of the
interval where the relative physical variables are allowed to vary. We choose

qi,l(k) =
1

ēi(k + Li + l)2
𝜁

l−1
i , (23)

𝜆i(k) =
1

Δui(k)2
, (24)

where ēi(k + Li + l) is the maximum tolerable tracking error defined as a fixed percentage 𝜀e,i of ri(k +
Li + l), 0 < 𝜁i < 1 is a forgetting factor progressively decreasing the weight of future observations, Δui(k)
is the maximum tolerable variation between two consecutive values of the control effort defined as a fixed
percentage 𝜀u,i of ui(k − 1).

4.2 Determining the hard constraints on the predicted control sequence Ui,k

The constraints (14) on Ui,k are determined on the basis of the following criteria:

(1) maximize the amount of demand satisfied by i (CR1),
(2) limit the amplitude Ai,k of [u−i,k u+i,k] ≜ i,k, to contain the BE (CR3).

We assume:
(A6) The agent i derives the minimum Ai,k of each i,k so that i guarantees the full satisfaction of the demand

coming from i−1 that is, to guarantee hi(k) = di(k), i = 1, … ,n. Analogously, eachi also assumes that its demand will
be fully satisfied byi+1.

In accordance with the foregoing considerations, (11) gives zi(k) = 0, i = 0, … ,n − 1. As also zn(k) = 0, (12) becomes

yi(k + 1) = 𝜌i(yi(k) + ui(k − Li) − ui−1(k)), i = 1, … ,n, u0(k) = d1(k). (25)

Owing to the uncertainty on the future values of ui−1(k) and on the decay factor 𝜌i, we compute u−i,k and u+i,k with reference
to two possible, limit situations compatible with (25). Consider the following hypothetic scenario:

- the demand ui−1(k), entering Si is a constant signal with value ũi−1,k ∈ [u−i−1,k,u+i−1,k]. The two mentioned limit situations
are ũi−1,k = u−i−1,k and ũi−1,k = u+i−1,k;

- each control horizon Hi,k is long enough to allow the output (the on hand stock level), to practically attain the
steady-state value ỹi,k under the forcing action of a constant signal ũi,k.

Note that the existence of an output steady-state response is assured by the asymptotic stability of (25) (consequence
of 𝜌i < 1). The problem we now consider is: for a given ũi−1,k ∈ [u−i−1,k,u+i−1,k] it is required to find the corresponding
constant control input ũi,k over each Hi,k, such that Si fully satisfies the demand coming from Si−1, namely ỹi,k ≥ ũi−1,k,
∀𝜌i ∈ [𝜌−i , 𝜌

+
i ].
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JETTO and ORSINI 2393

Using classical z-transform methods and applying the final value theorem50 we have

ỹi,k = [Wui,yi(z)]z=1ũi,k − [Wui−1,yi(z)]z=1ũi−1,k, (26)

where Wui,yi (z) =
𝜌i

zLi (z−𝜌i)
is the transfer function between the transforms of ui(k) and yi(k), k ∈ Z+, and Wui−1,yi (z) =

𝜌i
(z−𝜌i)

is the transfer function between the  transforms of ui−1(k) and yi(k).
If 𝜌i were exactly known, then, choosing ũi,k =

ũi−1,k

𝜌i
, equation (26) would readily imply ỹi,k = ũi−1,k,∀ũi−1,k ∈

[u−i−1,k,u+i−1,k]. As 𝜌i is uncertain, the minimum ũi,k that guarantees ỹi,k ≥ ũi−1,k, ∀𝜌i ∈ [𝜌−i , 𝜌
+
i ] is ũi,k =

ũi−1,k

𝜌

−
i

.
In conclusion, over each Hi,k we choose u−i,k according to the limit scenario 1: ũi−1,k = u−i−1,k and u+i,k according to the

limit scenario 2: ũi−1,k = u+i−1,k. Hence, from (14), we obtain

ui(k + j|k) ∈ i,k = [u−i,k u+i,k] ≜
1
𝜌

−
i

[
u−i−1,k u+i−1,k

]
, j = 0, 1, … ,Ni − 1, (27)

with 1,k ≜ [u−1,k u+1,k] ≜
1
𝜌

−
1

[
u−0,k u+0,k

]
= 1

𝜌

−
1
[d−1,k d+1,k]. The limits d−1,k and d+1,k are the minimum and maximum values

respectively of the end customer demand over the time interval [k + L1 + 1, k +M1] ⊆ P1,k, namely over the subset of
the prediction interval P1,k where the corresponding predicted tracking error (15) is defined. Recalling that i−1,k ≜

[u−i−1,k u+i−1,k] and Ai−1,k denotes the amplitude of i−1,k, from (27) we derive

Ai,k =
1
𝜌

−
i

Ai−1,k, with A1,k ≜
1
𝜌

−
1
(d+1,k − d−1,k). (28)

To quantify the BE at node i according to CR3 we introduce the following measure:

i,k =
Ai,k

Ai−1,k
, (29)

where i,k > 1 (i,k < 1) indicates the amplification (attenuation) of the amplitude of range i,k with respect to that of
range i−1,k. According to (27), the proposed DRRMPC scheme implies

i,k = 1∕𝜌−i ≜ i > 1. (30)

The two salient conclusions are:
(1) an estimate of the overall BE (corresponding to CR3) which propagates along the SC network can be computed “a

priori”

 = 1∏n
i=1𝜌

−
i

, (31)

(2) by (30) it is evident that the interval amplification disappears for 𝜌−i → 1.

