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Abstract
A measure for portfolio risk management is proposed by extending the Markowitz
mean-variance approach to include the left-hand tail effects of asset returns. Two risk
dimensions are captured: asset covariance risk along risk in left-hand tail similarity
and volatility. The key ingredient is an informative set on the left-hand tail distributions
of asset returns obtained by an adaptive clustering procedure. This set allows a left tail
similarity and left tail volatility to be defined, thereby providing a definition for the left-
tail-covariance-like matrix. The convex combination of the two covariance matrices
generates a “two-dimensional” risk that, when applied to portfolio selection, provides a
measure of its systemic vulnerability due to the asset centrality. This is done by simply
associating a suitable node-weighted network with the portfolio. Higher values of this
risk indicate an asset allocation suffering from too much exposure to volatile assets
whose return dynamics behave too similarly in left-hand tail distributions and/or co-
movements, as well as being too connected to each other. Minimizing these combined
risks reduces losses and increases profits, with a low variability in the profit and
loss distribution. The portfolio selection compares favorably with some competing
approaches. An empirical analysis is made using exchange traded fund prices over the
period January 2006–February 2018.
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1 Introduction

The mean variance approach proposed by Markowitz (1952) to measure portfolio risk
does not account for asymmetry in the risk. This is due to the fact that covariance is a
measure of portfolio risk based on moments and, as consequence, does not distinguish
downside from upside risk. The quantile-based tail measures—value-at-risk (Var),
expected shortfall (ES), extreme downside correlations (EDC) and p-tail risk (see,
for example (Liu and Wang 2021; Harris et al. 2019))—overcome the limitation of
covariance in that they are able to capture the downside risk. However, their main
drawback is that they are rather insensitive to the shape of the tail distribution since
they strongly depend on the a priori choice of the confidence level and/or quantiles,
thereby accountingmainly for the frequency of the realizations (not their values) (Kuan
et al. 2009).

In contrast to quantile-based approaches, the extreme downside hedge (EDH) (Har-
ris et al. 2019) is estimated by regressing asset returns on some measure of market tail
risk. The latter, however, suffers from the above-mentioned drawback. Nevertheless,
this approach is an attempt to use the values of asset returns to measure the tail risk.

In this paper, we propose a further attempt in this direction. We introduce a new
variability measure for left-hand tail risk that overcomes the mentioned drawback; it
is based on the stratification procedure by Mariani et al. (2020).

This measure has the advantage that it is defined endogenously, without any a priori
choice, and it captures risk from the asset volatility and co-movements as well as from
the left-hand tail distribution of the asset returns, while preserving an elementary
expression. According to the interpretation proposed in Diebold and Yılmaz (2014),
this measure of tail risk can be read as a measure of vulnerability of the portfolio to
volatility shocks that hit their assets.

In detail, we adapt the procedure in Mariani et al. (2020) to the gross returns to
identify a new informative set of parameters for each asset time series. This is done
by implementing an adaptive algorithm that identifies sub-groups of gross returns at
each iteration by approximating their distribution with a sequence of two-component
log-normal mixtures. These sub-groups are formed when a “significant” change in the
mixture distribution below the median of the asset returns occurs; their boundary is
called the “change point” of the mixture. The procedure ends when no further change
points are observed. The result is a new informative data set which includes, among
others, the parameters of the leftmost mixture distributions and the change points of
all the asset time series analyzed. The assumptions about the sample size and gross
returns are the same as those required by the expectation maximization method for
convergence when applied to log-normal mixtures (see Yang and Chen 1998).

The informative set is then applied to asset classification via a standard clustering
proceduremainly to test its ability to identify asset classes. Next, it is used to define the
left-tail-covariance-like matrix via the cosine similarity and the new variability mea-
sure of portfolio risk. The off-diagonal entries of the left-tail-correlation-like matrix
are computed as the scalar product of the normalized vectors defining the two assets
in the informative set. This left-tail-correlation-like matrix is a positive semidefinite
matrix by construction.
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The left tail volatility is defined as the product of two numbers: the volatility of
the leftmost component of the log-normal mixture obtained in the first iteration of the
adaptive clustering procedure; and the odds ratio of the a priori probability of belonging
to the leftmost component of the log-normal mixture. The left-tail-covariance-like
matrix is therefore computed by pre-multiplying and post-multiplying the left-tail-
correlation-like matrix by the diagonal matrix containing the left tail volatilities of the
asset returns.

According to the definition by Furman et al. (2017), Gardes and Girard (2021), we
prove that the proposed left tail volatility is a variability measure in the left tail of the
asset log-return distribution,while the portfolio risk defined via the left-tail covariance-
like matrix is a variability measure in the left tail of the portfolio distribution.

The convex combination of the covariance and left-tail-covariance-like matrices
allows for a revisited Markowitz portfolio selection that is able to control two dimen-
sions of risk: similarity and variability in time, as measured by the covariance matrix,
and similarity and variability in shape, as measured by the left-tail-covariance-like
matrix.

Recent literature on financial time series has investigated techniques to exploit clus-
tering information for developing a new approach to portfolio selection [see, among
others, Puerto et al. 2020;Mantegna 1999; Onnela et al. 2003a, b; Bonanno et al. 2004;
Wang et al. 2018]. The idea underlying this approach is to substitute the original corre-
lation matrix of the classical Markowitz model with an ultrametric correlation-based
clustering matrix with the twofold objective of filtering the correlation matrix and
improve the portfolio robustness to measurement noise. Among others, (Giudici and
Polinesi 2019) exploited information included in the correlation matrices of crypto
price exchanges to detect the hierarchical organization of stocks in the financial mar-
ket, while (Billio et al. 2006; Billio and Caporin 2009) had previously proposed a
flexible dynamic conditional correlation model based on the dynamic conditional cor-
relation model by Engle and Sheppard (2001), Engle (2002). Nonlinear correlations
were used by Baitinger and Papenbrock (2017), Miccichè et al. (2003), Hartman and
Hlinka (2018), Durante et al. (2014), Abedifar et al. (2017) employed a graphical
network model based on conditional independence relationships described by partial
correlations. Clustering procedures that capture lower tail dependence between assets
were considered in Durante et al. (2015), De Luca and Zuccolotto (2011). Specifi-
cally, Durante et al. (2015) computed the dissimilarity matrix using the coefficients
obtained via a non-parametric estimator of tail dependence between assets, and De
Luca and Zuccolotto (2011) introduced a similarity measure based on tail dependence
coefficients calculated via a parametric approach. Moreover, Liu et al. (2018) pro-
posed a clustering based on the coefficients of maximum tail dependence introduced
by Furman et al. (2015). The recent study by Paraschiv et al. (2020) reveals that for a
realistic stress test, special attention should be given to tail risk in individual returns
and also tail correlations.

Another contribution of this paper is the interpretation of the proposed portfolio
risk as the weighted average of the centralities of a suitably defined node-weighted
network. Specifically, we relate the portfolio to a recently introduced network called
node-weighted network, which has non-uniform weights on both edges and nodes
(see Abbasi and Hossain 2013; Wiedermann et al. 2013). The nodes of the network

123



428 F. Mariani et al.

are weighted assets and the edges linking two nodes are weighted with the entry
of the convex combination of the covariance and left-tail-covariance-like matrices
corresponding to the two assets (i.e., nodes). This allows asset risk centrality to be
defined according to the node-weighted closeness/harmonic centrality proposed in
Singh et al. (2020). Hence, minimizing the portfolio risk centrality makes the portfolio
resilient to volatility shocks in the financial market while limiting the variability in the
profit and loss distribution.

