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Abstract: The problem addressed in the present paper is the design of a controller based on an
evolutionary neural network for autonomous flight in quadrotor systems. The controller’s objective
is to govern the quadcopter in such a way that it reaches a specific position, bearing on attitude
limitations during flight and upon reaching a target. Given the complex nature of quadcopters,
an appropriate neural network architecture and a training algorithm were designed to guide a
quadcopter toward a target. The designed controller was implemented as a single multi-layer
perceptron. On the basis of the quadcopter’s current state, the developed neurocontroller produces
the correct rotor speed values, optimized in terms of both attitude-limitation compliance and speed.
The neural network training was completed using a custom evolutionary algorithm whose design
put particular emphasis on the cost function’s definition. The developed neurocontroller was tested
in simulation to drive a quadcopter to autonomously follow a complex path. The obtained simulated
results show that the neurocontroller manages to effortlessly follow several types of paths with
adequate precision while maintaining low travel times.

Keywords: neuro-evolutionary control;quadcopter; path-following

1. Introduction

In the recent years, quadcopters have seen an increase in interest and popularity
among consumers, professional users and enterprises [1–5] due to their relatively low man-
ufacturing cost and the continual improvements in the performance and reliability of their
controllers. Moreover, with the resurgence of artificial intelligence in the past 20 years [6],
the topic of neural networks has gained growing interest in the scientific community, and
nowadays its potentialities are gaining traction in a multitude of different environments. In
particular, the application of neural networks to the problem of quadcopter control as an
alternative to standard industrial controllers, with special emphasis on autonomous flight
systems, results in a powerful and flexible solution.

In the present endeavor, a type of neuro-evolutionary controller for autonomous
flight in quadcopter systems was designed, implemented and tested in a virtual simulation
environment. The chosen neural network topology was a multi-layer perceptron, because of
its ease of implementation and low computational cost, which make it a good candidate for
implementation on dedicated hardware in real-world applications. To train the developed
neural network, an evolutionary algorithm was developed, alongside a 3D simulation
environment for qualitatively checking the state of training in real time. The neural network
was trained to make a controlled quadcopter reach a target point in space and, once it
reaches the target, hover in that exact position. The resulting trained neurocontroller
makes the quadcopter follow a specified path by sub-dividing it into multiple segments.
The outcomes of this training algorithm have shown really promising results: it takes a
relatively short amount of time for the evolutionary algorithm to produce adequate neural
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controllers. We shall notice that the presented neurocontroller was designed specifically
to drive a quadcopter from an initial point to a set point through a series of intermediate
waypoints, assuming that it is not necessary for the quadcopter to stop and hover around
any of such waypoints. At the set point, it will be necessary to relinquish control to a
subsystem specialized in hovering.

A novelty introduced in the present paper is that the control strategy is based on a
neurocontroller, which differs from standard control strategies such as PID (proportional–
integral–derivative control) and LQR (linear–quadratic regulation). In addition, the actual
neurocontroller is evolved to explore the state space as widely as possible, which makes
it capable of coping with difficult situations. Evolutionary-type training is carried out
with a cost function, through which each individual in a generation is evaluated, that was
crafted especially for a quadcopter-control task. In particular, besides the goal of reaching a
pre-defined target, the devised cost function includes terms aimed at promoting necessary
attitude-limitation compliance during flight and demoting disruptive behavior that could
lead, e.g., to crashing into the ground.

The state of the art of neuro-evolutionary control of autonomous systems is outlined in
Section 2. This paper presents the design process employed in the conception of the neural
controller’s structure and the neuro-evolutionary algorithm in Section 3. The software
methods used in their development and implementation are described in Section 4, and the
results of the numerical simulations are shown in Section 5. Section 6 concludes this paper.

2. Literature Review and Motivation

To perform the task of quadcopter control, several control techniques have been
designed and implemented in the past. The most-commonly used type is the proportional–
derivative (PD) [7] or proportional–integral–derivative regulator [8–11]. There exist several
different ways to implement these types of controller. The most-used structures are a multi-
tude of cascading PID controllers [9] in parallel [10] or a mix of these configurations [11],
and each controller is specialized for regulating position or attitude.

Other control techniques have also been implemented for quadcopter flight, such as
backstepping [12], linear–quadratic regulation (LQR) [13] and sliding mode control [14].
These controllers’ implementations provide more than adequate performances, although
they mainly focus on stabilization or remote control. The study of [15] deals with trajectory
tracking for unmanned aerial vehicles: a flight controller with a hierarchical structure is
designed, whereby the complete closed-loop system is divided into two blocks; the system
has an inner block for attitude control and an outer block for position stabilization based
on PD/PID controllers.

To address the problem of autonomous quadcopter flight, several techniques have
been designed, implemented and tested. The article [16] presents a control system that
allows a small-sized quadcopter to achieve autonomous flight in indoor environments,
without relying on GPS (Global Positioning System) devices, endowed with both PD and
PID controllers and high-level control modules for path planning and collision avoidance.
The paper [17] implements PID, backstepping and fuzzy control techniques, overviewed
with a high-level task-planning module, for autonomous flight, and qualitatively evaluates
each technique’s performance, in both indoor and outdoor scenarios, discussing each
control technique’s advantages and disadvantages.

Likewise, reference [18] proposed five different control systems to improve the control
performance (with special emphasis in the stability of a controlled drone) and developed
a path simulator with the intention of describing the vehicle’s movements and, hence, to
detect faults intuitively; the proposed PID and fuzzy-PD control systems showed promising
responses in the tests. The paper [19] presents a hybrid robust control strategy to solve
the trajectory-tracking function of a quadcopter with time-varying mass. The article [20]
described the design, fabrication and flight-test evaluation of a morphing geometry quad-
copter. Likewise, the research paper [21] presented a novel framework for the design of a
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low-altitude, long-endurance solar-powered UAV (unmanned aerial vehicle) for multiple-
day flight based on an evolutionary algorithm to optimize its wing airfoil.

Neural networks have also been utilized as quadcopter controllers, particularly in
autonomous flight settings. In the paper [22], an autonomous vision-based neural network
control system for governing a drone in dynamic racing environments is implemented
using a convolutional neural network (CNN) to convert the raw images in waypoints
and desired speeds, which are then converted to the appropriate rotor speeds. To train
the network, supervised learning was used. This is a viable approach but requires the
acquisition of a conspicuous amount of data for the training. An alternative approach that
does not involve the gathering of large training data sets or the tuning of PID parameters is
reinforcement learning, as has been proven in the paper [23], where low-level control of a
quadrotor was achieved using a model-based reinforcement learning (MBRL) technique.

In the paper [24], a framework for leader–follower formation control was developed
for the control of multiple unmanned aerial vehicles: a neural network control law was
introduced to learn the complete dynamics of the UAV, including unmodeled dynamics
such as aerodynamic friction. Moreover, the paper [25] addresses formation tracking
for multiple low-cost underwater drones by implementing a distributed adaptive neural
network control (DANNC) on the basis of a leader–follower architecture to operate in
hazardous environments.

Autonomous operation with onboard sensing and computation is traditionally limited
to low-speed operations. However, it has recently been shown [26] that deep learning
enables agile and high-speed flight in extremely complex and challenging (i.e., cluttered)
environments through onboard computation. The authors of the cited paper proposed
an end-to-end approach that can autonomously fly quadrotors through complex natural
and human-made environments at high speeds. The key principle that their work is
based on is to “map noisy sensory observations to collision-free trajectories in a receding-
horizon fashion”, which reduces the latency and increases the robustness. Such mapping
is achieved through a convolutional neural network trained exclusively in simulation via
“privileged learning”.

Genetic algorithms, a particular unsupervised learning-by-optimization technique,
have also been proven capable of training neural controllers for autonomous flight in
quadrotor systems. In the paper [27], the authors introduced the use of the neuro-evolution
of augmented topologies (NEAT) algorithm [28], which evolves a neural network control
structure for optimal dynamic soaring flight trajectories. NEAT is also used in [29], where a
hierarchical controller composed of multiple neural networks, each controlling a quadcopter
variable (roll, pitch, yaw and elevation), is used in a simulation to follow a path.