4.3 The resilient robust RP

To satisfy the further requirement of resilience with respect to unpredicted anomalous patterns of the end customer
demand, we introduce the following agile adjustment mechanism of the set D1,k. Assume that, for some k, an unfore-
seen value d1(k) violating A1 is detected (namely d1(k) ∉ D1,k as shown in Figure 4 (where k = 3), then we assume that
d1(k + j), j = 0, 1, · · ·M1, belongs to a new set D1,k centered on d1(k) and given by the parallel translation of the cur-
rent D1,k. The amount of translation is d1(k) − d1(k|k) (upward translation if d1(k) > d1(k|k), downward translation if
d1(k) < d1(k|k)). In accordance with the new D1,k, also new d−1 (k + 𝓁), and d+1 (k + 𝓁), d1(k + 𝓁|k), 𝓁 = 0, … ,M1, are
defined. As a consequence, also the desired inventory level is updated to the new d+1 (k + Li + i), i = 1, … ,Ni.
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2394 JETTO and ORSINI

F I G U R E 4 An example of violation of A1: d1(k) ∉ D1,k with k = 3. The sequence of new sets D1,k, k ≥ 3 (delimited by the dashed
trajectories) are obtained by an upward parallel translation of the previously defined D1,k falsified by the measured d1(k).

Owing to the receding horizon nature of the MPC, the RP issued by S1 is promptly redesigned according to this new
situation. As a consequence, also the RPs of all the upstream echelons are automatically updated. The remarkable advan-
tage of this procedure is the possibility of fulfilling A1 without resorting to a very conservative estimate of D1,k, k ∈ Z+
that, in turn, would imply overordering and overstocking. This is all the more harmful the higher the perishability rate
and the number of SC stages.

Remark 4. We remark the difficulty of obtaining an analogous agile flexibility using demand forecasting
methods based on time series analysis: even using adaptive identification algorithms, the intrinsic inertia
of ARMA models slows down the process of adjusting the parameter estimates according to the incoming
measures of customer demand.

5 REFORMULATION OF THE LOCAL MMCOP

In this section, we reformulate the local MMCOP as a Constrained Robust LS estimation problem. The purpose is to
drastically reduce the numerical complexity of the algorithm solving the MMCOP.

For any fixed k, the predicted optimal control sequence Ui,k = [ui(k|k), … ,ui(k + Ni − 1|k)], solving the MMCOP
(13)-(14), is given by the sampled version (with sampling period coinciding with the review period T) of a B-spline func-
tion. Adapting the notation in (3) to specify that it is relative to the ith node and the kth fixed time instant we have

ui(j|k) ≜ Bi,d(j)ci,k, j ∈ [ ̂k1, ̂k𝓁+d+1] (32)

with

1. Bi,d(j) ≜ [Bi,1,d(j), … ,Bi,𝓁,d(j)],
2. ci,k ≜ [ci,k,1, … , ci,k,𝓁]T ,
3. ̂k1 = · · · = ̂kd+1 = k and ̂k𝓁+1 = · · · = ̂k𝓁+d+1 = k + Ni − 1,
4. the remaining 𝓁 − d − 1 knot points are evenly distributed over (k, k + Ni − 1).

Remark 5. Point 3 and the smoothness property of B splines (recalled in Section 2.1) imply that the first sample
ui(k|k) of the B spline ui(j|k) coincides with the first control point ci,k,1 of the vector ci,k.
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JETTO and ORSINI 2395

The parameter vector ci,k defining ui(j|k), j = k, … , k + Ni − 1, is computed as the solution of the Constrained Robust
LS estimation problem defined beneath.

As 𝜌i ∈ [𝜌−i 𝜌
+
i ], an equivalent representation of 𝜌i is

𝜌i = 𝜌i + 𝛿𝜌i, 𝜌i ≜ (𝜌−i + 𝜌

+
i )∕2, (33)

where 𝜌i is the nominal value and 𝛿𝜌i is the perturbation with respect to 𝜌i satisfying |𝛿𝜌i| ≤ (𝜌+i − 𝜌

−
i )∕2.

From (33) it follows that

𝜌

k
i = (𝜌i + 𝛿𝜌i)k = 𝜌

k
i + Δ𝜌i,k, (34)

whereΔ𝜌i,k ≜ (𝜌i + 𝛿𝜌i)k − 𝜌

k
i is the sum of all terms containing 𝛿𝜌i in the explicit expression of (𝜌i + 𝛿𝜌i)k. Exploiting (34)

one has that the term 𝜌

Li+l
i yi(k) of (17) can be rewritten as

𝜌

Li+l
i yi(k) = (𝜌

Li+l
i + Δ𝜌i,Li+l)yi(k). (35)

Analogously, the following terms of (17) can be rewritten as

Li−1∑

𝓁=0
𝜌

Li+l−𝓁
i ui(k + 𝓁 − Li) =

Li−1∑

𝓁=0
(𝜌Li+l−𝓁

i + Δ𝜌i,Li+l−𝓁)ui(k + 𝓁 − Li), (36)

Li−1∑

𝓁=0
𝜌

Li+l−𝓁
i zi(k + 𝓁 − Li) =

Li−1∑

𝓁=0
(𝜌Li+l−𝓁

i + Δ𝜌i,Li+l−𝓁)zi(k + 𝓁 − Li), (37)

l−1∑

𝓁=0
𝜌

l−𝓁
i ui(k + 𝓁|k) =

l−1∑

𝓁=0
(𝜌l−𝓁

i + Δ𝜌i,l−𝓁)Bi,d(k + 𝓁)ci,k, (38)

