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Abstract
Human-Robot Interaction is an increasingly important topic in both research and industry fields. Since human safety must be
always guaranteed and accidental contact with the operator avoided, it is necessary to investigate real-time obstacle avoidance
strategies. The transfer from simulation environments, where algorithms are tested, to the real world is challenging from
different points of view, e.g., the continuous tracking of the obstacle and the configuration of different manipulators. In this
paper, the authors describe the implementation of a collision avoidance strategy based on the potential field method for off-line
trajectory planning and on-line motion control, paired with the Motion Capture system Optitrack PrimeX 22 for obstacle
tracking. Several experiments show the performance of the proposed strategy in the case of a fixed and dynamic obstacle,
disturbing the robot’s trajectory from multiple directions. Two different avoidance modalities are adapted and tested for both
standard and redundant robot manipulators. The results show the possibility of safely implementing the proposed avoidance
strategy on real systems.

Keywords Human-robot collaboration · Obstacle avoidance · Visual tracking · Joint velocity control

1 Introduction

Industrial robot manipulators, widely used in many indus-
trial sectors, have always operated in automated production
in an isolatedway, in order to perform repetitive or dangerous
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tasks. These robots work with predefined movements and
are therefore unable to adapt their behavior independently
to always ensure safety within the workstation, implying
the introduction of restrictive safety criteria. Over the years,
the approach has evolved from a partially shared workspace
between humans and robot manipulators to a total collabora-
tion, thanks to theuseof sensors to detect humanpresence and
other obstacles. Thus, Human-Robot Collaboration (HRC),
i.e., close cooperation between the two parties to complete a
common task, has been enabled.

The strength of the HRC lies in the possibility of delegat-
ing repetitive, heavy and risky tasks to collaborative robots
(cobots), while the human carries out all the value-added
operations that require intelligence and decision-making
skills. The workspace, even in the absence of physical bar-
riers, allows for more functional workstation designs, where
the operator is constantly monitored. The robot needs to be
constantly monitored as well, through the use of advanced
sensors, in order to ensure a safe collaboration.Often, the area
surrounding the robot cell is divided into several zones, and
the environment is inspected by a vision system. Themanipu-
lator performs the tasks at a previously set velocity and, when
the human enters the zones where a collision might occur,
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Fig. 1 Collision avoidance scenarios during a linear trajectory where
the robot moves from point A to point B and is disturbed by a human
operator’s hand. Avoidance of an obstacle entering within the end-
effector trajectory

the robot slows down or immediately stops before or in case
of contact. The safety standards and specifications EN ISO
10218-2 [1] and ISO/TS 15066 [2] describe such modality
as Speed and Separation Monitoring (SSM), where the mini-
mum distance allowed for full-speed operation of the robot is
calculated based on the tracking measurements of the opera-
tor entering the area. For productivity reasons, it is generally
accepted to slow down the robot, so that high-force impacts
are prevented, instead of directly stopping the machine. Ulti-
mately, avoiding any contact/collision by re-planning the
robot’s trajectory in real-time, as shown in Figs. 1, would
be preferable.

1.1 Challenges in Obstacle Avoidance

The implementation of the latter task becomes more chal-
lenging when a possible intrusion within the area of the
robot’s motion comes from different directions and not just
within the end-effector trajectory, as represented in Fig. 2.
Furthermore, obstacles may be fixed or moving. Traditional
obstacle avoidance assumes static obstacles, but robotswould
also need to anticipate the intentions and movements of
dynamic elements, such as moving objects and humans in
the vicinity of the manipulator. When human presence is

Fig. 2 Avoidance of an obstacle entering the robot’s elbow trajectory

expected, making safety a key issue, the obstacle avoidance
strategies should ensure that the robot makes safe decisions,
even if it means taking a longer path or avoiding riskymaneu-
vers.

The use of predefined maps to plan a path for a robot,
which is one of the classical adopted techniques, may pose
limitations. First of all, predefined maps may not account
for dynamically changing environments so the robot might
not be able to respond to unexpected obstacles that appear
after the map was created. In addition, the maps cover only
certain area and some environments could be too complex
for adequate mapping, making it difficult for the robot to
navigate effectively.

From the sensing point of view, effective obstacle avoid-
ance requires the use of sensors for obstacle detection and
tracking, ideally dealing with environmental conditions such
as low lighting or occlusion. Properly selecting such sen-
sors is crucial for the practical implementation of the control
algorithms.

Finally, optimal path planning andmotion control are nec-
essary. Indeed, an optimal trajectory generation algorithm
must ensure smoothness in both position and velocity to be
effectively utilized in a real system’s controller.

1.2 Contribution

The proposed work describes the implementation of an
obstacle avoidance strategy, addressing the aforementioned
challenges, with several experimental tests. Starting from
previously obtained simulation results [3, 4], the authors
implement a combination of off-line path planning, on-line
motion control and real-time tracking with a vision-based
Motion Capture (MoCaP) system, to perform static and
dynamic obstacle avoidance with standard and redundant
manipulators. Although the algorithms have been designed
to be independent on the particular obstacle detection sensor,
the use of such system provides fast, redundant and highly
precise tracking data.

The content of this paper provides an extensive and accu-
rate review of the literature, the mathematical description of
the developed strategy based on the Artificial Potential Field
(APF) technique [5] and the results of several experiments.
With respect to currently existing solutions, this work deals
with both static and dynamic obstalces. Furthermore, stan-
dard algorithms are improvedwith the use of Bézier curves to
avoid abrupt accelerations and vibrations of the robot joints in
the event of sudden trajectory changes. Additionally, a tech-
nique based on the least-square dampedmethod for inverting
Jacobian matrices is introduced to prevent the robot from
passing through points that are too close to singular config-
urations.

Finally, two different operation modes are described
and validated. The first mode exploits the full Degrees
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Of Freedom (DOF) of the robots, while the second mode
maintains the robot’s end-effector orientation fixed. The
research shows the possibility of changing the robot’s oper-
ating mode independently of the real-time recognition of
the obstacle motion. As a result, the system proves to be
dynamic, efficient, and adaptive to any sensor that provides
obstacle-tracking measurements. The remainder of the paper
is organized as follows: Section 2 provides an accurate anal-
ysis of related works, both for obstacle avoidance strategies
and for vision and MoCaP systems; Section 3 discusses the
obstacle avoidance strategy implemented, in particular the
trajectory path planning algorithm based on the potential
field, the on-line motion control and the explanation of the
two possible operating modalities implemented for the UR5;
Section 4 describes the system architecture for the acquisi-
tion of the obstacle data and reports the performance of the
strategy applied on real systems, both with a 6-Degrees Of
Freedom (DOF) Universal Robots UR5 and a redundant 7-
DOFKUKALBRiiwa; Section6 reports concluding remarks
and future works.