The advantage of NEAT is that it allows neural networks to evolve both their weights
and topology, without having to heuristically specify the desired network topology. Neuro-
evolutionary algorithms for signal/data processing are being explored in several branches
of applied sciences, such as materials science [30], gaming [31] and cloud computing [32].

The article [33] aims to address the issue of generating energy-efficient control signals
for flights. It presents a UAV autonomous control system that uses a brain emotional
learning based intelligent controller (BELBIC), which has the ability to learn from the feed-
back loop of the reference signal-tracking system, and can develop an appropriate control
action with low computational complexity. This extends the capabilities of commonly used
fixed-value proportional–integral–derivative controllers. The article treats the problem
of controller tuning as an optimization problem of the cost function expressing the con-
trol signal effort and maximum precision flight. It introduces bio-inspired metaheuristics
that allow for the quick self-tuning of controller parameters. The article also comprehen-
sively analyzes the performance of the system based on the experiments conducted for the
quadrotor model.

The paper [34] proposes an adversarial strategy where a swarm of quadrotor UAVs
tries to herd anti-aircraft land vehicles (AALV) by blocking their line of sight to their
objective and redirecting them to a kill zone. The AALVs try to take down the nearest aerial
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units to the objective. The UAVs use a consensus algorithm to assess the communication
network and re-group. The strategy was tested in an empty arena and an urban setting,
and the simulation results show that the maximum UAV mission success rate is around
80% in the empty arena and lower in the urban setting due to navigation complexity. The
decision to re-group based on a formation that closes gaps rather than positioning around
the kill-zone vector is more effective in the urban setting.

The aim of the present research endeavor is to investigate whether a simpler controller,
structured as a single neural network, is a viable solution for the problem of autonomous
flight in quadcopter systems, and also whether complex training methods, such as algo-
rithms that require a considerable amount of data or complex implementations, can be
replaced by simpler and more elegant solutions.

3. Drone Control with a Neuro-Evolutionary Algorithm

A quadcopter is designed as a flying vehicle composed of a rigid frame and four rotors
equally spaced from its geometric center, which also coincides with its barycenter in good
approximation. The rotors generate torque and thrust, thus allowing a quadcopter to vary
its position and attitude relative to the ground. A quadcopter possesses six degrees of
freedom: since only four rotors control its motion, quadcopters behave as under-actuated,
non-linear systems.

In a standard-design quadcopter, the rotors are paired, one pair for each horizontal
axis, and each pair spins clockwise or counter-clockwise, as illustrated in Figure 1. The
generated torque of each pair of rotors counteracts one another, which may result in zero
torque τψ along the vertical axis. To achieve a slow rotation along the vertical axis (a motion
referred to as ‘yawing’), the speed of one pair is decreased or increased, so that the net
torque along the vertical axis of the drone’s body τψ differs from zero.

Figure 1. Left-hand panel: Overhead view of a quadcopter, showing the rotors’ direction of rotation
and resulting torques τi, as well as the resulting torque τψ on the drone’s vertical axis. Right-hand
panel: Side view of a quadcopter showing the thrusts Ti generated by the rotors and the resulting
torques τθ and τφ on the horizontal axes.

Each rotor i produces a vertical trust Ti perpendicular to the quadcopter body. By
controlling each rotor’s speed, it is possible to control the rotation of the drone along its
horizontal axes (motions referred to as ‘pitching’ and ‘rolling’). As illustrated in Figure 1,
to induce a rotation along one of these axes, it suffices to make one rotor spin faster (or
slower) in such a way that the difference in thrust compared to the thrust generated by the
opposite propeller yields a moment of force τφ or τθ that causes a rotation in the body. To
avoid unwanted yawing, the increase in speed in one of the rotors must be compensated
for by an equal decrease in the speed of the rotor opposite to it (along the same axis), which
results in zero net torque along the body’s vertical axis.

3.1. Mathematical Model of a Quadcopter Drone

In the standard mathematical model [35], the dynamics of a quadcopter are described
with the help of two frames of reference: the “earth” frame and the “body” frame. The
dynamics of a quadcopter are described by its position ξ vector in the earth frame and by
its angular position (attitude) η vector in the body frame:
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ξ =

x
y
z

, η =

φ
θ
ψ

, (1)

where φ denotes the roll angle, namely, the rotation around the body-fixed frame x-axis, θ
denotes the pitch angle, namely, the rotation around the body-fixed frame y-axis, while ψ
denotes the yaw angle, namely, the degree of rotation around the body-fixed frame z-axis.

In the body frame, the linear velocities VB and the angular velocities ν relative to the
origin (the center of mass) are denoted as

VB =

vx,B
vy,B
vz,B

, ν =

νx
νy
νz

. (2)

To convert the angular velocities relative to the body frame ν into the attitude rate (the
derivative with respect to time η̇ of the attitude η), a transformation matrix Wη is introduced,
whose inverse reads

W−1
η =

1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

, (3)

where Cx = cos x, Sx = sin x and Tx = tan x. The conversion rule between the two
coordinate systems reads η̇ = W−1

η ν.
Since the rotors are able to generate thrust only along the z-axis of a quadcopter’s body,

to obtain the resultant thrust vector relative to the earth frame of reference, it is necessary
to make use of a rotation matrix that aligns the body frame to the inertial frame, defined as

R =

CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ

SψCθ SψSθSφ + CψCφ SψSθCφ − CψSφ

−Sθ CθSφ CθCφ

. (4)

A system-theoretic representation of a quadcopter’s dynamics takes as overall input
the rotors’ speed vector ω, outputs the position ξ and is described by an internal state
attitude vector η. The functional equations to describe the dynamics of a quadcopter are
described as follows:

1. From the current state (including the initial conditions), the torque τB and the thrust
intensity T along the z-axis relative to the body frame are computed as

τB =

 lk(−ω2
2 + ω2

4)

lk(−ω2
1 + ω2

3)

b(−ω2
1 + ω2

2 −ω2
3 + ω2

4)

 =

τφ

τθ

τψ

,

T = k(ω2
1 + ω2

2 + ω2
3 + ω2

4),

(5)

where the constant l denotes the length of the drone’s arms, the constant k denotes
the lift constant and the parameter b denotes the ‘drag’ constant of a single rotor.
The above equations account for the spinning directions of the rotors as well as the
efficiency of the rotors’ blades. The drag effect refers to the fact that the collective
spinning of the rotors tends to make the body of the quadcopter spin as well along
the vertical axis.
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2. On the basis of the torque vector τB, the angular acceleration ν̇ of the quadcopter’s
body relative to the body frame is calculated as

ν̇ =

ν̇x
ν̇y
ν̇z

 =

τφ/Ixx
τθ/Iyy
τψ/Izz

+


Iyy − Izz

Ixx
νyνz

Izz − Ixx

Iyy
νxνz

Ixx − Iyy

Izz
νxνy

− Ir

 νy/Ixx
−νx/Iyy

0

(ω1 −ω2 + ω3 −ω4), (6)

where Ixx, Iyy and Izz denote the moments of inertia of the quadcopter with re-
spect to the principal axes of inertia, which are supposed to coincide to those of
the reference frame, while Ir denotes the moment of inertia of each rotor along the
z-axis (which is the only inertia value of interest). Since the structure is—in good
approximation—geometrically symmetrical, it is commonly assumed that Ixx = Iyy.
To compute the angular velocity vector ν in a computer-based implementation, the
differential Equation (6) will be solved using numerical recipes.

3. By using the transformation matrix Wη , the attitude-change rate of the quadcopter
relative to the ground η̇ can be obtained by a transformation of the angular velocity
vector relative to the body frame ν:

η̇ =

φ̇
θ̇
ψ̇

 = W−1
η ν =

1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ


νx

νy
νz

. (7)

By numerically solving such a further differential equation, the attitude η of the
quadcopter is obtained at every time-step of the simulation.