Li+l−1∑

𝓁=0
𝜌

Li+l−𝓁
i zi−1(k + 𝓁|k) = (𝜌Li+l

i + Δ𝜌i,Li+l)zi−1(k|k) +
Li+l−1∑

𝓁=1
𝜌

Li+l−𝓁
i zi−1(k + 𝓁|k), (39)

and

Li+l−1∑

𝓁=0
𝜌

Li+l−𝓁
i ui−1(k + 𝓁|k) =

Li+l−1∑

𝓁=0
(𝜌Li+l−𝓁

i + Δ𝜌i,Li+l−𝓁)ui−1(k + 𝓁|k). (40)

By (35)–(40), an equivalent representation of the predicted tracking error given by (15) is

ei(k + Li + l|k) = (bi,k,l + 𝛿bi,k,l) − (Di,k,l + 𝛿Di,k,l)ci,k, (41)

where

bi,k,l ≜ ri(k + Li + l|k) − 𝜌

Li+l
i yi(k) −

Li−1∑

𝓁=0
𝜌

Li+l−𝓁
i ui(k + 𝓁 − Li)

+
Li−1∑

𝓁=0
𝜌

Li+l−𝓁
i zi(k + 𝓁 − Li) +

Li+l−1∑

𝓁=0
𝜌

Li+l−𝓁
i ui−1(k + 𝓁|k) − 𝜌

Li+l
i zi−1(k|k),

(42)

𝛿bi,k,l ≜ −Δ𝜌i,Li+lyi(k) −
Li−1∑

𝓁=0
Δ𝜌i,Li+l−𝓁ui(k + 𝓁 − Li) +

Li−1∑

𝓁=0
Δ𝜌i,Li+l−𝓁zi(k + 𝓁 − Li)

+
Li+l−1∑

𝓁=0
Δ𝜌i,Li+l−𝓁ui−1(k + 𝓁|k) +

l−1∑

𝓁=0
𝜌

l−𝓁
i zi(k + 𝓁|k)

− Δ𝜌i,Li+lzi−1(k|k) −
Li+l−1∑

𝓁=1
𝜌

Li+l−𝓁
i zi−1(k + 𝓁|k),

(43)
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2396 JETTO and ORSINI

Di,k,l ≜

l−1∑

𝓁=0
𝜌

l−𝓁
i Bi,d(k + 𝓁), (44)

𝛿Di,k,l ≜

l−1∑

𝓁=0
Δ𝜌i,l−𝓁Bi,d(k + 𝓁). (45)

Similarly, recalling that ui(k|k) = ci,k,1 (see Remark 5), also the termΔui(k|k) = ui(k|k) − ui(k − 1) in (13) can be rewritten
in the following way:

Δui(k|k) = bui,k − Dui,k ci,k,

where bui,k = −ui(k − 1) and Dui,k = −
[
1 0 · · · 0

]
.

Define the following vectors and matrices

ei,k =

⎡
⎢
⎢
⎢
⎢
⎢⎣

q1∕2
i,1 (k)ei(k + Li + 1|k)

⋮

q1∕2
i,Ni
(k)ei(k + Li + Ni − 1|k)
𝜆

1∕2
i (k)Δui(k|k)

⎤
⎥
⎥
⎥
⎥
⎥⎦

,Di,k =

⎡
⎢
⎢
⎢
⎢
⎢⎣

q1∕2
i,1 (k)Di,k,1

⋮

q1∕2
i,Ni
(k)Di,k,Ni−1

𝜆

1∕2
i (k)Dui,k

⎤
⎥
⎥
⎥
⎥
⎥⎦

(46)

bi,k =

⎡
⎢
⎢
⎢
⎢
⎢⎣

q1∕2
i,1 (k)bi,k,1

⋮

q1∕2
i,Ni
(k)bi,k,Ni

𝜆

1∕2
i (k)bui,k

⎤
⎥
⎥
⎥
⎥
⎥⎦

, 𝛿bi,k =

⎡
⎢
⎢
⎢
⎢
⎢⎣

q1∕2
i,1 (k)𝛿bi,k,1

⋮

q1∕2
i,Ni
(k)𝛿bi,k,Ni

0

⎤
⎥
⎥
⎥
⎥
⎥⎦

(47)

𝛿Di,k =

⎡
⎢
⎢
⎢
⎢
⎢⎣

q1∕2
i,1 (k)𝛿Di,k,1

⋮

q1∕2
i,Ni
(k)𝛿Di,k,Ni

0

⎤
⎥
⎥
⎥
⎥
⎥⎦

. (48)

Exploiting the above defined vectors and matrices, we reformulate the local MMCOP (13)-(14) as the following local
Constrained Robust LS estimation problem:

min
ci,k

max
||𝛿Di,k||≤𝛽i,k ||𝛿bi,k||≤𝜉i,k

||(bi,k + 𝛿b
i,k
) − (Di,k + 𝛿Di,k)ci,k||2 (49)

subject to u−i,k ≤ ci,k,r ≤ u+i,k, r = 1, … ,𝓁. (50)

Constraints (50) derive from (32) and the convex hull property of B splines.
By (5) and recalling that

arg min
x

(
∑

i
||fi(x)||

)
= arg min

x

(
∑

i
||fi(x)||

)2

it is seen that (49), (50) define a problem of the kind (4), (7). Hence, according to Section 2.2, at any k the local Constrained
Robust LS estimation problem (49)–(50) can be reformulated as

min
ci,k

||bi,k − Di,k ci,k|| + 𝛽i,k||ci,k|| + 𝜉i,k, (51)

where the components of ci,k must satisfy (50).
As for the numerical calculation of 𝛽i,k and 𝜉i,k, the following considerations hold:
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JETTO and ORSINI 2397