To the best of our knowledge, this interpretation is an additional contribution of
the paper. In fact, only recently have researchers modeled the financial market as a
weighted network with assets as nodes and edges representing relationships between
assets. Far from being exhaustive, we cite the correlation-based networks ofMantegna
(1999), Isogai (2016) and Puerto et al. (2020), weighted networks based on interaction
measures such as the Granger causality network by Billio et al. (2006), the network
incorporating tail risk by Chen and Tao (2020), Ahelegbey et al. (2021), Bayesian
graph-based approach of Ahelegbey et al. (2016), and the variance decomposition
network of Diebold and Yılmaz (2014), Giudici and Pagnottoni (2020).
Following the idea of a unified approach to network analysis and portfolio selection,
Diebold and Yılmaz (2014), Peralta and Zareei (2016) investigated the relationship
between portfolios and the associated network. Specifically, (Diebold and Yılmaz
2014) used the node centrality to measure the systemic vulnerability of a network.
Peralta and Zareei (2016) studied how optimal weights in the Markowitz portfolio
affect node centralities in a financial market network, while concluding that portfolio
diversification avoids the allocation of wealth towards assets with high eigenvalue
centrality. An initial attempt to interpret the Markowitz portfolio through a node-
weighted network can be found in Cerqueti and Lupi (2017), where the weights of
the nodes and edges are, respectively, the expected values of the asset returns and the
covariance weighted for the related shares in the portfolio.

It is worth noting that the portfolio network also offers new insight into the
Markowitz portfolio risk as a measure of the vulnerability of the portfolio to volatility
shocks. The idea of correcting traditional models to define more general models is a
powerful tool which is increasingly used in many contexts. For example, in Mari-
ani et al. (2019), the Merton portfolio model was generalized to account for market
friction, which is done simply by reformulating the frictionless Merton problem for
corrected price dynamics. The conditional value-of-return (CVoR) portfolio of Bodnar
et al. (2021), solely constructed from quantile-based measures, is also connected to
the Merton model. Another generalization is the data-driven portfolio framework by
Torri et al. (2019) based on two regularization methods, glasso and tlasso, that provide
sparse estimates of the precision matrix, i.e. the inverse of the covariance matrix.

The remainder of this paper is organized as follows. Section 2 introduces the formu-
lation of the adaptivemixture-based clusteringmethod and the left-tail-covariance-like
matrix. Section 3 presents the new portfolio risk as a variability measure and its inter-
pretation as a weighted average of node centralities. Section 4 is devoted to presenting
the data set used in this study and a discussion of the results. Specifically, the pro-
posed strategy is validated on the observed prices of a set of exchange-traded funds
(ETFs) representative of the assets traded via robot advisors from January 2006 to
February 2018. Section 5 draws some conclusions. The Appendix collects the proofs
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of the main results. An online appendix illustrates a further empirical analysis using
64 equity ETFs.

2 Left tail informative set and the left-tail-covariance-likematrix

2.1 Method to determine themain features of the left-hand tail distribution

In this section, we illustrate how the recent stratification procedure applied to house-
hold incomes by Mariani et al. (2020) can be adapted to analyze the left-hand tail
distribution of assets.

Bearing in mind that the procedure from Mariani et al. (2020) works on cross-
sectional data, the first point to address is the factor corresponding to household income
in our procedure. In our setting, incomes correspond to gross returns, that is, the
exponential of the asset log-returns (or returns for short) of the price time series
considered. Let NA > 0 be the number of assets. For i = 1, 2, . . . , NA, the gross
return associated with the i-th asset at time t is denoted by yt,i and reads

yt,i = exp

{
log

(
pt,i

pt−Δt,i

)}
= pt,i

pt−Δt,i
, i = 1, 2, . . . , NA , (1)

where pt,i represents the daily price of the i-th asset at time t , and Δt is the time step
at which the prices are observed. The gross returns (1) represent the scaling factor of
an investment in the asset at time t . Their use is advantageous in several ways. First,
they are positive but broadly related to asset returns; second, they are concentrated
around 1; and third, the gross returns of assets belonging to a very different asset class
show constant behavior over time, making them attractive candidates for stationary
autoregressive (AR) processes (see Feng et al. 2016). Since the stratification procedure
works the same way for each financial asset i , we drop the subscript i and, in the
remainder of this section, we denote the gross return at time t = t j = jΔt , with the
simplified notation y j , j = 1, 2, . . . , n.

We assume that gross returns of the observed prices belong to a price population
composed of a collection of groups, each with a homogeneous distribution, bearing
in mind that the term “price group” identifies the set of prices with homogeneous
distribution. In the rest of paper, we simply refer to the gross return using the term
“return".

Starting with the observed returns, the adaptive clustering procedure proceeds iter-
atively, splitting a suitably selected subset of the observed returns into two disjoint
groups at each iteration. The density function of the selected group is drawn from a
mixture of two log-normal distributions and the split looks for a return where a “sig-
nificant” change in the mixture distribution is observed. This value is called “change
point".

Specifically, in its first iteration, the procedure starts with the set of all returns
Sn = {y1, y2, . . . , yn} ranked in ascending order, and a threshold value a1 (i.e., the
first change point) is identified to split Sn into two disjoint groups: the left group
K1 = {y ∈ Sn ∧ y ∈ (0, a1]}, composed of returns smaller than or equal to the
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threshold value, and a right group R1 = Sn\K1, composed of returns larger than the
threshold value. In the second iteration, the procedure considers the subset of Sn ,R1,
obtained in the first iteration. It identifies a new threshold value a2 > a1, and splitsR1
into two disjoint groups: the left group K2 = {y ∈ Sn ∧ y ∈ (a1, a2]} and the right
groupR2 = {y ∈ Sn ∧ y ∈ (a2,+∞)}. In the k-th iteration, the algorithm proceeds
in a similar way by identifying the threshold ak and dividing the set Rk−1 into two
groups: Kk = {y ∈ Sn ∧ y ∈ (ak−1, ak]} and Rk = {y ∈ Sn ∧ y ∈ (ak,+∞)}.

Going into the details of the threshold computation, we use g0(x), x ∈ R+, to
denote the probability density function describing the distribution of the returns in set
Sn, and gk(x), x ∈ R+, to denote the conditional probability function defined by

gk(x) = g0
(
x + ak−1

)
∫ +∞

ak−1
g(s)ds

, x ∈ R+, k = 1, 2, . . . . (2)

The function gk is the probability density function associated with the translated return
sample R̃k−1 = {x = y−ak−1 ∧ y ∈ Rk−1}.We assume that gk is given by amixture
of two log-normal probability density functions

gk(x) = πk f1,k(x) + (1 − πk) f2,k(x), x ∈ R+, (3)

where f1,k(x) and f2,k(x), x ∈ R+, are the log-normal densities of parame-
ters μ1,k, μ2,k, σ1,k, σ2,k ∈ R associated with the two mixture components and
Θk = (πk, μ1,k, μ2,k, σ1,k, σ2,k)

′ is the vector of unknown parameters. Here and in
the rest of the paper, we use the superscript ′ to denote transpose. We assume that
μ1,k < μ2,k , so we refer to f1,k as the first (or left-hand) component of the mix-
ture and f2,k as the second (or right-hand) component since the median of the first
component, i.e., eμ1,k , is smaller than the median of the second one, i.e., eμ2,k .

The vector of unknown parameters for the density functions associated with the two
mixture components Θk = (πk, μ1,k, μ2,k, σ1,k, σ2,k)

′ is estimated using the return
in the setRk−1 through the expectation maximization (EM) algorithm (see Dempster
et al. 1977). Note that πk ∈ [0, 1] is the mixing weight representing the a priori
probability that the point x = y − ak−1, y ∈ Kk−1, belongs to the first component.

At each step, k, the parameter vector Θk is estimated using the EM algorithm,
and the change point of the mixture at the k-th iteration is then determined using the
following rule:

ak = min{y ∈ Rk−1 ∧ πk f1,k(y − ak−1) = (1 − πk) f2,k(y − ak−1)}. (4)

An explicit formula for the change points is

ak = exp
{
min{log(ak+), log(ak−)}

}
, (5)
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where log(ak+), log(ak−) are given by

log(ak±) = σ 2
1,kσ

2
2,k

σ 2
2,k − σ 2

1,k

[ (
μ1,k

σ 2
1,k

− μ2,k

σ 2
2,k

)
± √

Δk

]
,

with Δk defined as

Δk =
(

μ1,k

σ 2
1,k

− μ2,k

σ 2
2,k

)2

+
(
2 log

(
σ2,kπk

σ1,k(1 − πk)

)
−

(
μ1,k

σ1,k

)2

+
(

μ2,k

σ2,k

)2
)

(σ 2
2,k − σ 2

1,k)

σ 2
1,kσ

2
2,k

.

