
Article
FKBP10 Regulates Protein
 Translation to Sustain
Lung Cancer Growth
Graphical Abstract
Highlights
d FKBP10 is selectively expressed in lung cancer cells

d Expression of FKBP10 negatively correlates with survival of

lung cancer patients

d FKBP10 downregulation suppresses cancer growth and

cancer stem-like features

d FKBP10 regulates translation elongation in particular upon

insertion of proline
Ramadori et al., 2020, Cell Reports 30, 3851–3863
March 17, 2020 ª 2020 The Author(s).
https://doi.org/10.1016/j.celrep.2020.02.082
Authors

Giorgio Ramadori, Rafael M. Ioris,

Zoltan Villanyi, ..., Pierre Baldi,

Martine A. Collart, Roberto Coppari

Correspondence
giorgio.ramadori@unige.ch (G.R.),
martine.collart@unige.ch (M.A.C.),
roberto.coppari@unige.ch (R.C.)

In Brief

Ramadori et al. show that the peptidyl-

prolyl-cis-trans-isomerase FKBP10 is

selectively expressed in lung cancer cells,

and its expression negatively correlates

with patient survival. FKBP10 is

associated with ribosomes and regulates

translation elongation, in particular upon

insertion of proline, hence supporting

lung cancer growth and stem-like traits.

mailto:giorgio.ramadori@unige.ch
mailto:martine.collart@unige.ch
mailto:roberto.coppari@unige.ch
https://doi.org/10.1016/j.celrep.2020.02.082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.02.082&domain=pdf


Cell Reports

Article
FKBP10 Regulates Protein Translation
to Sustain Lung Cancer Growth
Giorgio Ramadori,1,2,11,* Rafael M. Ioris,1,2,11 Zoltan Villanyi,3,11 Raquel Firnkes,1,2,11 Olesya O. Panasenko,1,2,4

George Allen,3 Georgia Konstantinidou,5 Ebru Aras,1,2 Xavier Brenachot,1,2 Tommasina Biscotti,6 Anne Charollais,1,2

Michele Luchetti,7 Fedor Bezrukov,8 Alfredo Santinelli,6 Muntaha Samad,9,10 Pierre Baldi,9,10 Martine A. Collart,3,*
and Roberto Coppari1,2,12,*
1Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
2Diabetes Center of the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
3Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics, Facutly of Medicine, University of Geneva, 1211

Geneva, Switzerland
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SUMMARY

Cancer therapy is limited, in part, by lack of speci-
ficity. Thus, identifying molecules that are selectively
expressed by, and relevant for, cancer cells is of
paramount medical importance. Here, we show that
peptidyl-prolyl-cis-trans-isomerase (PPIase) FK506-
binding protein 10 (FKBP10)-positive cells are pre-
sent in cancer lesions but absent in the healthy
parenchyma of human lung. FKBP10 expression
negatively correlates with survival of lung cancer pa-
tients, and its downregulation causes a dramatic
diminution of lung tumor burden in mice. Mechanisti-
cally, our results from gain- and loss-of-function as-
says show that FKBP10 boosts cancer growth and
stemness via its PPIase activity. Also, FKBP10 inter-
acts with ribosomes, and its downregulation leads to
reduction of translation elongation at the beginning
of open reading frames (ORFs), particularly upon
insertion of proline residues. Thus, our data unveil
FKBP10 as a cancer-selective molecule with a key
role in translational reprogramming, stem-like traits,
and growth of lung cancer.
INTRODUCTION

Amajor advance in the fight against cancer is the identification of

cancer-specific and cancer-relevant molecular mechanisms.

For example, emphasis has been given to the possibility of tar-

geting intracellular (e.g., PI3K) or metabolic (e.g., aerobic glycol-

ysis, fatty acid oxidation) pathways found to be altered in, and
Cell R
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important for, cancer cells progression and/or resistance to ther-

apy (Wang and Lippard, 2005; Zugazagoitia et al., 2016). In addi-

tion, development of immune checkpoint inhibitors has shown

very encouraging efficacy (Iwai et al., 2005; Leach et al., 1996;

Son et al., 2017;Wang and Lippard, 2005; Wolchok, 2018; Zuga-

zagoitia et al., 2016). Furthermore, the identification and target-

ing of cancer stem cells (CSCs) has started to show its potential

in humans (Pattabiraman andWeinberg, 2014; Prost et al., 2015).