1. Equations (42)–(48) evidence that the uncertain future samples zi(k + 𝓁|k) and zi−1(k + 𝓁|k) are only contained in the
terms 𝛿bi,k,l given by (43) and collected in 𝛿bi,k given by (47). Recalling Remark 2, it follows that the unpredictability
affecting these samples does not affect the value of the ci,k solving (51) because 𝜉i,k (the upper bound on ||𝛿bi,k||) of (51)
is independent of ci,k. The two important consequences are (1) the local MMCOP defined in Section 4.1 can be solved
though the uncertainty on zi(k + 𝓁|k) and zi−1(k + 𝓁|k), (2) in (51) only the upper bound 𝛽i,k on ||𝛿Di,k|| needs to be
determined at each k.

2. The way the B-spline basis functions are defined by the Cox de Boor formula (2) implies that Bi,d(𝜏) = Bi,d(𝜏 + Ni), ∀𝜏 ∈
Hi,k, k ∈ Z+. Hence, by (45) one has that 𝛿Di,k,l is independent of k and by (48) the scalars 𝛽i,k, k ∈ Z+, are determined
putting 𝜌i = 𝜌

+
i .

The proposed DRRMPC strategy is based on the solution of a sets of MMCOPs whose feasibility and stability properties
are stated in the following theorem.

Theorem 1. The proposed DRRMPC strategy guarantees the feasibility of each local MMCOP and the uni-
form boundedness of all physical variables ui(k) and yi(k), independently of the lengths Mi, i = 1, … ,n of the
prediction intervals.

Proof. The feasibility of the MMCOP solved by each locali, i = 1, … ,n, is a consequence of parametrizing
ui(j|k) as in (32). In fact the 𝓁-components vector ci,k solves the equivalent Constrained Robust LS estimation
problem and, simultaneously, satisfies (50). The uniform boundedness of ui(k) derives from (27), and the
uniform boundedness of yi(k) derives from:

1. the internal stability of each i due to 𝜌i < 1, i = 1, … ,n,
2. the assumed uniform boundedness of the customer demand,
3. the uniform boundedness of ui(k) and hi(k) (this latter consequence of (9)), i = 1, … ,n.

▪

Remark 6. Owing to the uncertainty on the future customer demand and on the decay factor, large values
of Mi would lead to unreliable predictions and, as a consequence, to a poor control performance. Theorem 1
overcomes this inconvenience: the lengths Mi are only imposed by the constraints (20) and (21) due to the
structure of the MSSC and to the coordination between consecutive agents. This avoids unnecessarily longer
prediction intervals.

5.1 A schematic step by step summary of the whole procedure

In brief, the method to define the resilient robust RP can be schematically summarized in the sequential execution of the
following steps:

1. set k = 0, (k is the time instant),
2. set i = 1, (i = 1, … ,n, denotes the ith stage),
3. define the tube D1,k containing the foreseen end-customer demand d1(k + j|k), j = 1, … ,M1, and assume the central

trajectory as the most probable future demand. If necessary apply the procedure of Section 4.3,
4. if i > 1 define the tube Di,k (as explained in A2, Section 3) and assume as predicted demand ̂Di,k the predicted optimal

control policy Ui−1,k coming fromi−1 (see Figure (3)),
5. compute the bounds u−i,k and u+i,k limiting the predicted control sequence Ui,k = [ui(k|k), … ,ui(k + Ni − 1|k)],
6. define the degree d and number 𝓁 of control points of the B-spline in (32) parametrizing Ui,k,
7. solve the minimization problem (51) with respect to ci,k and compute Ui,k through (32),
8. if i = n place un(k|k) to the manufacturer else place ui(k|k) to the (i + 1) th stage and communicate Ui,k, u−i,k and u+i,k

toi+1,
9. put i = i + 1,

10. if i ≤ n go to Step 4 else put k = k + 1 and go to Step 2.
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2398 JETTO and ORSINI

6 NUMERICAL RESULTS

In this simulation we consider an MSSC composed of n = 3 stages i, i = 1, … , 3. We apply the DRRMPC to define a
resilient robust RP based on the adjustment mechanism described in Section 4.3 and compare the results obtained with
those ones of an RP based on a conservative estimate of D1,k, k ∈ Z+, without any adjustment mechanism. Then we carry
out a detailed comparison between the DRRMPC and the nonlinear control policy proposed in Reference 28. The method
described in Reference 28 accounts for the effects of time delay and perishable goods and all details for its reproducibility
are provided. Finally we propose a comparison with the decentralized and centralized implementations of our approach.
Unlike Figures 2–4, all the diagrams reported in this section are plotted with continuous curves.

The numerical simulations have been implemented in MATLAB R2018 (9.5.0) on a MacBook Pro (retina) 2,2 GHz
Intel Core i7 quad-core, 16GB 1600 MHz DDR3. The program is available on request.

6.1 Performance indices

We define four performance indices. The first one measures the normalized amount of Unsatisfied Demand (UD) at each
stage and is defined as

UDi ≜
1

∑Ns
k=0di(k)

Ns∑

k=0
|di(k) − hi(k)| ∈ [0 1], i = 1, 2, 3,

where Ns is the length of the simulation. The smaller UDi, the greater the demand satisfied by the ith stage.
The second performance indicator is the total Inventory Level (IL) in each stage measured as the amount of goods left

in stock after satisfying the demand at each k = 0, 1 … ,Ns. In accordance with (8), it is given by

ILi ≜

Ns∑

k=0
yi(k), i = 1, 2, 3.