The change point ak is the frontier of the two groupsKk andRk at the k-th iteration and,
broadly speaking, ak divides the sample into two subsamples with non-homogeneous
distributions. The procedure stops when a new ak cannot be determined (i.e., Eq. (4)
does not admit any solution).

Further information computed by the procedure at each iteration is the misidentifi-
cation error, i.e., the probability of wrongly classifying the returns below the threshold
as members of the left group. This misidentification error is associated with the group
as a significance level according to the definition in Pittau and Zelli (2014). It is
computed as

Fk
2 (ak − ak−1), (6)

where Fk
2 (x) = ∫ x

0 f2,k(s)ds, x ∈ R+, is the cumulative distribution function asso-
ciated with the second component of the mixture. We also compute the probability of
wrongly classifying the returns above the threshold as members of the right group,
that is,

1 − Fk
1 (ak − ak−1), (7)

where Fk
1 (x) = ∫ x

0 f1,k(s)ds, x ∈ R+, is the cumulative distribution function asso-
ciated with the first component of the mixture. Appendices A and B in Mariani et
al. (2020) provide details about the computation of threshold values α and the EM
algorithm.

At the end of the adaptive clustering procedure, we compose a new informative
data set that includes the vector of parameters Θk, k = 1, 2, . . . , the misidentification
errors, and change points for each financial asset. For simplicity, we consider the
information coming from the first two iterations (i.e., k = 1, 2). This informative set
is the crucial element in defining the new portfolio risk; it is detailed in Sect. 2.2.

It is worth noting that the informative set can be computed when two main
assumptions are satisfied: a) the gross return distribution can be approximated with a
non-trivial two-component log-normal mixture with a change point; and b) the expec-
tation maximization algorithm converges. The first assumption can be tested using, for
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example, the results in Chen and Li (2009), Chauveau et al. (2019). The assumptions
for the EM approach to converge are no time interval with constant prices, no extreme
outliers, and a sufficiently large sample size, as detailed in Yang and Chen (1998).

2.2 From the left-tail informative set to the left-tail-covariance-like matrix

In this section, we focus on the meaning of the parameters determined by the above-
mentioned procedure.

In the simulation study and empirical analysis, we use a timewindowof consecutive
daily observations covering Ny years for each asset time series pt,i , i = 1, 2, . . . , NA,
that is, we use the i-th asset prices pt,i , pt−1,i , . . . pt−Ny+1,i to apply the method
described in Sect. 2.1. Specifically, we stop the splitting at the second iteration (i.e.,
k = 2) since we are interested in determining the parameters characterizing the
leftmost distribution of each asset. Thus, at time t , each asset is identified by the
following twelve parameters:

1. The change points of the asset return distribution determined in the first two itera-
tions of the procedure described in Sect. 2.1:
a1t,i , a

2
t,i : the asset return values that identify the leftmost change point in the dis-

tribution of asset returns at time t in the first and in the second iterations of the
clustering procedure;

2. the parameters (drift and volatility) of the left-hand component of the log-normal
mixture in the first two iterations of the procedure described in Sect. 2.1: σ 1

1,t,i ,

μ1
1,t,i , σ

2
1,t,i ,μ

2
1,t,i : parameters of the leftmost component of the log-normalmixture

in the first and second iterations of the clustering procedure;
3. the complement of the cumulative distribution functions, 1−F1

1,t,i , 1−F2
1,t,i , asso-

ciated with the leftmost component of the mixture in the first and second iterations
of the clustering procedure (first kind of error; for more details see (Mariani et al.
2020));

4. the cumulative distribution functions associated with the rightmost component of
the mixture, F1

2,t,i , F
2
2,t, j , in the first and second iterations of the clustering proce-

dure (second kind error (for more details see Mariani et al. 2020));
5. π1

t,i ,π
2
t,i : the a priori probabilities associatedwith themixture in the first and second

iterations of the clustering procedure.

For any time t , the twelve parameters of each asset i, for i = 1, 2, . . . , NA, are
collected in the matrix Xt ∈ RNA×10, that is, the left tail informative set at time t .
Specifically, the i-th row of Xt is the vector x ′

t,i = (Xt,i,1, Xt,i,2, . . . , Xt,i,10) of
the parameters defining the left-hand tail distribution corresponding to the i-th asset,
i = 1, 2, . . . , NA, that is,

x ′
t,i =(ã1t,i , ã

2
t,i , π

1
t,i , π

2
t,i , F

1
2,t,i , F

2
2,t,i , 1 − F1

1,t,i , 1 − F2
1,t,i , σ

1
1,t,i , σ

2
1,t,i ),

where the quantities ã1t,i and ã
2
t,i are given by

ã1t,i = log a1t,i − μ1
1,t,i , ã2t,i = log a2t,i − μ2

1,t,i .
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The matrix Xt can be interpreted as the classical tabular format representation of
cases and variables, where the rows are the cases (individuals) and the columns are
the variables. As shown in the empirical analysis (see Sect. 4), all variables contained
in the matrix Xt are relevant for describing the cases, since by applying the principal
component analysis to Xt , we observe that there are 10 factors needed to represent
80% of the total variance. The relevance of the informative set Xt relies on the fact
that it allows a covariance-like matrix for the left tail distribution to be introduced.

We detail this point by introducing some notation. For any time t and i, j =
1, 2, . . . , NA, we denote the return of the asset i at time t with rt,i = log(yt,i ), its
volatility with σt,i while the correlation coefficient between assets i and j at time t
with ρt,i, j . Additionally we use Ct = (Ct,i, j )i, j=1,2,...,NA ∈ R

NA×NA to denote the
covariance matrix at time t and Γt = (Γt,i, j )i, j=1,2,...,NA = (ρt,i, j )i, j=1,2,...,NA ∈
R

NA×NA the correlation matrix at time t .
Weunderline that the standard deviation of asset i at time t σt,i in a finite sample can

be estimated as the sample standard deviation, i.e., the Euclidean norm of the vector
containing deviations from the mean divided by the square root of the sample size.
Likewise, the covariance between the i-th and j-th returns, i.e., Ct,i, j = σt,iρt,i, jσt, j ,
i �= j , is the scalar product between the vectors of the scaled deviations from the
mean.

Along these lines (see the Appendix for further details), we define the left-tail-
correlation-like matrix Γ t = (Γ t,i, j )i, j=1,2,...,NA ∈ R

NA×NA as follows.

Definition 1 Let assets i and j at time t be identified by their left tail informative set
xt,i and xt, j , respectively. The left tail correlation coefficient between the assets i and
j is given by:

Γ t,i, j = ρt,i, j = x ′
t,i x t, j

‖xt,i‖ ‖xt, j‖
, i, j = 1, 2, . . . , NA . (8)

Here and in the rest of the paper, ‖z‖ denotes the Euclidean norm of the vector z.
The left tail correlation coefficient ρt,i, j measures the similarity in the left-hand

tail distributions of the i-th and j-th assets at time t since it is the cosine of the angle
determined by the i-th and j-th row vectors of the informative matrix Xt . The left-
tail-correlation-like matrix is a similarity matrix in clustering analysis and the distance
defined from (8) is very close to theEisen cosine correlation distance (Eisen et al. 1998)
defined as

di, j = 1 −
∣∣∣x ′

t,i x t, j

∣∣∣
‖xt,i‖ ‖xt, j‖

, i, j = 1, 2, . . . , NA . (9)

Finally, we define the volatilities of the left-hand tails.