However, cancer relapse and mortality rates are still too high;

thus, there is an urgent need for further improvement. Indeed,

lack of cancer specificity is a major shortcoming, as it underlies

side effects and greatly hinders the effectiveness of current ther-

apy (Wang and Lippard, 2005; Zugazagoitia et al., 2016). For

example, current anti-cancer chemotherapy is aimed at

reducing proliferation of highly proliferative malignant cells by

intravenous delivery of chemical compounds impairing DNA/

RNA synthesis and/or microtubule formation (an essential step

in cellular division). Unfortunately, these compounds do not

target only cancer cells but also affect these functions in normal

proliferating cells. Furthermore, CSC-targeting approaches and

immune checkpoint inhibitors do not guarantee cancer speci-

ficity, and these methods can also lead to serious side effects

(Iwai et al., 2005; Leach et al., 1996; Pattabiraman andWeinberg,

2014; Prost et al., 2015; Son et al., 2017; Wang and Lippard,

2005; Wolchok, 2018; Zugazagoitia et al., 2016). The identifica-

tion of cancer-specific and cancer-relevant molecules is partic-

ularly important in the context of lung cancer, which is one of

the leading causes of cancer death worldwide and for which

there is a clear unmet medical need (Burris, 2009; Camidge

et al., 2019; Ferrer et al., 2018; Román et al., 2018). For example,

KRAS-mutated non-small cell lung cancer (NSCLC; accounting

for �20% of all lung cancers) (Ferrer et al., 2018; Pao et al.,

2005; Román et al., 2018) lacks targeted therapy (Ferrer et al.,
eports 30, 3851–3863, March 17, 2020 ª 2020 The Author(s). 3851
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. FKBP10 Is Selectively Expressed by, and Relevant for, Lung Tumors
(A) FKBP10 protein expression in lung tissue of embryos (12th day) and adult mice (8 weeks of age).

(B) Schematic representation of the breeding pairs used to generate KrasG12D; Fkbp10 haploinsufficiency mice model and experimental timeline of this mouse

model.

(C) Immunoblot showing expression of FKBP10 in healthy lung and lung tumors of KrasG12D mice.

(D) Representative images of human lung tumor and healthy lung tissue stained against FKBP10 (positive staining is shown in brown color). Scale bar: 50 mm.

(E) Number of cases and percentage of FKBP10 positive (strong expression, >25% of FKBP10-positive cells; moderate expression, <25% of FKBP10-positive

cells) and negative expression in human healthy and tumor lung tissues.

(F and G) FKBP10 expression negatively correlates with survival of patients with lung adenocarcinoma. Data were obtained from KMPLOT (high and low values of

expression were split by median expression of FKBP10) (F) and CANCERTOOL database (G). Quartiles represent ranges of expression that divide the set of

values into quarters. Quartile color code: blue, Q1; green, Q2 + Q3; red, Q4. Each quartile includes 32 patients.

(legend continued on next page)
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2018; Pao et al., 2005; Román et al., 2018) and is associated with

poor outcome (Ferrer et al., 2018; Román et al., 2018).

Several proteins are highly expressed during organismal devel-

opment, while their expression becomes low or negligible in most

tissues during adulthood. However, a few of these proteins are re-

expressed at high level in cancer lesions (Monk and Holding,

2001), where they might contribute to tumorigenesis. Pertinent

to lung cancer, these include carcinoembryonic antigen (Cortazar

et al., 2018), Mucin-1, melanoma-associated antigen (MAGE-3),

5T4 tumor antigen, and sal-like protein 4 (SALL4) (Boghaert

et al., 2008; Yasumoto et al., 2009; Yong et al., 2016). Unraveling

proteins that are relevant for, andselectively expressedby, tumors

is of paramountmedical interest, as it may pave the way for better

cancer diagnostic and therapeutic approaches. In fact, targeting

proteins that are selectively expressed by cancer cells is a prom-

ising avenue to specifically hinder cancer growth while sparing

healthy tissue. To this end, we have previously reported that

FK506-binding protein 10 (FKBP10), an endoplasmic reticulum

(ER) chaperone containing four peptidyl-prolyl-cis-trans-isom-

erase (PPIase) domains (Chen et al., 2017; Ishikawa et al., 2008),

might have NSCLC-relevant attributes (Ramadori et al., 2015).