2 RelatedWork

2.1 Obstacle Avoidance

Obstacle avoidance and obstacle detection have been widely
researched topics for decades in the robotics community.
Classical methods involving the optimization of pre-defined
goal functions [5, 6] have been followed over the years by
alternative strategies. In [7, 8], for example, the authors
perform online scaling of dynamic safety zones to avoid
potential collision between a human operator and the robot
in motion. Authors in [9] propose a cell decomposition
method involving probabilistic sampling for path planning.
Cell decomposition requires dividing the environment into
free and occupied sections so that an avoidance trajectory
within the free regions is computed [10]. Other probabilistic
solutions have also been proposed: in [11], a collision-free
path is generated using an RRT (Rapid-exploring Random
Trees) algorithm, whereas a predictive model based on a BIT
method (Batch Informed Trees) is presented in [12], which
improves the planned path’s points connection.

Strategies based onmachine learning and neural networks
have also been extensively investigated. In [13], the authors
propose an improvement of the Mamdani fuzzy controller
[14], by increasing the number of sensors to detect the envi-
ronment and reducing the fuzzy rules. In [15] and [16], Deep
Reinforcement Learning (DRL) approaches for vision-based
obstacle avoidance are presented, processing data obtained
from the raw sensor data of the obstacle and training spe-
cific neural networks to plan optimal trajectories. However,

the smoothness within the avoiding motion and return to the
original path is not always guaranteed.

Another interesting technique in [17] combines DRLwith
dynamic reward to improve the efficiency of route planning
and obstacle avoidance. This makes it possible to arrive at an
optimal solution faster and have a good strategy. However,
the effectiveness of DRL may not be valid in the case of
complex scenarios and also, the validation of the algorithm
was done only in simulation and may not represent the real
environment.

The use of machine learning techniques or neural net-
works could lead to limitations, including the requirement
for a substantial amount of training data that may not be
readily obtainable. Processing all this data could demand sig-
nificant computational time, making the operation complex.
Additionally, neural network-based systems may struggle to
adapt if they were trained on static datasets. More recent and
promising work [18] relies on a search algorithm based on
a relative entropy policy to avoid obstacles. With respect to
the work proposed in this paper, there are still some limita-
tions and challenges. First, the algorithmwas designed under
the assumption that skills are learned in static environments.
This may cause harm if it is applied to dynamic environ-
ments peculiar to real scenarios. Furthermore, it involves
the solution of an optimization problem that minimizes the
difference between the optimal trajectory distribution and
the experimental distribution, while avoiding obstacles. The
complexity of this optimization process, performed offline
without real-time feedback from the environment, may lead
to sub-optimal solutions and even require significant com-
putational resources, making it less suitable for real HRC
applications.

2.1.1 Obstacle Avoidance in Mobile Robotics

Mobile robot navigation also benefits from obstacle avoid-
ance algorithms, both with neural networks [19] and with
model-based approaches. An overview of the control strate-
gies and algorithms for obstacle avoidance in mobile robots
can be found in [20]. In the following, some notable solutions
are reported and discussed, as the limitations of current algo-
rithms are extremely similar in the case of robot manipulator
arms, subject of this paper.

In [21], a Nonlinear Model Predictive Control (NMPC) is
presented in order to solve point-stabilization problems with
static and dynamic obstacles. It is based on the minimiza-
tion of an error cost function that incorporates the obstacle
as a time-varying constraint. The NMPC involves solving
online optimization problems at each time step, but the com-
putation time could be high if the system is complex. In
addition, a prediction-based technique considers only short
time horizons since, in the case of long-term predictions,
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the computational demand is high, which would reduce the
ability of the control to respond quickly.

Authors in [22] introduce a motion planning algorithm
designed for mobile robots navigating in known environ-
ments with static obstacles. Leveraging Particle Swarm
Optimization (PSO), the algorithmconverges to a globalmin-
imum, utilizing a customized approach to generate search
space coordinates. These coordinates are then employed
by the PSO algorithm to establish the most efficient path
between two specified end positions. In [23], the DAYKUN-
BIP method is introduced as an innovative navigation
strategy to ensure seamless and obstacle-free movement
for mobile robots. The DAYKUN-BIP virtual target dis-
placement (DVTD) method comes into play when a robot
encounters difficulties in finding a suitable path. Upon sensor
detection of potential barriers, multiple virtual goals are gen-
erated around the actual goal. The safest route is determined
by assigning appropriate weights to each goal line based on
selected factors, thereby visualizing the most optimal path.

Coverage Path Planning (CPP) techniques, typically used
for service mobile robots, are able to generate smooth paths
and avoid sharp turns, thus reducing accelerations and decel-
erations [24, 25]. The complexity and dynamism of the
environment may not be handled optimally so real-time tra-
jectory adaptation may not be respected. In addition, the
effectiveness of CPP is often dependent on the accuracy
and range of sensors used by the robotic system. The CPP
technique may not handle all types of mobile robots also
considering that, since these robots have limited energy
resources, optimizing the path may require excessive energy
consumption.

2.1.2 Obstacle Avoidance with Artificial Potential Field

Generating smooth trajectories is a requirement that trans-
lates in robot manipulators as well, in terms of position and
velocity of the robot’s joints. Motion smoothness is crucial
for the implementation in a real HRC system.

Themain challenges that researchers encounter are related
to proper sensing of the environment, efficiency of the path
planning algorithms and safety for the human operators. The
most used techniques for dealing with these issues are based
on the APF [5], which drives the robot toward the target
position inside the workspace. Its implementation consists
in building a set of forces able to drive the manipulator’s
end-effector to the goal. The potential field is composed
of an attractive force (towards the goal) and a repulsive
one (from the region of influence of the obstacle). These
forces are associated with the velocities of the manipula-
tor computed at the end-effector; the optimal trajectory can
then be obtained by numerical integration. Strengths of this
technique are its simplicity and intuitiveness, which make
APF-based obstacle avoidance tasks easy to implement. In

addition, this technique is computationally more efficient
than other mentioned solutions in the literature, allowing
for real-time responses. Such efficiency makes it extremely
suitable for applications where the environment is dynamic
and decisions must be made quickly. Finally, this technique
allows the robot to navigate within the working environment
without knowing it entirely. The APF suffers from local
minimum problems, which are addressed in several works
[26–28]. On the one hand the repulsive forces generated by
obstacles help the robot navigate around them and escape
from trapped situations; on the other, the robot may get stuck
in local minima, especially for complex paths, and therefore
not reach the highest possible accuracy. In addition, the over-
all performance could heavily depend on parameter tuning,
requiring careful calibration.

