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Abstract: The levels of bioactive compounds in broccoli and their bioavailability following broccoli
intake can be affected by the cooking procedures used for vegetable preparation. In the present
pilot study, we compared the human plasma bioavailability of antioxidant compounds (β-carotene,
lutein and isothiocyanate) and of phylloquinone (vitamin K) on seven volunteers before and after
the administration of boiled and steamed broccoli. Moreover, plasma isothiocyanate (ITCs) levels
were also evaluated after the administration of a single dose of BroccoMax®, a dietary supplement
containing GLSs with active myrosinase. Steam-cooking has been demonstrated to promote higher
plasma bioavailability in ITCs than boiling (AUCSTEAMED = 417.4; AUCBOILED = 175.3) and is compa-
rable to that reached following the intake of BroccoMax®, a supplement containing glucoraphanin
and active myrosinase (AUC = 450.1). However, the impact of boiling and steaming treatment
on plasma bioavailability of lipophilic antioxidants (lutein and β-carotene) and of phylloquinone
was comparable. The lutein and β-carotene plasma levels did not change after administration of
steamed or boiled broccoli. Conversely, both treatments led to a similar increase of phylloquinone
plasma levels. Considering the antioxidant action and the potential chemopreventive activity of
ITCs, steaming treatments can be considered the most suitable cooking method to promote the health
benefits of broccoli in the diet.

Keywords: broccoli; carotenoids; glucosinolates; isothiocyanate; phylloquinone; steaming

1. Introduction

Brassica oleracea represents one of the most important crops from the Brassicaceae
family consumed in the human diet. Among the main cultivars, broccoli (var. italica) is
one of the most used vegetables in Western cooking. They are reputed as “superfoods”,
since they are rich sources of bioactive compounds whose health properties have been
extensively studied [1]. In particular, they contain high levels of lipophilic antioxidant
compounds, such as lutein, zeaxanthin and β-carotene, which are involved in cardiovascu-
lar diseases prevention and treatment [2–4]; vitamins (mainly K1 and C) [5]; hydrophilic
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antioxidant compounds (flavonoids, anthocyanins and phenolic acids) [6–9]; and glucosi-
nolates (GLSs) [10]. Approximately 100 different GLSs are found in plants, and in broccoli,
the most important are glucoraphanin, accounting for over 50% of the total; glucoiberin;
glucoerucin; glucobrassicin; and neoglucobrassicin [11]. To become active, GLSs must be
hydrolyzed to isothiocyanates (ITCs), a by-product of enzymatic synthesis by myrosinase,
a β-thioglucosidase distributed in plant tissues but separately from the substrate. When
tissues are disrupted due to food preparation or chewing, GLSs come in contact with the
enzyme which breaks the β-thioglucose bond on the GLS. Myrosinase is also produced by
gut microflora; therefore, hydrolysis can also be catalyzed following food ingestion [12,13].
Since the resulting aglycones are unstable, at neutral pH, ITCs formation is favored [14,15].
However, the presence of specifier proteins, such as epithio-specifier proteins (ESPs) and
nitrile-specifier proteins (NSP), could promote a degradation of the unstable aglycones into
epithionitriles and nitriles, respectively, reducing ITCs release [16].

After conversion from GLS, consumed ITCs are metabolized via the mercapturic acid
pathway. In particular, by enzymatic activity of glutathione S-transferase (GST), ITCs react
with GSH to produce GS conjugates. Subsequently, the conjugates undergo to sequential
enzymatic modifications, first by γ-glutamyltranspeptidase (GT) to form cysteinylglycine-
ITC conjugates, and then by cysteinylglycinase (CG) to form the cysteine-ITC conjugates,
which are finally acetylated by N-acetyltransferase to produce N-acetyl-L-cysteine ITC
conjugates; these are excreted in urine [17].

Since a relevant amount of experimental evidence has highlighted many beneficial
effects of ITCs related to their antioxidant, antimicrobial, anti-inflammatory and anticancer
activities [18–21], the total ITCs level in plasma is considered a good indicator of bioactive
compounds responsible for beneficial effects related to Brassicaceae [22,23]. Among these,
by far, the most thoroughly studied is sulforaphane, the ITC deriving from glucoraphanin
hydrolysis, the most abundant GLS in broccoli. Due to its clinically confirmed biological
efficacy [24–28], it is also an emerging compound in the nutritional supplements market,
where its precursor is sometimes used in association with myrosinase or its isoform.