FKBP10 is highly expressed during development, and its expres-

sion decays in adulthood (Patterson et al., 2000). During organ-

ismal growth, FKBP10 is important for bonedevelopment. Indeed,

inborn loss-of-function mutations in FKBP10 have been associ-

atedwith the pathogenesis of osteogenesis imperfecta andBruck

syndrome (Alanay et al., 2010; Christiansen et al., 2010; Kelley

et al., 2011). Pertinent to cancer, in addition to our published re-

sults onNSCLC(Ramadori et al., 2015), FKBP10hasalsobeende-

tected in human colorectal adenocarcinoma and gastric cancer

but not in healthy colorectal and gastric tissues (Liang et al.,

2019; Olesen et al., 2005). Other reports further indicate an onco-

genic role of FKBP10. For example, in renal cell carcinoma,

FKBP10 is overexpressed, and its downregulation diminished

cell proliferation, invasion, and migration (Ge et al., 2017). Yet

others have shown that reduced FKBP10 expression correlates

with poorer overall survival of patients with high-grade ovarian se-

rous carcinoma (Quinn et al., 2013). Thus, although FKBP10

expression appears to be restricted within the cancer lesion in

adulthood, its role in cancer still needs to be fully understood.

Here, we combined in vivo and in vitro functional approaches

to establish the specificity and relevance of FKBP10 in KRAS-

driven NSCLC and unravel, at least in part, the mechanism un-

derlying its pro-tumoral effect in this subset of lung cancer for

which there is a clear unmet medical need.

RESULTS

FKBP10 Is Selectively Expressed by, and Relevant for,
Lung Tumors
To determine whether FKBP10 is restrictedly expressed in lung

cancer, we first ruled out the possibility that FKBP10 is ex-

pressed in the healthy lung in adulthood. Indeed, our data shown

in Figure 1A are in keeping with previously published results (Pat-
Data were analyzed by contingency table using Fisher’s exact test (E) to determ

negative FKBP10 expression in tumor lesions compared with healthy lung tissue

See also Figure S1 and Tables S1 and S2.
terson et al., 2000) indicating that FKBP10 is highly expressed in

lung during the fetal stage, whereas its content decays in adult-

hood. Next, we generated a genetically engineered mouse that

develops KRAS-driven lung tumors (i.e., KrasG12D mice). This is

an established murine model of human KRAS-mutated NSCLC,

a type of cancer accounting for �20% of all lung cancers (Ferrer

et al., 2018; Fisher et al., 2001; Pao et al., 2005; Román et al.,

2018).KrasG12Dmice were obtained by breeding a transgene en-

coding KrasG12D under the control of the tetracycline operator

(Tet-op-Kras) to a transgene expressing the reverse tetracycline

transactivator in the respiratory epithelium under the control of

the Clara cell secretory protein promoter (CCSP-rtTA) (Fig-

ure 1B). The resulting bi-transgenic KrasG12D mice develop

lung tumors with 100% penetrance following continuous doxy-

cycline (doxy) administration (Fisher et al., 2001). Our data

shown in Figure 1C confirm that FKBP10 is not expressed in

the healthy lung, while its content is promptly detectable in tumor

lesions of KrasG12D mice. To expand our analysis to human, we

performed FKBP10 immunohistochemistry (IHC) analysis in 32

cases of healthy lung tissue and 160 cases of NSCLC (80 cases

of each squamous cell carcinoma and adenocarcinoma).

FKBP10-positive cells were detected only in cancer lesions

and not in the healthy parenchyma (Figures 1D and 1E; Tables

S1 and S2). These data demonstrate that in the murine and hu-

man adult lung FKBP10 expression is cancer specific.

To investigate the relevance of FKBP10 in human cancer, we

probed FKBP10 in KMPLOT (Nagy et al., 2018) and CANCER-

TOOL (Cortazar et al., 2018) (these public databases catalog

the correlation between patient survival and the expression of in-

dividual genes in several types of cancer, including lung cancer).

Of note, we found that expression of FKBP10 inversely corre-

lates with the survival of patients affected by lung adenocarci-

noma (Figures 1F and 1G). Notably, high expression of

FKBP10 reduces patients’ survival probability by more than

50% compared with the low FKBP10 expression cohort, an ef-

fect seen in both genders (Figures 1F and S1A). Further analysis

of the CANCERTOOL database revealed that the expression of

FKBP10 is similar between lung tumors bearing mutant KRAS,

EGFR, and KRAS/EGFR non-mutants (Figure S1B), suggesting

that the relevance of FKBP10 in lung cancer is wide ranging

(i.e., it is not limited to a specific genotype). Last, we found

that the expression of FKBP10 inversely correlates with patients’

survival in several other cancer-type cohorts (Figure S1C), hence

broadening the putative relevance of FKBP10 in human cancer.