Definition 2 Let asset i be identified by its left tail informative set xt,i . The left tail
volatility is defined as

σ t,i =
√√√√ π1

t,i

1 − π1
t,i

σ 1
1,t,i , i = 1, 2, . . . , NA , (10)
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where σ 1
1,t,i is the volatility of the leftmost component of the log-normal mixture that

approximates the return distribution. The quantity
π1
t,i

1−π1
t,i

is an odds ratio that tells us

the weight of this mixture component with respect to the other. The larger the value
of π1

t,i , the higher the role of the leftmost component.
Roughly speaking, the correlation coefficient defined in Definition 1 measures the

similarity of the left tail informative sets of the assets considered. Thus, the higher
the value of the coefficient, the higher the risk of similar behavior on the left tails of
the asset. Allocating assets in portfolios with similarity in their left tails may imply
similar reactions to exogenous shocks, thereby increasing exposure to systemic risk
(see Balla et al. 2014).

The left tail volatility introduced in Definition 2 is a conditional volatility, σ 1
1,t,i ,

that is, the volatility of the asset log-return, given that the asset return is drawn from the
leftmost component of the mixture scaled by the odds ratio. The scaling factor weighs
the relevance of the leftmost component of the mixture with respect the rightmost.

Proposition 1 The left tail volatility, σ t,i , defined in (10), is a variability measure in
the distribution left tail of the i-th asset log return at time t .

See the Appendix for the proof of Proposition 1.

These two ingredients allow us to define the left-tail-covariance-like matrix Ct =
(Ct,i, j )i, j=1,2,...,NA ∈ RNA×NA as follows.

Definition 3 Given the NA assets at time t identified by their left tail informative sets
xt,i , i = 1, 2, . . . , NA, the left-tail-covariance-like matrix is defined by

Ct,i, j = σ t,iρt,i, jσ t, j , i, j = 1, 2, . . . , NA . (11)

The matrix Ct is a positive semidefinite matrix since it can be rewritten as

Ct = Ψ
′
tΨ t , (12)

where Ψ t is the matrix defined by

Ψ t,i, j = σ t,i

‖xt, j‖
Xt,i, j , i = 1, 2, . . . , NA , j = 1, 2, . . . , 10. (13)

Although the role of the left-tail-correlation-like matrix (8) is intuitive in that it
expresses similarity in the information on left tails of the assets, the role of the left-
tail-covariance-like matrix (11) in asset allocation processes is not clear. We detail
this point in the next section.

123



A tail-revisited Markowitz mean-variance approach… 435

3 Two-dimensional risk: covariance and left tail covariance risks

In this section, we define a variability measure (see the Appendix for its definition)
that combines the covariance risk and the risk due to the similarity and volatility of
the left tails.

As already mentioned, both risks are defined endogenously, that is, they are com-
puted choosing only the number of price observations to use and are expressed with
positive semidefinite matrices. We therefore define a two-dimensional risk by means
of the convex combination of the two matrices. This definition provides a class of
variability measures depending on the coefficient of the convex combination express-
ing the investor’s propensity for diversification or dissimilarity in tails. A remarkable
advantage is that the portfolio selection is carried out solving a linear quadratic opti-
mization problem, in line with the mean-variance approach of Markowitz (1952).

We detail this point by explaining the role of the tail-covariance-like matrix in asset
allocation problems. As usual, we view a portfolio as a linear combination of assets
whose coefficients (i.e., asset weights) express the percentage of wealth invested in
each asset.

Mathematically, we consider the asset returns at a fixed time t as realizations of
random variables denoted by Yi . We omit the time to keep the presentation simple.
The return of the portfolio itself is a random variable given by

Πw =
NA∑
i=1

wi log Yi , (14)

where w = (w1, w2, . . . , wNA)
′ denotes the vector of asset weights which are non-

negative wi ≥ 0, for i = 1, 2, . . . , NA (short-selling is not allowed) and sum to one
(i.e.,

∑NA
i=1 wi = 1). A very common asset allocation problem is formulated as

min
w

R(Πw)

NA∑
i=1

wi log Yi = y,
NA∑
i=1

wi = 1, wi ≥ 0, (15)

where R(Πw) is a portfolio risk, while y is a target constraint for the portfolio return.
In the case of Markowitz’s portfolio, the objective function of problem (15) is the
portfolio variance, which is expressed as a quadratic form in the weights, allowing for
an efficient solution to (15).

We aim to preserve this simplicity while providing a portfolio risk that captures risk
in several respects, including too much concentration in one asset-allocation strategy.

3.1 Portfolio selection and node-weighted network

We relate the portfolio to a node-weighted network, i.e., a network with non-uniform
weights on the edges and nodes, as recently applied in Abbasi and Hossain (2013).
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Specifically, given a weight vector w and the corresponding portfolio Πw, we
associate the portfolio with the network Gw = (V , E, w),where V = {1, 2, . . . , NA}
is the set of labels identifying the assets (i.e., the network nodes), E = {(i, j) : i, j =
1, 2, . . . , NA} is the set of network edges, and w is the vector of asset weights. Note
that node self-connections and zero-weights are permitted.

Let A = (Ai, j )i, j=1,2,...,NA ∈ R
NA×NA be the extended adjacency matrix of the

networkGw as defined inWiedermann et al. (2013).We choose the extended adjacency
matrix equal to the tail-covariance-like matrix Ct in (11). Dropping the subscript t to
keep the notation simple, we choose the extended adjacency matrix as

Ai, j = Ci, j = σ iσ jρi, j , i, j = 1, 2, . . . , NA, (16)

where σ i σ j are the left tail volatilities of the i-th and j-th assets. We remember that
the coefficient ρi, j in (16) is a cosine similarity between the left tail informative sets
of the i-th and j-th assets and that the tail-covariance-like matrix, C , is a positive
semidefinite matrix.

We now generalize a suitable centrality measure to a node-weighted network fol-
lowing the approach proposed in Singh et al. (2020), Wiedermann et al. (2013).
Specifically, according to the definition of node-weighted closeness/harmonic cen-
trality proposed in Singh et al. (2020), we define the risk centrality of the i-th asset in
the network Gw with extended adjacency matrix in (16) as

RCw ,C (i) =
NA∑
j=1

w jCi, j , i = 1, 2, . . . , NA. (17)

The quantity in (17) assigns a high risk centrality to assets with a large weight in the
portfolio and a highly volatile left-hand tail while also being similar to assets with
large portfolio weights and highly volatile left-hand tails. Here, two assets are similar
if the cosine similarity between their left tail informative vectors is large. The use
of weighted centrality for an asset in a portfolio is very natural since the centrality
must include only assets that actually belong to the portfolio (i.e., nodes with non-zero
weights), while weighing the influence of each asset via its ownweight in the portfolio.

Starting with the tail risk centrality of their components, we define the left tail risk
centrality associated with the portfolio Πw as

r(Πw ,C) =
NA∑
i=1

wi RCw ,C (i) = w′Cw. (18)

The adjective “left tail” is related to the choice ofC as an adjacency matrix. It is worth
noting that in choosing the covariance matrix C = (Ci, j )i, j=1,2,...,NA as the extended
adjacency matrix of the node-weighted centrality, the risk centrality of the i-th asset
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in the Markowitz portfolio is

RCw ,C (i) =
NA∑
j=1

w jCi, j , i = 1, 2, . . . , NA, (19)

and the risk centrality associated with the portfolio is

r(Πw ,C) =
m∑
i=1

wi RCw ,C (i) = w′Cw = Var(Πw). (20)

That is, the risk centrality of the network associated with the Markowitz portfolio is
the portfolio variance.

Proposition 2 Let w = (w1, w2, . . . , wNA )
′ be any vector of non-negative constants

which sum to one and let C be the left-tail-covariance-like matrix in (3), then the
left tail risk centrality r(Πw,C) is a variability measure in the left tail of portfolio
distribution at time t .

See the Appendix for the proof of Proposition 2.
These findings suggest a reinterpretation of the optimal Markowitz portfolio as the

portfolio that minimizes the weighted risk centralities of the allocated assets. Thus,
choosing C as the extended adjacency matrix (see (20)) is equivalent to changing the
way in which the risk is measured, because (20) assigns more risk to assets positively
covariant with a high level of volatility. In other words, in (17), risk refers to the
volatile, linearly dependent left-hand tails, while in (20), risk refers to the covariance
between the asset returns. In analogy with the covariance matrix C , we therefore call
C the left-tail-covariance-like matrix.