In any case, the extension of the activities performed by bioactive molecules in the body
is closely related to their bioavailability following consumption. In this context, preparation,
storage and cooking methods could impact on the GLSs content in broccoli, as well as on po-
tential ITCs released after the broccoli consumption. Generally, freezing is able to preserve
most of the nutrients, thus ensuring a longer shelf-life preservation. Alanís-Garza et al. [29]
found that freezing increased the extractability of total glucosinolates and the levels of
carotenoids in broccoli with respect to raw counterpart. In accordance with this finding,
González-Hidalgo et al. [30] stated that frozen broccoli retained glucosilonates. However,
it is known that some thermal treatment could be deleterious for several nutrients, but, at
the same time, it could enhance the extractability of others in relation to characteristics of
the nutrients (chemical-physical, solubility, temperature-sensitivity, etc.). Thus, the choice
of the cooking method should be function of the bioactive compound to be preserved or en-
hanced. In this sense, broccoli is rich in hydrophilic (i.e., GLS, polyphenols) and lipophilic
(i.e., carotenoids) antioxidants, so it is very difficult to find a single suitable cooking method
that minimizes the loss of all nutrients or promotes their availability. Generally, steam
provides a more rapid and efficient heating than hot water (boiling). Steam-cooking was
found to be a preferred procedure in order to preserve astaxanthin in fish meat [31] and
to reduce the loss of GLS in broccoli and other brassica vegetables [32–34]. Nevertheless,
the levels of lipophilic antioxidants (tocopherols and carotenoids) in cooked vegetables,
including broccoli, resulted in being higher after boiling than steam-cooking [33,35,36].
However, it should be assessed if enhanced extractability of carotenoids by cooking leads
to better bioavailability. The effect of different thermal treatments on the bioavailability of
carotenoids from broccoli has been poorly investigated. Only a few authors have discussed
plasma carotenoids after broccoli supplementation [2,37–39].
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In this scenario, the present work represents a pilot study that aimed to evaluate
how two methods commonly used for cooking broccoli (boiling and steaming) affect the
bioavailability of vitamin K (phylloquinone) and of hydrophilic (ITCs) and lipophilic (β-
carotene and lutein) antioxidants following a single acute consumption of vegetable. The
levels of above bioactive compounds were assessed in raw and cooked broccoli and in
the human plasma of seven healthy volunteers. Furthermore, the bioavailability of ITCs
following a single acute consumption of broccoli was compared with those following an
oral intake of a supplement containing glucoraphanin and active myrosinase.

2. Experimental Section
2.1. Chemicals and Reagents

Carotenoids standards (>95% purity; lutein and β-carotene), phylloquinone standard
(≥99.0%), 1,2-benzendithiol (96%), 1,3-benzodithiol-2-thione standards (100%) and solvents
HPLC grade (>95% purity, acetone, acetonitrile, dichloromethane, ethanol, methanol and
water) were purchased by Merck (Darmstadt, Germany). Potassium phosphate and acetate
ammonium were purchased by ITW Company (Darmstadt, Germany). Milli-Q water was
purified with a Millipure System (Milford, CT, USA).

2.2. Broccoli Sampling and Cooking Treatments

Fresh broccoli (Brassica oleracea L. var. italica) was purchased from a local farm (Agri-
novana, Petritoli, Italy). Within 24 h of collection, the vegetables were selected, cleaned and
deprived of the stalks and stems. Since the content of GLSs and carotenoids in broccoli
is subject to variation, due to environmental conditions, only broccoli derived from a
single crop was included in the study, and the florets had to weigh 10.0 ± 2.0 g and be
2.5 ± 0.5 cm long. Portions of 200 g of broccoli were prepared and frozen at −20 ◦C for
15 days before cooking. Two different thermal treatments were applied to the broccoli:
boiling and steaming. The first was achieved by using a pot measuring 18 cm in diameter
with a lid, containing 1.5 L of unsalted water and heated on an induction hob. Then 200 g
of selected broccoli florets was added to boiling water and cooked for 10 min. Steam-
ing was performed in an oven (Steam oven, AEG, Electrolux) by steam injection in the
chamber (RH% = 100), and the same amount of broccoli was cooked at 99 ◦C for 13 min,
after pre-heating of the oven. Both cooking-treatment conditions were chosen in line with
real household conditions. Preliminary tests were performed to select the most suitable
conditions for ensuring a satisfactory level of cooking of broccoli in order to be eaten by
the volunteers.

