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Abstract.
In the automotive industry, intelligent monitoring systems for advanced human-vehicle interaction aimed at enhancing the

safety of drivers and passengers represent a rapidly growing area of research. Safe driving behavior relies on the driver’s aware-
ness of the road context, enabling them to make appropriate decisions and act consistently in anomalous circumstances. A
potentially dangerous situation can arise when an emergency vehicle rapidly approaches with sirens blaring. In such cases, it
is crucial for the driver to perform the correct maneuvers to prioritize the emergency vehicle. For this purpose, an Advanced
Driver Assistance System (ADAS) can provide timely alerts to the driver about an approaching emergency vehicle. In this work,
we present a driver-assistance prototype that leverages multimodal information from an integrated audio and video monitoring
system. In the initial stage, sound analysis technologies based on computational audio processing are employed to recognize the
proximity of an emergency vehicle based on the sound of its siren. When such an event occurs, an in-vehicle monitoring system
is activated, analyzing the driver’s facial patterns using deep-learning-based algorithms to assess their awareness. This work
illustrates the design of such a prototype, presenting the hardware technologies, the software architecture, and the deep-learning
algorithms for audio and video data analysis that make the driver-assistance prototype operational in a commercial car. At this
initial experimental stage, the algorithms for analyzing the audio and video data have yielded promising results. The area under
the precision-recall curve for siren identification stands at 0.92, while the accuracy in evaluating driver gaze orientation reaches
0.97. In conclusion, engaging in research within this field has the potential to significantly improve road safety by increasing
driver awareness and facilitating timely and well-informed reactions to crucial situations. This could substantially reduce risks
and ultimately protect lives on the road.

Keywords: Advanced driver-assistance system, emergency siren detection, in-vehicle driver monitoring, audio-visual signal
processing, deep learning

1. Introduction

In the past few years, there has been a notable in-
crease in automotive research focusing on technolo-
gies aimed at enhancing the safety of both drivers
and passengers. This includes the development of in-
telligent vehicles that are equipped with advanced
driver-assistance systems. There has been a notable in-
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crease in automotive research focusing on technolo-
gies aimed at enhancing the safety of both drivers
and passengers [1]. This includes the development
of vehicles equipped with advanced driver-assistance
systems. (ADASs) [2, 3]. ADASs consist of sensor-
equipped electronic devices intended to streamline op-
erations and aid the driver during potentially hazardous
situations [4, 5]. These systems are classified into six
levels of automation according to the Society of Au-
tomotive Engineers (SAE) standard J3016 [6, 7]. In
the lowest levels (0 to 2), the environment inside and
surrounding the vehicle is controlled by the drivers,
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and the device merely supports them without acting di-
rectly. On the other hand, the system partially or fully
replaces human intervention in the higher levels (3 to
5), where ADASs monitor the environment and handle
multiple safety devices up to the ultimate goal of au-
tonomous driving [8]. Almost all current vehicles are
equipped with ADASs with automation levels between
0 and 2, relying primarily on vision [9] and other sens-
ing technologies such as laser imaging detection and
ranging (LiDAR) [10, 11], RADAR [12, 13], and ul-
trasonic [14, 15]. The most common camera-based so-
lutions include automatic lighting in tunnels or at dusk,
adjustment of windshield wipers depending on rain
intensity, traffic-sign recognition, lane-change warn-
ing, and surround view. Additionally, obstacle detec-
tion and distance estimation are facilitated through Li-
DAR, RADAR, and ultrasonic technologies, enabling
functionalities such as adaptive cruise control, emer-
gency braking, parking sensors, and enhancing street
navigation accessibility for individuals with impair-
ments [16].

Recent technological advances leverage information
from multimodal data to detect and identify events and
scenarios [17], alert drivers to distractions and sup-
port them to make well-considered decisions on the
road, preventing traffic accidents. Hearing and vision
are primary factors in human driving, and deep learn-
ing applied to audio-video streams has enabled tech-
nologies to “listen” and “see” via sensors, understand
the cues and respond accordingly [18]. In some driving
scenarios, audio and video data assume a complemen-
tary role and mutually exhibit a more effective context
representation capability, as illustrated in several case
studies. In narrow spaces, confined layouts, or dense
obstacles (like alleys in historic villages) or densely
built-up areas with abundant vegetation, audio data can
often provide more insightful information than video
one. This is particularly true for identifying and lo-
calizing both static and moving sound sources such as
cars, bicyclists, or pedestrians [19]. Audio-based sys-
tems also detect road moisture and contribute to road
safety by assessing pavement roughness, deterioration,
speed, and traffic density [20–24]. In addition, audio
is particularly effective in identifying weather condi-
tions, such as varying precipitation intensities and low
daylighting. This is essential for functions such as au-
tomatic activation of windshield wipers and speed con-
trol for which rain sounds on different surfaces are au-
tomatically analyzed [25, 26].

On the other hand, vision sensors, being non-
invasive, are ideal for in-vehicle monitoring [27]. In-

deed, video data, analyzed via computer vision or
deep-learning algorithms, successfully address various
driver’s behaviour such as: fatigue, distraction and at-
tention level [28]. Particularly the latter, can be as-
sessed by analysing facial expressions or head/eye
movements [29]. This information assumes consider-
able importance in enhancing road safety, as it enables
the development of ADASs capable of alerting in real
time or automatically activating safety devices with
inattentive drivers [30].

1.1. Motivation and scope of the work

Currently, ADASs that do not rely on measuring a
physical quantity but rather on understanding the sur-
rounding environment are not off-the-shelf equipment
in commercially available cars. This scenario includes
emergency-vehicle detection systems, thus devices de-
signed to detect vehicles in an emergency state such
as ambulances, police cars or fire trucks. Recognizing
these vehicles is critical when they approach at high
speed. In these situations, drivers must be aware of the
approaching emergency vehicle, understand what ac-
tions might be appropriate based on traffic conditions.

Vehicular ad hoc networks (VANETs) [31] have
been proposed as a step forward for accident preven-
tion, but they are not currently employed in commer-
cial vehicles. To the best of our knowledge, the first
proposed implementation of a VANET for emergency
vehicles dates back to 2009 [32]. To the same extent,
a system employing the Radio Data System protocol
(RDS) to broadcast the presence of an emergency vehi-
cle to other vehicles has been proposed in [33]. Unfor-
tunately, to the best of our knowledge, radio communi-
cation technologies for accident prevention are not yet
found in vehicles, therefore the only standardized sys-
tem to alert drivers and pedestrians of the presence of
emergency vehicles is the use of lights and sirens.