4. The center of mass’s acceleration relative to the earth frame ξ̈ is then obtained by
applying the gravity acceleration directly and by applying the thrust force vector
(divided by the drone’s mass and rotated using the attitude matrix R). The acceleration
ξ̈ obeys Newton’s law:

mξ̈ = g + TRez − Aξ̇, (8)

where m denotes the mass of the quadcopter, g denotes the gravitational force (weight)
directed towards the negative direction of the earth frame’s z-axis, namely, g = −mcez,
where c denotes the gravitational acceleration constant and ez = [0 0 1]>. In addition,
the quantity A denotes a friction matrix. Notice that since the force is only applied to
the z-axis of the drone, only the third column of R plays a role in such an equation.
The relationship (8) may be cast in plain form as

ξ̈ =

ẍ
ÿ
z̈

 = −

0
0
c

+
T
m

CψSθCφ + SψSφ

SψSθCφ − CψSφ

CθCφ

− 1
m

Ax 0 0
0 Ay 0
0 0 Az


ẋ

ẏ
ż

, (9)

where Ax, Ay and Az are the friction coefficients for the velocities in the x-, y- and
z-direction, respectively, of the earth frame of reference.

3.2. Proposed Control Strategy

The main goal of this paper is the design of a controller to attain autonomous flight in
a quadcopter system. The first step in the design was the definition of the drone’s desired
behavior, followed by a planning of the appropriate control scheme and neural network
training strategy.

The main goals of an autonomous flight controller are to make a quadcopter reach
a fixed point in space, to keep it flying steadily over its trajectory and to keep it in the
vicinity of a target. Defining the first objective is straightforward, while defining the second
objective needs cautions and careful design, which might otherwise result in two conflicting
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goals. Such a problem might be fixed by means of multi-objective control and optimization
techniques [36]. In particular, we invoked the notion of attitude limitation,which entails
that a quadcopter has to tilt for as little time and angular extent as possible, and each
rotation in one direction must be compensated for and countered by a rotation in the
opposite direction. Such a design objective may be broken down into two parts: the first,
regarding the spin time and amount, means that the desired final behavior is to obtain
fast rotation (to comply with the optimality of trajectory) and to avoid states in which
the drone tilts excessively; the second part, about the compensation of tilting along one
direction, ensures that the quadcopter will eventually tilt in the opposite direction by an
equal extent, thus attaining a horizontal attitude once the drone reaches the target. Such
a notion does not cause any conflict: in order to reach the target, it may tilt as required
by the optimal trajectory planning because there exist no constraints about the attitude
angles, while, to reach the correct horizontal attitude, the second part of the stabilization
requirements (namely, compensation of tilting) is prescribed. Furthermore, with the aim
of avoiding extreme and unwanted tilting, which might cause a quadcopter to fall to the
ground, a constraint on the maximum absolute values of the attitude pitch φ and roll θ
angles is enforced. The mentioned set of requirements will be engraved into the cost-
function definition, presented in Section 3.4.3, about the functioning of the evolutionary
algorithms used to select and evolve a neurocontroller.

The above-sketched control mechanism will be extended to make a quadcopter follow
a complex trajectory in space by subdividing a complex path in a series of sequential points
and by providing a single target at a time, switching to the next one when the quadcopter
is close enough to the current target.

3.3. Neural-Network-Type Controller Structure

The observable/measurable state s used to control the quadcopter is obtained by
stacking up the variables ξ (coordinate of the center of mass), ξ̇ (linear velocity), ξ̈ (linear
acceleration), η (attitude angles), η̇ (body angular velocities). The reference input (set point)
is the desired position of the quadcopter’s center of mass (target) ξT . The control strategy
is actuated using a feedback loop in which the current position is compared with the target,
resulting in the position error epos = ξ − ξT . The state error σ is defined as:

σ =


ξ

ξ̇

ξ̈
η
η̇

−


ξT
0
0
0
0

 =


epos

ξ̇

ξ̈
η
η̇

. (10)

The state error inputs the neural network controller, which outputs the appropriate motors’
angular speeds ω, the input to the quadcopter’s mathematical model. There are no reference
inputs concerning the attitude of the drone. This allows the quadcopter to follow an
optimal trajectory (not defined a priori) based on learning. Nevertheless, as a result of the
aforementioned objectives’ definition and of the learning algorithm, once the quadcopter
reaches the set point it will remain hovering in that position horizontally.

The controller’s neural network structure is a multilayer perceptron illustrated
in Figure 2.

The network takes as input the state relative to the target σ, which is composed of five
R3-vectors, for a total of 15 input nodes.

To improve the learning performance, the input elements are normalized to a range in
the interval (−1, 1): each sub-vector σi of the error σ is normalized by the non-linear rule
σ∗i = tanh(ni σi), where ni is the normalization factor of the corresponding input σi. This
reduces the search space for the algorithm [37], thus improving its training performance by
reducing and bounding the dimensionality of the problem from an input space R15 to a
space (−1, 1)15.
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Figure 2. Neural network structure including input and output signals. The topology shown is {15,
20, 6, 4}.

The normalized input σ∗ then passes through h hidden layers, each of size Si, resulting
in the output of the network ω∗. Each node is activated using a weighted and biased
sigmoid P(wx + b) = 1

1+ewx+b , namely,

Li+1 = P(EiLi + Bi+1), i = 1, . . . , h + 1, (11)

where Li denotes the nodes’ activation vector of the layer i, Ei denotes the weight matrix
from the current layer i to the next, of size Si+1 × Si, Bi denotes the bias vector of layer i
and h + 2 represents the total number of layers (one input, one output and h hidden layers).
The size of the vectors L1 = σ∗ and Lh+2 = ω∗ are fixed at 15× 1 and 4× 1, respectively,
while the size and number of hidden layers may be varied. The values of the entries of Ei
and Bi for i = 1, . . . , h + 1, which determine the response of the controller to the current
state, and the normalization scaling factors nj for j = 1, . . . , 5 are determined during the
training stage by the learning algorithm.

The output of the network ω∗ is a (0, 1)4-vector. To obtain the rotors’ desired speeds,
such a vector is mapped and scaled to the minimum and maximum rotors’ rotation speed
(denoted as ωMIN and ωMAX, respectively) with the affine transformation:

ωi = ωMIN + (ωMAX −ωMIN)ω
∗
i , i = 1, 2, 3, 4. (12)

3.4. Evolutionary Training Algorithm

In order to train the neural-network-based controller so that it complies with said
control objectives, a learning algorithm along with a numerical simulation engine are
engaged. In the present instance, the training process cannot be supervised, because the
optimal trajectory is not predefined; hence, a training set (namely, the correct rotor speeds
in response to specific states) is lacking. Even in the case of supervised learning, it appears
that it would be extremely difficult and unpractical to obtain a sufficient amount of data to
run, e.g., error back-propagation learning [38,39].

Therefore, an evolutionary learning strategy was the solution of choice. The imple-
mented algorithm is of the evolutionary type. Compared to other algorithms in this family
such as NEAT, the training algorithm does not modify the topology of the neural network;
hence, the topology must be specified heuristically in advance. An overview of the devised
algorithm is shown in Figure 3.
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Figure 3. Flow-chart of the evolutionary algorithm used to train a neural-network-based controller
(see the following subsections for a detailed explanation).

The devised training algorithm is based on a population of individuals. At the begin-
ning of every iteration, a new generation is created from the previous one. Any individual
in the population, or agent, is defined as a single neural-controller, whose configuration is
represented by a set of weights and biases.

The configuration of a neuro-controller, namely, the set of entries of its weight ma-
trix and bias vector, is represented by a genome through a direct-encoding genotype
representation [40]. The vector n of coefficients of normalization is also added to the geno-
type. Direct encoding was preferred to other types of encoding because a more complex
encoding was not needed since the training algorithm does not influence a network’s
topology or embodies complex concepts such as speciation (namely, a subdivision of the
population in specialized groups).

3.4.1. Initialization

At the start of the algorithm, the initial population Γ(0) of size p is created by assigning
to each individual a a randomly generated genome.

The values of the connection weights and biases of a neurocontroller are initialized
as follows:

W a
i =


r() · · · r()

...
. . .

...
r() · · · r()

, Ba
i =


r()

...
r()

 for i = 1, . . . , h + 1 and a = 1, . . . , p, (13)

where r() denotes a function that returns a real number drawn from a random distribution,
bounded by a constant rMAX, namely r() ∈ [−rMAX, rMAX].