The method proposed in [26] deals with the velocity con-
trol of an Unmanned Aerial Vehicle (UAV) to avoid the local
minimum trap in a dynamic environment. It assumes knowl-
edge of the relative motion states of surrounding obstacles,
but the robustness of the algorithm is based only on simu-
lations, not considering the variability of scenarios and not
extending the demonstration to a real case. Puriyanto et al.
[27] presents an ImprovedAPF (IAPF) algorithm to dealwith
the localminimum issue, relying on selected tolerance values
and pre-defined thresholds. The complexity of the environ-
ment is not taken into account, since it is assumed to be known
and static, therefore the scalability of the IAPF algorithm to
handle larger environments or scenarios with multiple robots
is not addressed.

In several cases, the presence of noise and uncertain-
ties can impact the reliability of path planning algorithms.
Another example of path planning is proposed in [29], where
the authors use a saturation function for the attractive veloc-
ity in order to avoid oscillations around the goal, while for the
repulsive velocity a spring-damper system is used to elimi-
nate noise in the proximity of the obstacles.

The APF technique is the basis for the presented work
and is considered as the origin of attractive and repulsive
velocities, used to compute the end-effector trajectory, as
will be explained in Section 3. The method outlined in
the paper offers a solution to overcome certain challenges
encountered by the previously described approaches. To
begin with, this strategy was initially validated through sim-
ulation and subsequently tested in the laboratory, thereby
confirming its efficacy. The workspace does not require
any cell decomposition for trajectory definition or predic-
tive methods for obstacle-free trajectory generation. The
proposed method considers both static obstacles already
present in the workspace and real-time updates of the posi-
tion of moving obstacles as input, generating, a smooth
end-effector trajectory without accelerations or vibrations,
thanks to the introduction of Bezier curves. However, the
main disadvantage is the necessity of using multiple cameras
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to cover the workspace adequately and prevent occlusion
issues. In fact, at least two cameras must monitor the object
to ensure accurate obstacle detection. Moreover, while using
many control parameters in the obstacle avoidance algorithm
can lead to an effective strategy, these parameters also neces-
sitate a well-established baseline setting that could vary from
one application to another.

2.2 Vision Sensors andMotion Tracking

HRC applications require a safety system in order to avoid
harm to the operators. In this context, obstacle avoidance
becomes human avoidance, as the robot must continue its
motion while avoiding intrusion from parts of the operator’s
body, i.e., hands, arms, head etc. It is therefore crucial to be
aware of surroundings, knowing the presence and location of
people, objects and robots.

Vision and MoCaP systems have gained popularity as
human tracking devices, thanks in particular to their easy
installation and usability. The main vision systems used in
robotics are monocular and stereo cameras, RGBD cameras
and Time-of-Flight (ToF). The reason for this popularity
is based on multiple aspects. First, vision systems provide
extensive information on the work environment and its fea-
tures, and can be used in almost any task, from object
recognition to localization and navigation. On the other hand,
these systems suffer from occlusion and light conditions
issues, and require high computational effort in data pro-
cessing in the case of real-time applications. Motion capture
systems, based on camera sensors, are extremely accurate in
tracking objects or human bodymovements. Furthermore, by
workingwith very high frame rates (up to 360 FPS) they offer
the possibility of an immediate feedback. However, these
systems are extremely expensive and require an environment
free of other reflective objects that could cause noise. Both of
these systems have strengths and weaknesses and the choice
depends on the type of application to be performed.

Halme et al. [30] provide a general review of vision-
based safety technologies and methods to detect humans and
objects, illustrating the standards and the guidelines for a
safe HRC in practical applications. They propose five cate-
gorizations for vision-based monitoring and safety systems:
distance between points and obstacles, collision avoidance,
human interaction recognition, multi-sensor data fusion and
visualization/monitoring of safety zones. The main objective
of [30] is to provide a technology analysis of vision-based
security systems for industrial environments. The work sug-
gests that there may be gaps in the current state of these
systems, in terms of robustness, reliability, or other critical
factors for industrial applications. For this reason, vision sys-
tems are not yet certified, leading to limitations in their use.

Schmidt et al. [31] propose an adaptive control for obsta-
cle avoidance based on a depth camera. The 3D point cloud

obtained is used for the detection of potential obstacleswithin
the monitored area. The authors emphasize the potential of
depth images in ensuring effectiveness for safety monitoring
in HRC tasks, and the low cost of the sensors. The proposed
strategy relies on the removal of stationary and knownobjects
making it less suitable in terms of adaptability for complex
scenarios. There is also no information regarding the robust-
ness of the system or the possibility of scalability. Other
works also exploit depth cameras for the implementation of
distance control algorithms, in order to generate repulsive
vectors that push away the robot from the obstacle area [32,
33].

Another system that is widely used is the Kinect. Among
its advantages is its low cost, which makes it more attractive
than other more expensive industrial systems. In addition to
RGB data, it can also provide distance estimates allowing to
recognize objects for obstacle avoidance. The ease of use and
the possibility to rely on available pre-built libraries and tools
also makes it a valuable sensor. However, Kinect devices
have a limited range of action and field of vision making
them unsuitable for very large environments. The accuracy
and precision of the depth camera may not be sufficient for
applications requiring extreme precision. Their use is exclu-
sively indoor. In [34], data from multiple Kinect images are
used to generate dynamic safety volumes around a robot and
humans. If safety volumes collide, the robot decreases its
velocity. Other works include theKinect sensor to implement
similar frameworks of human detection and motion tracking
within the robot area [35, 36].