The third performance indicator measures the total amount of Issued Orders (IO) by each stage:

IOi ≜

Ns∑

k=0
ui(k), i = 1, 2, 3.

The fourth performance indicator measures the actual amount of Wasted Goods (WG) in each stage due to perishability.
In accordance with (8), it is computed as

WGi ≜

Ns∑

k=0

1 − 𝜌i

𝜌i
yi(k), i = 1, 2, 3.

6.2 Initialization

To simplify notation (but without any loss of generality) we assume that the equations describing the stock level dynamics
of each node i, i = 1, 2, 3, are characterized by the same time delay Li, perishability rate 𝛼i, decay factor 𝜌i = 1 − 𝛼i and
initial stock yi(0) = 0. The model parameters of each i are reported in Table 3.

T A B L E 3 Parameters of each stage i, i = 1, 2, 3.

Time delay Perishability rate Decay factor Initial state

Li = 3 𝛼i ∈ [𝛼−i , 𝛼
+
i ] = [0.1, 0.14] 𝜌i ∈ [𝜌−i , 𝜌

+
i ] = [0.86, 0.9] yi(0) = 0
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JETTO and ORSINI 2399

T A B L E 4 Tuning parameters of the local MMCOP for anyi, i = 1, 2, 3.

𝜺e,i in (23) 𝜺u,i in (24) 𝜻i in (23)

𝜀e,i = 𝜀e 𝜀u,i = 𝜀u 𝜁i = 𝜁

0.004 0.001 0.368
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F I G U R E 5 The actual end customer demand d1(k) (solid line) with an unexpected behavior. The dashed lines represent the
consecutive contiguous overlapping of all the “a priori” given sets D1,k’s.

At each k ∈ Z+, the local MMCOP for any agenti, i = 1, 2, 3 is solved parametrizing Ui,k = [ui(k|k), … ,ui(k + Ni −
1|k)] as a B spline function of degree d = 3 with 𝓁 = 8 control points. The length Ni of each control horizon Hi,k, i = 1, 2, 3
is computed according to (21) starting from N3 = 16. This gives N2 = 20, N1 = 24 and hence by (20) we derive M1 ≥ 27. The
other tuning parameters are: the percentages 𝜀e,i in (23), 𝜀u,i in (24) and the forgetting factor 𝜁i in (23) are given in Table 4.

6.2.1 The end customer demand

According to A1, at any k ∈ Z+, the future end customer demand is known to belong to a given compact set D1,k. We
assume M1 = 27. Figure 5 shows the actual demand d1(k) characterized by an unexpected behavior: at k = k = 130, the
actual d1(k) is not confined inside the consecutive contiguous overlapping of all the "a priori" given sets D1,k, k ∈ [130 −
M1, 158] = [103, 158]. To achieve resilience we apply the adjustment mechanism of Section 4.3. Figure 6 shows the new
compact set D1 given by the consecutive contiguous positioning of all redetermined sets D1,k’s so as to enclose the whole
actual end customer demand.

With reference to the same profile of customer demand and refraining from applying the proposed adjustment mech-
anism, the "a priori" fulfillment of A1 at any k ∈ Z+ can be assured by a conservative estimate of the all sets D1,k, k ∈ Z+
enclosing the whole d1(k), k ∈ Z+. An example is shown in Figure 7.

In the next section we present the results obtained applying the robust resilient RP endowed with the adjustment
mechanism (we refer to this simulation with Sim1) and compare them with those obtained through the robust RP not
endowed with the resilience property (we refer to this simulation with Sim2).

6.3 Simulation results

The dynamic Equation (8) of each i has been implemented assuming 𝜌i = 0.885, i = 1, 2, 3. Both Sim1 and Sim2 have
been stopped at time k = Ns = 400. The generated orders ui(k), i = 1, 2, 3 in both simulations are displayed in Figures 8 and
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F I G U R E 6 Robust Resilient RP (Sim1): the actual end customer demand d1(k) (solid line) enclosed in the new compact set D1

delimited by the new upper d+1 (k) and the new lower d−1 boundaries (dashed lines).

0 50 100 150 200 250 300 350 400 450
k periods

0

10

20

30

40

50

60

th
e 

en
d 

cu
st

om
er

 d
em

an
d 

d
1(k

)

F I G U R E 7 Robust RP (Sim2): the actual end customer demand d1(k) (solid line) enclosed in the new compact set D1 delimited by the
upper d+1 (k) and the lower d−1 (k) boundaries (dashed lines) computed in a conservative way.

9 respectively. These figures show the ordering signal issued by each stage i, i = 1, 2, 3 with the respective time-varying
lower and upper bounds. It is seen that the amplitude Ai,k of the the corresponding intervals i,k grows as in (28). The
resulting inventory level yi(k) and the time varying desired inventory level ri(k) for each i, i = 1, 2, 3 in both simulations
are reported in Figures 10 and 11 respectively. Analogously, the imposed and fulfilled demands di(k) and hi(k) at each i,
i = 1, 2, 3 are displayed in Figures 12 and 13 respectively.