The algorithm also operates on the normalizer weights; therefore, those parameters
are also specified at the start as

na =


n1
...

n5

 =


n
...
n

, a = 1, 2, . . . , p, (14)

where n denotes a constant. In the first generation Γ(0) each individual possesses the
same normalizer weights, but since the optimal value of n is not known a priori, in the
upcoming generations those weights will vary according to the evolution rules set forth.
Such a mechanism allows the algorithm to also optimize the level of normalization that the
input of the neural network σ undergoes, which can be interpreted as the neural network’s
input sensitivity to each sub-vector of the input σ.

3.4.2. Starting State Definition

At the beginning of every generation, all the neurocontrollers in the population possess
the same initial state σ(0). This means that every neurocontroller–quadcopter pair starts
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off from the same conditions; hence, despite the differences in each individual genome,
each quadcopter is evaluated in the same exact way as the other individuals belonging to
the same generation.

Furthermore, at each generation g, the starting state σ
g
a (0) of each single controller

ath is set. In the first generation, the initial state σ
g
a (0) of each quadcopter is randomly set,

namely,

σ
g
a (0) =


epos,0

ξ̇0
ξ̈0
η0
η̇0

 =


re
rξ̇

rξ̈

rη

rη̇

, a = 1, 2, . . . , p, (15)

where rx represents a random vector of the same size as x, with random entries bounded
by a constant, namely, rx,i ∈ [−rx, rx] for i = 1, . . . , size(x). One such initialization
carries over for as many as g∗ generations; after that, it is reset. For example, if g∗ = 3,
then σ0(0) = σ1(0) = σ2(0), while σ3(0) is reset and then σ3(0) = σ4(0) = σ5(0), and
so forth.

Having an initial state that is not fixed, meaning that g∗ is very low compared to
the total number of generations, is crucial to the functioning of the evolutionary training
algorithm. The value of the integer g∗ is defined at the beginning of the training phase. In
fact, if in every generation Γ(g) every individual were to start from the same state as the
previous generation Γ(g− 1), without any variation, the neural networks would evolve to
only exhibit the correct behavior for that fixed starting state, and when presented with a
situation different from the one that they were evolved from, the neural networks would
inevitably fail to control the quadcopter because of the lack of proper training. Instead, by
varying the starting state very frequently, because of the evolutionary nature of the training
algorithm, only the individuals that can effectively control the quadcopter in a multitude
of different situations will transfer their genes to the next generation, resulting in each
generation becoming better at handling different conditions.

To promote the exploration of the feasible state space, the boundary of the random
state generation, represented by the constant rx, is set to higher values. For example, by
increasing the value of the constant rη̇ (the boundary for the random value of the elements
in the attitude-rate sub-vector η̇ of the starting state σ(0)) and the constant rξ̇ (namely, the
boundary of the initial velocity), the individuals will start a simulation with higher speeds
in random directions and higher tilting speeds. This increases the harshness of the training
and only the best individuals that can withstand those hard conditions will transfer their
genes to the next generation. As a consequence, over several generations, the evolutionary
algorithm will yield individuals that are able to handle such conditions, which corresponds
to obtaining more robust and attitude-limitation-compliantneural controllers.

Notice, however, that if the values of the parameters rx are chosen too large, the starting
conditions will be outright impossible to control; therefore, the evolution will not produce
better individuals. In fact, in this instance, it would be impossible to evaluate and to distin-
guish the performance of poorly evolved individuals against the well-performing ones.

3.4.3. Population Evaluation

After the current generation’s Γ(g) starting state σg(0) is defined, each individual
(meant as a neurocontroller–quadcopter pair) is simulated using a discrete-time numerical
simulation engine and its performance is evaluated. The generation index g ranges from 0
to a total number of generations G, which is fixed at the beginning of a training phase. The
constant G determines the level of evolution of a neurocontroller.

Each individual a in the population Γ(g) is constrained by a fixed lifespan kMAX.
Namely, from the instant k = 0 to the last k = kMAX, its performance is evaluated. At each
instant k, on the basis of the state σ

g
a (k), the individual a’s neural network outputs the

rotor’s speed vector ω
g
a (k). Such a control vector is then used as input to the quadcopter
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mathematical model Q to calculate the next state σ
g
a (k + 1) of the individual quadcopter a

over the set of p individuals belonging to the gth generation.
If an individual reaches a quota z of less then 0 m from the ground, for the purposes

of the simulation such an individual is considered as crashed and its state will not be
updated any longer, effectively remaining stuck in the position where it has collided with
the ground. One such safety measure is necessary, otherwise quadcopters will not evolve
to avoid crashing to the ground. In addition, such a mechanism speeds up the evaluation
process because the crashed individuals need no further simulation efforts.

To evaluate the performance of the current generation, a cost function [40] Cg
a that

represents the inverse of the performance of an individual a (the higher the cost, the worse
the individual’s performance) in the current generation is defined as follows:

Cg
a = Cg

a,ξ + Cg
a,η + Cg

a,η̇ + Cg
a,κ , (16)

where, relative to an individual a in the population Γ(g), the cost component Cg
a,ξ represents

how poorly the controlled quadcopter reaches the target, the component Cg
a,η represents

how much its attitude has exceeded certain tilting thresholds, the component Cg
a,η̇ repre-

sents its noncompliance with the attitude-limitation requisite and the cost component Cg
a,κ

embodies the information as to whether a quadcopter has ever crashed and, if it has, how
long it had flown safely.

An individual should reach the target position in the shortest amount of time and
stay in that position after reaching it. Such an aspect is evaluated and represented upon
recording the displacement of the quadcopter relative to the target’s position:

Cg
a,ξ =

kMAX

∑
k=0
‖eg

pos,a(k)‖∆t, (17)

where ∆t represents the time, in seconds, elapsed between step k and step k + 1 (namely,
the characteristic time-step of the chosen numerical-simulation engine).

As already underlined in Section 3.2, it is desirable that its attitude angles φ and θ do
not exceed a certain threshold ηMAX. In order to quantify compliance with the attitude-
limitation constraints, a cost component related to the extent of tilting is defined as

Cg
a,η =

kMAX

∑
k=0

cg
a,η(k)∆t, where

cg
a,η(k) =

cη if |φg
a (k)| ≥ ηMAX or |θg

a (k)| ≥ ηMAX, (attitude limits exceeded)
0 instead,

(18)

where cη denotes a positive constant representing the penalty for exceeding the limit on
the attitude angles. The ideal value ηMAX ranges between π

6 rad and π
4 rad.

A further cost component to enforce attitude-limitation compliance, related to the
speed of attitude variation, is defined as

Cg
a,η̇ =

∥∥∥∥∥∥
kMAX

∑
k=0

f (η̇g
a(k))∆t

∥∥∥∥∥∥, where

f (x) =


sgn(x1) log(1 +|x1|)

...
sgn(xn) log(1 +|xn|)

, with n = size(x).

(19)

In the quantity Cg
a,η̇ , the attitude-variation rates φ̇

g
a , θ̇

g
a and ψ̇

g
a are compressed using a

nonlinear function f (x), then these values are accumulated along the life span of each
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individual. The compression of the attitude-variation rate is an important step: since the
compression map is nonlinear, small rates of change in attitude maintained for longer
periods of time result in a higher cost Cg

a,η̇ compared to fast changes in attitude happening
over shorter periods of time.

The definition (19) needs a somewhat deeper discussion to justify its deployment. Since
the components of the vector f (x) take the same sign as the components of x, the sum of the
values of f (η̇g

a(k)) over the life span of an individual is zero (the lowest cost possible) only
if individual a tilts in such a manner so as to align with the correct trajectory and then, once
it is about to reach the set point, starts to tilt in the opposite way compared to the previous
tilting. In summary, this term promotes individuals that exhibit impulsive tilting behaviors
and that compensate each rotation in one direction with one in the opposite direction.

Since it is desirable that the learned neurocontroller avoids crashing the quadcopter to
the ground, a cost component Cg

a,κ is introduced to penalize crashing individuals as

Cg
a,κ =

kMAX

∑
k=0

cg
a,κ(k)∆t, where

ca
a,κ(t) =

κ if zg
a(k) ≤ 0 (quadcopter has crashed),

0 instead,

(20)

where κ is a constant taking a large value, since the avoidance of crashing is a crucial
requisite and the related cost component must stand predominantly when non-zero.