In order to account for the two dimensions of risk expressed by (17) and (20), we
introduce a variability measure given by the convex combination of the variability
measures in (17), (20), that is,

rα(Πw) = αr(Πw,C) + (1 − α)r(Πw,C), 0 ≤ α ≤ 1. (21)

It is easy to see that

rα(Πw) = r(Πw ,Cα) = w′Cαw, (22)

where the extended adjacency matrix corresponding to the new variability measure
(21) is given by the convex combination of the covariance matrix C and the left-tail-
covariance-like matrix C, i.e.,

Cα = αC + (1 − α)C, 0 ≤ α ≤ 1. (23)

According to the interpretation proposed in Diebold and Yılmaz (2014), the matrix
Cα can be read as a connectedness table and the measure in (21) can be read as a
measure of portfolio vulnerability to volatility shocks that hit the assets. In fact, in
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Table 1 ETF price summary statistics. Summary statistics for exchange traded funds: mean, standard
deviation, excess kurtosis, and skewness

ETF class Mean SD Kurt. Skew.

Aggregate bond 249.24 104.63 −0.19 1.14

Commodities 387.47 309.05 2.94 1.89

Corporate bond 187.53 32.42 −1.22 0.14

Emerging equity Asia 2503.96 6314.18 9.45 3.23

Emerging equity America 7973.74 18481.67 4.18 2.41

the connectedness table, the presence of assets with high volatility and high left tail
volatility and with high left-hand tail similarity and covariance may imply portfolio
vulnerability since a market shock on one asset may cause a cascade.

By minimizing the variability measure in (21) with respect to w for a given α,
0 ≤ α ≤ 1, we aim to diversify the portfolio and also reduce the left-hand tail volatility
and similarity. As stressed above, like the Markowitz portfolio selection problem, the
variabilitymeasure rα is expressed as a quadratic form involving a positive semidefinite
matrix (i.e., Cα in Eq. (23)), thereby allowing for a closed-form minimum of rα.

4 Empirical analysis

In this section, we provide empirical evidence that the asset allocation obtained by
minimizing the two-dimensional risk defined in Sect. 3 truly acts to increase profits
and reduce losses. To this end, we use a dataset of 3173 daily observations of 44 ETF
(see Sect. 4.1). We show that the left tail informative set obtained from this dataset is
reliable since every variable used to describe the asset tails is weakly or not correlated
each other, and the dataset allows us to identify the investment class of the assets using
a clustering method. Finally, in Sect. 4.3, we compare portfolio performances when
the asset allocation strategy considers different values of α according to Eq. (21).

4.1 Data description

We consider a data set composed of 44 daily ETF price time series traded over the
period January 2006 to February 2018 (for N = 3173 total observations). Table
1 shows the ETFs classified into 5 asset classes according to the classification per
investment class provided by the Italian Stock Exchange. Summary statistics of prices
for the asset classes—mean, variance, excess kurtosis, and skewness—are described
in Table 1. Note that the mean value is different for each asset class as are the values
of standard deviation: Emerging equity ETFs are more remunerative and volatile with
respect to other classes considered in the analysis.

Table 2 describes summary statistics for gross returns in Eq. (1). Mean values are
equal to 1 and standard deviations are around 0 regardless of the investment class
considered.
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Table 2 ETF exponential logarithmic centered return summary statistics. Summary statistics for Exchange
Traded Funds: mean, standard deviation, excess of kurtosis, and skewness

ETF class Mean SD Kurt. Skew.

Aggregate Bond 1 0.003 6.79 0.14

Commodities 1 0.011 3.59 −0.22

Corporate Bond 1 0.002 3.33 −0.49

Emerging Equity Asia 1 0.016 17.05 0.21

Emerging Equity America 1 0.019 9.02 0.01

Fig. 1 Summary plots for ETF prices in the specific investment class

Figure 1 shows summary plots for each ETF price belonging to the specific invest-
ment class. This shows that especially for emerging market classes, ETF prices can
be quite different and it explains the higher values of standard deviation in Table 1.

Figure 2 shows summary plots for gross returns computed according to Eq. (1).
These scaled ETF values allow us to remove the seasonal trend typical of long time-
series data.

4.2 How is the left tail informative set reliable?

We start by motivating our choice to consider all variables in the left tail informative
set (see Sect. 2) by implementing the principal component analysis. The results are
shown in Table 3.

Note that in Table 3, ten factors are needed to best represent the total variance.
Indeed, each component contributes a small amount of variance (about 10%). We
have shown that all variables in the left tail informative set contribute to the total
variance of the asset returns, so we assess the performance of the left tail informative
set when used to determine asset classes. Figure 3 shows the dendrogram according
to the complete linkage clustering applied to the Euclidean distance computed from
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Fig. 2 Summary plots for ETF gross returns in the specific investment class

Table 3 Principal components analysis. Importance of components of left tail informative sets

Component Proportion of variance Cum. proportion of variance

Component 1 0.1 0.1

Component 2 0.1 0.2

Component 3 0.1 0.3

Component 4 0.1 0.4

Component 5 0.1 0.5

Component 6 0.1 0.6

Component 7 0.1 0.7

Component 8 0.1 0.8

Component 9 0.1 0.9

Component 10 0.1 1

the informative set:

di, j = (xi − x j )
′(xi − x j ), i, j = 1, 2, . . . , NA. (24)

Despite its sensitivity to outliers, complete linkage clustering avoids the chaining effect
suffered by single linkage clustering, so it is usually preferred to single linkage. The
results relative to the accuracy of the analysis are shown in Table 4. For the sake of
simplicity, emerging classes (Asia and America) were incorporated into a single class
(emerging).

Figure 3 and Table 4 show that cluster analysis on the informative set correctly
classifies ETFs based on their specific investment class. The accuracy is 88.64% with
five errors in the classification: two aggregate bonds were classified as corporate bonds
and three emerging assets as commodities. The same level of accuracy can be achieved
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Fig. 3 Dendrogram associated with complete linkage clustering based on distance (24)

Table 4 Classification resulting from the complete linkage clustering based on distance (24) (rows and
columns represent, respectively, the cluster group c and the asset class)

Cluster group\ asset class Aggr. bond Commodities Corporate bond Emerging

Aggr. bond 2 0 0 0

Commodities 0 8 0 3

Corporate bond 2 0 11 0

Emerging 0 0 0 18

if cluster analysis is applied to the informative set computed by removing outliers
through trimming and winsorization using a threshold of 0.0051.

The accuracy obtained in Table 4 can be improved by choosing the distance

d̃i, j = √
2 − 2ρi, j (25)

as the distance measure of the clustering procedure, where ρi, j is the correlation
coefficient associated with the i-th and j-th asset returns. The distance (25) is the
metric distance based on the correlation proposed by Mantegna in Mantegna (1997).
The latter ranges from 0 to 2, taking the value

√
2 for uncorrelated assets. When the

clustering is based on distance (25), the empirical investigation indicates that the single
linkage is the most appropriate clustering method (Stanley andMantegna 2000). Table

1 This is not surprising because the ratio between the difference of the information set with the one
computed by removing outliers and the information set without outliers is, on average, 0.0005% if we apply
winsorization and 0.2594% in the case of trimming. We underline that the adaptive clustering procedure
applied to generate the left tail informative set captures significant changes in the left tail distribution
of returns. For this reason, standard techniques used to remove outliers may strongly flatten distribution
tails, thereby preventing the search for change points. In our case, techniques for handling outliers such
as winsorization and trimming can be applied if the quantile threshold is no greater than 0.005, otherwise
corporate bond ETFs (the lowest volatile assets) do not admit change points (see Table 2).
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Table 5 Classification resulting from single linkage clustering based on distance (25) (rows and columns
represent cluster group c and asset class, respectively)

Cluster group
/
asset class Aggr. bond Commodities Corporate bond Emerging

Aggr. bond 2 0 0 0

Commodities 0 8 0 0

Corporate bond 2 0 11 0

Emerging 0 0 0 21

Table 6 Classification resulting from the single linkage clustering based on distance (25) with correlation
coefficients ρα,i, j , α = 0.001 (rows and columns represent cluster group c and asset class, respectively)

Cluster group/asset class aggr. bond Commodities Corporate bond Emerging

Aggr. bond 2 0 0 0

Commodities 0 8 0 0

Corporate bond 2 0 11 0

Emerging 0 0 0 21

5 shows the results relative to the accuracy of single linkage clustering applied to the
metric distance (25).