The performance evaluation in both simulations is performed on the basis of the indicators defined in Section 6.1. The
results are summarized in Table 5. It evidences that the amount of unsatisfied demand is comparable, but the resilient
RP yields much smaller values of: warehouse occupancy, wasted goods, issued orders. This means a significant decrease
in warehouse costs and a reduction in profit losses.
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F I G U R E 8 Robust Resilient RP (Sim1): The ordering signal ui(k) (solid line) issued by each i, i = 1, 2, 3, with the respective boundary
trajectories (dashed line) computed by (27).
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F I G U R E 9 Robust RP (Sim2): The ordering signal ui(k) = ui(k|k) (solid line) issued by each i, i = 1, 2, 3, with the respective boundary
trajectories u−i,k and u+i,k (dashed line) computed by (27).
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F I G U R E 10 Robust Resilient RP (Sim1): the desired time varying inventory level ri(k) (dashed line) and the on hand stock level yi(k)
(solid line) of each node i, i = 1, 2, 3.
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F I G U R E 11 Robust RP (Sim2): the desired time varying inventory level ri(k) (dashed line) and the on hand stock level yi(k) (solid line)
of each node i, i = 1, 2, 3.

6.3.1 Comparison with the nonlinear control strategy

Equations (34)–(36) in Reference 28 have been rewritten in the case of an uncertain n stage SC with n = 3, decay factors
𝜌i ∈ [0.86, 0.9] and known time delays Li = 3, i = 1, 2, 3 obtaining

ui(k) = sat[𝜔i(k)], (52)
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F I G U R E 12 (Robust Resilient RP (Sim1): the imposed demand di(k) (solid line) and the fulfilled demand hi(k) (dashed line) at each
i, i = 1, 2, 3.
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F I G U R E 13 Robust RP (Sim2): the imposed demand di(k) (solid line) and the fulfilled demand hi(k) (dashed line) at each i, i = 1, 2, 3.
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T A B L E 5 Quantitative comparison between the robust RP equipped with the adjustment mechanism (Sim1) and that not
equipped (Sim2).

UD1 UD2 UD3 IL1 IL2 IL3 WG1 WG2 WG3 IO1 IO2 IO3

Robust resilient RP (Sim1) 0.007 0.0062 0.0031 1.19e04 1.39e04 1.41e04 1.54e03 1.80e03 1.84e03 1.12e04 1.31e04 1.50e04

Robust RP (Sim2) 0.007 0.0156 0.0073 2.68e04 2.52e04 1.96e04 3.48e03 3.28e03 2.55e03 1.33e04 1.67e04 1.93e04

T A B L E 6 The performance analysis of MNLCS.

UD1 UD2 UD3 IL1 IL2 IL3 WG1 WG2 WG3 IO1 IO2 IO3

MNCLS 0.007 0.0229 0.0097 4.47e04 2.86e04 1.85e04 5.81e03 3.72e03 2.40e03 1.60e04 1.97e04 2.22e04

where

𝜔i(k) = yref ,i − 𝜌

Li
i yi(k) +

k−1∑

j=0
𝜌

k−j
i si(j) −

k−Li−1∑

j=0
𝜌

k−j
i si(j), (53)

and the saturation function

sat[𝜔i(k)] =
⎧
⎪
⎨
⎪⎩

𝜔i(k) if 𝜔i(k) ∈ [0,umax,i],
0 if 𝜔i(k) < 0,
umax,i if 𝜔i(k) > umax,i.

(54)

According to (45), (46) in Reference 28 and taking into account that 𝜌i ∈ [𝜌−i , 𝜌
+
i ], umax,i and yref ,i are inferiorly limited

as:

umax,i > dmax,i and yref ,i > dmax,i

Li∑

j=0
𝜌

+
i

j
. (55)

The topology of the SC network shown in Figure 1 is such that:

dmax,1 = max
k

d+1 (k) dmax,2 = umax,1 dmax,3 = umax,2. (56)

According to (55), (56) we fix: umax,1 = 61 > dmax,1 = 60, umax,2 = 62 > dmax,2 = 61, umax,3 = 63 > dmax,3 = 62, yref ,1 =
210 > 209.7, yref ,2 = 214 > 213.2 and yref ,3 = 217 > 216.6.

We refer to the control strategy (52)–(54) as modified non-linear control strategy (MNLCS). The MNLCS has been
applied putting 𝜌i = 𝜌i = 0.88, while the model equation (8) has been implemented assuming 𝜌i = 0.885, i = 1, 2, 3. The
generated orders ui(k) and the resulting on hand stock level yi(k) are displayed in Figures 14 and 15 respectively. The
imposed and fulfilled demands di(k) and hi(k) respectively at each i are given in Figure 16.

The MNLCS has been evaluated with the same three quantitative indicators defined in Section 6.1. The results are
summarized in Table 6. A comparison with those relating to Sim1 (see row 2 Table 5) we note that the amount of unsatis-
fied demand is comparable, but the RRDMPC requires a very smaller warehouse occupancy with respect to the nonlinear
control strategy (52)–(54). The remarkable reduction of warehouse occupancy is a consequence of tracking a time varying
inventory level which is updated at any k on the basis of the current value of the demand. On the contrary MNLCS defines
a constant desired inventory level yref ,i for each i, which is “a priori” computed using a conservative formula requiring
the “a priori” knowledge of the maximum value dmax,1 of the end-customer demand over an indefinitely long future time
interval. Moreover, as dmax,1 is never exactly known, it is often over-estimated.

In addition, the reduced waste implied by the RRDMPC (compare the WGi, i = 1, 2, 3 in Tables 5 and 6) leads to a
lower loss of profit. Finally comparing Figures 8 and 14 we note that the interval containing each replenishment order
ui(k) is tighter in the RRDMPC strategy. Our approach is able to limit the amplitude of such intervals and consequently
to strictly control the BE.
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F I G U R E 14 (MNLCS): the ordering signal ui(k) (solid line) issued by each i, i = 1, 2, 3 with the respective constant lower umin,i = 0,
i = 1, 2, 3, and upper umax,i bounds (umax,1 = 61,umax,2 = 62, umax,3 = 63) according to (55)–(56).
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F I G U R E 15 MNLCS: The desired constant inventory level ri(k) and the on hand stock level yi(k) of each i.