Unfortunately, high quality soundproofing in vehi-
cles and drivers’ hearing impairments can reduce the
ability of the driver to detect incoming emergency ve-
hicles [34, 35]. To provide an example, the vehicle
used in [36], attenuates external sounds by 45 dBA and
was shown to delay the hearing of a siren by more
than 5 s. Other factors such as driver response and
environmental conditions, can contribute to potential
collisions or accidents involving emergency vehicles,
emphasizing the need for comprehensive research and
technological advancements in this domain [33]. Al-
though, to the best of our knowledge, no statistical
study showed how misheard sirens can lead to crashes
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with emergency vehicles, some evidence arises from
the literature. Studies have been previously conducted
for siren detection using a smartphone in [37], while
[38] proposed ways to improve siren sound and horn
positioning to make it easier to spot. Several patents
have been filed for emergency vehicle avoidance us-
ing acoustic sensors (see, e.g., US patents [39] and
[40]) and a study has been commissioned in 2017
by the U.S. Department of Transportation Office of
Emergency Medical Services (EMS) [41] showing that
lights and sirens are not always perceived by drivers of
other vehicles.

This article, which extends previous work described
in [42], presents a driver-assistance prototype for
emergency-vehicles detection that combines audio and
video data to detect the presence of a rescue vehicle
nearby and monitor the driver’s awareness. With re-
spect to our previous work, which introduced the ar-
chitecture of the prototype, here we provide an in-
depth overview of it and we describe computational
algorithms as well as datasets, providing experimen-
tal details and results. The core of the prototype lies
in recognizing the siren sounds emitted by electronic
devices in emergency vehicles. Although there may
be minor discrepancies in sound emission parameters
across different countries, the high-intensity acoustic
alarm proves to be pivotal in notifying citizens and
drivers. This sound has the ability to effectively reach
intended receivers, grabbing their attention even when
they are at significant distances or there are intervening
obstacles. Following siren recognition, the system as-
sesses whether to alert the driver based on behavioral
analysis, particularly monitoring eye status and gaze
orientation, providing crucial cues about their level of
alertness.

In comparison to existing literature contributions
such as [43–45], which were predominantly focused
on emergency-vehicle detection, our work adopts a
comprehensive approach by engineering a prototype
to seamlessly integrate it into cars. This involved the
selection of hardware components readily available in
the market, tailored for in-vehicle installation. Addi-
tionally, software logic based on deep-learning algo-
rithms was developed for both siren-sound detection
and driver-attention monitoring.

The rest of the paper is organized as follows. Sec-
tion 2 presents the state of the art of emergency siren
detection and driver’s attention monitoring systems.
The hardware and software architectures of the driver-
assistance prototype are described in Section 3, and
Section 4 explains the deep-learning methodologies

employed in this work by analyzing the workflows of
audio and video systems. The experimental protocol
is detailed in Section 5, and the results of the experi-
ments are summarized and discussed in Section 6. Fi-
nally, Section 7 concludes the article and outlines our
study limitations, future challenges and perspectives.

2. Related work: emergency-vehicles detection
and driver-attention monitoring systems

The ADA prototype combines emergency-siren de-
tection and drivers’ monitoring into a unique solution,
creating an in-vehicle device designed to heighten the
driver’s awareness in situations where they might be
inattentive to an approaching emergency vehicle.

This section discusses the state-of-the-art technolo-
gies behind emergency-vehicle detection and driver
attention monitoring systems focusing on solutions
based on audio and video data, respectively.

2.1. Emergency-vehicles detection systems

Emergency-vehicles detection has been an ongo-
ing research topic, resulting in the development of
several models of emergency-vehicle detection sys-
tems that have evolved along with sensing technolo-
gies. Emergency-vehicle detection systems have up-
graded from basic electronic devices to advanced digi-
tal systems, with the main goal of helping rescue vehi-
cles reach their destination more quickly and safely.
The literature reports a wide range of patents of
emergency-vehicle detection systems that base emer-
gency vehicle identification on different approaches,
such as radio frequency and electromagnetic data de-
tection, image recognition, and GPS tracking [46–49].

Audio data processing and analysis have always
played an important role in the emergency-vehicle de-
tection field due to characteristic alarms emitted by
embedded electronic devices. In the 1960s and 1970s,
early audio-based emergency-vehicle detection sys-
tems used electrical circuits equipped with analog fil-
ters to select and amplify sounds recorded with ex-
ternal microphones in the range of siren frequencies,
also combined with frequency-voltage converters to
detect the slow and continuous variations of the siren
signal [50, 51]. Since the 1980s and 1990s, more ad-
vanced emergency-vehicle detection systems based on
digital signal processing applications have been de-
veloped. In several patents, emergency siren detection
is performed with digital devices that convert audio
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signals into discrete time-frequency representations.
After spectrogram computation, the system finds the
match with the siren frequencies or analyzes the peaks
of the signal, also applying a band-pass filter to select
the siren tone frequency range [52, 53]. Similar tech-
nologies are described in [54], in which a pitch detec-
tion algorithm based on the module difference function
and peak searching has been implemented on a low-
power microprocessor, and [55], in which a two-times
Fast Fourier Transform algorithm for siren detection
has been programmed on a microcontroller. The limi-
tations of these approaches lie in the performance de-
cay at low signal-to-noise ratios and in the presence
of the Doppler shift, as they prevent the recognition of
the match between the acquired signal and the refer-
ence signal [56]. In addition, some of these algorithms
require the completion of the entire siren sound pattern
to provide a classification result, with consequent slow
detection response [57, 58].