Many authors employ vision systems and machine learn-
ing, particularly deep learning, to recognize objects [37].
In [38], the authors propose an approach for video object
detection and tracking. The methodology is structured into
three distinct phases: detection, tracking, and evaluation. The
detection phase encompasses foreground segmentation and
noise reduction, employing a proposed Mixture of Adaptive
Gaussianmodels to attain efficient foreground segmentation.
Additionally, a fuzzy morphological filter is implemented to
eliminate noise from the segmented frames. A technique for
robot vision localization is suggested in [39], utilizing an iter-
ative Kalman particle filter, enabling the global positioning
of the robot. An interesting method that could be extended
in HRC applications is proposed by the authors in [40],
in which gesture patterns based on body-proportion char-
acteristics around the shoulders are extracted. The authors
introduce a 3D human-gesture interface for fighting games
using a motion recognition sensor, which effectively models
and analyzes motion through mathematical representation
and principal component analysis. A novel pattern matching
algorithm is proposed to minimize motion constraints in the
recognition system. The results showcase a high-quality 3D
motion interface for realistic gaming experiences, demon-
strating the potential of real-time processing technology.
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Occlusion plays a crucial role in vision sensors and is
one of the open issues for such systems. Cameras are often
affected by light conditions, dust, smoke and other envi-
ronmental factors which limit the correct identification of
objects. To obtain accurate measurements, depth cameras
often require precise calibration, which can be a complex
and time-consumingprocess. Furthermore, people and robots
may occlude each other for an unknown amount of time
during image acquisition. For this reason, multiple sensors
are used in fusion frameworks. Redundant sensors are also
fundamental in terms of safety in HRC. An example of
sensor fusion in the presence of occlusion is with the use
of Inertial Measurement Unit (IMU) sensors as wearable
devices, as presented in [41], where the fusion of Optitrack
cameras and an IMU ensures robust human tracking and
localization. MoCaP systems like the Optitrack also provide
redundant information, as many cameras are mounted in the
scene to track special infrared reflective markers from mul-
tiple directions, thus improving the coverage and reducing
occlusion possibilities. The MoCaPsystems are extremely
accurate and precise in tracking objects and their movement
in real-time. They are very suitable for HRC applications,
ensuring both human and robot tracking. These systems
are also extremely used for biomechanical motion analysis,
animation and gesture recognition. Some systems, such as
the OptiTrack PrimeX, allow multiple objects to be tracked
simultaneously and offer the possibility of fusing information
fromother sensors. Otherworksmake use of such systems: in
[42], the authors provide an APF collision avoidance method
for aUniversal Robot UR10manipulator, tracking the human
arm with two wearable MoCaP systems, the HTC VIVE and
the wearable AntiLatency. It requires two base stations as a
reference, 18 infrared receiver sensors and a 6 DOFwearable
optical camera attached to the tracked object.

In summary, the combination of the close distance mea-
surements from the vision or the MoCaP sensors allows the
robot to perform its taskwhile keeping safe and collision-free
motions and sharing the workspace with operators. Vision
systems, such as Intel RealSense or Kinect, are cheaper and
require no markers. These systems are highly dependent
on lighting conditions and suffer from measurement noise
. Some surfaces can reflect and create challenges for obsta-
cle detection or are subject to occlusions, making it difficult
to detect objects covered by other objects. Their calibration
is time-consuming and they have a limited field of view. For
this reason, they can be inaccurate or even fail to acquire par-
ticular movements. MoCaP systems, on the other hand, offer
a high accuracy and inherently increased coverage providing
exceptional precision in position data, rapid detection and
high sampling frequency.

3 Materials andMethods

3.1 Obstacle Avoidance Strategy

This study describes the experimental implementation of a
control strategy for obstacle avoidance, which uses a combi-
nation of off-line path planning and on-line motion control
algorithms. The algorithms, introduced in [3, 4, 43], are
here applied to both a standard and a redundant manipulator
operating in a three-dimensional workspace. The strategy is
validated with a Universal Robot UR5 and a 7-DOF KUKA
LBR iiwa 14, and with the use of the Optitrack PrimeX 22
MoCaP system for obstacle tracking. The overall proposed
control strategy for a manipulator operating in a dynamic
environment can be formulated by combining:

1. AnOff-line path planning able to plan the trajectory of the
robot’s end-effector considering the possible presence of
obstacles along the path and consequently adjusting the
trajectory based on the position of the obstacle before the
motion starts.

2. An on-line motion planning that controls the robot with
joint velocity commands to enable the robot to avoid
moving obstacles.

3. A redundancy control strategy to avoid collisions between
the elements of the kinematic chain of the manipulator
with obstacles, and to try to keep the trajectory of the
end-effector unchanged.

Two different operation modes for collision avoidance are
introduced. The first one, referred to as “Full Mode” allows
for 6-DOFavoidancemotions of the end-effector. The second
mode, referred to as “Reduced Mode”, leaves the orientation
of the end-effector unchanged during the perturbation from
the obstacle.

Note that the overall control algorithm assumes fully
functional materials involved, and does not generally con-
sider uncertain systems and fault-tolerance.Recentwork [44]
considers a fault-tolerant nonlinear observer-based control
framework to cope with uncertainties in the motors of a UAV.
However, it is assumed that in the proposed experiments the
electric motors of the robot manipulator work normally and
that the commands sent via TCP/IP do not present commu-
nication errors.

3.2 Off-line Path Planning

The path planning algorithm utilized in order to define the
cartesian motion xe(t) of the end-effector, considering the
initial presence of static obstacles, is applied as follows.
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Fig. 3 Potential Fields for trajectory planning

A repulsive and an attractive velocity, respectively vrep
and vatt components originated by an APF, are used to drive
the end-effector E following the minimum potential path
towards the goal. As shown in Fig. 3, S is the initial position
of the end-effector, G is the goal and Oi are the obstacles,
with their region of influence outlined by their radius r. Con-
sidering the distances dO = E − Oi and dG = G − E, the
equations that define attractive and repulsive velocities can
be formulated as in [3]:

vatt =
⎧
⎨

⎩

vatt
dG
r

dG < r

vattdG dG ≥ r
(1)

vrep =
⎧
⎨

⎩

vrep

dO

(
1

dO
− 1

r

)

∇dO dO < r

0 dO ≥ r
(2)

where the symbol ∇ indicates the gradient operator. Conse-
quently, the goal is to guide the robot to move in a way that
minimizes a potential function. The potential function, or
APF, is constructed from the balance of attractive and repul-
sive velocities, so that the robot aims to navigate through the
environment by following the path of least resistance and
least cost according to the APF:

ẋe = vrep + vatt (3)

This strategy implicitly imposes a speed constraint, with
higher velocities when the end-effector is further from the
goal, gradually decreasing as it approaches. Naturally, the
greater the distance from the desired point, the stronger the

attractive field it experiences, resulting in a higher traveling
speed.

The reference end-effector trajectory at each time step can
be found by integrating the resulting velocity ẋe:

xe(t + dt) = xe(t) + ẋe(t)dt (4)

which is updated in accordance with the velocity imposed at
each step dt .

Ultimately, the algorithm will allow the robot to follow
this given reference trajectory while avoiding collisions with
known obstacles or other agents that might appear along
the path. The process concludes when the distance between
the end-effector and the target falls below a predetermined
threshold.

Unfortunately, the trajectory resulting from Eqs. (1)-(4) is
characterized by a short radius and sharp corners resulting
in high accelerations and vibration problems. An example is
illustrated in Fig. 4, where two obstacles situated between
the starting and goal points are disturbing the motion along
the ideal linear trajectory. The planning algorithm generates
the black curve that consistently stays outside the influence
region of the obstacles at all points. Nevertheless, this curve
undergoes rapid directional changes at two specific points,
namely where the trajectory intersects with the influence
spheres of the obstacles. In order to avoid this effect, an inter-
polation procedure has been applied to generate a smoother
trajectory based on a third-order Bezier curve.