2.3. Study Design

A pilot study was designed. Seven healthy subjects (3 male/4 female) volunteered
for the three-way crossover. A pilot study was designed. Due to the limited number of
subjects, in order to minimize the age-related effects on the experimentation, a narrow
age group of the subject (25–35 years) was considered. The inclusion criteria were not
taking vitamin and mineral supplements or fortified food in the last month, no smoking,
BMI within 18.5–25 kg/m2 and being aged between 25 and 35 years. The exclusion criteria
were diagnosed diseases, such as allergies, diabetes, gastrointestinal and renal disease;
vegetarian diet; and none of the female subjects was pregnant or lactating. Moreover,
participants were recommended to limit the consumption of the following food rich in
carotenoids, vitamin K and GLSs at least a week before the trial: broccoli, cauliflower, kale,
Brussels sprouts, cabbage, rocket, horseradish, turnip and mustard; corn, potatoes, carrots,
peppers, yolk egg, pumpkin, spinach, chard, chicory, red radish, romaine lettuce, tomatoes,
asparagus, avocado, peas, soybean, oranges, apricots, pistachio and kiwi fruit.
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The study was conducted according to the guidelines of the Declaration of Helsinki and
approved by Departmental Review Board of Polytechnic University of Marche (protocol
code 2020-0614 B43). Informed consent was obtained from all subjects involved in the study.

2.4. Dietary Intervention and Biological Sample Collection

In the morning, at fasting, a single dose of 400 g of boiled broccoli or steamed broccoli,
or a single dose including 3 capsules of BroccoMax® (Jarrow Formulas, California, LA,
USA) containing glucoraphanine and activated myrosinase was consumed by each of
7 subjects on three separate occasions in a randomized manner, alternating with at least
2 weeks of washout period.

Blood samples (6 mL) were withdrawn from fasting volunteers and collected in
ethylenediaminetetraacetic acid (EDTA) and heparin vacutainers before and after 3, 6, 12
and 24 h from supplementation. Collected blood was centrifuged at 1500× g for 15 min at
4 ◦C to separate plasma and kept at −80 ◦C until analyses.

2.5. Total GLS in Broccoli as ITCs Equivalents and ITCs Plasma Level

In this study, total GLSs in broccoli is expressed as ITCs equivalents released by a
thioglucosidase, as suggested by Conaway et al. [22]. In fact, after extraction of GLSs from
florets, obtained by homogenizing 50 mg of minced broccoli with 0.2 mL of deionized water,
followed by 3 cycles of vortex (30 s) and sonication (3 min), the GLSs were hydrolyzed
to ITCs by incubating for 2 h in the dark at 60 ◦C with 2 mg Sinapis alba thioglucosidase
(Sigma-Aldrich, St. Louis, MO, USA), as described by Atwell et al. [40]. Moreover, total
ITCs equivalent in broccoli and the ITCs plasma level were quantified by using a cyclo-
condensation reaction developed by Ye et al. [41], according to which ITCs react with
the sulfhydryl groups of 1,2-benzendithiol, producing 1,3-benzodithiol-2-thione, which is
quantified chromatographically at 365 nm. Briefly, broccoli extract or plasma (0.2 mL) was
incubated at 65 ◦C for 2 h with 0.2 mL of 100 mmol/L potassium phosphate buffer, pH
8.5 and 0.4 mL of 20 mmol/L 1,2-benzenedithiol in acetonitrile [41]. After cooling to room
temperature and centrifugation at 1200× g for 5 min, 40 µL of supernatant was injected
into the reverse phase HPLC column (Kinetex, C18 100 A, 250 mm × 4.6 mm i.d., 5 µm,
Phenomenex, Torrance, CA, USA) and eluted with 80% methanol/20% water (by volume)
at a flow rate of 2 mL/min. The 1,3-benzodithiole-2-thione was eluted at about 5 min, and
the peak was quantified by using an HPLC system (YL Instrument, Anyang, Korea) that
was equipped with UV–visible detector (YL Instrument 9300) set at 365 nm [41], a column
compartment at 35 ◦C (YL Instrument 9330) and an autosampler (YL Instrument 9150) and
driven by YL-Clarity software™. The instrument was calibrated with pure 1,3-benzodithiol-
2-thione standard, and a good correlation coefficient (R2) of 0.996 was obtained in the range
of 22–1413 ng/mL.