Emergency-vehicles detectors are becoming increas-
ingly sophisticated today, employing deep learning
to detect and classify sirens. In particular, the ca-
pability of convolutional neural networks to identify
the features of the emergency siren at low signal-
to-noise ratios, in the presence of the Doppler ef-
fect, and on short audio frames (e.g., between 0.5 and
1.5 seconds) has been thoroughly investigated in sev-
eral contributions [43, 59, 60]. Recent fully audio-
based emergency-vehicle detection systems deploy
deep learning techniques to detect the emergency siren
sound. In [61], the equipment comprises microphones
to acquire external sounds in real time and a comput-
ing device to perform audio signal segmentation, spec-
trograms computation and analysis using a convolu-
tional neural network pre-trained for emergency siren
recognition. More complex studies integrate compu-
tational audio processing and computer vision tech-
niques to generate an audio-visual emergency-vehicle
detection system. In [44], multimodal data consisting
of siren sounds and ambulance images are analyzed
on two separate branches, an audio-based stream and a
vision-based stream, which produce independent pre-
dictions and merge the results to output a single de-
cision at the final stage. This strategy is employed in
patents [62, 63], in which a vehicle-mounted system
consisting of audio and video sensors and a compu-
tational unit designed to process, concatenate audio-
visual feature vectors and generate a response on the
presence of an emergency vehicle in the surrounding
environment is presented.

2.2. Driver-attention monitoring systems

Modern ADASs, developed to actively or passively
support the driver, include in-vehicle devices designed
to monitor their level of attention or, in general, situa-
tion awareness. This status, defined as “the perception
of the elements in the environment within a volume
of time and space, the comprehension of their mean-
ing, and the projection of their status in the near fu-
ture” [64], enables the driver to make appropriate de-
cisions on the road avoiding hazardous situations both
in the context of non-automated driving and in the tran-
sition phases of conditionally automated vehicles [65].

Research on driver-attention monitoring systems
has developed solutions relying on biological and
physiological parameters, vehicle parameters, and vi-
sual features of the driver’s facial expressions and
movements [66]. Systems that employ sensors to
monitor biological and physiological parameters (e.g.,
electroencephalogram, electrocardiogram, skin tem-
perature, electro-dermal activity, electromyography,
and electrooculography) have the advantage of being
accurately informative about the driver’s psychophysi-
cal state [67]. However, physiological sensors involve
skin-contact electrodes that can be perceived as inva-
sive and annoying during driving operations. For this
reason, most of the solutions found in commercial cars
operate on parameters linked with the vehicle or visual
patterns of the driver [68]. Vehicle-oriented technolo-
gies can model and recognize the driving style behav-
ior to create a personalized profile [69, 70]. The vehi-
cle speed, longitudinal and lateral acceleration, steer-
ing wheel angle, indicator and pedal usage, and some
driver control actions in situations of crosswind or un-
even road surfaces provide information on anomalous
behaviors. However, the complexity of the variables
involved in the driving style recognition task and the
need to create customized profiles for each driver rep-
resent the disadvantages of these systems [71].

The non-intrusiveness in data acquisition, high res-
olution, low cost, and ease of installation and mainte-
nance have favored the development of camera-based
driver-monitoring systems to assess the vigilance state
of the driver. Current setups employ one or more RGB
or RGB-depth (D) cameras focused on the driver’s face
and eyes to acquire eyelid, gaze, and head information,
then elaborated by a processing device with computer
vision techniques [72]. The eyelids provide feedback
on the driver’s drowsiness by detecting a slowdown in
blink frequency or eye closure for an excessive dura-
tion, assessed through indicators such as PERCLOS
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and AVECLOS [73]. In addition, eye movements, gaze
direction, and head orientation are indicative of per-
ception and awareness of signals outside and inside
the vehicle. Systems developed by car manufacturers
combine driver attention monitoring and ADASs in re-
sponse to an inattentive state of the driver. Commer-
cially available solutions employ warning tones or seat
vibration signals if the blinking frequency is below the
danger threshold [74, 75]. Other technologies enable
gaze and face tracking whenever an obstacle is de-
tected on the road, activating pre-crash warnings or,
if necessary, automatic braking when the gaze trajec-
tory and head orientation are not directed toward the
road [76]. Several challenges involve artificial vision
in automotive applications, such as real-time process-
ing, robustness to light changes, and privacy. The use
of edge processors as edge Tensor Processing Units
(eTPU) [77] supports the deployment of neural net-
works on embedded devices. Modern approaches to
the above-mentioned tasks rely on deep learning that
sets complex computing requirements [78–80].

While the state-of-the-art contributions are predom-
inantly centered on algorithms pertaining to emergency-
vehicle detection or support systems for driversâĂŹ
monitoring, this study takes a different approach. It
comprehensively delineates the entire architecture of
the assistive prototype which includes both siren iden-
tification and driver assessment while posing empha-
sis on the explanation of the seminal multimedia-data
analysis algorithms and datasets used. Full details and
experimental results are provided, shedding light on
critical contributions that significantly increase our un-
derstanding of the subject. In particular, we conduct an
in-depth exploration of the challenges related to multi-
modal driver-assistance systems and their potential im-
pact on real-world scenarios. To the best of our knowl-
edge, this work represents one of the first attempts in
literature to propose such a comprehensive integration,
marking a substantial step toward the advancement of
this technology. We acknowledge, however, that fur-
ther research is essential for the development of a fully
engineered prototype.

3. Proposed prototype

Our driver-assistance prototype is intended to both
detect a wailing siren from an emergency vehicle and
alert the driver if they are not watchful of the approach-
ing emergency vehicle. The prototype was installed in

a Mercedes A-Class car that served in both the de-
sign and testing phases. In particular, during the de-
sign phase, part of the data relevant to the training,
validation and testing of the deep-learning algorithms
for multimedia-data analysis were acquired by travel-
ing on the roads of our region (Marche, Italy) with
the car equipped with the prototype for data collec-
tion [36, 81].

In the following, we outline the prototype algorith-
mic flow, which is further graphically rendered in Fig-
ure 1:

1. The prototype needs to monitor the presence of
emergency vehicles constantly. This is done by
automatically detecting sirens via microphones;

2. The detection of a siren triggers the driver’s
awareness-monitoring phase, which relies upon
the RGB camera. This latter deals with gaze-
fixation estimation and eye-status monitoring;

3. Warning signs – in the form of visual and aural
cues – need to be sent to the driver when they are
found not being watchful.

It is worth mentioning that both eye and gaze de-
tection are meant to avoid alarming the driver if they
are aware of the incoming emergency vehicle, there-
fore they are a means to improve the user experience.