FKBP10 Downregulation before Tumor Onset Hinders
Kras-Driven Lung Tumorigenesis
To directly test the significance of FKBP10 in tumorigenesis

in vivo, we assessed the outcome of FKBP10 downregulation

in tumors of KrasG12D mice. Because whole-body FKBP10 defi-

ciency is embryonically lethal (Lietman et al., 2014), we gener-

ated KrasG12D mice heterozygous for a Fkbp10-knockout allele

(KrasG12D; Fkbp10+/�) and their controls (KrasG12D) by breeding

the Tet-op-Kras, CCSP-rtTA, and Fkbp10-knockout alleles as
ine the association between positive (strong and moderate expression) and

; p < 0.001.

Cell Reports 30, 3851–3863, March 17, 2020 3853
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Figure 2. FKBP10 Downregulation Hinders Kras-Driven Lung Tumorigenesis

(A) Immunoblot showing expression of FKBP10 in lung tumors and scatterplot showing relative quantification of FKBP10 protein content (normalization over

b-actin).

(B) Representative images of lung sections stained with hematoxylin and eosin and scatterplot showing quantification of tumor size (mm2).

(C) Representative images of lung sections stained for apoptosis (anti-cleaved caspase-3) and histogram indicating percentage of apoptotic positive cells/tumor

cells. Arrows indicate cleaved caspase-3-positive cells.

(D) Representative images of lung sections stained for proliferation (anti-Ki67) and histogram indicating percentage of proliferative positive cells/tumor cells.

Data are shown asmean ±SEM. Statistical analyses were done using two-tailed unpaired Student’s t test (A–D); *p < 0.05 and **p < 0.01. Scale bars: 1mm (B) and

50 mm (C and D); n = 4–6 mice per group (A–D).
indicated in Figure 1B. These mice were then treated with doxy

for 12 weeks, starting at 8 weeks of age (Figure 1B). Endpoint

analysis of the lungs revealed that FKBP10 haploinsufficiency re-

sults in approximately 50% reduction of FKBP10 protein level in

lung tumors (Figure 2A). Strikingly, tumor burdenwas found to be

reduced by about 40% in KrasG12D; Fkbp10+/� mice compared

with KrasG12D controls (Figure 2B). Changes in tumor growth

could be due to increased cell death and/or decreased cell pro-

liferation. Notably, although the status of apoptosis level (as-

sessed using IHC against cleaved caspase-3) was unchanged

(Figure 2C), cell proliferation (assessed using IHC against Ki67)
3854 Cell Reports 30, 3851–3863, March 17, 2020
was significantly reduced in tumors of KrasG12D; Fkbp10+/�

mice compared with controls (Figure 2D). Collectively, our find-

ings establish that reduced FKBP10 expression before tumor

onset hinders Kras-driven lung tumorigenesis.

FKBP10 Downregulation after Tumor Onset Suppresses
Kras-Driven Lung Tumorigenesis
To further test whether FKBP10 downregulation is of anti-cancer

value, we generated an additional mousemodel in which Fkbp10

can be deleted conditionally. This animal model bears five

different alleles: Tet-op-Kras (Konstantinidou et al., 2013),



CCSP-rtTA (Konstantinidou et al., 2013), two lox-P-flanked

Fkbp10 loci (Fisher et al., 2001), and the Ubi-Cre (Ruzankina

et al., 2007) allele (KrasG12D; Fkbp10loxP/loxP; Ubi-Cre [KFU]) (Fig-

ure S2A). By delivering doxy and tamoxifen, this mutant mouse

allows time-dependent induction of tumorigenesis and Fkbp10

deletion, respectively. As indicated in Figure 3A, we triggered

tumorigenesis at 8 weeks of age and Fkbp10 deletion post-tu-

mor onset at 14 weeks of age. Endpoint analysis of the lungs

and tumors of KFUmice showed an approximate 85% reduction

of FKBP10 protein content compared with controls (KrasG12D;

Fkbp10loxP/loxP [KF]) that similarly underwent doxy and tamoxifen

treatments (Figure 3B). Histological analysis revealed a dramatic

reduction of tumor area in KFU compared with KF mice (Fig-

ure 3C). Additionally, to determine in vivo tumor growth dy-

namics, X-ray micro-computed tomography (micro-CT) scan-

ning was performed at weeks 0, 6, and 12 after tumorigenesis

induction. At week 6, both cohorts presented no difference in tu-

mor volume (Figure 3D). Importantly, although tumor volume

continued to increase in controls, it strikingly decreased in KFU

mice (Figures 3D and S2B). These results are in line with data

shown in Figure 3C indicating that FKBP10 downregulation after

tumor onset greatly reduces tumor burden in a KRAS-driven

NSCLC mouse model. We next examined whether increased

apoptosis and/or decreased proliferation could explain the

dampening of tumor burden. Remarkably, using IHC against

cleaved caspase-3, we found a 3-fold increase in apoptosis

levels in KFU mice compared with KF controls (Figure 3E),

whereas no change in proliferation (IHC against Ki67) was

observed between genotypes (Figure 3F). Together, these data

demonstrate that Fkbp10 deletion after tumor onset nearly abol-

ishes tumor burden in mice, hence suggesting FKBP10 as a

target of therapeutic potential against KRAS-driven NSCLC.