Having n + 1 3D points C0, C1, . . . ,Cn , where n is the
order of the Bezier curve, the latter is defined as:

B(s) =
n∑

i=0

(
n

i

)

Ci (1 − s)n−i si , s ∈ [0, 1] (5)

where s is the curvilinear abscissa of the curve. Considering
a third order Bezier curve, Eq. (5) becomes:

B = C0(1− s)3 +3C1s(1− s)2 +3C2s
2(1− s)+C3s

3 (6)

Fig. 4 Example of path planning in the case of potential fields (black trajectory) and with third-order Bezier curves (red trajectory)
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Here, C0 and C3 are respectively the known initial and the
final point of the overall trajectory xe(t), while C1 and C2

are the intermediate points that allow to generate the curve B
as the best approximation of the original one. To determine
the six variables that define points C1 and C2 and mini-
mize the quadratic error between the original path and the
Bézier curve, an optimization problemneeds to be addressed.
Equation 6 can be re-written in matrix form as:

BT = [
(1 − s)3, s3

] [
C0, C3

]T

+ [
3s(1 − s2), 3s2(1 − s)

] [
C1, C2

]T
(7)

When the curvilinear abscissa s is discretized intom samples,
the trajectory xe transforms into a collection of m points.
Consequently, Eq. (7) can be expressedm times for the points
B j , where j takes values from 1 tom, assuming the following
form:

N = S1D1 + S2D2 (8)

where:

N = [
B1 . . . Bm

]T
S1 =

⎡

⎢
⎣

1 − s31 s31
...

...

1 − s3m s3m

⎤

⎥
⎦

S2 =
⎡

⎢
⎣

3s1(1 − s21 ) 3s21 (1 − s1)
...

...

3sm(1 − s2m) 3s2m(1 − sm)

⎤

⎥
⎦ (9)

D1 = [
C0 C3

]T
D2 = [

C1 C2
]T

(10)

By manipulating Eq. (8) and substituting the matrix N with
the corresponding matrix X, which is constructed using the
points from the trajectory xe obtained through the APF algo-
rithm, a straightforward closed-form solution for the optimal
set of coefficients D2 can be readily determined:

D2 = S2†(X − S1D1) X = [
xe,1 . . . xe,m

]T
(11)

where † denotes the pseudo-inverse operator based on the
Moore-Penrose definition. This operator inherently yields
the coefficients of the curve that optimally matches the orig-
inal trajectory by minimizing the least squares error. These
coefficients can be input to Eq. (6) in order to generate the
smoothed reference trajectory.

3.3 On-line Motion Control

The goal of the on-line motion control is to compute the
joint velocity commands that are being continuously sent to
the robot in order to avoid moving obstacles. For this reason,
several control points are defined on themanipulators, and an

Fig. 5 Kinematic chain and control points for the Universal Robot UR5

inverse kinematics problem is performed. The control point
closest to the obstacle at each step is then considered for the
avoidance.

The kinematic schemes of the Universal Robot UR5 and
the KUKA LBR iiwa 14, are shown in Figs. 5 and 6, respec-
tively.

For the UR5, the kinematic chain is characterized by
eight control points (A, B, C, C1, D, E, F, G). The
components of the joint space position vector are: q =
[θ1, θ2, θ3, θ4, θ5, θ6]T , respectively the base, the shoul-
der, the elbow and the three wrist joints. In the case
of the KUKA LBR, instead, seven joint positions q =
[θ1 θ2 θ3 θ4 θ5 θ6 θ7]T and a total of 14 control points
(A, B, C, A1, A2, A3, A4, B1, B2, B3, B4 C1, C2,E)
are defined, considering intermediate distances between the
various segments, as shown in Fig. 6.Avelocity is assigned to
the control point of the robot closest to the obstacles present
in the workspace; thereby, the control point is pushed away
from the obstacle region, while the original goal trajectory
for the end-effector is maintained.

A state vector x = [x y z α β γ ]T is defined, to indi-
cate the estimated pose of the end-effector in the Cartesian

Fig. 6 Kinematic chain (top) and control points (bottom) for theKUKA
LBR iiwa robot
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space. The last three components represent the Euler angles
according to the ZY Z convention. The forward kinematics
of the manipulators is then described by:

x = f(q) (12)

ẋ =
[
ẋp
ω

]

=
[
Jp
Jo

]

q̇ = J(q)q̇ (13)

where f is the position forward kinematics, ẋ is the velocity
vector composed by the linear velocity ẋp and the angular
velocityω, q̇ is the joint velocities vector and J is the analytic
Jacobian, composed by Jp and Jo, which are the position and
orientation Jacobian matrices:

1. for the UR5: J is the (6 × 6) Jacobian matrix, Jp and Jo
have a dimension of (3 × 6).

2. for the KUKA: J is the (6 × 7) Jacobian matrix, Jp and
Jo, respectively the position and the orientation Jacobian
matrices, have a dimensions of (3 × 7).

Asmentioned before, a velocity vector is assigned to the con-
trol point of the robot which is closest to one of the obstacles
in the workspace. The aim is to leave the motion of the end-
effector unchanged, while the control point is pushed away
from the obstacle. Referring to Figs. 7 and 8, a pair of points
Pr and Po (respectively belonging to the robot and the obsta-
cle) at the minimum distance dO is identified at each time
step. The region of influence of each control point is delim-
ited by the radius r . If the conditions dO < r is verified,
a repulsive velocity ẋ0 = avvrepdO along the direction of
dO is assigned to the relative control point, where av is an
activation factor, function of dO , r and other parameters that
are used to define a critical minimum safety distance. The
control point changes according to the criterion of minimum
distance from the obstacle, and could also be the end-effector
E.

The safety regions that enclose the kinematic structure of
the KUKA LBR have been defined as control spheres that
have equidistant centers, as shown in Fig. 7. For the UR5 a
different solution has been adopted. Only one safety region

Fig. 7 Linear velocity of the end-effector E and of the control point Pr
closest to the obstacle Po

Fig. 8 Region of influence of a link and repulsive velocity

per each link has been defined as in Fig. 8: the cylindrical
region has a height equal to the length of the link and two
hemispheres at the extremities of the link. As for the KUKA,
the radius of the cylindrical/hemispherical safety volume is
variable as a function of distance and velocity of the obsta-
cles. The reader can refer to [3, 4, 43] for more information
regarding the construction of these regions.