Timing constraints must be carefully considered,
given the application at hand. Consider a regular vehi-
cle and an emergency vehicle, both running in the same
direction at different speeds. If the regular vehicle must
give way, it needs several seconds to take action. Let,
e.g., the difference in speeds be 20 km/h and the dis-
tance to notice the siren be 50 m. It takes 8.9 s for the
emergency vehicle to overtake the regular vehicle. In
this time span, the following actions should take place:
(a) the system completes the audio-data analysis and
the video-data analysis; (b) the driver becomes aware
of the situation; (c) due action is taken to let the emer-
gency vehicle pass. Since giving way requires a few
seconds, we constraint our application to take an order
of magnitude less than 8.9 s to operate, i.e., less than
a second. This time must include the latencies of the
audio and video systems, and a period of time to wait
for the user to show signs of awareness (corresponding
to the last phase in Figure 1, i.e., "Is the driver aware?"
box).

Given the objectives, the following sections high-
light the hardware and software components of our
driver-assistance prototype.
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Fig. 1. Flow diagram of the driver-assistance prototype. Firstly the audio-acquisition system automatically detects the presence of a siren, which
activates the camera to evaluate the driver’s awareness.

Fig. 2. Details of the audio setup: a) sound card inside the trunk, b)
rear internal microphone, c) front internal microphone, d) external
microphone behind the license plate.

3.1. Hardware

Omnidirectional Behringer ECM8000 condenser mi-
crophones, which can detect sounds in all directions,
were chosen for acoustic scene analysis. The place-
ment and number of microphones follow our previous
studies that provided the advantages and disadvantages
of each installation inside and outside the car [36]. The
general audio configuration included a total of eight
microphones, four inside the passenger compartment,
two in the trunk, and two behind the license plate. Mi-
crophones inside the passenger compartment and trunk
are not the optimal solution for recording sounds from
outside. In-cabin sensors can pick up interference from
conversations or radios, while those in the trunk are
affected by mechanical noise. In both internal instal-
lations, the soundproofing power of the cabin atten-

Fig. 3. Detail of the dashboard of the car equipped with the camera
and the global navigation satellite system (GNSS) receiver.
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uates some frequency components of the signal. The
external placement of the sensors, such as behind the
license plate, is suitable for detecting sounds from out-
side, particularly from the rear, where the driver may
have difficulty sensing an oncoming emergency vehi-
cle. An eight-channel Roland Octa-Capture sound card
was used to capture sounds, as a maximum of eight
microphones is adequate to acquire audio signals func-
tional for multiple tasks [26, 82]. Figure 2 shows some
details of the audio setup of the research car.

Concerning the camera, we used the IDS UI-3160CP-
C-HQ RGB camera. This USB 3.0 camera is equipped
with a 2/3âĂİ global shutter CMOS sensor PYTHON2000
from Onsemi, providing a full resolution of 2.3 MP
(1920×1200 pixels) with up to 165 FPS. This has been
synchronized with the Pulse per second signal gener-
ated from an external GPS receiver based on a u-blox
NEO-M8 GNSS device with an external antenna. Fig-
ure 3 shows the position of the camera and GNSS in-
side the car.

A glue-logic software has been included in the loop
for handling processes outlined in Figure 1. Consider-
ing the need to visually alert the driver unaware of the
arrival of an emergency vehicle, the hardware architec-
ture also integrates a heads-up display (HUD) to send
warning signs. Given the application scenario, the de-
vice to manage data streams and run the deep-learning
algorithms for multimedia-data analysis in real time
must have sufficient computing power while both fit-
ting into the small space of the car and having limited
power availability.

All the requirements guided us in opting for off-the-
shelf components and, specifically, for an x86 com-
puter with the ability to host a graphics processing unit
(GPU) to obtain a power-efficient execution of deep-
learning algorithms. Among the x86 suites, the one
with the smallest footprint is the Intel NUC. This pro-
cessing unit has reduced size and power requirements
and, in our elected version, can host an external GTX
1650 GPU.

The maximum power of the system is 60 W (as
its worst case), which, considering the prototyping
stage, is provided by a power inverter that converts the
12 V DC of the car to a 230 V AC source for supply-
ing the equipment. The NUC also has USB and HDMI
connectors for the sensors and drivers to connect the
HUD and can run any GNU/Linux distribution, en-
abling effortless software development.

Figure 4 schematizes the audio-video setup of the
ADA prototype.

3.2. Software

The software architecture of the prototype requires
several tasks to be executed in parallel. Therefore, a
system based on parallel threads distinct in their func-
tionality has been designed. We decided to use Python
– apart from the ability to program a multi-threaded
architecture – because (i) it allows us to implement
flexible graphical user interfaces (GUIs), (ii) it can be
ported to all common operating systems, and (iii) it has
bindings for the most common libraries for deep learn-
ing, audio processing, and image processing.

As visible in Figure 5, the main process gener-
ates the GUI, the audio processing task (which soon
involves the deep-learning-based analysis), and the
video task. The main application is built with the
Kivy library, an open-source application-development
framework for Python. The GUI simulates a car dash-
board, and besides some service buttons, it shows the
emergency-vehicles detection status (Figure 6). When
the automatic detection assistive system intercepts a
siren, a warning message is displayed on the GUI to
provide a visual cue to the driver. The sound thread
uses the Python sounddevice library, based on the
widely adopted PortAudio C cross-platform library.
Sounddevice enables registering a callback function
to process an audio frame by frame. The callback,
in turn, invokes the forward method of a Tensorflow-
based deep-learning model trained to detect sirens in
traffic and noisy conditions. Following the siren de-
tection, a signal is passed to the video thread via the
business-logic thread that handles the entire system.
The video-data analysis pipeline evaluates whether the
driver’s gaze is directed toward a mirror when the siren
is active and, thus, if the driver is watchful.

4. Deep-learning methodologies

4.1. Audio-data analysis

The ADA prototype bases the detection of an in-
coming emergency vehicle on the sound recognition
of its active siren. For this purpose, the audio acquisi-
tion system captures audio signals through one or more
microphones mounted on the car. Pre-processing oper-
ations are applied to the audio data stream before being
analyzed by the deep learning algorithm to match the
requirements of the pre-computed neural model. Thus,
the complete workflow of the audio data analysis sys-
tem includes a standardization phase, an acoustic fea-
ture calculation phase, and a classification phase.
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Fig. 4. The hardware setup of the ADA prototype: Behringer ECM8000 condenser microphones (M1–M8), Roland Octa-Capture sound card
(SC), IDS UI-3160CP-C-HQ RGB camera (C), Intel NUC (CPU), and heads-up display (HUD). The components in red represent the basic
equipment of the prototype.
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Fig. 5. Overview of the software nodes of the prototype system.