FKBP10PromotesCancer Stem-like Traits via Its PPIase
Activity
The aforementioned data establish that FKBP10 downregulation

suppresses tumor burden. Yet a smaller lesion does not equal a

less dangerous tumor, as itmight beenriched inCSCs (a subpop-

ulation of cells with high tumorigenic and self-renewal capacity)

(Ioris et al., 2017; Lapidot et al., 1994; Pattabiraman and Wein-

berg, 2014; Wang and Dick, 2005). Thus, we aimed to assess

whether FKBP10 affects cancer stemness. First, the ability of

cancer cells to form spheres in non-adherent in vitro cultures is

a well-established readout of CSCs (Dontu et al., 2003; Ioris

et al., 2017; Ponti et al., 2005; Rasheed et al., 2010). Hence, we

assessed the capacity of human lung (H1650 and A549), colo-

rectal (DLD-1 and HT-29), and breast (MCF10DCIS) cancer cell

lines transduced with a control vector (empty vector) compared

with cells transduced with a vector containing short hairpin

RNA (shRNA) against FKBP10 (shFKBP10; leading to FKBP10

downregulation) to form tumorspheres. Our results indicate that

FKBP10 downregulation significantly decreased tumorsphere-

forming capacity of the aforementioned cancer cells (Figures

4A and S3A). Second, we assessed the percentage of the cell

population displaying high aldehyde dehydrogenase (ALDH) ac-

tivity, which has been shown as a CSCmarker in certain tumors,

including lung, colon, andbreast cancers (Carpentino et al., 2009;

Cheung et al., 2007; Ginestier et al., 2007; Ioris et al., 2017). Of
note, FKBP10 downregulation diminished the percentage of can-

cer cells with high ALDH activity (ALDHhigh) (Figure 4B). Next, by

fluorescence-activated cell sorting, we isolated A549 cells with

high and low ALDH activity (ALDHlow). Remarkably, ALDHhigh

A549 cells harboring empty vector or shFKBP10 were enriched

in CSCs, as their tumorsphere-forming capacity was higher

compared with their ALDHlow controls (Figure S3B). Of note,

ALDHhigh A549 cells harboring empty vector gave rise to a larger

number of tumorspheres compared with ALDHhigh A549 cells

harboring shFKBP10 (Figure S3B); these data underscore the

importance of FKBP10 in maintaining the CSCs phenotype.

A reduced number of CSCs should lead to reduced tumori-

genic capacity in vivo. Thus, we tested whether FKBP10 down-

regulation delays the appearance of A549 and H1650 xeno-

grafts. These cells, with or without FKBP10 downregulation,

were injected into the flank of non-obese diabetic/severe com-

bined immunodeficient (NOD/SCID) mice, and their growth was

monitored over time. Results shown in Figures 4C and S3C

demonstrate that FKBP10 downregulation significantly delays

appearance of these tumor xenografts. Next, we performed

gain-of-function experiments and found that FKBP10 overex-

pression (FKBP10 ove) significantly increases the tumor-

sphere-forming capacity of human cancer cells (Figure 4D).

To further determine the mechanism underlying the pro-CSC

action of FKBP10, we directly tested the relevance of its PPIase

activity. By overexpressing a mutant FKBP10 (FKBP10 8FY,

which contains mutations in all four PPIase domains; Chen

et al., 2017), we uncovered that the PPIase activity of

FKBP10 is required for its pro-tumorsphere-forming action.

Indeed, although FKBP10 8FY was similarly overexpressed as

wild-type FKBP10, it did not change the tumorsphere-forming

capacity of these cancer cells (Figure 4D). Collectively, our

data indicate that FKBP10 promotes the stemness and tumor-

igenic capacity of human cancer cells through a mechanism

dependent on its PPIase activity.