3.4.4. Next Population Generation with an Evolutionary Algorithm

The aim of an evolutionary algorithm is to yield a future generation that performs
better than the previous one. The amount of time it takes to achieve an optimal solution
is mainly determined by this phase. To achieve such a goal, for each individual a of the
next generation Γ(g + 1), three steps are applied in sequence: (1) two individuals (parents)
a1 and a2 are selected [41] from generation g (selection); (2) their genes are combined
(crossover) to create offspring a; (3) the offspring undergoes a mutation process in its
genome (mutation).

Not all p individuals evolve from one generation to the next; a number nP among the
best individuals of the current generation will be transferred directly to the new generation.
This is to avoid genetic drift, which can occur in two cases, namely, in the event that all
the offspring of the new generation are heavily mutated, resulting in a worse performance,
and in the event that the random starting state σg(0) is too difficult to control, then the
costs of the individuals in the mutated population would be similar to one another and not
representative of the quality of an individual’s genome. An example of a difficult-to-control
condition is when every individual starts off very close to the ground and upside down,
and thus, most likely hitting the ground soon after the beginning of a simulation.

The three mentioned steps are detailed as follows:
Selection: For each individual a of the next generation Γ(g + 1), two parents a1 and

a2 are selected from the population Γ(g) using a custom algorithm inspired by tournament
selection [42]. To be more specific, a pool of individuals from population Γ(g) is formed
by randomly choosing nT individuals to be candidate parents. Out of these, the two best
individuals (namely, those with the lowest cost Cg

a1 , Cg
a2 ) are selected. The pool size nT is a

fixed parameter to be carefully selected. In fact, a known problem of selection algorithms is
ensuring a balance between exploration and exploitation [43]. Whenever the algorithm is
focused on exploitation, it will become stuck in a local minimum, while if it only relies on
exploration it will never settle on a minimum.

By increasing the pool size nT , the algorithm favors exploitation (if the maximum
tournament size is the size of the population, the best two individuals will always be
chosen) while, by lowering its size, exploration is favored (if the maximum tournament
size equals two, the algorithm performs a completely random selection).
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Crossover [44]: Once two parent individuals a1 and a2 are selected, to generate their
offspring, a crossover between the genomes of a1 and a2 takes place. Since the genomes
(weights, biases and normalization weights) are directly encoded, the chosen method for
generating the genome of the offspring consists of picking each of its genes as one of its
parental genes, with an equal 50% chance between the two parents.

Mutation [45]: After an offspring a is obtained, it undergoes mutation with a non-
deterministic function that determines whether this individual will mutate. The probability
of mutation is expressed through a mutation rate mr. Mutation is realized adding a random
number r ∈ [−rMAX, rMAX] to one of its genes. Since the mutation algorithm modifies
only one gene at a time, if the offspring a is mutated, the mutation function is called again
to determine whether the individual will undergo mutation again. As a consequence,
the mutation rate must be set relatively high (mr ≥ 50%) to increase the chance of an
individual’s genetic heritage mutating in more than one gene.

Mutation in genetic algorithms is a fundamental step because, without it, the algorithm
will only yield subsequent generations based on genes that are a combination of the first
generation’s (Γ(0)) genes, resulting in a very limited exploration of the solution space. By
adding a random number r, instead of directly assigning a random value, the mutation
algorithm ensures that the genes are not strictly bounded to a pre-fixed interval. Moreover,
better results in learning performance are obtained by setting the random number bound
rMAX as a low value, because it makes the exploration strategy more graded. In fact, if the
interval [−rMAX, rMAX] is too narrow, exploration, albeit more precise, is slower and more
prone to becoming stuck in local minima of the criterion function 1/Cg

a .
The complete next-population-generation procedure is outlined in Algorithm 1.

Algorithm 1 Next-population-generation algorithm
Copy the best nP individuals of Γ(g) into the new generation Γ(g + 1)

for all remaining individuals a in Γ(g + 1) do

Selection:

Randomly choose nT individuals from Γ(g), generating a pool P

In P select the two distinct individuals a1 and a2 that exhibit the lowest cost Cg
a1 , Cg

a2

Crossover:

for all genes γi
a defined in the genome do

γi
a ← γi

a1
or γi

a ← γi
a2

(randomly)

end for

Mutation:

Randomly determine if the individual a will mutate

while a has to mutate do

Randomly choose a gene γi
a

Randomly determine a value r ∈ [−rMAX, rMAX]

Update the gene by γi
a ← γi

a + r

Randomly determine if the individual a has to mutate again

end while

end for

4. Implementation

In this section, the programming techniques used to implement the evolutionary
learning algorithm, as well as the neural control algorithm, are briefly summarized.
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4.1. Numerical Implementation

The quadcopter model equations, which are expressed in the continuous-time domain,
are converted to the discrete-time domain using the forward Euler method. Since the step
size of the simulation ∆t has to be necessarily low (on the order of 10−2) to ensure the neural
network controller accesses timely information to control the quadcopter, the forward Euler
method, albeit not the most precise of all the numerical procedures to approximate solutions
to differential equations, was the method of choice. Moreover, in the present endeavor,
performance was more important than absolute numerical precision, and the forward Euler
method has proven to be a good compromise. Nevertheless, the quadcopter model discrete
equations can be extended and solved using different methods without compromising the
functioning of the program.

4.2. Software Implementation

The code was written in JAVA. Since the calculations involve matrices, the Efficient Java
Matrix Library (EJML) was chosen, which is known to provide a very good performance,
especially for dense small matrices such as those encountered in the present endeavor.

In order to be able to visually inspect the result of the developed code, a 3D virtual
environment was implemented using Processing 3, a library that uses OpenGL® as a graph-
ical engine and that can provide both 3D and 2D interactive visualizations. Furthermore,
to add functionality to the software, as described below, a simple GUI using Swing was
implemented. With the aim of decreasing the training computation times, the realized
implementation of the evolutionary learning algorithm exploits multi-threading to simulate
each individual in its life span.

The parameters of the quadcopter model, the neural network topology and the pa-
rameters of the evolutionary algorithm can be configured directly in a standalone JSON
(JavaScript Object Notation) file, without the need to modify the source code.

4.2.1. Program Functionality

The main features of the developed software are:

• The program defines the simulation parameters in a configuration file;
• The code applies the evolutionary algorithm with the specified configuration, while a

virtual 3D environment is showing the evolution of the generations;
• The program supplies the evolutionary algorithm without the 3D environment to

increase the training speed;
• The software loads and saves the neural networks of a population produced by the

algorithm in a JSON file;
• The program simulates (from a neural network file) and shows in 3D the best individ-

ual in that population while it runs along a randomly generated spatial path.

4.2.2. Exemplary Screenshots

For illustrative purposes, some screenshots of the virtual 3D environments are shown
in what follows. Figure 4 displays a static view of the virtual 3D environment used for
training, while Figure 5 shows the results of a 3D simulation of a single trained quadcopter
running along a pre-defined path.

The quadcopters shown in Figure 4 arose as the result of G = 20,000 generations trained
over a “harsh configuration”, a condition described in detail in Section 5, to highlight the
difference in the performances of individuals. In addition, the neurocontroller applied to
the quadcopter whose dynamics are displayed in Figure 5 was trained over G = 250,000
generations over the same (harsh) configuration.

On the basis of Figure 4, the functioning of the evolutionary algorithm to yield a
generation may be visually summarized. Initially, all individual controllers are given the
same starting state σ(0), then such controllers start driving a quadcopter to reach the
target point (represented as a sphere shown in the images’ center) and their performance is
evaluated until the lifespan of the population kMAX is reached. As can be seen, a fraction
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of the individuals lose controland happen to fall to the ground. This is a normal behavior
since the individual controllers have been trained over as little as G = 20,000 generations.
Moreover, such behavior is a consequence of the random mutation process, which can
improve or diminish the performance of certain individuals. Nevertheless, the better the
performance of an individual, the higher the probability of transferring its genes to the
next generation.