T A B L E 7 Performance indicators of the centralized and decentralized implementation of the RRMPC.

UD1 UD2 UD3 IL1 IL2 IL3 WG1 WG2 WG3 IO1 IO2 IO3

Centralized 0.007 0.0062 0.0031 1.19e04 1.33e04 1.39e04 1.54e03 1.71e03 1.81e03 1.12e04 1.30e04 1.49e04

Decentralized 0.0075 0.0062 0.0032 1.19e04 1.60e04 2.18e04 1.54e03 2.07e03 2.83e03 1.12e04 1.33e04 1.53e04

Remark 7. Figure 14 evidence that the MLNCS does not imply any significant increase in the upstream
direction of the interval containing the replenishment order ui(k). This is a direct consequence of (55) and
(56): allowing u1(k) to range over a very large interval ∀k ∈ Z+ prevents subsequents upstream increases of
the interval amplitude, but leads to the very serious inconvenience of huge over-ordering and overstocking.
Compare the numerical values of ILi, WGi, IOi reported on Table 5 with those ones reported on Table 6.

6.3.2 Comparison with the decentralized and centralized architectures

To contain the length of this article to a manageable size, we only report (on Table 7) the values of the same performance
indicators used to evaluate the distributed architecture.

Calculations relative to these schemes and their architectures are reported in the Appendix.
Comparing Table 5 (Robust Resilient RP (Sim1)) and Table 7, we observe that the amount of unsatisfied demand is

comparable in all three schemes, somewhat larger values are obtained with the decentralized architecture. The centralized
scheme yields slightly smaller values of: warehouse occupancy, wasted goods, issued orders. However, these advantages
are counteracted by the drawbacks mentioned in the introduction. Above all, the reluctance of agents to share information
must be kept in mind.

7 CONCLUDING REMARKS

The main feature of our contribution is to consider an MSSC whose dynamics is affected by several elements of uncertain-
ties including possible demand-side shocks. The challenge we faced in this involved context is to define a resilient, robust
RP conciliating the usual opposite control requirements that can be briefly summarized as: matching supply with demand
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F I G U R E 16 MNLCS: The imposed demand di(k) and the fulfilled demand hi(k) at each i, i = 1, 2, 3.
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2410 JETTO and ORSINI

in a cost and project time effective manner. The new DRRMPC we proposed to deal with this problem is based on the
solution of a set of MMCOPs. The B-splines parametrization allowed us to reformulate the conceptually and numerically
demanding MMCOP as a simpler Constrained Robust LS estimation problem. Mitigation of the BE has been obtained
imposing suitable constraints to the RP and penalizing sharp changes of control moves.

We also provided a simple, rational method with a low computational cost to achieve resiliency w.r.t. unpredicted
patterns of the end customer demand. The reported numerical simulations show fully acceptable results from the point
of view of the considered criteria of performance evaluation. A rigorous proof of feasibility and stability of the RMPC
strategy has been also provided.

The theoretical foundations of our approach also provides the following ManageriaI Implications (MI):
(MI1) the robust approach to customer demand forecasting avoids the use of complicated parameter estimation meth-

ods and cumbersome numerical procedures. An experience based analysis of historical data and seasonal trends more
easily provides information on upper and lower limits of the predicted demand rather then on its actual value. This, in
turn, greatly facilitates the choice of the time-varying target inventory defined in any stage of the SC.

(MI2) by Theorem 1, the manager of each stage is “a priori” sure that at any k the MMCOP is feasible and that all the
physical variables are uniformly bounded.

(MI3) the limits (27) on ui(k) clarify a fundamental aspect of the BE: the amplitude of the interval over which the issued
restocking orders take values. Definition (29) and inequality (30) show that this amplitude is increasing in the upward
direction proportionally to 1∕𝜌−i . Therefore, to limit this undesired amplification, each warehouse should be organized
so as to prevent large deterioration rate 𝛼i = 1 − 𝜌i.

It is our intention to extend the proposed approach to the case of multi stage SC models characterized by further
elements of complexity for example, time-varying perishability rate with large uncertainty, inaccurate information on the
actual inventory level.
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APPENDIX. DECENTRALIZED AND CENTRALIZED ARCHITECTURES

The architectures of the decentralized and centralized implementation of our approach are reported in Figures A1 and
A2 respectively. In accordance with the DRRMPC, the following calculations are derived considering an MSSC composed
of n = 3 stages i, i = 1, … , 3, where each i is characterized by the same lead time (i.e., Li = L = 3 i = 1, 2, 3). Unlike
the DRRMPC, both the decentralized and centralized control schemes do not need to impose any constraints of the kind
(21) on the lengths Ni of the control horizons Hi,k. Hence here we assume Ni = N = 16, i = 1, 2, 3 with M1 = N + L = 19
(length of the end customer demand prediction interval).

• Decentralized architecture.
As there is no information sharing between two consecutive agents, each i, i = 2, … ,n, has to solve its own

local MMCOP by exploiting an empirical knowledge (based on historical series) of the compact set Di,k containing the
predicted demand ̂Di,k = di(k + l|k) = ui−1(k + l|k) issued by the downstream agenti−1. This lack of communication
withi−1, causesi, i = 2, … ,n, to fix ̂i,k,i,k and its boundary trajectories in a conservative way.