2.6. Carotenoids in Broccoli and Plasma

Carotenoids in broccoli were extracted in accordance with Nartea et al. [36]. A total of
100 mg of freeze-dried broccoli powder was extracted twice by adding acetone (5 mL, 4 ◦C),
vortexing and keeping at 4 ± 1 ◦C (15 min), shaking (5 min) and centrifuging (1370 rpm,
10 min, 4 ◦C). The supernatant was filtered (Sartorius regenerate cellulose 0.45 µm) and taken
to dryness at 30 ◦C with rotavapor and resuspended in 0.5 mL of acetone for injection (2 µL).

Carotenoids in plasma were extracted as reported by Chauveau-Duriot et al. [42].
Plasma (350 µL) was deproteinized with the same volume of ethanol, and carotenoids were
extracted twice with n-hexane (800 µL). The mixture was vortexed (30 s) and centrifuged
(1370× g for 10 min at 4 ◦C). Organic phases were collected and evaporated under nitrogen,
and the residue was dissolved in acetone (100 µL) for injection (2 µL).
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Carotenoids analysis was run on and Acquity Ultra Pressure Liquid Chromatographic
H-class System (Waters Corporation, Milford, CT, USA) that was equipped with a Pho-
todiode Array Detector (PDA) and driven by Empower software v2.0, as reported by
Nartea et al. [36]. A faster version (20 min instead of 46 min) of the method developed
by Chauveau-Duriot et al. [42] was applied by using an Acquity column UPLC BEH C18
(2.1 mm × 100 mm, 1.7 µm). The mobile phase was composed of phase A, consisting of
acetonitrile (75%), dichloromethane (10%) and methanol (15%); and phase B, consisting of
ammonium acetate in water (0.05 M). Gradient was started at 75:25 (A:B) to 10 min, 98:2
(A:B) from 10 to 11 min and 98:2 (A:B) till 20 min. Flow rate was 0.4 mL/min, column oven
was set at 35 ◦C and sample loading was carried out at 20 ◦C. PDA analysis was performed
at 450 nm wavelength on a spectrum scanning in the 210–500 nm range. Carotenoids were
identified by comparison of retention time and absorbance spectrum with pure standards
and quantified by external calibration. Good correlation coefficients (R2) of 0.999 were
obtained in the range of 1–100 µg/mL for lutein and 0.05–100 µg/mL for β-carotene.

2.7. Phylloquinone in Broccoli and Plasma

Phylloquinone was extracted from broccoli in two ways: by homogenizing 50 mg of
minced florets with 1 mL of ethanol, followed by 3 cycles of vortex (30 s) and sonication
(3 min); and from plasma, by adding 250 µL of ethanol to 50 µL of sample and vortexing
vigorously. After centrifugation (1200× g for 5 min and 12,900× g for 2 min, respectively),
40 µL of surnatant was injected into the column (Kinetex, C18 100 A, 100 mm × 4.6 mm i.d.,
2.5 µm, Phenomenex, Torrance, CA, USA) connected to a post-chromatographic reducing
column (CQ-R 2.0 × 20 mm, Shiseido) by using an HPLC system (9300, YL Instrument,
Anyang, Republic of Korea) equipped with a fluorescence detector (Nanospace SI-2, Shi-
seido), as described by Cirilli et al. [43]. The optimized detection wavelengths were 335 nm
(excitation) and 430 nm (emission). Phylloquinone peak showed a retention time of 8.5 min,
and its level in plasma and broccoli was quantified by using a pure external standard
of phylloquinone, showing a good correlation (R2 > 0.999) in a range between 0.1 and
6.25 µg/mL.

2.8. Statistical Analysis

Each plasma and broccoli sample was analyzed in three technical and five biological
replicates respectively, and the results are expressed as mean ± standard deviation (SD).
Plasma bioavailability was expressed as Area Under Curve (AUC) and, for each time point,
as mean ± SD. The significance of differences among the samples were evaluated by using
one-way ANOVA with Tukey’s multiple comparison test if significant. Statistical analysis
was performed by using GraphPad Prism® 6.0 Software.