FKBP10 Regulates Translation Elongation
Altogether, the aforementioned results indicate that FKBP10 is a

cancer-specific and cancer-relevant molecule. Thus, to deter-

mine the mechanism underlying its role in cancer, we performed

an unbiased experiment aimed at identifying FKBP10 interacting

proteins. Analysis by liquid chromatography (LC)-mass spec-

trometry (MS) of A549 cell lysates obtained after protein immu-

noprecipitation (IP) with a specific antibody against FKBP10 (Fig-

ure S4A) revealed a list of 146 putative interacting partners (Table

S3). Gene Ontology (Ashburner et al., 2000; The Gene Ontology

Consortium, 2019) analysis of this list showed a significant

enrichment of proteins representing structural constituents of ri-

bosomes (Figure 5A). These proteins obtained by IP were en-

riched in A549 cancer cells with intact versus reduced FKBP10

expression (Figure S4A). To test whether FKBP10 interacts

with ribosomes, A549 cell lysates were separated on a sucrose

gradient (Faller et al., 2015; Liu et al., 2013). Indeed, FKBP10

was detected in the ribosome-containing fractions, particularly

in monosome and light polysome fractions (Figure 5B). To

assess the functional relevance of this association, wemeasured

[35S]-methionine incorporation in A549 cells with or without

FKBP10 knockdown. FKBP10 knockdown reduced protein
Cell Reports 30, 3851–3863, March 17, 2020 3855
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Figure 3. FKBP10 Ablation Suppresses Tumorigenesis after Tumor Onset

(A) Experimental timeline of KrasG12D; Fkbp10loxP/loxP (KF) and KrasG12D; Fkbp10loxP/loxP; Ubi-Cre (KFU) mouse models.

(B) Immunoblot showing expression of FKBP10 in lung tumors and scatterplot showing quantification of FKBP10 protein content (normalization over b-actin).

(C) Representative images of lung sections stained with hematoxylin and eosin and scatterplot showing quantification of tumor size (tumor area per mm2 of lung

area). Arrows indicate tumors.

(D) Representative images showing three-dimensional (3D) lung (green) and tumors/vessels (red) renderings dorsally and axial sections of thoracic cavity at the

indicated time points of two individual mice (KF and KFU). Scatterplot illustrating the percentage tumor growth of week 12 divided by week 6.

(E) Representative images of lung sections stained for apoptosis (anti-cleaved caspase-3) and scatterplot indicating percentage of apoptotic positive cells/tumor

cells. Arrows indicate cleaved caspase-3-positive cells.

(F) Representative images of lung sections stained for proliferation (anti-Ki67) and scatterplot indicating percentage of proliferative positive cells/tumor cells.

Data are represented asmean ±SEM. Statistical analyseswere done using two-tailed unpaired Student’s t test (B–F); *p < 0.05 and ***p < 0.001. Scale bars: 1mm

(C) and 50 mm (E and F); n = 4–8 mice per group (B–F).

See also Figure S2.
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Figure 4. FKBP10 Promotes Cancer Stem-like Traits via Its PPIase Activity

(A) Tumorsphere formation capacity of A549 and H1650 lung cancer cells harboring empty vector or shFKBP10. Scale bar: 50 mm.

(B) ALDH activity of A549, H1650, and DLD-1 cells harboring empty vector or shFKBP10. ALDH, aldehyde dehydrogenase; DEAB, N,N-dieth-

ylaminobenzaldehyde.

(C) Kaplan-Meier curves comparing percentage of tumor-free mice at different time points after subcutaneous injection of A549 and H1650 cells harboring empty

vector or shFKBP10 (at concentration of 1 3 105 cells). n = 6 mice per group.

(D) Tumorsphere formation capacity of MDA-MB-321 and DLD1 cells harboring empty vector, a vector overexpressing FKBP10, or FKBP10 mutant (8FY)

(mutations in all four PPIase domains of the protein). Below bars are shown western blot data revealing molecular weight (right lanes) and FKBP10 and GAPDH

protein content.

Data are shown as mean ± SEM. Comparisons were performed using two-tailed unpaired Student’s t test (A and D) or log-rank test (C); *p < 0.05, **p < 0.01, and

***p < 0.001.

See also Figure S3.
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Figure 5. FKBP10 Interacts with Ribosomes

(A) Gene Ontology (Ashburner et al., 2000; The Gene Ontology Consortium, 2019) enrichment analysis was done from a list of proteins obtained by LC-MS

detection in A549 cell lysate previously immunoprecipitated with a FKBP10 antibody.

(B) Total cellular extracts were separated on a 7%–47% sucrose gradient and the fractions were analyzed by western blot for the levels of FKBP10 and the

ribosomal S6 protein as a control for the ribosome-containing fractions.

(C) Translation was assessed by [35S]-methionine incorporation in A549 cells harboring empty vector or a vector containing shRNA against FKBP10 leading to

FKBP10 downregulation (shFKBP10).