The following expressions must be imposed in order to
assign the two velocity tasks in the joint space, i.e., follow-
ing the reference end-effector trajectory and avoiding the
obstacle:

Jq̇ = ẋe (14)

J0pq̇ = ẋ0 (15)

where J0p represents the (3 × 7) upper part of the Jacobian
matrix J0 associated to the velocity of the point Pr and ẋ0 is
the imposed repulsive velocity.

Additionally, in order to prevent singularity for both the
robots considered, a damped least-square strategy is used [45,
46]. The damped inverse matrix can be obtained as:

J∗ = JT(JJT + λ2I)−1 (16)

where λ is a damping factor, which is a function of the
smallest singular value of the Jacobian matrix. However, this
approximation could introduce a position error that must be
recovered by a proportional term in the control law, as typi-
cally used in Closed-Loop Inverse Kinematic (CLIK) control
laws [47, 48], that will be addressed in the following.

3.3.1 Redundancy Control and Operation Modes

Since the KUKA LBR is a redundant robot, the inverse posi-
tion kinematics problem in not uniquely defined. Therefore,
the obstacle avoidance strategy is based on the null space con-
trol for redundant manipulators, a technique used to exploit
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the redundancy of the robot for the avoidance motion while
simultaneously accomplishing a primary task in the task
space. A numerical solution based on the inverse kinematics
velocity problem is required in order to write the control law
[5, 49, 50]:

q̇ = J†ẋ + Nq̇0 (17)

q(t + dt) = q(t) + q̇(t)dt (18)

The terms in Eq. (17) are defined as follows:

1. q̇0 is the joint null-space velocity;
2. J† = JT(JJT)−1 is the pseudoinverse of the Jacobian

matrix J;
3. N = I − J†J is the projection into the null space of J.

Equation (17) can be modified with the addition of the
damped Jacobian from Eq. (16) and the corresponding cor-
rective term:

q̇ = J∗ẋc + (J0pN∗)(ẋ0 − J0pJ∗ẋe) (19)

where N∗ = I − J∗J, ẋc = ẋe + Ke is the corrected end-
effector velocity, K a positive-defined gain matrix and e is
the position error between the desired position xe and the
actual position x. The gain matrix K is defined as:

K = keI (20)

where ke is a scalar used as a tuning parameter. The effect of
changing this parameter will be described in Section 4.

The first term of Eq. (19) guarantees the exact velocity
of the end effector with minimum joints speed. The second
term drives the motion of the point Pr of the robot, satisfying
the collision avoidance additional task.

As already anticipated, two different operation modalities
are presented:

1. Full Mode: 6 and 7 DOF perturbation: movements of
the joints exploiting all DOFs are permitted. The joint
velocity control law for the KUKA LBR is the one given
by Eq. (19). For the UR5, instead, there is no null space
and the two velocity tasks defined in Eq. (14) and (15)
result in:

q̇ = J∗ (ẋe + Ke) + J∗
0pẋ0 (21)

2. Reduced Mode: perturbation with fixed orientation:
only translations are admitted, whereas the orientation is
fixed during the motion. The control law is:

q̇ = J∗ (ẋe + Ke) + J∗
R

[
ẋ0
03×1

]

(22)

The Jacobian matrix of the second term has a dimension
of (6 × 6) and it is composed by the translation part of
J0 and the orientation part of J:

JR =
[
J0p
Jo

]

(23)

The reduced mode is valid only for the UR5.

4 Experiments and Results

Several experimental tests have been conducted for both
Universal Robot UR5 (Full Mode and Reduced Mode) and
KUKA LBR iiwa 14 (Full Mode only) in order to verify the
applicability of the strategy.

The sensor system used to track the obstacle’s position is
the OptiTrack PrimeX 22. In the following, the word “obsta-
cle” will be used to indicate a human hand equipped with
Optitrack markers. A fixed obstacle will be created by plac-
ing the hand statically in the scene before the robot’s motion
starts. A dynamic obstacle will be created by disturbing the
robot’s motion from different directions, moving toward its
various joints.

4.1 Marker-based Obstacle Motion Tracking

The Optitrack is a high-performance MoCaP system based
on infrared cameras detecting reflective markers, which can
be tracked with sub-millimetric precision. The 360 FPS
frame rate and the 2.2 MP resolution make the system effi-
cient, ensuring robustness and accuracy.Nevertheless, proper
placement of the cameras is needed to ensure the correct
estimation of the 3D position of the markers. At least three
cameras should always frame the markers in order to avoid
low-quality estimation. In this work, 8 cameras have been
placed to cover the area in which the UR5 robot is mounted,
and 4 cameras have been used for the LBR iiwa. The cameras
have been mounted on the ceiling to better capture the scene
around the robots. For both scenarios, the calibration of the
vision system has been performed. The calibration procedure
involves the collection of thousands of samples from each
camera at 360 FPS. An L-shape body with 3 markers is used
to set the origin of the coordinate system.The point clouds are
then aligned in OptiTrack’s softwareMotive and the position
of each camera is computed with respect to the origin. Once
the calibration is complete, it is possible to create rigid bod-
ies or skeletons and retrieve their position and orientation via
software. For the proposed experiments, a rigid bodyhas been
created to fit on a gloveworn by the operator. This allows both
fixed and dynamic disturbance of the robot’s motion with the
hand as an obstacle. The homogeneous transformation T B

O
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from the robot’s Base frame to the Optitrack origin frame can
be easilymeasured.With this, the position of the obstacle can
be expressed with respect to the robot’s Base frame by:

PB
ob = TB

OP
O
ob (24)

The PB
ob is used as the obstacle’ position Po by the Motion

Planning and Redundancy Control algorithms: the closest
point of the robot Pr to the obstacle Po is computed and the
distance dO is calculated. The corresponding evasive motion
in terms of joint velocities is then computed as explained in
Section 3. For the experiments, Matlab 2021b software and
the NatNet library provided by OptiTrack have been used.
Firstly, the Optitrack system acquires the coordinates of the
rigid body in real-time for each time step and sends them to
the Matlab PC. The Optitrack software provides a client that
allows communication with Matlab in order to acquire the
coordinates of the rigid body. The acquired data are reported
to the UR5 base reference system and used by the obstacle
avoidance algorithm to identify the location of the obstacle in
real-time. The last part of the communication chain, namely
with the real robot, uses theTCP/IP protocol through an inter-
face with Matlab. The socket connection is able to transmit
the data at a frequency higher than 100 Hz. Thus, the two-
way communication allows to read the joints’ positions at
each time step and to send the speed control command to the
robot in real-time. The highest possible frequency is required
in order to guarantee real-time control, fast signal acquisition
and optimal communication with the sensors.