Similarly to the distributed scheme we assume: ̂Di,k coincides with the central trajectory of the compact set Di,k that
is delimited by the lower and upper values 𝛾iu−i−1,k and 𝛾iu+i−1,k respectively, with 𝛾i > 1.

Hence we derive the following bounds u−i,k and u+i,k on the optimal predicted control sequence ui(k + l|k), i = 1, 2, 3,
l = 0, … ,N − 1:

u−1,k ≜
d−1,k
𝜌

−
1
≤ u1(k + l|k) ≤

d+1,k
𝜌

−
1
≜ u+1,k,

u−2,k ≜
𝛾2u−1,k
𝜌

−
2
≤ u2(k + l|k) ≤

𝛾2u+1,k
𝜌

−
2
≜ u+2,k,

u−3,k ≜
𝛾3u−2,k
𝜌

−
3
≤ u3(k + l|k) ≤

𝛾3u+2,k
𝜌

−
3
≜ u+3,k

with 𝛾3 > 𝛾2 > 1.
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F I G U R E A1 Decentralized control scheme for the MSSC network.

F I G U R E A2 Centralized control scheme for the MSSC network.

As a consequence the predicted target inventory levels ri(k + L + l|k), i = 1, … , 3, l = 1, … ,N, are defined in the
following way:

r1(k + L + l|k) = d+(k + L + l), r2(k + L + l|k) = 𝛾2u+1,k, r3(k + L + l|k) = 𝛾3u+2,k.

• Centralized architecture.
As shown in Figure A2 there exists only one agent  that at each k ∈ Z+ simultaneously computes all the

replenishment orders ui(k), i = 1, … ,n by solving a unique MMCOP of larger dimensions.
In accordance with (8), the MMCOP in Section 4.1 is defined on the basis of the following augmented model

y(k + 1) =
⎡
⎢
⎢
⎢⎣

𝜌1 0 0
0 𝜌2 0
0 0 𝜌3

⎤
⎥
⎥
⎥⎦

y(k) +
⎡
⎢
⎢
⎢⎣

𝜌1 0 0
0 𝜌2 0
0 0 𝜌3

⎤
⎥
⎥
⎥⎦

s(k − L) −
⎡
⎢
⎢
⎢⎣

𝜌1 0 0
0 𝜌2 0
0 0 𝜌3

⎤
⎥
⎥
⎥⎦

h(k),

where

y(k) ≜
⎡
⎢
⎢
⎢⎣

y1(k)
y2(k)
y3(k)

⎤
⎥
⎥
⎥⎦
, s(k) ≜ u(k) − z(k) ≜

⎡
⎢
⎢
⎢⎣

u1(k)
u2(k)
u3(k)

⎤
⎥
⎥
⎥⎦
−
⎡
⎢
⎢
⎢⎣

z1(k)
z2(k)

0

⎤
⎥
⎥
⎥⎦
, h(k) ≜

⎡
⎢
⎢
⎢⎣

s0(k)
s1(k)
s2(k)

⎤
⎥
⎥
⎥⎦
≜

⎡
⎢
⎢
⎢⎣

u0(k) − z0(k)
u1(k) − z1(k)
u2(k) − z2(k)

⎤
⎥
⎥
⎥⎦
=
⎡
⎢
⎢
⎢⎣

d1(k) − z0(k)
d2(k) − z1(k)
d3(k) − z2(k)

⎤
⎥
⎥
⎥⎦
.

At each k the MMCOP is solved with respect to the optimal predicted u(k + i|k), i = 0, … ,N − 1 exploiting the infor-
mation on the compact set 1,k (see Figure 2A) containing the future values of the end customer demand over
[k + 1, k +M1].
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Recalling that d+1,k = maxj=1,… ,M1 d+1 (k + j) and d−1,k = minj=1,… ,M1 d−1 (k + j), the predicted target inventory level
r(k + L + i|k), i = 1, … ,N, the forecasted demand d(k + 𝓁|k), 𝓁 = 1, … ,L + N and the constraints on the predicted
u(k + i|k), i = 0, … ,N − 1, are defined in the following way

r(k + L + i|k) =
⎡
⎢
⎢
⎢⎣

d+1 (k + L + i)
d+(k + L + i)∕𝜌−1

d+(k + L + i)∕(𝜌−1 𝜌
−
2 )

⎤
⎥
⎥
⎥⎦
, d(k + 𝓁|k) ≜

⎡
⎢
⎢
⎢⎣

d1(k + 𝓁)
d1(k + 𝓁)∕(𝜌−1 )

d1(k + 𝓁)∕(𝜌−1 𝜌
−
2 )

⎤
⎥
⎥
⎥⎦

⎡
⎢
⎢
⎢⎣

d−1,k∕(𝜌
−
1 )

d−1,k∕(𝜌
−
1 𝜌

−
2 )

d−1,k∕(𝜌
−
1 𝜌

−
2 𝜌

−
3 )

⎤
⎥
⎥
⎥⎦
≤

⎡
⎢
⎢
⎢⎣

u1(k + i|k)
u2(k + i|k)
u3(k + i|k)

⎤
⎥
⎥
⎥⎦
≤

⎡
⎢
⎢
⎢⎣

d+1,k∕(𝜌
−
1 )

d+1,k∕(𝜌
−
1 𝜌

−
2 )

d+1,k∕(𝜌
−
1 𝜌

−
2 𝜌

−
3 )

⎤
⎥
⎥
⎥⎦
,

where d1(k + 𝓁) is the central trajectory of1,k.
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