Fig. 6. GUI of the ADA prototype: warning state (on the left) and
ordinary traffic state (on the right).

Previous studies concerning emergency siren detec-
tion have revealed the issues and challenges related

to the task. The most significant are retrieving real-
world siren audio data, implementing neural architec-
tures with low computational cost, exploring strategies
for reducing background noise and developing cross-
domain adaptation techniques. In this study, we com-
bine transfer learning and fine-tuning approaches using
YAMNet, a pre-trained neural network that employs
the MobileNetV1 [83] architecture to predict 521 au-
dio event classes according to the definition of the Au-
dioSet corpus [84]. Although this large-scale dataset
includes several typologies of sirens, such as civil de-
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Fig. 7. The algorithmic flow involves processing audio signals captured by onboard microphones for emergency siren detection. The audio data is
pre-processed and transformed into a Mel spectrogram. A pre-trained YAMNet model is used to extract embeddings, creating a 1024-dimensional
feature vector. This was the input for a shallow neural network designed for noise/siren classification.

fense, police car, fire engine, ambulance, and generic,
our study focuses on ambulance sirens according to
Italian law [85], which are not covered in AudioSet.
For this reason, the pattern recognition of an Italian
ambulance siren, consisting of two alternating tones at
392 Hz and 660 Hz, required the development of trans-
fer learning strategies rather than the application of the
YAMNet model directly at inference time.

To implement transfer learning, data from the source
and target domains should have the same format. The
input accepted by the pre-trained model is a 1D-tensor
containing a waveform of arbitrary length, represented
as a mono audio file with a sampling rate of 16 kHz
and normalized in the range [-1.0, +1.0]. The model
extracts frames from the audio signal of 0.96-second
duration with a 50% overlap for the sliding frame and
computes Mel spectrograms as acoustic features. The
Roland Octa-Capture soundcard part of the prototype
acquires audio signals with a sampling rate of 44.1 kHz
and a maximum of eight channels. Therefore, to meet
the source format, the audio data are resampled to
16 kHz, made monophonic by averaging the amplitude
of each audio channel (if more than one recording sen-
sor is employed), and normalized in amplitude. From
pre-processed audio data, Mel-scale spectrograms are
extracted on the basis of a triangular filter bank con-
sisting of 64 Mel bins. The Mel spectrogram calcula-
tion begins with applying the short-time Fourier trans-
form to the signal divided into frames of 0.025 seconds
with a hop of 0.01 seconds. The triangular filter bank
is then applied to the power spectra to generate a Mel

spectrogram (or log-Mel spectrogram in the logarith-
mic scale). These acoustic features are widely used for
detecting and classifying sound events, as the Mel fil-
ter bank simulates the selectivity of the human audi-
tory system using frequency warping.

Once Mel spectrograms are computed, they are
transformed into 1024-dimensional feature vectors by
the YAMNet model. The advantage of a model pre-
trained on a multi-class dataset that includes 2 million
clips lies in its use as embedding extractor. By initial-
izing the pre-calculated weights of the 1024-unit dense
layer of the MobileNetV1, high-level features are com-
puted and fed into a fully-connected neural network
customized to the task. We structured the feed-forward
model for emergency siren detection with two hid-
den layers and one output unit indicating the probabil-
ity that the frame includes an ambulance siren sound.
Specifically, the new model consists of a 16-unit hid-
den layer, a dropout layer with a drop rate of 0.5, an
8-unit hidden layer, and a single-unit output layer. The
exponential linear unit activation function was set in
each hidden layer, and in the output layer, the sigmoid
function returns values in the range [0,1] since the task
is a binary noise/siren classification. Table 1 shows the
configuration of the neural architecture for emergency
siren detection.

The training strategy was implemented in two dis-
tinct phases. A first model (Siren-TL model) exploiting
transfer learning from YAMNet was computed with
partially synthetic data consisting of vehicular traffic
noise recorded with the sensor-equipped vehicle and
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Table 1
Configuration of the model for emergency siren detection.

Layer Units Activation Output shape # Params

Input – – (N, 1024) 0
Dense 16 elu (N, 16) 16 400
Dropout – – (N, 16) 0
Dense 8 elu (N, 8) 139
Output 1 sigmoid (N, 1) 9

Total params 16 545

audio files of simulated ambulance sirens added to the
real noise. Then, the weights of the last hidden layer
were fine-tuned with samples of real siren recordings
to bridge the mismatch between the source and target
domains. The final fine-tuned model (Siren-FT model)
was then employed for the inference on real audio data.
The overview of the algorithmic workflow for emer-
gency siren detection is illustrated in Figure 7.

4.2. Video-data analysis

The video data acquired with the RGB camera are
relevant to monitoring the driver’s alertness level when
an emergency vehicle with an active siren is approach-
ing. To define which actions should be monitored by
deep-learning algorithms, we first conducted an exper-
iment under static conditions with the car parked in-
side a semi-anechoic chamber (Figure 3). The trial in-
volved 14 volunteers between the ages of 25 and 39,
and the objective was to qualitatively assess the reac-
tion of drivers sitting in the parked car when hearing
a siren simulating the arrival of an emergency vehicle.
The siren stimuli – synthetically produced – occurred
randomly and simulated the arrival of a siren (with fad-
ing amplitude due to distance and Doppler effect). The
signal amplitude, at its peak, was strong enough to be
clearly heard inside the car cabin. This was necessary
to make sure that the subject’s response was clearly
correlated to the stimuli. The subjects were introduced
in the laboratory without knowledge of the experiment
objectives, to make their response as spontaneous as
possible. They were only instructed to sit in the car
and put their hands on the driving wheel as if they were
driving. The rationale behind the test was explained to
them afterward. The goal of this preliminary trial is to
gather some basic understanding of possible cues of
drivers being aware of the emergency vehicle presence
from its siren. These may be useful for the purpose of
avoiding unnecessary alerts, thus improving the user
experience. In the future more extensive trials should

be conducted to further verify our findings on a larger
subjects base and, possibly, in real environments.