4.2 UR5 Test Cases

In this section, different examples with a moving obstacle
interfering the trajectory of the manipulator are shown. The
aim is to simulate a collaborative scene, therefore the robot is
positioned on a table at a 0.7 m height from the ground, in a
working area free of additional obstacles. In absence of dis-
turbances, the robot is initially programmed to move from
a initial point A and a final point B in a straight line, in a
setup very similar to Fig. 1. In Fig. 9, the joint positions and

velocities for this motion are plotted for reference. Addition-
ally, a 3D-printed passive gripper with a length of 210 mm
has been attached to the robot’s flange, exploiting the easy
adaptation of the avoidance algorithms, which only requires
modification of the G control point coordinates for the UR5
(or the E control point for the KUKA).

4.2.1 Test 1 - Moving obstacle, Full Mode

In this example, a moving obstacle interferes with the end-
effector and other parts of the manipulator. Figure 10 shows
the obstacle coming from different directions (front, under
and side) and the respective reaction of the manipulator dur-
ing the evasive motion. The test is executed using the Full
Mode, which allows the manipulator to exploit its full kine-
matic chain to avoid the obstacle.

Figure 11 shows the robot’s behavior in terms of its joint
positions and velocities in time. In particular, it can be noticed
from the velocities plot how the robot quickly reacts and trig-
gers all the joints. Themagnitude of the induced joint velocity
change is fairly low (maximum of 0.6 rad/s), resulting in a
smooth evasive motion, as confirmed by the joint positions
plot. Figure 12 instead shows the robot’s trajectory in terms
of the cartesian position and orientation of the Tool Center
Point (TCP), compared to the trajectory that the robot would
have without any obstacle. Figure 12 also reports the angle
relative to the orientation given by the fifth joint (which cor-
responds to the β Euler angle) and the euclidean distance
between obstacle and TCP. The former is used to confirm
the most visible difference between Full Mode and Reduced
Mode. Refer to the figure’s caption for more comments on
the analyzed data.

The safety region belowwhich no action is possible, intro-
duced in Section 3.3, is illustrated in orange. Referring to
Eq. (21), the activation factor av will depend on the tunable
radius r , which defines the region of influence of a control
point, in this case the TCP.A small radius limits the influence
area, making it challenging for the algorithm to handle cases
where obstacles might interfere. On the other hand, a larger
radius is better for swiftly moving obstacles, while small

Fig. 9 Joint angles and
velocities during the reference
trajectory without obstacle. For
the programmed motion, joint 5
does not need to move
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Fig. 10 Test 1. Avoidance of a moving obstacle in Full Mode: the end-effector orientation is not preserved during the evasive motion

regions suffice for fixed obstacles [3, 4, 43]. For these tests,
the computation of the maximum allowed distance between
TCP and obstacle, resulted in a value of roughly 16 cm.

4.2.2 Test 2 - Moving Obstacle, Reduced Mode, Gripper

In this example, the robot’s motion is again disturbed with
a moving obstacle. This time, however, the Reduced Mode
is used. With respect to the previous case, it can be seen
that Joint 5 is kept at a constant angle, i.e., the end-effector
does not tilt with respect to the vertical direction, as visible
in Fig. 13. This type of motion keeps the vertical alignment
of the TCP, which could be beneficial for some operations,
but it could require higher joint velocities. This can be seen

in Fig. 14, which shows the corresponding joint rotations
and velocities. Both graph correctly shows that Joint 5 never
moves and has therefore null velocity. The same behavior is
clearly visible in Fig. 15 which reports the cartesian coor-
dinates, the obstacle motion and the distance TCP-Obstacle,
which is again kept above the safety region.

4.2.3 Test 3 - Simple Motion, Reduced Mode

In this test, a simple vertical motion that resembles a pick-
and-place task is programmed on the robot. The aim of this
experiment is to visualize the response to one-directional dis-
turbances, especially from the joint velocity point of view.
The TCP is disturbed with an obstacle moving along the

Fig. 11 Test 1. Joint rotations
(left) and joint velocities (right)
with a moving obstacle in Full
Mode. All joints are triggered in
order to perform the evasive
motion efficiently
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Fig. 12 Test 1. Cartesian
coordinates and distance
obstacle-flange with a moving
obstacle in Full Mode. The
obstacle is moved in such a way
that most evasions happen along
the vertical direction, as clearly
visible from the Z graphs. The
reader should remember that the
proposed avoidance algorithm
considers the closest point of the
kinematic chain to the obstacle’s
position, which means that the
avoidance is not limited to the
end-effector. However, both the
cartesian representation and the
TCP-Obstacle distance
information can help in
visualizing the evasive motion
with respect to the obstacle-free
trajectory, and can be analyzed
in parallel to the joint space
information in Fig. 11.
Furthermore, it is noticeable
how the obstacle never enters the
safety region of the manipulator

Fig. 13 Test 2. Avoidance of a moving obstacle with the tool in Reduced Mode. The end-effector keeps a straight vertical orientation
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Fig. 14 Test 2. Joint rotations
and joint velocities in Reduced
Mode: avoidance of a moving
obstacle. Since the orientation is
constrained, the fifth joint does
not move, as in the obstacle-free
trajectory. As a result, the
vertical angle is maintained, but
the rest of the joints have to
compensate with more motion

vertical direction, from below and above the end-effector. In
Fig. 16, the graph of dq shows periodic accelerations, which
are still low in magnitude, but are clearly differentiable with
respect to previous cases. The evasive motion is more visible
in the cartesian plots of Fig. 17. The X and Y coordinates are
left almost unaltered, as the obstacle mainly moves up and
down, disturbing the TCP. In particular, it can be seen how
the TCP trajectory moves above and below the correspond-
ing obstacle-free trajectory, according to the direction of the
obstacle motion within the Z axis.

4.3 KUKA LBR iiwa 14 Test Cases

Several tests were also conducted for the KUKA LBR iiwa
14.The examples help to understand the behavior of the pre-
viously presented control law under different conditions. A

fixed-obstacle case is also described. Finally, three examples
are discussed to demonstrate the behavior of the algorithm
as the ke parameter, introduced in Eq. 20, change.

The robot is programmed to move linearly in the horizon-
tal plane, with a speed of 0.25 m/s. Figure 18 shows the joint
angles and the joint velocities in the absence of any obstacle.
Note that, for this motion, the joint velocities for Joints 1, 2
and 7 are generally higher than in the UR5 case.