(D) Representative polysome profiles of A549 cells with or without knockdown of FKBP10 and histograms showing relative ratio between sub-polysome and

polysome fractions (S:P).

(E) Representative polysome profiles from tumors of KrasG12D and KrasG12D; Fkbp10+/� mice with histograms as in (D).

Data are represented as mean ± SEM. Statistical analyses were done using two-tailed unpaired Student’s t test (C–E); *p < 0.05 and **p < 0.01.

See also Figure S4 and Table S3.
translation by half (Figure 5C). Thus, these results suggest that

FKBP10 regulates protein translation.

To further evaluate this observation, we assessed polysome

profiles in vitro and in vivo. Separation of A549 lysates on a su-

crose gradient (Faller et al., 2015; Liu et al., 2013) showed that

FKBP10 knockdown causes a concomitant decrease in poly-

some and increase in monosome levels (Figure 5D). A similar

reduction in polysome levels was observed in lung tumors of

KrasG12D; Fkbp10+/� mice compared with their FKBP10-intact

KrasG12D mice (Figure 5E). Such changes in polysome profiles

are consistent with differences in protein translation elongation.

Nevertheless, because FKBP10 has been reported to function as

an ER chaperone (Chen et al., 2017; Ishikawa et al., 2008), its

knockdown could cause attenuation of translation initiation

due to proteotoxic stress (Liu et al., 2013). Thus, we assessed

the level of phosphorylation of the eukaryotic translation initiation

factor 2 a (p-eIF2a; a prominent event of the unfolded protein

response upon ER stress aimed at inhibiting protein translation

initiation; Guan et al., 2014) in A549 cells and in tumors. Our

data indicated no changes in p-eIF2a level upon FKBP10 knock-

down in A549 cells (Figure S4B) or in tumor samples from

KrasG12D; Fkbp10+/�mice comparedwith theirKrasG12D controls
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(Figure S4C). Furthermore, the formation of stress granules, an

established readout of translation initiation arrest (Liu et al.,

2013), was not affected by FKBP10 downregulation in A549 cells

(Figure S4D).

To investigate how FKBP10 affects translation elongation, we

performed ribosome profiling (Ribo-seq) of A549 cells harboring

empty vector or shFKBP10 (Figures S5A–S5C; Tables S4 and

S5). At a global level, relatively similar amounts of mRNAs had

a higher or a lower density of ribosomes upon FKBP10 knock-

down, irrespective to whether they were of high or low expres-

sion, respectively (Figure 6A; Table S5). Because FKBP10 has

PPIase activity, consisting in cis-trans isomerization of peptides

bound with the amino acid proline, we investigated whether

mRNAs with higher proline content were more likely to show

changes in ribosome profiles upon FKBP10 knockdown. How-

ever, there was no correlation (Figure S5D). We questioned

whether generally ribosomes might tend to pause longer on pro-

line codons (P-site footprint accumulation); nevertheless, there

was no general codon bias change upon FKBP10 knockdown

(Figure S5E). Metagene analysis revealed that the lung cancer

cells have low reads at the beginning of open reading frames

(ORFs) and that these are increased upon FKBP10 knockdown,



A C        

B

D E F

Figure 6. FKBP10 Regulates Translation Elongation

(A) All fold changes generated by edgeR differential expression analysis comparing P-site counts for each CDS in A549 cells harboring an empty vector and

shFKBP10 (duplicates) were plotted against counts per million. Significantly upregulated genes overlaid in red, downregulated in blue, and RP genes are

highlighted in green.

(B) Ribosome profiles were obtained from A549 harboring an empty vector or shFKBP10 in duplicates. Left: for three gene sets (all genes, non-RP genes, and RP

genes), the ribosome footprint P-site counts located in the first and last 201 bases of each CDS were aggregated and normalized to gene number and total P-site

(legend continued on next page)
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with an inversion approximately 50–100 nt downstream of the

start (Figure 6B, upper panel). The impact of FKBP10 manipula-

tion on the early stage of translation elongation is consistent with

the observation that FKBP10 is detected mostly in monosomes

and light polysomes rather than in heavy polysomes (Figure 5B).

As translation of ribosomal protein (RP) mRNAs contributes

importantly to the global level of translation in cells dividing

rapidly, we determined the contribution of RP mRNAs to these

metagene profiles. The increased reads at the beginning of

ORFs with an inversion between 50 and 100 nt was observed

similarly for all mRNAs, non-RP mRNAs, and RP mRNAs (Fig-

ure 6B). Instead, the reduced reads at the end of ORFs in the

FKBP10-knockdown group was found on the metagene of RP

mRNAs (Figure 6B, lower panel) and mostly not of non-RP

mRNAs (Figure 6B, middle panel). These results indicate that

FKBP10 knockdown has a qualitative impact on translation elon-

gation, leading to a genome-wide increase of ribosomes at the

beginning of ORFs and a specific depletion of ribosomes on

RP mRNAs starting approximately 100 nt from start (Table S5).