3. Results
3.1. ITCs Equivalent, Phylloquinone, Lutein and β-carotene in Broccoli
3.1.1. ITCs Equivalent

As above reported, the total GLSs levels in broccoli are expressed as ITCs equiv-
alent and quantified chromatographically at 365 nm as 1,3-benzodithiol-2-thione after
cyclocondensation reaction.

The total level of ITCs equivalent quantified in raw broccoli was 23.3 ± 1.6 mg/100 g
(Figure 1). Freezing and both cooking procedures significantly decreased the total ITCs
equivalent content in broccoli (ITCs eqfrozen = 18.5 ± 0.9 mg/100 g, ITCs eqsteamed = 14.2 ±
0.7 mg/100 g, ITCs eqboiled = 9.6 ± 1.1mg/100 g; p < 0.01); however, the steaming treatment
was able to better preserve these bioactive molecules by limiting their loss as compared to
boiling (p < 0.01).
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All samples were incubated with myrosinase at 60 ◦C for 2 h to promote the hydrolysis of GLSs to
ITCs. Data are expressed as mg/100 g of fresh vegetable ± SD of five cooking replicates. ** p < 0.01
vs. raw (a), frozen (b) and boiled (c).

3.1.2. Phylloquinone

Conversely, freezing and cooking treatments did not affect the phylloquinone con-
tent in broccoli. In fact, as shown in Figure 2, the amount of phylloquinone extracted
from raw, frozen and cooked vegetables was analogous (K1raw = 0.35 ± 0.01 mg/100 g,
K1frozen = 0.35 ± 0.09 mg/100 g, K1steamed = 0.35 ± 0.18 mg/100 g and K1boiled = 0.34 ±
0.06 mg/100 g).
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3.1.3. Carotenoids

The carotenoids profiles in raw and cooked broccoli are reported in Figure 3a,b. In
raw broccoli, lutein (non-provitamin A carotenoid) and β-carotene, displaying provitamin
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A activity, were found in the same amount (0.37 mg/100 g broccoli). Freezing did not affect
the content of both carotenoids in broccoli, while both thermal treatments increased the
extractability of lutein and β-carotene.
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Figure 3. Total β-carotene (a) and lutein (b) levels in raw, frozen (−20 ◦C for 15 days) boiled and
steamed broccoli. Data are expressed as mg/100 g of fresh vegetables ± SD of five cooking replicates.
** p < 0.01 vs. raw (a), frozen (b) and boiled (c).

Boiling resulted in being more efficient as a treatment for carotenoids extraction
as compared to steaming, as β-carotene was found to be 3.3-fold (boiling) and 0.9-fold
(steaming) more in cooked than in the raw-vegetable states (p < 0.01) and lutein was found
to be 2.4-fold (boiling) and 1.3-fold (steaming) more enhanced after cooking.
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3.2. Plasma Bioavailability of Bioactive Compounds

The plasma bioavailability of ITCs, phylloquinone, β-carotene and lutein was assessed
after an acute intake of 400 g of boiled or steamed broccoli, and the intake of these bioactive
compounds is summarized in Table 1. The ITC plasma bioavailability was evaluated by
comparing cooked vegetables with the supplement BroccoMax®, containing glucoraphanin
and active myrosinase.

Table 1. Amount (mg) of some bioactive compound given to volunteers by consuming 400 g of
cooked broccoli (boiled and steamed) and total GLS administered by taking 3 capsules of BroccoMax®.
Data are expressed as mean ± SD of five cooking replicates. Level of GLS in BroccoMax® is as stated
on the label by the manufacturer.