From the analysis, we understood that more than
half of the subjects (11 out of 14 volunteers involved)
do not move their heads but rotate their gaze by point-
ing their attention to the left rear-view mirror; only a
minority sample also rotates the head (3 out of 14 vol-
unteers involved). Therefore, the automatic pipeline
for monitoring drivers’ behavior at the approach of
an emergency vehicle, to be integrated into the pro-
totype, dealt with eye status estimation (i.e., open or
closed) and gaze orientation assessment when the eyes
were open. An overview of the algorithmic pipeline
for driver monitoring using video data is shown in Fig-
ure 8.

As shown in Figure 8, our pipeline first involves
the identification of the driver’s face and then auto-
matically implements a crop in the area around the
eyes. This was performed with the MediaPipe face
mesh [86], which is aimed at estimating the 3D posi-
tion of 468 facial landmarks from monocular images.
We chose MediaPipe for its ability to work in real time,
even on mobile devices. It employs two deep-learning
architectures to infer the geometry of the face surface
without the need for a dedicated depth sensor. The first
architecture acts as a detector and operates on the en-
tire image to compute face location (this, specifically,
allowed us to exclude faces other than the driver).
Then, a 3D face reference model operates on the pre-
viously identified 2D-landmarks locations to regress
the 3D surface geometry. Landmarks related to eyes
are then used to generate the corresponding bounding
boxes (this is visible in Figure 8, too).

From the RGB images of the cropped eyes, we im-
plemented a first pre-trained MobileNetV2 [87], which
classifies if the driver’s eyes are open or closed. We ini-
tialized MobileNetV2 convolutional kernels’ weights
with those of the pre-training on the Imagenet dataset.
We defined three dense layers with 1024, 512 and
2 neurons, respectively, and we initialized them with
Glorot weights initialization [88]. The dense layers
were activated via the ReLU (in the first two layers)
and the softmax (in the last layer) activation func-
tions. We chose MobileNetV2 as it seeks to achieve
good performance on mobile devices. The network re-
lies upon an inverted residual structure, in which resid-
ual connections lie between bottleneck layers to allow
gradients to flow through the network without passing
through non-linear activation functions. The interme-
diate layers implement depth-wise separable convolu-
tions with stride 2 to lower the computational burden
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Fig. 8. Algorithmic flow to assess driver’s attention level. In black, we reported the main flowchart following Figure 1. Two streams are also
shown to distinguish experiments conducted with a simulated (bottom) and a real dataset (top) that share the same two main steps (dotted box).

Fig. 9. Samples of classes for assessing the gaze-fixation areas.

(with respect to standard convolutions) and the feature
map sizes. The last layer of the network has two neu-
rons to classify whether the eye in the image is open or
closed.

The open-eye classification was used to conduct
the assessment of the driver’s gaze and, specifically,
whether or not the driver was looking at the left rear-
view mirror. To this goal, we implemented a Mo-
bileNetV2 to classify the area in which the driver’s
gaze fell among nine possible: high center, high left,
high right, low center, low left, low right, middle cen-
ter, middle left, and middle right. A sample of the
classes is shown in Figure 9. For our purposes, we fol-
low the same training paradigm, except that the last
dense layer has nine neurons as the classes of interest.

5. Experimental protocol

5.1. Audio-data analysis

5.1.1. Dataset
In the experiments, we used three datasets, the first

to train the transfer learning model (A3S-Synth-TL),

the second to fine-tune it (A3S-Aug-FT) and the last
to test its performance (A3S-Rec). The audio collec-
tions consist of recordings made during two acquisi-
tion campaigns with the research vehicle in May 2021
and October–November 2022 [36, 81]. Also, synthetic
data were created to address the amount of siren audio
files required to train the transfer learning model.

The first dataset (A3S-Synth-TL) is partially syn-
thetic and includes 200 audio files equally balanced
between traffic noises and ambulance sirens of 60 sec-
onds duration each. The noise audio files were ran-
domly selected from diverse acquisition contexts (e.g.,
urban, suburban, rural, highways) and weather con-
ditions (dry or wet), carefully checking that they did
not contain ambulance sirens. To obtain a collection of
siren audio files of adequate size and controlled qual-
ity, siren events that include the phases of an ambu-
lance approaching, overtaking, and departure from the
reference vehicle were generated via algorithm. The
Doppler effect was simulated over a 60-second du-
ration with the procedure described in [89]. Several
source speeds and coordinates of the starting point rel-
ative to the observer were set, also considering attenu-
ation by distance. The sirens thus generated were com-
bined with real noise recordings at signal-to-noise ra-
tios (SNRs) between [0,-30] dB. The A3S-Synth-TL
dataset was split into training, validation and test sets
with a 70:15:15 ratio and used for transfer learning
from the pre-trained YAMNet model to the shallow
model for Italian ambulance siren recognition.

Real-world data were deployed to fine-tune the
model and test its performance. At the inference stage,
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(a)

(b)

Fig. 10. Samples of a) synthetic and b) real siren spectrograms.

we employed the A3S-Rec dataset, a small collection
of audio files recorded in several environmental con-
texts, comprising six siren events of variable duration
and six noise audio files of 60 seconds each imme-
diately preceding the siren occurrences. This dataset
was chosen to compare the performance of transfer
learning with YAMNet with techniques investigated in
previous studies [36]. To fine-tune the neural model
trained with synthetic siren data, we used a single 20-
second additional siren event not present in the A3S-
Rec dataset, increased to 5 minutes using data aug-
mentation techniques (amplification, inversion, noise
reduction, and noise addition). We randomly selected
5 noise recordings, each lasting 60 seconds, to create
a 10-minute balanced dataset (A3S-Aug-FT). All the
audio files of real-world sirens and noises belong to
the recordings of the left external sensor behind the li-
cense plate (microphone M7). Audio datasets can be
available upon request. Figure 10 shows examples of
simulated and real siren spectrograms.

5.1.2. Training settings and evaluations metrics
To compute a model with high generalization ca-

pability during the testing phase, we investigated the
performance of different architectures through a grid
search approach [90]. We varied the number of hid-
den layers and neurons in each of them, evaluating
several activation functions and the effect of dropout
to reduce the overfitting on training data. The exper-
iments for defining the transfer learning architecture
were performed with a learning rate equal to 0.001
and Adam [91] optimizer for 500 epochs with early-
stopping regulated by the validation accuracy.