After training the neural networks over a desired amount of generations or time, the
resulting controller’s performance can be qualitatively evaluated in the path-following
environment shown in Figure 5. The software generates a path for the quadcopter to follow,
displayed by a series of spheres connected by lines, and the quadcopter is supposed to visit
each point sequentially. A quantitative evaluation of the quadcopter’s performance can be
obtained by running the path-following tests programmatically, suppressing the on-screen
animation outcomes, while outputting useful and meaningful data results to a file. This
feature was used to collect the values shown in the figures and tables in Section 5.

Figure 4. Three-dimensional training environment of the evolutionary-type learning algorithm for a
trained generation of p = 150 individuals. In each frame, the point in the center represents the target
(set point) and the crosses represent each individual. From left to right and top to bottom, screenshots
of the current generation’s quadcopters behaviors in time, each 0.1 s apart.
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Figure 5. Three-dimensional path-following environment. From left to right and top to bottom, the
screenshots display the dynamics of a trained quadcopter’s behavior in time (each taken 0.6 s apart)
while following a pre-defined path. The quadcopter is represented by a cross mark while the path,
consisting of waypoints connected by short straight sub-paths, is represented by spheres and lines.
Segments yet to be completed are drawn in light gray color, while the segment joining the previous
target to the current target is highlighted in violet color.

5. Computer-Based Simulated Experiments

The present section illustrates the results of two types of experiments intended to
assess the performance of the neural controller produced using the evolutionary learning
algorithm and to discuss the results of neural network topology selection in training
effectiveness and control outcome.

The values of the parameters used in the following numerical simulations, which take
constant values irrespective of the simulation at hand, are summarized as:

• Parameters regarding the quadcopter model and its numerical simulation: ∆t = 0.02,
b = 1.14× 10−7, k = 2.98× 10−6, Ax = Ay = Az = 0.25, m = 0.469, l = 0.225,
Ixx = Iyy = 0.005, Izz = 0.006, Ir = 0.006, c = 9.81.

• Parameters of the evolutionary-type learning algorithm: ωMAX = 1000, ωMIN = 0,
rMAX = 0.25, n = 0.25, p = 150, kMAX = 10/∆t, re = 10, g∗ = 3, nT = 5, nP = 10,
mr = 0.85, ηMAX = π/3, cη = 200, κ = 200.

Each parameter value is expressed in International Systems units.
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5.1. General Performance Assessment and Harshness Configuration Testing

The purpose of the tests presented in this section is to assess whether harsher training
conditions yield more robust (less prone to crashing) and better-performing controllers for
autonomous flight. In addition, the following tests demonstrate the performance of the
controller in the task of following a trajectory, proving that—upon further refining—neural
controllers are a viable alternative to other methods of control.

The harshness of the training is determined by the parameters rx, where x is a sub-
vector of the state σ, which substantially determine how far the initial state of a quadcopter
lies from the desired state. Higher values in these parameters mean that the quadcopter
will explore harder states to control, while evolution is supposed to favor individuals that
can adapt to such situations. Every configuration refers to the same parameter values
summarized at the beginning of the present section, while the starting-state parameters rx
are presented in Table 1.

Table 1. Bounds for the randomly generated starting parameters in the harshness tests (in Interna-
tional Systems units). ‘Harsh’ stands for high level of harshness, ‘Medium’ stands for medium level
of harshness, while ‘Soft’ stands for low level of harshness.

Parameter
Configuration

Harsh Medium Soft

rη 1.2 0.6 0.2
rη̇ 1.5 0.75 0.1
rξ̇ 4 2 0.1
rξ̈ 1 0.5 0.0

The topology of the neural network is the same for every configuration and was set to
{15, 30, 16, 8, 4}.

The test began by running the evolutionary algorithm for each configuration over
G = 250,000 generations, yielding the trained population Γ(G). As a benchmark for the
algorithm performance, to run as many as 250,000 generations three times (one for each
harshness configuration) takes 8 h on a dedicated server machine (2.30 GHz, 8 Intel®

Nehalem class i7 cores, 16 GB RAM); hence, less than 3 h to complete training for a single
configuration, on average.

From the last generation of each configuration, the best individual (the one with the
lowest value of cost function) is chosen to participate in the path-following tests. In these
tests, the three individuals are given the same series of 1000 randomly determined paths.
Each path is composed of ten random points in a sequence (in addition to the origin of the
trajectory) and each point has a maximum distance of 10 m from the previous point, to
form a random spatial path of at most 100 m in length.

Since the controllers are trained to drive a drone only from a starting point to a
waypoint at a time, once the quadcopter enters a spherical neighborhood of the current
target point of radius ρ, it switches to the next point in the sequence, thus covering the
whole path. As will be shown in the following, the choice of the radius ρ significantly
influences the performance in the three configurations and determines the precision of a
quadcopter’s trajectory.

After the three best neurocontrollers were selected (one for each level of harshness,
namely ‘harsh’, ‘medium’ and ‘soft’), a number of tests was conducted that aimed at
evaluating their performance by challenging the controlled quadcopters to follow randomly-
generated paths of different complexity and by requiring different levels of precision.

5.1.1. Loose Path-Following

In these tests, the radius ρ was set to 1 m, namely, as soon as a quadcopter is closer
than one meter to the current target, it will start to chase the next waypoint in the sequence.
A radius of 1 m makes the actual trajectory quite loose with respect to the desired trajectory;
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therefore, the precision in reaching the targets will be less favored compared to the average
flight speed.

Exemplary results pertaining to a single randomly generated trajectory are discussed
in the following for illustrative purpose. In addition, cumulative results will be presented
concerning a large set of path-following tasks that allows the extraction of some statistical
information from the numerous single tests with reference, in particular, to the traveling
time to complete a task.

Figure 6 shows the trajectory of three quadcopters over one of the randomly generated
paths.

Harsh

Medium Soft

Figure 6. Three-dimensional trajectories obtained in a loose (ρ = 1 m) path-following test. The dashed
line denotes the reference path, while the solid line denotes the actual trajectory.

A first qualitative analysis can be carried out. The configuration learned from harsh
conditions shows no problem in following the path and the resulting trajectory appears
more steady than the others. The configuration trained from medium-harshness training
conditions also completes the path, even though more jerky movements can be observed.
The configuration trained on low-harshness conditions initially starts following the path
but eventually crashes to the ground.

The trajectories followed by three quadcopters (each driven by one of the three selected
controllers) can be observed with more detail in Figure 7, where the 3D path is projected
along the three planes orthogonal to the coordinate axes.

From these graphs it can be observed that the quadcopters never quite reach the
trajectory’s waypoints, because the value of the radius ρ was set to a relatively large value.
In addition, especially in the x–y plane (third row of graphs in the figure), the difference in
the three trajectories is more marked.

As a safety note to correctly interpret the graphical results, let us recall that in Figures 6
and 7 the dashed trajectories are just the connection between successive target points and
do not constitute a reference input for the quadcopter. Moreover, the dashed trajectory is
not always guaranteed to be the optimal trajectory for a quadcopter to follow.
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Harsh Medium Soft

Figure 7. Projections of the 3D paths of Figure 6. Upper row: Projection onto the x–z plane. Middle
row: Projection onto the y–z plane. Lower row: Projection onto the x–y plane. (The dashed line
denotes the reference path, while the solid line denotes the actual trajectory.)

The harsh training configuration drives the quadcopter through smooth movements
with less pronounced bumps, and its trajectory follows more closely the straight path
between the points. The medium training configuration yields a more erratic trajectory
compared to the harsh configuration, but nevertheless completes the path-following task.

The soft training configuration initially closely follows the path. A noteworthy out-
come is that, on the x–y plane, the soft training configuration even follows the path better
than the harsh training configuration, which was expected to perform better than the other
two configurations. Then, once it reaches a condition that it has not evolved to endure, the
quadcopter crashes into the ground.

Again with reference to the single path-following test discussed via the Figures 6 and 7,
it is instructive to check the course of the norm of the positional error ‖epos‖ over time, as
illustrated in Figure 8.