We observe that a single linkagewith distance (25) achieves an accuracy of 95.45%,
higher than the level obtained with the informative set (88.64%). In fact, in Table 5,
only the twoaggregate bonds aremisclassified as corporate ones. Thismisclassification
is probably due to low correlations with the other aggregate bond returns and strong
correlations with the corporate bond returns. Moreover, it is worth noting that the
probability densities of the misclassified aggregate bond returns are also closer to
those of corporate bond returns than to those of the other aggregate bond returns.
Specifically, they have smaller standard deviations (equal to 0.0019 and 0.0015) than
the mean standard deviation of the aggregate bond returns (i.e., 0.003, see Table 2)
and comparable to those of the corporate bond returns (i.e., 0.002, see Table 2). This
suggests that the informative set on the left-hand tail needs to be combined with the
information on asset covariances to obtain complete information on asset returns. To
support this intuition, we apply single linkage clustering to the correlation matrix
obtained from Cα , α ∈ [0, 1] given in Eq. (23). We recall that the matrix Cα equals
the covariance matrix for α = 1 and the left-tail-covariance-like matrix for α = 0.

We apply single linkage clustering based on distance (25) with the correlation
coefficients ρα,i, j = Cα,i, j/

√
Cα,i,iCα, j, j , i, j,= 1, 2, . . . , NA, for α = 0.0005 ∗ k,

k = 1, 2, . . . , 2000. We observe that an accuracy of 95.45% is obtained for any α ≥
0.001. Table 6 shows the accuracy of the single linkage classification for α = 0.001.
This result has two main implications. First, the sole use of the left-tail-covariance-
like matrix is not enough to capture all the crucial information on asset riskiness.
Second, it is sufficient to include a small contribution from the covariance matrix (i.e.,
α = 0.001) to capture the information for a correct classification.
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FromTable 6, we note that a convex combination for a small value of α provides the
same classification accuracy as α = 1 (see Table 5). This highlights how the choice
of α plays a crucial role in both clustering and asset allocation strategies, as explained
in Sect. 4.3.

4.3 Asset allocation

In this section, we solve the following Markowitz-like asset allocation problem:

min
w

w′Cαw, 0 ≤ α ≤ 1,

NA∑
i=1

wi log Yi = y,
NA∑
i=1

wi = 1, wi ≥ 0, (26)

where Yi , i = 1, 2, . . . , NA refers to the 44 ETFs gross returns (i.e., NA = 44) and y
is chosen to be the average of the returns over the time period considered.

The coefficient α allows investors to choose a risk profile by suitably weighting
the two risk dimensions of interest: asset covariance risk with left tail similarity and
volatility risk (see Eq. (23)).

We compare asset allocation strategies for different values of α, including the
classical Markowitz selection (i.e., α = 1) and the new left tail covariance selection
(i.e., α = 0). We stress that only when we consider values of α in the interior of the
interval [0, 1] can we make use of the two-dimensional risk.

Specifically, the portfolio analysis is carried out on consecutive overlapping time
windows of N consecutive trading days (i.e, N = 1290, about 5 years) and two
consecutive windows differ by six months (∼= 125 consecutive trading days), for a
total of 16 windows. We use τ j−1 = 1 + 125( j − 1) and τ j = 1290 + 125( j − 1) to
denote the first and last observation times of the j-th window, j = 1, 2, . . . , 16.

For any α, we solve sixteen allocation problems in the form (26) using the asset
returns observed in the above-mentioned time windows, and wα,i, j represents the
weight of the i-th asset in the portfolio, i = 1, 2, . . . , NA, computed using the asset
returns observed over the j-th window.

We compare the portfolio variability measures defined via α looking at the port-
folio return up to six months ahead. Specifically, for j = 1, 2, . . . , 16, we define the
portfolio return as

rα, j,t =
(∑NA

i=1 wα,i, j pi,t
)

− Pα, j

Pα, j
, t = τ j + 1, τ j + 2, . . . , τ j + 125. (27)

Here, pi,t is the price of the i-th asset (see Eq (1)) while Pα, j is the budget necessary
to allocate assets, namely, the value of the j-th portfolio on the last date of the j-th
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Table 7 Summary statistics of aggregated portfolio returns

α Min. 1st Qu. Median Mean 3rd Qu. Max.

1 0 −7.932e-02 −8.350e-03 3.281e-03 5.707e-03 1.844e-02 6.872e-02

2 0.1 −7.932e-02 −8.442e-03 3.088e-03 5.604e-03 1.844e-02 6.872e-02

3 0.2 −7.932e-02 −8.875e-03 2.894e-03 5.063e-03 1.773e-02 6.489e-02

4 0.3 −1.154e-01 −8.875e-03 3.149e-03 3.948e-03 1.760e-02 6.076e-02

5 0.4 −1.686e-01 −8.183e-03 4.238e-03 4.159e-03 2.126e-02 7.882e-02

6 0.5 −1.765e-01 −8.120e-03 4.427e-03 4.477e-03 2.229e-02 9.898e-02

7 0.6 −1.684e-01 −7.957e-03 4.465e-03 4.965e-03 2.409e-02 1.059e-01

8 0.7 −1.166e-01 −8.875e-03 4.132e-03 7.209e-03 2.454e-02 1.094e-01

9 0.8 −1.182e-01 −1.024e-02 4.459e-03 7.108e-03 2.412e-02 1.115e-01

10 0.9 −1.190e-01 −1.410e-02 −1.571e-06 2.844e-03 1.852e-02 1.127e-01

11 1 −1.082e-01 −2.633e-02 −1.541e-03 −2.449e-03 1.551e-02 1.126e-01

Fig. 4 Summary plots for aggregated portfolio returns

window. Pα, j is written as

Pα, j =
NA∑
i=1

wα,i, j pi,τ j . (28)

The portfolio returns rα, j,t are out-of-sample returns in that they are computed using

the portfolio value
∑NA

i=1 wα,i, j pi,t for t = τ j + 1, τ j + 2, . . . , τ j + 125 out of the
windows used to compute the portfolio weights.

We analyze the distribution of portfolio returns rα, j,t , j = 1, 2, . . . , 16, t = τ j +
1, τ j + 2, . . . , τ j + 125 for different values of α, specifically α = αk = 0.1k, k =
0, 1, . . . , 10. Summary statistics are reported in Table 7.

The table shows that investing in the portfolio with α = 0 performs better with
respect to the Markowitz portfolio, i.e., α = 1. The latter presents a negative mean
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Fig. 5 Portfolio-optimal weights for α equal to 0 (a), 0.70 (b), 1 (c). Ag., comm., corp., em. Asia, and em.
America are the abbreviations of investment classes reported in Table 1. Portfolio turnover: 16.7 (a), 13.1,
(b) 15.6 (c)

and median for portfolio returns, which occurs again for α equal to 0.90. This shows
that strong exposure to covariance risk increases the probability of losses. Note that
the minimum observed losses are obtained only when α = 0, while the largest profit
is achieved on average when α = 0.7, but the minimum and first quartile worsen.
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Fig. 6 Left-hand tail comparison

Figure 4 shows summary plots for aggregated portfolio returns with α = 0, 0.7, 1,
where the black and red lines represent the median and mean values, respectively.
For robustness, aggregated portfolio returns associated with α = 1 are computed by
applying the random matrix theory (RMT) filter to the correlation matrix ( Tola et al.
2008) and considering the extreme downside correlation (EDC) of the returns ( Harris
et al. 2019; Ahelegbey et al. 2021).