The model that provided the best results in testing
both with the A3S-Synth-TL and A3S-Rec datasets

Fig. 11. Identification of the nine classes of gaze orientation.

was fine-tuned with the real – plus augmented – in-
stances of siren sounds and traffic noises of the A3S-
Aug-FT dataset. This model is composed of two hid-
den layers, so we froze the first dense layer and re-
trained only the last linear layer with a low learning
rate and few epochs to avoid rapid overfitting. The fine-
tuning process was carried out with a learning rate of
0.0001, Adam optimizer, and 100 epochs with early
stopping controlled by the training loss. In all experi-
ments, the batch size was set equal to 4, and the binary
cross-entropy loss was defined as the loss function.

Testing performance was evaluated with the area un-
der the precision-recall curve (AUPRC). This metric,
ranging between 0 and 1, is used for binary classifi-
cation with unbalanced data and focuses on positive
examples.

5.2. Video-data analysis

5.2.1. Dataset
The first dataset was a collection of real RGB im-

ages automatically acquired online via the Google
search API SerpApi. Specifically, we focused our at-
tention on the faces of people with open or closed
eyes. Indeed these were the two classes of interest for
our purposes which were further the search queries to
download the images from the SerpApi. Before train-
ing our MobileNetV2, we conducted a data-cleaning
step by removing biased samples (e.g., images with-
out people’s faces). Thus we derived a cleaned ver-
sion of the final dataset, and we applied to this the
MediaPipe face mesh to identify the bounding box re-
lated to the eyes of the person. Next, we automatically
cropped the identified bounding-box area and applied
a resize to the image making it 160×160 pixels. We
derived a dataset of 6100 images per class (i.e., open
and closed eyes). Then the totality of images (12200)
was divided into training (70%), validation (20%) and
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testing (10%). Color-space transformations were im-
plemented on-the-fly on the training dataset to simu-
late varying illumination conditions over the course of
a day.

The second dataset we collected was generated
through the simulator proposed by Western Univer-
sity1. At this prototype stage, we decided to take ad-
vantage of the tool as it enables us to decide how
to orient the gaze in a face. This allows us to sim-
ulate how a driver’s gaze moves when they hear the
siren of an emergency vehicle. To automatically col-
lect the images through the simulator, we programmed
a bot in Node.JS. By moving the mouse cursor on
the main window, we had the possibility to vary the
gaze orientation and thus acquire images of subjects
looking in different directions. Given the premises,
we identified nine areas within the window and noted
the gaze direction accordingly. The nine classes were:
high center, high left, high right, low center, low left,
low right, middle center, middle left, and middle right,
as reported in Figure 11. Once the images were ob-
tained, we first implemented transformations in the
color space to increase the variability of the data (e.g.,
changing iris color) while mitigating possible biases
[92]. Then, as for the dataset described above, we ex-
tracted via the MediaPipe face mesh pipeline the RGB
frames of the eyes to collect a balanced dataset of 5376
images, of which 80% was for the training set, 15%
was for the validation set and 5% for the test set. Video
datasets can be available upon request.

Considering the pre-training strategy, each color
channel of the images in both datasets was zero-
centered with respect to the ImageNet dataset and pixel
values were normalized between [-1.0, +1.0].

5.2.2. Training settings and evaluations metrics
For training both the MobileNetV2s, we used square

images of size 160×160. Cross entropy was used as
the loss function, and the optimizer was Adam [91].
The batch size was 64, while the learning rate was
0.001. The network was trained for 100 epochs, and
the best combination of weights was selected among
the 100 epochs with early stopping controlled by the
accuracy on the validation set. All these training set-
tings result from a grid-search analysis which allows
us to find the best combination between loss, optimizer
and learning-rate scheduling in terms of networks’ ef-
ficacy.

1https://edtech.westernu.edu/3D-eye-movement-simulator/

Concerning the evaluations on the test set, we ex-
ploited the confusion matrix and its related metrics
(e.g., accuracy).

6. Results and discussion

The proposed work presents a driver-assistance pro-
totype for emergency-vehicles detection that uses au-
dio data to detect the presence of an emergency vehi-
cle approaching and video data to monitor the driver’s
awareness. Specifically, the prototype picks up, via
an audio acquisition system, and automatically recog-
nizes, through a deep learning algorithm, the sound
emitted by the emergency-vehicle siren. After detect-
ing the siren, the system decides whether or not to
alert the driver through the analysis of behaviors that
provide clues to the driver’s alertness, particularly by
monitoring eye status and gaze orientation.

As for audio analysis algorithms, the aim is the cre-
ation of a model capable of recognizing Italian am-
bulance siren sounds and generalizing them to dif-
ferent environmental contexts. In the first experimen-
tal phase, the Siren-TL model resulting from the con-
figuration that proved to be the best performing of
the several analyzed, described in Table 1, achieved
an accuracy of 0.97 in testing on the A3S-Synth-TL
dataset and an AUPRC of 0.81 on the A3S-Rec dataset
without fine-tuning. In the second experimental phase,
the Siren-FT model was computed by fine-tuning the
weights of the last hidden layer, involving in this pro-
cess only 145 trainable parameters. The test of the final
model on the A3S-Rec dataset produced an AUPRC of
0.92. Table 2 compares the performance in noise/siren
classification of different neural architectures on the
A3S-Rec dataset and the number of parameters in-
volved in the training process.

Analyzing the comparative results in Table 2, the
CNN without fine-tuning entailed training a convo-
lutional model on synthetic data and testing it on
the A3S-Rec dataset without domain adaptation. In
this case, although the convolutional neural network
showed the advantage of a small number of trainable
parameters, the AUPRC of only 0.65 underlined the
discrepancy between synthetic and real data. The ex-
periments using the CNN + fine-tuning of the two last
hidden layers with only 50 siren and 50 noise frames
of 0.5 seconds each, chosen randomly within the A3S-
Rec dataset, confirmed the requirement for domain
adaptation between the synthetic siren data and those
recorded with the equipped vehicle. In fact, fine-tuning

https://edtech.westernu.edu/3D-eye-movement-simulator/
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Table 2
Comparison of the classification performance on the A3S-Rec dataset obtained with other systems.