4.3.1 Test 4 - Fixed Obstacle, Full Mode

In this test, there is a fixed obstacle in the middle of the
end-effector’s path. Figure 19 shows six steps of the motion:
when the obstacle reaches the region of influence of the
end-effector of the robot, the control reacts by keeping the
obstacle out of the safety sphere with radius r (compare

Fig. 15 Test 2. Cartesian
coordinates and distance
TCP-obstacle with a moving
obstacle in Reduced Mode. As
expected, the β angle is
constant. The maximum allowed
distance �TCP-Obstacle is
unchanged with respect to the
Full Mode case

123

107   Page 14 of 21 Journal of Intelligent & Robotic Systems (2024) 110:107

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Fig. 16 Test 3. Joint rotations
and joint velocities in Reduced
Mode: avoidance of a moving
obstacle

Fig. 17 Test 3. Cartesian
coordinates and distance
obstacle-flange with a moving
obstacle in Reduced Mode for
the simple motion test. Most of
the change happens along the Z
direction, while the β angle is
again kept constant

Fig. 18 KUKA LBR. Joint
rotations and joint velocities
without obstacle
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Fig. 19 Test 4. Avoidance of a fixed obstacle

Fig. 7). In Fig. 20 the joint rotations and velocities are
reported. It can be noticed that, despite some discontinuities
also due to the sampling rate, the velocity trajectories are
generally smoother than in the experiments with the UR5, as
no spikes are visible. The absolute values of the velocities
are also kept within safe limits (< 50◦/s). As a result, also
thanks to the robot’s redundancy, the joint angles experience
overall small changes.

4.3.2 Test 5 - Moving Obstacle - Full Mode

In this example a moving obstacle interferes with the end-
effector and the internal points of the manipulator. Figure 21
shows six steps of motion. The risk of a collision can occur

when the obstacle interferes with an intermediate point in the
link of the manipulator, or if the manipulator itself obstructs
the vision system. For this reason, the cameras were arranged
in such a way that at least three cameras always track the
obstacle. Thanks to the redundancy of the kinematic chain,
the control can reconfigure themanipulatorwithout changing
too much the end-effector pose, one of the intended goals
explained in Section 3.

4.3.3 Test 6 - Moving Obstacle - Varying ke

The last three examples deal with the variations of the term
ke. It is interesting to note how, even for small variations
of the term with the same conditions, the control algorithm

Fig. 20 Test 4. KUKA Joint
rotations and joint speeds with a
fixed obstacle
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Fig. 21 Test 5. Avoidance of a moving obstacles with the end-effector and the kinematic chain of the manipulator

has different behavior. Clearly, the position and movement
of the obstacle may be slightly different in the three cases.
Howvever, small increases of the ke, result in more jerky
movements of the manipulator. This result is visible from
the graphs in Figs. 23, 24 and 25.

5 Discussion

The experimental tests presented in this paper successfully
demonstrates the correctness of the method and its appli-
cability in a real system. The combination of off-line path
planning and on-line motion control was previously tested
in simulation. With this work, real use cases, including more

realistic and complete obstacle motions have been analyzed.
Similarly, it was possible to assess that the joint velocities
don’t increase close to potentially dangerous values. In par-
ticular, the KUKA LBR iiwa 14 presents a better response in
terms of the smoothness of the joint velocities. Although
both modes used in the UR 5 show similar acceleration
and computational times, there are no significant differences
between them. The peculiarity of the UR5 modalities lies in
the possibility to select the appropriate controlmode based on
the specific application to be executed. If there is a possibil-
ity of a dangerous instrument being moved, it is advisable
to maintain a fixed orientation to avoid collisions or exposure
to the human operator’s face. Conversely, if the orientation
of the end-effector is not crucial, using the Full Mode can

Fig. 22 Test 5. Joint rotations
and joint speeds with a mobile
obstacle
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Fig. 23 Test 6. Joint rotations
and joint speeds with ke = 10

Fig. 24 Test 6. Joint rotations
and joint speeds with ke = 12

Fig. 25 Test 6. Joint rotations
and joint speeds with ke = 15
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enhance collision avoidance. This is because the additional
DOF available for creating repulsive movements help avoid
obstacles in general.

The MoCaP system can accurately acquire the position
of objects or humans in the workspace at a high frame rate.
However, the presented obstacle avoidance strategy canwork
given any tracking estimator, although precisemeasurements
with errors in the order of a few centimeters are preferable.
The robot can be disturbed from any direction, provided that
the position estimation of the obstacle doesn’t fail. The pro-
posed obstacle avoidance strategy is a preferred solution in
HRC for use cases where the standard safetymeasures would
disrupt the robot’s operation. The Reduced Mode can be
exploited for line-following or reduced pick-and-place tasks;
the FullMode can overcome the limitations due to the robot’s
dimension in case of excessive avoidance needed in certain
cases.

6 Conclusions

In this paper, an obstacle avoidance strategy both for UR
manipulators and KUKA LBR iiwa 14 moving in dynami-
cally varying environments is presented and verified through
experimental testing. The experimental tests presented in
thiw work demonstrates the correctness of the method and
its applicability in a real system. In prior work, the inter-
play between offline path planning and onlinemotion control
was examined through a simulation environment. This study
advances the research by delving into practical applications,
which involve more intricate and authentic obstacle dynam-
ics and tracking sensors. Furthermore, it has been confirmed
that joint velocities remain at safe levels, even in the vicin-
ity of potentially perilous obstacles. Two different operating
modes, Full Mode and ReducedMode, are proposed and val-
idated for the UR manipulator. The single mode presented
for the KUKA LBR iiwa gives in general better responses
in terms of the smoothness of the joint velocities. A motion
capture system Optitrack Prime X22 is used for the obsta-
cle detection with extreme accuracy. The adaptive control
approach allows the robot to dynamically adjust control
parameters in response to changes in the environment, e.g.,
the obstacle’s trajectory. This addresses challenges related to
uncertainties in the environment and variations in the robot’s
dynamics.

7 Future work

Analyzing the stability anduncertainty of systems in collision
avoidance applications necessitates a comprehensive strat-
egy. This involves integrating advanced control strategies,

probabilistic reasoning, fault tolerance, and adaptive mech-
anisms. Such an interdisciplinary perspective is vital for the
development of collision avoidance systems proposed in this
work that can operate securely and efficiently within the
inherently uncertain and dynamic environments encountered
by robots. Addressing human-robot interaction is crucial.
Specifically, the goal is to ensure that the strategy is adaptable
to accommodate human behavior in shared spaces, enhanc-
ing the robot’s capacity to engage with humans in a safe
and predictable manner. For this reason, among future devel-
opments, an analysis of the uncertainty and stability of the
system will be considered. Sensor fusion techniques can
improve the accuracy and reliability of the robot’s percep-
tion of its environment. An additional future development
involves implementing the strategy on different manipula-
tors using both motion capture systems and vision systems
to obtain real-time data. Integrating information from mul-
tiple sensors will allow obtaining a higher accuracy of the
surrounding environment.
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