Figure 4 shows higher losses associated with the Markowitz portfolio, i.e., α = 1
and higher profits for the combined portfolio with α = 0.7. Results of the filtered case
(RMT) are in line with those of the classical Markowitz portfolio; the EDC portfolio
instead shows a positive mean and higher range of variation. Figure 5 shows portfolio
weights for each time window and α = 0, 0.7, 1. With regard to transaction cost, we
refer to the turnover quantity, i.e., the portfolio which shows the best performance in
terms of investor wealth (Bodnar et al. 2021). Portfolio turnover is defined as

Turnover =
t1∑

t=t0+1

NA∑
i=1

|wα,i,t − wα,i,t−1|, (29)

where t0 and t1 are the first and last times in the rolling window estimation. In Fig. 5,
the portfolio turnover is 16.7 when α = 0, 13.1 when α = 0.7 and 15.6 when α = 1.

Each row in Fig. 5 shows the portfolio asset allocation for the time window con-
sidered and the portfolio turnover. Note that the portfolio is more concentrated when
investors only consider asset covariance risk with left-hand tail similarity. The same is
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Fig. 7 Profit and loss curve

true for the combined portfolio. Instead, when α = 1, the portfolio is more balanced
between assets. Corporate bonds are predominant assets, regardless of the time win-
dow considered. Moreover, looking at Fig. 5, we observe that when α = 0, emerging
assets are preferred to aggregate bonds, despite their higher riskiness. Though this
may seem counterintuitive, corporate bonds are the most numerous class in the opti-
mal portfolio, a preference due to the similarity in left-hand tails between corporate
and aggregate bonds being larger than the similarity between corporate bonds and
emerging assets (see Fig. 6).

We conclude this sectionwith the profit and loss curve. Specifically, Fig. 7 shows the
portfolio returns (27) of the five portfolios obtained for α = 0 (tail: black dotted line),
α = 0.7 (combined: blue solid line), and α = 1, considering the three cases: classical
Markowitz (Markowitz: red dashed line), Markowitz with RMT (RMT: green dashed
line), and Markowitz with EDC (EDC: brown solid line) as a function of time. The
portfolio returns shown in Fig. 7 are computed out-of-sample up to six months ahead.
We can see that the tail portfolio has very limited losses but also limited profits, and
the Markowitz and RMT portfolios show several losses even if the tail and combined
ones are able to make a profit. Specifically, losses are generated not only during the
period of crisis (December 2010 to September 2011), but also in the standard market
situation (January 2014–March 2014). This situation worsens for the EDC portfolio.
In fact, the high range of variation associated with this portfolio (Fig. 4) increases
profits but strongly amplifies losses. The combined portfolio improves profits while
reducing losses of the Markowitz portfolio, except for the negative peak in the year
2015, which is probably related to the oil crisis, which also negatively impacted the
RMT portfolio. Table 8 shows the sum in absolute value of profits and losses and their
difference of portfolios computed under different strategies.

In Table 8 note that the combined and tail portfolios show higher performances
in terms of profits and losses computed out-of-sample, 13.52 and 10.70 respectively,
with respect to the Markowitz portfolios (all cases considered).
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Table 8 Profits and losses (absolute values) of portfolios under different strategies

Combined Markowitz Tail RMT EDC

Sum of losses 13.14 27.96 11.55 27.83 33.08

Sum of profits 26.65 23.37 22.25 25.21 34.80

Profit-loss 13.52 − 4.59 10.70 − 2.62 1.71

5 Conclusions

The results of this paper contribute to the recent literature on portfolio optimization
in several respects. First, a new informative set on price return distribution is computed
using an adaptive algorithm that approximates suitably identified sub-groups of gross
returns using log-normal mixtures. Second, a left-tail-covariance-like matrix is intro-
duced. The left-tail correlations are computed as the cosine correlation of the vectors
identifying the assets while the left tail volatilities are obtained from suitably weighted
volatilities of the leftmost components of the mixtures. Third, a two-dimensional port-
folio risk is introduced as the convex combination of the asset and left tail covariance
risks. A revisited Markowitz portfolio problem is formulated and solved using ETFs
representative of the assets traded via robot advisory. Fourth, the resilience of the port-
folio to shock on assets is introduced by defining a weighted centrality of assets in the
portfolio. The new portfolio optimization outperforms the classical one by reducing
loss and increasing profit. The analysis of the informative set in the case of well known
parametric stochastic volatility models deserves further investigation. In fact, it would
be interesting to establish some explicit relationships between model parameters and
the left tail volatility. Finally, a further line of research is the relationship between risk
and resilience measures. Indeed, our findings suggest that a volatile portfolio could be
resilient to asset shocks if the leftmost tails of the assets are diversified and not very
volatile.
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Appendix

In this Appendix, we prove Propositions 1 and 2. First, we prove the following lemma,
which will be used to prove Propositions 1 and 2.

Lemma 1 For i = 1, 2, . . . , NA and t > 0 denoting y
t,i

= (yt,i , yt−1,i , . . . ,

yt−Ny+1,i )
′, the vector Ny of consecutive daily returns of asset i at time t, the left
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tail informative set associated with asset i at time t:

x ′
t,i = (ã1t,i , ã

2
t,i , π

1
t,i , π

2
t,i , F

1
2,t,i , F

2
2,t,i , 1 − F1

1,t,i , 1 − F2
1,t,i , σ

1
1,t,i , σ

2
1,t,i ), (30)

is invariant by translation of log y
t,i

.

Proof For simplicity in the proof, we drop the subscripts t and i in (30) and use,
respectively,

x ′ = (ã1, ã2, π1, π2, F1
2 , F2

2 , 1 − F1
1 , 1 − F2

1 , σ 1
1 , σ 2

1 ), (31)

and y = (y1, y2, . . . , yNy )
′ to denote the left tail informative set and the vector of

daily returns associated with a generic asset.
The components of the vector x are found applying the expectation maximization

(EM) method to y, under the assumption that the latter contains the realizations of a
vector of the independent and equally distributed random variables Y1, Y2,…, YNy ∼
Y , whose density is given by

fY (y) = πY f1,Y (y) + (1 − πY ) f2,Y (y), y ∈ R+, (32)

πY ∈ (0, 1), and

f j,Y (y) = fY (y|Zk,Y = j), y ∈ R+, j = 1, 2, k = 1, 2, . . . , Ny, (33)

are log-normal probability densities of parameters μ1,Y , σ1,Y , μ2,Y , σ2,Y . Here, Zk,Y

denotes the (latent) randomvariable representing themixture component forY ,defined
by

Zk,Y = j if Yk is drawn by the component j, j = 1, 2. (34)

In the context of mixture distribution, the EM algorithm works in the usual way,
maximizing the log-likelihood function associated with the observation vector y via
an iterative procedure. The procedure initializes the unknown mixture parameters
πY , μ1,Y , μ2,Y , σ1,Y , σ2,Y , and, at any step, evaluates the posterior probabilities
(E-step):

γZk,Y (1) = πY f1,Y (yk)

πY f1,Y (yk) + (1 − πY ) f2,Y (yk)
, (35)

γZk,Y (2) = (1 − πY ) f2,Y (yk)

πY f1,Y (yk) + (1 − πY ) f2,Y (yk)
. (36)

It estimates the new mixture parameters π̂Y , μ̂1,Y , μ̂2,Y , σ̂1,Y , σ̂2,Y (M-step) as fol-
lows:

μ̂ j,Y = 1

N j,Y

Ny∑
k=1

γZk,Y ( j) log yk, j = 1, 2, (37)
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σ̂ j,Y =
√√√√ 1

N j,Y

Ny∑
k=1

γZk,Y ( j)(log yk − μ̂ j,Y )2, j = 1, 2, (38)

π̂Y =N1,Y

Ny
, (39)

where N j,Y = ∑Ny
k=1 γZk,Y ( j), j = 1, 2, and computes the log-likelihood in the esti-

mated mixture parameters. The iterative procedure stops when the difference between
the log-likelihood obtained in two consecutive steps is less than a small value ε. For
more details about the EM procedure, we refer to Dempster et al. (1977).

The left tail informative set x in (31) is composed of functions of the mixture
parameters obtained in the last step by the EM algorithm, so in order to prove the
invariance by translation of the left tail informative set, we prove the invariance by
translation of the functions of mixture parameters appearing in (31).