ITCs Equivalent Phylloquinone β-Carotene Lutein

BroccoMax® 90 - - -
Boiled 38.4 ± 4.4 1.36 ± 0.24 4.78 ± 0.03 4.83 ± 0.04

Steamed 56.8 ± 2.8 1.40 ± 0.72 2.26 ± 0.02 2.62 ± 0.03

GLS

BroccoMax® 90

In Figure 4, the plasma levels of ITCs at the baseline and after 3/6/12/24 h of supplemen-
tation with three capsules of BroccoMax® or 400 g of boiled or steamed broccoli are reported.
The supplement intake promoted the highest plasma ITC levels in terms of both the AUC
(BroccoMax® = 450.1) and Cmax achieved 3 h later (BroccoMax®

3h = 232.4 ± 96.2 ng/mL).
From 6 h after supplementation, the ITCs plasma levels significantly decreased (BroccoMax®

6h
= 118.1 ± 43.4 µg/mL, p < 0.01), reaching levels statistically not different compared to baseline
after 24 h (BroccoMax®

baseline = 17.3 ± 3.3, BroccoMax®
24h = 33.2 ± 14.5 µg/mL, p = 0.92).
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Figure 4. Total isothiocyanates (ITCs) levels in plasma of 7 subjects before (0) and after 3, 6, 12
and 24 h consumption of supplement (BroccoMax®) and broccoli cooked with boiling or steaming
treatment. Data are expressed as ng/mL of plasma ± SD of three technical replicates. * p < 0.05 and
** p < 0.01 vs. 0 h (a), 3 h (b) and 6 h (c) in subjects supplemented with BroccoMax®; # p < 0.05 and
## p < 0.01 vs. 0 h (a), 3 h (b), 6 h (c) and 12 h (d) in subjects supplemented with steamed broccoli.

However, steamed broccoli resulted in a slightly lower but statistically not signifi-
cant AUC compared to the supplement (Steamed = 417.1, p = 0.98) and, differently from
BroccoMax®, the maximum levels of ITC were reached 6 h after ingestion and remained
high up to 12 h (Steamed6h = 164.0 ± 94.9 ng/mL, Steamed12h = 132.6 ± 60.7 ng/mL).
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Conversely, the consumption of boiled broccoli did not significantly affect the plasma
level of these molecules over the next 24 h, reaching an AUC of 175.3, which is significantly
lower than that obtained with steamed (p = 0.017) and BroccoMax® (p = 0.016).

Moreover, eating 400 g of broccoli increased the plasma levels of phylloquinone inde-
pendently from the heat treatment used. In fact, as reported in Figure 5, the trend of both
curves is very similar, except that the consumption of boiled broccoli led to a significant
rise in vitamin K1 already 3 h later (Boiledbaseline = 0.8 ± 0.4, Boiled3h = 6.6 ± 4.2 ng/mL,
p < 0.01). However, there were no differences in the pharmacokinetic parameters between
the two cooking methods, as the plasma bioavailability achieved following boiled and
steamed broccoli administration showed AUC values of 18.7 and 16.7 (p = 0.84), with a Cmax
at 6 h of 7.2 ± 2.5 ng/mL and 7.7 ± 3.8 ng/mL, respectively.

Conversely, the plasma carotenoid levels analyzed in this study were not affected
by broccoli. In fact, as shown in Figure 6a,b, the amount of both lutein and β-carotene
quantified showed non-significant fluctuations during the 24 h following supplementation.
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Figure 5. Total phylloquinone levels in plasma of 7 subjects before (0) and after 3, 6, 12 and 24 h
consumption of broccoli cooked with boiling or steaming treatment. Data are expressed as ng/mL of
plasma ± SD of three technical replicates. * p < 0.05 and ** p < 0.01 vs. 0 h (a), 3 h (b) and 6 h (c) in
subjects supplemented with boiled broccoli; # p < 0.05 and ## p < 0.01 vs. 0 h (a), 3 h (b) and 6 h (c) in
subjects supplemented with steamed broccoli.
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4. Discussion

Bioactive compounds are essential and non-essential molecules found in fruit and
vegetables that are able to modulate metabolic processes, resulting in the improvement
of human health [44]. In the last decades, several studies have focused on the beneficial
role of ITCs, the active compounds deriving from the GLSs mainly present in Brassicaceae
by hydrolytic activity of myrosinase. However, the different methods of processing and
cooking of foods can alter the amount and the availability of these compounds, thus
affecting their bioavailability and, consequently, their biological role.