Figure 8. Norm of the position error ‖epos(t)‖ over time resulting from the three training configura-
tions (harsh, medium, soft), in the loose (ρ = 1 m) path-following test.
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From this figure it is immediate to see how the positional error is lower-bounded by
the safety radius ρ. Moreover, in this specific test, the positional error keeps bound along
the whole trajectory in the harsh and the medium configuration, while it diverges for the
soft controller. Such behavior reflects the results shown, e.g., in Figure 6, where it can be
clearly witnessed as eventually the controlled quadcopter crashes to the ground.

Since every controller of each configuration has to traverse the same 1000 paths, the
time each quadcopter takes to traverse a path can be used as a reference for its performance.
The average travel time tAVG was determined by averaging these 1000 travel intervals. In
addition, the minimum tMIN and maximum tMAX travel times were recorded.

Notice that, in general, not every quadcopter reaches the end of each path, since either
a quadcopter crashes into the ground or it eventually keeps hovering mid-way without
ever entering the safety bubble around a target that will trigger the next target (such a
disruptive event is referred to as a stall).

In the loose path-following tests, incomplete trajectories only resulted from crashing
(none from stalling), since the spherical neighborhood was chosen to be relatively wide.
(The steady-state positional error should have been larger than 1 m if a quadcopter was to
reach a stall situation, which turned out not to be the case with the chosen target-switch
threshold ρ).

The numerical results for the traveling times are reported in Table 2.

Table 2. Summary of 1000 loose (ρ = 1 m) path-following tests in terms of traveling intervals and
number of disruptive events.

Configuration tMIN tAVG tMAX No. of Crashes No. of Stalls

Harsh 14.64 19.98 25.06 0 0
Medium 17.54 24.28 32.64 749 0

Soft 12.24 17.59 24.00 101 0

The harshly-trained quadcopter controller appears to be the most attitude-limitation-
compliantof the three: over 1000 paths traversed, it never caused crashes or stalls once.
However, as a counterpoint to the attitude-limitation compliance, the controlled quad-
copter flight appears to be slower than the quadcopter evolved with softer starting states.
The softly-trained configuration performs the fastest, with an average time of 17.59 s
to run across 100 m, which corresponds to an average speed of 20.47 km per hour.
The medium training configuration figures do not stand in between the harshly-trained
and the softly-trained, exhibiting much more crashes and slower flight compared to the
other configurations.

On the basis of the above results, we concluded that:

• The harsh training produces more stable and more ‘careful’ controllers that are not
prone to make a quadcopter crash, at the cost of some slowdown along the trajectory.

• The soft training yields faster and more ‘reckless’ individuals, at the cost of occasional
crashes where the quadcopter visits a state that it was not evolved to cope with.

• The medium-harshness training causes deplorable effects compared to the harsh and
the soft training in terms of speed and reliability. Such a result is due to the fact that
the training conditions are not harsh enough to produce reliable individuals, yet they
are harsh enough to hinder the training process in evolving fast individuals.

The gathered numerical-experimental data show that with harsh training conditions,
the evolutionary algorithm produces neural controllers that are both reliable and well-
performing in the task of loose path-following autonomous flight.

5.1.2. Tight Path-Following

In order to gain a deeper insight about the features of the devised neurocontroller
training method, further tests were run by setting the target-switch threshold ρ to be equal
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to 0.1 m. Such a choice implies that the evolutionary neurocontrollers will have to steer a
quadcopter to ensure it reaches the current target more tightly to trigger the next waypoint.

To this aim, and to make sure a quadcopter is effectively able to seamlessly reach the
end of each path, attitude-limitation compliance in control is a tight requirement to avoid
crashing into the ground, and a low steady-state error ‖epos‖ is also compulsory to avoid
stalling in midair. In contrast to the tests described in Section 5.1.1, precision in reaching the
target points is to be favored over travel speed; hence, longer travel times were expected.

As can be seen in Figure 9, the quadcopter’s controller trained under harsh training
conditions is more than capable of following the prescribed trajectory with enough precision
(relative to the target points), while the quadcopters’ controllers trained under medium and
soft training configurations fail to reach the end of the path because they stall, hovering
around one point, without reaching a distance less than ρ to the current target and, hence,
never advancing towards the end of the sequence.

Harsh

Medium Soft

Figure 9. Three-dimensional trajectories for the tight (ρ = 0.1 m) path-following tests. The dashed
line denotes the reference path, while the solid line denotes the actual trajectory.

For the sake of better clarity, in this tight path-following test, the actual trajectories
followed by three quadcopters whose neurocontrollers were each trained under harsh,
medium and soft conditions were represented through projections on the planes perpen-
dicular to the three axes, as shown in Figure 10.

It is immediate to recognize that, in this particular path taken as an example, the
controller is not always able to drive a quadcopter along a whole trajectory. In fact, both
controllers trained under medium and a soft training conditions fail to properly direct the
quadcopter.

The above result confirms that the softness of the training conditions is a primary cause
of a lack of ability of a neurocontroller: the harder the conditions of training, the better the
resulting control performances. In contrast, soft training conditions make a neurocontrolled
quadcopter more prone to crashing into the ground and to stalling in mid-air. It is certainly
beneficial to investigate the causes of such disruptive events more closely.

By observing Figure 11, the phenomenon of stalling, in particular, can be inspected
more closely. Let us recall that a steady decrease in the positional error ‖epos‖ indicates
that a controlled quadcopter is becoming closer and closer to the current target waypoint.
In addition, a spike in the error curve means that the individual reached the spherical
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neighborhood of radius ρ = 0.1 m and was henceforth triggered to started chasing the next
waypoint in the sequence.

Harsh Medium Soft

Figure 10. Projections of the 3D paths of Figure 9. Upper row: Projection over the x–z plane. Middle
row: Projection over the y–z plane. Lower row: Projection over the x–y plane. (The dashed line
denotes the reference path, while the solid line denotes the actual trajectory.)

Figure 11. Norm of the error of position ‖epos(t)‖ of the three configurations in the tight (ρ = 0.1 m)
path-following test versus time.

The error curve corresponding to the harsh configuration exhibits a sequence of
nine spikes, which indicate that all of the ten waypoints in the path have been visited. The
medium-trained and soft-trained individuals start chasing the first target point, but never
reach an error ‖epos‖ less than ρ; thus, these neurocontrolled quadcopters keep hovering
around the first waypoint without visiting any further locations in the path sequence. As
a matter of fact, the medium-trained neurocontrolled quadcopter exhibits a steady-state
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error of about 0.8 m, while the soft-trained quadcopter shows a steady-state error of about
0.12 m, while the threshold that triggers the next waypoint was fixed to 0.1 m.

The travel times and number of incomplete paths (due to disruptive events recognized
as stalls and crashes) are presented in Table 3.

Table 3. Result summary of 1000 independent tight (ρ = 0.1 m) path-following tests (times expressed
in seconds).

Configuration tMIN tAVG tMAX No. of Crashes No. of Stalls

Harsh 29.18 42.49 54.74 0 0
Medium - - - 31 969

Soft - - - 5 995

By comparing these results with those in Table 2, the difference in the three con-
figurations appears more evident. The quadcopters controllers trained through a harsh
configuration showed no issues in completing both the loose path-following task (with
ρ = 1 m) and the tight path-following task (with ρ = 0.1 m), albeit showing an increase in
travel times to complete the tight path-following task. In contrast, the neural controllers
yielded by the medium and soft training configurations did not achieve a sufficiently low
steady-state error to even complete one path out of one thousand.

The results of this test clearly show that harsh training conditions are required to
train neuro-evolutionary controllers that are stable enough to avoid crashing, even at high
speeds (shown in Table 2) and with steady-state errors low enough to follow paths more
tightly (as shown in Table 3).

5.1.3. Additional Precision Tests

Since the medium and soft training configurations have been proven inadequate, to
further test the precision of the neural controller learned by the harsh training configuration,
a number of additional tests was conducted. To evaluate the performance of the harsh
training configuration, a series of trials, each conducted over a set of 10,000 randomly
generated paths corresponding to different settings, was realized. The aim of these tests
was to define the boundary of the test conditions within which the harsh training may still
yield a successful controller.

The obtained results are summarized in Table 4.