Let τ = exp(log y + c) = ec y be the vector of returns obtained shifting the log
returns y by a constant c ∈ R. Assuming that the vector τ contains the realizations
of a vector of the independent and equally distributed random variables T1, T2, ...,
TNy ∼ T = ecY , the posterior probabilities obtained applying the EM algorithm to
τ = (T1, T2, . . . , TNy ) are

γZk,T (1) = πT f1,T (ec yk)

πT f1,T (ec yk) + (1 − πT ) f2,T (ec yk)
, (40)

γZk,T (2) = (1 − πT ) f2,T (ec yk)

πT f1,T (ec yk) + (1 − πT ) f2,T (ec yk)
, (41)

where f1,T , f2,T are log-normal probability densities of parameters μ1,T= μ1,Y + c,
μ2,T= μ2,Y + c, σ1,T= σ1,Y , σ2,T= σ2,Y and πT = πY . Bearing in mind that
f1,T (ec yk) = f1,Y (yk)e−c, from (40), (41) we have γZk,T = γZk,Y . Consequently,
from (40), (41) we have

N j,T =
Ny∑
k=1

γZk,T ( j) =
Ny∑
k=1

γZk,Y ( j) = N j,Y , (42)

and, using (40), (41), (42), we see that the estimates of the mixture parameters asso-
ciated with τ are

μ̂ j,T = 1

N j,T

Ny∑
k=1

γZk,T ( j)(log yk + c) = μ̂ j,Y + c, j = 1, 2, (43)

σ̂ j,T =
√√√√ 1

N j,T

Ny∑
k=1

γZk,T ( j)(log yk + c − μ̂ j,T )2 = σ̂ j,Y , j = 1, 2, (44)

π̂T =N1,T

Ny
= π̂Y . (45)
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Now, recalling that the change point of the mixture associated with τ is the point aT
such that

πT f1,T (aT ) = (1 − πT ) f2,T (aT ), (46)

we find the estimate of the change point, âT , by solving the following equation:

π̂T f̂1,T (âT ) = (1 − π̂T ) f̂2,T (âT ), (47)

where f̂1,T , f̂2,T are log-normal probability densities of parameters μ̂1,T , μ̂2,T , σ̂1,T ,

σ̂2,T . Now, since T = ecY , we have

f̂ j,T (âT ) = f̂ j,Y (e−câT )e−c, (48)

and, using the estimates (43), (44), (45) together with (48), equation (47) becomes

π̂Y f̂1,Y (e−câT ) = (1 − π̂Y ) f̂2,Y (e−câT ), (49)

which implies that the change point of the two-component mixture associated with τ ,

estimated by the EM algorithm, is the point

âT = ecâY , (50)

where âY is the change point of the two-component mixture associated with y, esti-
mated by the EM algorithm.

Moreover, the first and second kinds of errors associated with τ as estimated by the
EM algorithm are equal, respectively, to the estimated first and second kinds of errors
associated with y, i.e.,

F̂2,T =
∫ âT

0
f̂2,T (s)ds =

∫ e−câT

0
f̂2,T (ecξ)d(ecξ)

︸ ︷︷ ︸
s=ecξ

=
∫ âY

0
f̂2,Y (ξ)dξ = F̂2,Y , (51)

and, likewise,

1 − F̂1,T = 1 − F̂1,Y . (52)

Equations (43), (44), (45), (50), (51), (52) prove that all components of vector (31) of
the first iteration are invariant by translation of log y.

The remaining components of (31) (i.e., those relative to the second iteration) are
obtained applying the EM algorithm to the observations yk such that yk > âY . Thus,
the invariance by translation follows as argued above. This concludes the proof.� 
�
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Now, using Lemma 1 in analogy with Furman et al. (2017), Gardes and Girard (2021),
we introduce the definition of the variability measure and prove Propositions 1 and
2.

Definition 4 A setX is a convex cone if αX+βY ∈ X for all X ,Y ∈ X and α, β > 0.

Definition 5 (see Furman et al. 2017) With X a convex cone of random variables, a
map ν : X → [0,+∞) is a variability measure if it satisfies the following properties:

(i) if X ,Y ∈ X have the same distributions (X
d= Y ), then ν(X) = ν(Y ),

(ii) ν(c) = 0 for all c ∈ R,

(iii) ν(X + c) = ν(X) for all c ∈ R and X ∈ X .

As observed in Furman et al. (2017), the standard deviation of X is a coherent vari-
ability measure of X but not a coherent risk measure of X .

Proof of Proposition 1 Let:

X = {log Y : Y is a random variable approximable by EM algorithm

with a two-component log-normal mixture}. (53)

For i = 1, 2, . . . , NA and t > 0,

νi : X → [0,+∞]

Yt,i →
√√√√ π1

t,i

1 − π1
t,i

σ 1
1,t,i (54)

is the map associated with any gross return Yt,i ∈ X and its left tail volatility.
Now we prove that (54) satisfies the three properties (i), (ii), (iii) of Definition 5.

This proves property (i).
If two gross returns have the same distributions, they also have the same associated

informative set and, as a consequence, the same measure.
When log Yt,i = c, c ∈ R,,∀t, i , by (38)we have themixture parameters associated

with the first components estimated by the EM algorithm are

μ̂1
1,t,i =μ̂1,ec = c, (55)

σ̂ 1
1,t,i =σ̂1,ec = 0. (56)

Substituting (56) into (54) yields νi (c) = 0. This proves property (ii).
The proof of property (iii) follows easily by Lemma 1, observing that the a priori

probability π1
1,t,i and the mixture volatility σ 1

1,t,i , estimated by the EM algorithm are
both invariant by translation of log Yt,i . This concludes the proof. 
�

Now, using Proposition 1, in analogy with Joachim (2017), we prove that the left
tail risk centrality r(Πw,C) defined in (18) is a variability measure in the left tail of
the portfolio distribution at time t .
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Proof of Proposition 2 Let ξ
t

= (w1σ t,1, w2σ t,2, . . . , wNAσ t,NA)
′ be the vector of

weighted variability measures associated with assets 1, 2 . . . , NA at time t , and Γ t be
the left-tail-correlation-like matrix at time t defined in (8). Following the core of risk
aggregation in the Solvency II standard formula (see Parliament 2009, Appendix IV)
and in line with Joachim (2017), the left tail risk centrality of portfolio, r(Πw,C), at
time t in (18) can be rewritten as

r(Πw,C) = ν(Yt,1,Yt2 , . . . ,Yt,NA ) = ‖ξ
t
‖2
Γ t

= ξ
′
t
Γ t ξ

t
, (57)

where ν : X NA → [0,+∞) and X is given by (53). Let us prove that the map ν

satisfies the properties (i), (ii), (iii) of Definition 5.
If two gross returns have the same distributions, they also have the same associated

vector ξ
t
andmatrixΓ t and, as a consequence, the samemeasure. This proves property

(i).
We observe that when the portfolio Πw at time t is made by constant log returns
log Yt,i = c, i = 1, 2, . . . , NA, by virtue of Proposition 1, the corresponding vector
of weighted variability measures ξ

t
= 0, where 0 is the NA-dimension zero vector,

therefore the property (ii) follows easily from (57).
Property (iii) follows from the invariance by translation of the vector of weighted vari-
ability measures ξ

t
, established in Proposition 1, and by the invariance by translation

of the left-tail-correlation-like matrix Γ t , by virtue of Lemma 1. This concludes the
proof. 
�

It is worth noting that the portfolio variance r(Πw,C), defined in (20), can be
rewritten as follows:

r(Πw,C) = ν(Yt,1,Yt2 , . . . ,Yt,NA ) = ‖ξ
t
‖2Γt

= ξ ′
t
Γt ξ

t
, (58)

where ξ
t
= (w1σ1,t , w2σ2,t , . . . , wNAσNA,t ), σi,t is the standard deviation of the i−th

asset log-return at time t and Γt is the correlation matrix at time t . Then, similar to
r(Πw,C), r(Πw,C) is the variability measure associated with the Markowitz portfo-
lio.
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