According to our results, both boiling and steaming treatments significantly decreased
total ITCs equivalent level in florets of broccoli; steaming minimized their loss (−23%
compared to frozen florets), in contrast to boiling, which almost halved them (−48%). GLSs
are water-soluble compounds, and, therefore, they are usually lost during conventional
cooking, because of leaching into surrounding water, due to cell lysis [32]. The ability
of steaming to minimize GLS losses compared to boiling and other thermal treatments
has been confirmed in several publications, albeit with variable data [45–47]. In fact,
Baenas et al. [47] found GLS loss of more than 85% and 50% in boiled and steamed broccoli,
respectively. However, in a study of Vallejo et al. [45], steaming had a minimal effect
on these molecules, while boiling had a loss rate of 55%. According to previous reports,
the vegetable matrix, myrosinase activity, the presence of specific proteins and extrinsic
postharvest represent determining factors on the degradation of compounds during food
processing [48]. Yuan et al. [46] pointed out that the variation in GLSs levels following
different cooking methods of broccoli also depends on the composition of the aglycon
side chain, after demonstrating that the total aliphatic glucosinolates remained almost
unchanged in steamed broccoli and decreased by 41% in boiled, while the content of total
indole glucosinolates decreased in both steamed (37%) and boiled (60%) broccoli.

The present study highlighted the crucial role of cooking procedures on plasma
bioavailability of ITCs upon broccoli uptake. In fact, the intake of 400 g of steamed broccoli
promoted a much higher ITC plasma adsorption than boiled vegetables. This is partly due
to both GLSs (precursors of ITC) lost during boiling and the different impact of cooking
approaches on vegetables structure, with the boiling procedure being more invasive in
terms of structural pectin degradation in broccoli, and with a consequent higher washing-
out effect of hydrophilic compounds (GLS) in boiling than steaming [49].
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In order to clarify a potential impact of residual enzymatic activity after thermal
treatments, we also quantified total ITC produced without adding external Sinapis alba
thioglucosidase, finding very low levels independently from cooking methods (Appendix A,
Figure A1). The effect of heating treatments on denaturation of myrosinase of Brassica
plants has been largely studied. In particular, Rungapamestry et al. [50] showed that
myrosinase activity in cabbage is lost after microwaving for 2 min (−97%) or steaming for
7 min (−90%).

Therefore, the plasma levels of total ITCs found during the 24 h following the intake
of cooked broccoli originate exclusively from the hydrolytic activity of intestinal myrosi-
nase. In fact, following consumption of broccoli with myrosinase inactivated, most of the
ingested GLSs reach the colon, where they are hydrolyzed by the microflora to release
isothiocyanates, along with other metabolites [51,52]. However, when myrosinase is active
in the food ingested, GLSs are quickly hydrolyzed in the upper gastrointestinal tract, and
the breakdown products are absorbed [53,54]. Accordingly, in our study the BroccoMax®

intake containing GLSs and active myrosinase resulted in a more rapid absorption of
ITCs, peaking at 3 h compared to cooked broccoli (peaked at 6 h), even though the AUC
calculated did not differ significantly from steamed vegetables. Our data highlight that
the beneficial effects of dietary broccoli consumption are limited by the loss associated
with cooking methods, in particular, boiling. Accordingly, the efficacy of broccoli as super-
foods rich in glucosinolate is limited also in respect to the high daily consumption dose
required to achieve biological significant concentration in the organism. On the other hand,
supplementation with glucosinolate/myrosinase-enriched extracts (BroccoMax®, Jarrow
Formulas, CA, USA) might provide a practical and efficient approach to the supplementa-
tion of these bioactive compounds. Comparing the intake of fresh broccoli and steamed,
Conaway et al. [22] noticed that thermal treatment delayed the absorption of ITCs from the
intestinal tract and, in contrast to our data, led to an increase in plasma availability three
times lower than fresh vegetables, highlighting the key role of myrosinase in the conversion
of GLSs to ITCs. Therefore, steaming treatment limited the loss of GLSs in broccoli cooking,
thereby promoting a much higher bioavailability of isothiocyanates in plasma as compared
to boiling.