Table 4. Results obtained with a harsh training configuration over 7 kinds of experiments, each
conducted on a set of 10,000 randomly generated paths corresponding to different values of the path
parameters ` and ∆` (as explained in the text). The times are expressed in seconds while distances
are expressed in meters.

Path Parameters Travel Times Paths Not Completed
` ∆` ρ tMIN tAVG tMAX No. of Crashes No. of Stalls

200 0.3 0.15 177.94 202.24 223.5 0 0
200 0.2 0.1 212.92 247.09 277.06 0 0
150 0.18 0.09 179.06 208.92 240.52 0 0
150 0.18 0.085 194.32 236.13 268.4 0 0
200 0.2 0.08 - - - 0 10,000
150 0.18 0.075 - - - 0 10,000
200 0.15 0.075 - - - 0 10,000

Each row of the table pertains to the results of 10,000 randomly generated paths
corresponding to specific values of two parameters: ` represents the number of points in a
path and ∆` denotes the maximum distance between consecutive points of the paths (in
meters). The parameter ρ denotes the safety radius that triggers the next chased target in a
path sequence. The results summarized in Table 4 indicate that for values of ρ less than
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0.08 m the controller’s steady-state positional error is larger than the required threshold
ρ to advance the sequence of points in the path. This observation gives an approximate
indication that the steady-state error ‖epos‖ is not larger than 0.085 m.

The neural controller trained and selected through the evolutionary algorithm with
the harsh training configuration reached adequate levels of precision, with an average
steady-state error of about 8 cm. It also ensures adherence to attitude-limitation constraints,
with no crashes over the course of all tests.

5.2. Experiments on Different Network Topologies

The purpose of the following tests is to evaluate the effect that a network’s topology has
on the performance of a neurocontroller in terms of learning ability. Three configurations
of a neurocontroller were chosen that differ from one another only in the number of layers
and number of neurons per layer. These topologies were selected to be:

• Complex topology: {15, 45, 60, 32, 8, 4} (which will be referred to as ‘complex’),
• Medium-size topology: {15, 30, 16, 8, 4} (which will be referred to as ‘medium’),
• Simple topology: {15, 20, 8, 4} (which will be referred to as ‘simple’).

In order to train each neural network with the evolutionary learning algorithm, as
many as G = 200,000 generations with as many as p = 100 individuals each were used.

On the basis of these parameters values, the evolutionary-type learning algorithm
insists on less-trained individuals than the parameters chosen in the tests discussed in
Section 5.1 (namely, 50,000 generations and 50 individuals less than the previous harshness
tests). Such a pair (G, p) was in fact chosen so as to highlight the effects of neural network
topology on training times, disregarding the goal of producing fully trained individuals.
Moreover, the primary objective of these tests was to qualitatively evaluate the effect
that topology has on the training algorithm, although some path-following tests were
also performed to obtain an approximate evaluation of the performance of the evolved
individuals, albeit not fully trained.

To gather information on the training process, in each configuration’s generation the
minimum cost of the entire population was recorded. Since the starting state resets every
g∗ = 3 generations, the costs exhibit large fluctuations. Notice that the starting states σ(0)
are randomly determined, and the starting states that each configuration’s training session
endures are independent of the starting states of the other two configurations.

Therefore, in order to increase the readability and interpretability of the results illus-
trated in Figure 12, the values to report in the plots were chosen to be the moving average
(MA) of each generation’s minimum costs, calculated within a window of 2000 generations.

The curves in this figure show that initially the simple topology learns the quickest
(lowest decreasing cost over each generation), the complex learns the slowest and the
medium-topology training performance stands in between. After the initial learning phase,
the simple topology exhibits, on average, the highest costs, while the medium and complex
configurations exhibit lower costs. It is hard to determine the best topology between the
medium and complex ones.

In order to assess the performance of the trained controllers, each controller was
evaluated on a series of path-following tests, each totaling 500 paths with different numbers
of waypoints and different maximal distances between two consecutive waypoints. This
comparison was conducted in terms of the minimal, maximal and average traveling times
for each category of paths. The obtained results are shown in Table 5.
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Figure 12. Moving average of each generation’s minimum costs of each topological configuration
within a window of 2000 generations. The curves represent, from the top panel to the bottom panel,
the values for the entire training (G = 200,000 generations), the values at the start of the training
(from generation g = 0 to g = 20,000) and the values in the remaining generations (from g = 20,001 to
g = 200,000).
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Table 5. Results of a series of tests, each totaling 500 randomly generated paths corresponding
to different configurations, run on the final best controllers learned by means of the evolutionary
algorithm for each of the three topologies (times expressed in seconds and distances expressed
in meters).

Path Parameters
Topology

Travel Times Paths Not Completed

` ∆` ρ tMIN tAVG tMAX No. of Crashes No. of Stalls

20 10 1
Complex 56.80 71.93 86.72 27 0
Medium 41.08 52.41 60.64 8 0
Simple - - - 500 0

20 10 0.5
Complex - - - 6 494
Medium 54.26 67.98 82.26 3 0
Simple - - - 500 0

100 0.2 0.1
Complex - - - 0 500
Medium - - - 0 500
Simple - - - 0 500

The obtained results show that in loose path-following (ρ = 1 m) the neural network
with the medium-complexity topology performs better, in terms of both travel time and
attitude-limitation compliance, than the two competing instances of topology. The neural
network with the simplest topology cannot complete a single test without crashing or
stalling. The most complex topology in the loose path-following test performs adequately,
but in the tests where the quadcopter must get closer to the path’s target waypoints
(ρ = 0.5 m and ρ = 0.1 m), the controller did not perform well enough to complete the paths
reliably.

Such observations suggest that the topology of a neural controller must be chosen
carefully. A complex topology (in both depth and width) requires more training time and
does not necessarily entail an optimal performance. In contrast, a simpler topology requires
less training time but does not possess enough capabilities for learning more complex tasks
nor for learning the correct behavior corresponding to the states visited during training.
Therefore, a good balance between the training speed and learning potential must be
established by specifying a correct neural network topology.

6. Conclusions

The present research work assessed, through virtual experiments, the suitability
of evolutionary neural networks in controlling quadcopter systems. Furthermore, the
potentialities of an evolutionary algorithm as a method for a neural network’s unsupervised
learning (neuro-evolutionary algorithms) were shown. It appears that, by defining an
appropriate cost function to describe the control task and by tweaking the algorithm’s
parameters, evolutionary techniques are able to train well-performing neural networks
in a relatively short amount of time. The devised learning algorithm made the neural
controllers perform the task of autonomous flight while upholding attitude limitations in a
simulated environment with no obstacles.

To further extend the present work and make the analyzed control strategy more viable
in real-world applications, the quadcopter can be equipped with an array of sensors for
collision avoidance and its structure and learning processes modified to take into account
supplementary inputs, such as visual data [38]. Moreover, the training environment can be
ameliorated by adding disturbances such as wind or sensor noise to further improve the
robustness of the controllers. The applications of this form of controller and training can
also be extended to a vast amount of necessities. For example, to adapt the controller to
logistic purposes (such as autonomous package delivery), the simulation can be expanded
by adding a variable payload to the quadcopter so that the neuro-evolutionary algorithm
can generate neural networks capable of adapting to deliver any type of reasonable cargo.
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As noticed by a reviewer, the input to the neural network is the system state error
normalized with a squashing function, while the system output rotor speed is transformed
with a linear affine transformation. In this case, it could be the case that the rotor speed
changes abruptly whenever the position error lies within the saturation branch of the
squashing function. Moreover, on the basis of the experimental trajectory-tracking results,
it was noticed that the closer to the target points, the slower the speed results. Although it
is possible to operate in this way between two target points, all points are linked as one
trajectory and the curvature factor would need to be taken into account as a subject of
future research.

When performing the cost-function design, it is of practical significance to remove
crashed quadcopters. The research endeavor could be pushed further by considering the
case of the flight speed exceeding the intrinsic limit of the rotor speed. In fact, the physical
realizability of the neurocontroller’s demand is a crucial aspect that was not taken into
account while conducting the present research endeavor and that could be a subject of
future research efforts.

The second author and a coworker have recently developed a specific PID-type control
strategy [46] that may be taken as a starting point for a comparison of standard PID control
and evolutionary-strategy-based control.
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