Model/Method Features # Params AUPRC [0,1]

CNN without fine-tuning [36] Mel spectrograms 128 bands 19 948 0.65
CNN + fine-tuning [36] Mel spectrograms 128 bands 35 340 0.84±0.02
Prototypical Networks [36] Mel spectrograms 128 bands 111 936 0.86±0.02
Siren-TL Mel spectrograms 64 bands 16 545 0.81
Siren-FT Mel spectrograms 64 bands 16 690 0.92

operations with data belonging to the target domain
significantly improved the classification performance
in testing (average AUPRC equal to 0.84±0.02), de-
spite an increased number of trainable network param-
eters. At last, the methodology offered by prototypi-
cal networks [93] had proven to be the most effective
in conditions of limited availability of training data.
Training the algorithm with synthetic data and using
few samples of the real dataset for the embedding com-
putation at the inference stage resulted in an average
AUPRC equal to 0.86±0.02. While the prototypical ar-
chitecture and episodic training strategy ensured excel-
lent similarity learning among examples of the same
class, the complexity of the network implied a larger
number of trainable parameters than in previous stud-
ies.

The better results of transfer learning with YAM-
Net compared to the other techniques highlights the
advantages of this strategy. This pre-trained model on
a large-scale dataset can extract features useful for
classifying a wide range of sound events without any
adaptation. We observed that direct application of the
YAMNet model to our siren data assigned them to the
generic siren class, demonstrating its ability to iden-
tify the event as an alarm sound. For this reason, the
adaptation of the model to a specific task, in our case,
the recognition of the Italian ambulance siren, can
be performed with a shallow neural network trained
on a small-sized dataset. The improved performance
also comes from the window size of the signal. The
YAMNet model analyzes a 0.96-second time window
with a 0.48-second shift, facilitating recognition of the
siren tone sequence with respect to 0.5-second frames
without overlapping employed in the previous studies.
Finally, the reduced number of trainable parameters
makes the model the most suitable for real-time ap-
plications in embedded devices.

Video analysis has two main steps and is triggered
to monitor the driver’s awareness when an emergency
vehicle is recognized via the audio-based pipeline de-
scribed above. The first step implemented an algorith-
mic pipeline relevant to assessing whether the driver’s

eyes are open or closed. The related results are shown
in Figure 12 via the confusion matrix. The experiment
was conducted using the MobileNetV2 trained, vali-
dated and tested on a dataset of real RGB images of
faces from which we cut out the area around the eyes
using the MediaPipe face mesh algorithm. As visible
from the plot of the confusion matrix, the pre-trained
convolutional neural network on Imagenet is able to
generalize over the task of interest by achieving an
accuracy of 0.99. In case the eyes are open, the sec-
ond step of the video analysis involves assessing the
orientation of the driver’s gaze. This serves to assess
whether the driver is paying attention to the mirrors
(with particular attention to the left rear-view one).
With this goal, a pipeline similar to the first step was
implemented to classify the driver’s gaze orientation.
Specifically, the area around the eyes of a simulated
face was derived via the MediaPipe face mesh algo-
rithm then a MobileNetV2 was trained, validated and
tested on RGB images of eyes with nine different ori-
entations. The confusion matrix in Figure 13 shows the
results of this experiment. The accuracy was equal to
0.97, with two samples belonging to the middle cen-
ter class classified as middle right, probably due to the
fact that the two classes are very similar to each other.

7. Conclusion

The presented research illustrates a multimodal
ADAS prototype that aims to detect approaching emer-
gency vehicles and promptly warn the driver if their
attention appears to be lacking. Our prototype was de-
signed and deployed inside a real vehicle located in
a semi-anechoic chamber which, above all, has the
main limitation of hampering the possibility of assess-
ing the driver’s behaviour who hears an emergency
vehicle’s siren. Although the results of our audio and
video-data analysis algorithms are satisfactory, we ac-
knowledge that further extensive research is needed
to rigorously transition and evaluate the proposed sys-
tem from controlled laboratory scenarios to real roads.
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Fig. 12. Confusion matrix for ocular opening/closing classification
task from RGB images.

Fig. 13. Confusion matrix for the classification of gaze orientation
from RGB images.

Specifically, we foresee notable challenges related to
the seamless integration of hardware and software ar-
chitectures, even though the miniaturization of acous-
tic and visual sensorsâĂŤalready standard in the lat-
est car modelsâĂŤdoes not present substantial imped-
iments for future developments. Instead, inspired by
contributions in the closer literature [94], the focus of
our efforts will be devoted to the innovative design and
development of deep learning algorithms that promise
effectiveness and efficiency when applied to real-world
data.

With reference to efficiency, the latencies of all algo-
rithms must be carefully assessed. In this regard, as a
future development, we are working on re-engineering

both the video and audio-analysis pipelines. Concern-
ing audio, we are evaluating smaller overlaps between
analysis windows to obtain a faster response from the
algorithm and the application of filtering techniques to
reduce traffic noise. For the video data, we are devising
a single multi-task and lightweight (i.e., optimized for
real-time computation on single-board computer-type
devices) approach for directly estimating the driver’s
gaze orientation. While for both tasks of our inter-
est, we are keen to explore new machine-learning
paradigms inspired by closer fields of research [95–
99].

To move beyond the prototype phase, we are also
working on consistent data collection to train and val-
idate all the algorithms on real use cases. Such a col-
lection involves both the acquisition of new data on
the road and the use of generated data to increase the
number and variability of the samples. Indeed, regard-
ing the audio, notwithstanding that we worked on real
data collected by driving the car on Italian roads, the
algorithms must recognize any sound produced by a
siren per a specific country regulation, so other tones
must surely be acquired to devise the large-scale dis-
tribution of the system.

On the other hand, for the video, we trained the
deep-learning approach only on fictitious datasets. To
this data we applied color-space transformation tech-
niques to simulate, for example, varying lighting con-
ditions throughout the day. Although pre-training on
Imagenet is relevant for increasing the generalization
power of the network, the dataset, as it stands, does
not take into account any racial and gender bias that
might emerge [100] from such a limited data collec-
tion. Moreover, for the prototype, we do not consider
different head orientations that may affect the perfor-
mance of the network for assessing the driver’s gaze
orientation, nor other elements beyond the driver’s eye
movements were monitored. In addition to the ethical
risk, these aspects can seriously undermine any will-
ingness to scale up the prototype.

A crucial solution to remedy the problems could
be collecting new data and adopting pre-training tech-
niques on a new, more structured pipeline. Ultimately,
a fully approved street-ready prototype should undergo
extensive road testing for hundreds of hours to validate
its effectiveness in detecting emergency vehicles with
diverse scenarios and subjects.
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