On the contrary, both cooking treatments affected positively the extractability of
carotenoids. In particular, steaming led to a higher significant increase in lutein than
β-carotene when compared to the raw vegetable. The outcomes confirmed that the effect
of cooking on carotenoids depends on the level of tissue softening, which is considered
higher in boiling water, provoking the release of matrix bound compounds. In accordance
with these results, Gliszczyńska-Świgło et al. [32] found the boiling and steam-cooking of
broccoli to provoke an increase in β-carotene and lutein with respect to raw broccoli. In the
same way, Miglio et al. [55] found that the contents of all carotenoids significantly increased
after the boiling (32%), as well as after the steaming (around 19%), of broccoli in comparison
to the raw one. Many studies have been conducted on the effect of cooking on carotenoids
in brassica vegetables (i.e., broccoli and cauliflower), also producing controversial findings
and without considering if higher extractability of carotenoids is potentially translated to a
higher plasma availability. In our study, the higher β-carotene and lutein extracted after
both cooking techniques, with heat-transfer efficiency provoking different cell-disruption
levels, did not affect their plasma bioavailability. However, our conclusion is limited to the
fact that the carotenoid steady-state profile is the result of a long-term dietary pattern and
is slightly influenced by acute supplementation with carotenoids-rich foods [37]. Moreover,
our study is based on an acute intake of 4.8 mg of β-carotene and 4.8 mg of lutein for boiled
broccoli, and of 2.3 mg of β-carotene and 2.6 mg of lutein for steamed broccoli. However,
other authors investigated 4–11 days of similar levels of β-carotene and lutein from broccoli
supplementation [2,37–39], registering in some cases plasma variations in carotenoids.
Brown et al. [37] concluded that 600 g of broccoli had no significant effect on the plasma
carotenoids concentration, in agreement with our outcomes. Granado et al. [2] reported
a significant increase in plasma lutein concentrations after the intake for 1 week of 200 g
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broccoli, while some authors found a significant increase in both lutein and β-carotene in
plasma after 4–10 days of broccoli supplementation [38,39].

Finally, phylloquinone, well-known for its beneficial role in blood coagulation and
bone metabolism, represents the only molecule not affected by heat treatments. In ac-
cordance with our results, Lee et al. [35] noticed that boiling, blanching, microwaving
and steaming did not alter significantly vitamin K1 content in broccoli. This is probably
due to its chemical characteristics, as vit K1 is a fat soluble and relatively heat stable
compound [43]. Similarly, plasma bioavailability did not differ from the type of cooking
performed on the broccoli before supplementation. In fact, both the Area Under Curve and
the maximum absorption peak, reached 6 h after ingestion, are very similar. These results
are in agreement with some previous publications showing a comparable bioavailability
curve of phylloquinone after the ingestion of kale [56–58], but they contrast with those
of Garber et al. [59], who showed that phylloquinone peaked after 4 h by ingestion of
spinach, reaching lower concentrations. A large number of variables undoubtedly affect the
bioavailability of phylloquinone from the diet, i.e., specific foods, consumption of cooked
vs. raw vegetables and fat content of the diet. A limitation of the study refers to the low
sample size of the sample and the narrow age group of the subjects; however, the present
experimental setting allows us to identify specific differences in the cooking methods with
regard to bioactive compounds’ bioavailability

5. Conclusions

Steaming has demonstrated to be able to preserve GLSs in broccoli, thus promoting the
plasma bioavailability of ITCs, as it resulted in being significantly higher than boiling and
comparable to the plasma levels reached following the intake of a supplement containing
glucoraphanin and active myrosinase. Therefore, considering the antioxidant action and
the potential chemopreventive activity of ITCs, steaming represents the most suitable
cooking method to promote the health benefits of broccoli in the diet. On the contrary,
boiling favored a greater extraction of lipophilic antioxidants compounds, such as lutein
and β-carotene, from broccoli, even if there was no increase in their levels after ingestion.
Finally, both steaming and boiling did not change the phylloquinone content in the food,
thus reflecting a similar increase in plasma levels for both cooking methods.
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Appendix A

In order to verify if freezing and both cooking treatments were able to inhibit the
endogenous myrosinase activity, a preliminary test was performed comparing the level
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of glucosinolates converted to ITCs before cyclocondensation reaction with or without
Sinapis alba thioglucosidase incubation. Figure A1 emphasizes that keeping raw broccoli at
−20 ◦C for 15 days did not affect endogenous myrosinase activity, as GLS levels converted
to ITC are similar regardless of the addition of the enzyme. Conversely, the incubation with
exogenous thioglucosidase is a key step to quantify glucosinolates originally present in
cooked broccoli, because heating inactivated endogenous myrosinase prevents conversion
to ITCs.
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