To determine whether the effect of FKBP10 downregulation on

RP mRNAs was due to an impact on their translatability rather

than on the total levels of RP mRNAs, we performed RNA

sequencing (RNA-seq) of A549 cells harboring empty vector or

shFKBP10 (Figure S6A; Tables S4 and S5). Overall, the level of

the vast majority of RPmRNAs was not significantly different be-

tween control and FKBP10-knockdown cells (Figure S6B). For

selected RP mRNAs (Figure S6B), the RNA-seq results were

confirmed by quantitative real-time polymerase chain reaction

(Figure S6C). RPS27 is a typical example of a RP whose

mRNA level was unchanged (Figures S6B and S6C) while dis-

playing a differential Ribo-seq pattern: FKBP10 downregulation

led to a clear ribosome accumulation at the beginning and a

reduction at the end of the RPS27 ORF in A549 cells (Figure 6C).

We then expressed translation of mRNAs (average density of

ribosomes on the mRNA per kilobase per total counts [RPKM])

to the level of the mRNA in the total mRNA pool (Figures 6D

and S6D; Table S6) (translatability). Translatability of RP mRNAs

was reduced upon FKBP10 knockdown (Figure 6D, green bars;

Figure S6D, green dots). To further test whether reduced trans-

latability affected total RP levels, using western blot assay we

measured the protein contents of RP species that displayed

lowest translatability (Figure 6D; e.g., RPS15 and RPS27).

Although the mRNA levels of these RPs were normal (Fig-

ure S6B), their protein contents were reduced in A549 cells

with FKBP10 knockdown compared with controls (Figures 6E
occupancy of all coding regions for each sample. Right: for the same gene sets, e

located in each was aggregated and normalized to gene number, CDS length, a

(C) Mean P-site counts per million were plotted for every codon of the RPS27 CDS

negative. Proline codons within the first 20 are highlighted.

(D) Translational efficiency (TE) was assessed using ratios of Ribo-seq ribosome

differences in TE for empty vector versus shFKBP10 was plotted for RP genes (g

(E) Bar plots showing the protein levels of selected RPs (RPS27 and RPS15) m

harboring empty vector or shFKBP10.

(F) P-site ribosome dwelling occupancies were calculated in the first 60 nt by norm

region. Mean log fold change between before and after FKBP10 knockdown is p

Data are represented as mean ± SEM. Statistical analyses were done using two

See also Figures S5 and S6 and Tables S4, S5, and S6.
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and S6E). Taken together these results indicate that FKBP10

downregulation affects translation elongation, increasing ribo-

some pausing at the beginning of the ORFs, leading specifically

to a general reduction of RP mRNA translation.

To understand the genome-wide impact of FKBP10 for trans-

lation elongation at the beginning of ORFs (e.g., the first 60 nt

downstream of the AUG), we evaluated whether the increased

reads upon FKBP10 knockdown were similarly distributed on

all codons. Strikingly, upon FKBP10 knockdown, P-site occu-

pancy increased most on the four proline codons compared

with any other codon (Figure 6F). This suggests that FKBP10

promotes translation elongation after insertion of prolines to

the nascent chain, specifically early during translation elongation

(see model in Figure S6F). These data additionally indicate that

slower elongation at the beginning of the ORFs is detrimental

in particular for translation of RP mRNAs (Figures 6B, 6D, and

S6D).

DISCUSSION

Cancer cells reprogram protein translation to support their

malignant phenotype. Accordingly, several oncogenic muta-

tions (e.g., oncogenic activation of MYC, KRAS, and PIK3CA)

and/or loss of function of tumor suppressors (e.g., PTEN and

P53) lead to dysregulation of the protein synthesis rate (Bhat

et al., 2015). Moreover, production of ribosomes has been

shown to support cancer growth (Penzo et al., 2019). How-

ever, cancer-specific molecular mechanisms regulating these

translational processes are unknown. Our results support the

notion that FKBP10 is an adaptive mechanism required for

the increased protein synthesis demand (e.g., RP production)

in proliferating cancer cells. Furthermore, our study suggests

that FKBP10 is required for protein translation in cancer cells

by its PPIase activity (consisting of cis-trans isomerization of

nascent peptides bound with the amino acid proline) and

thus accelerates translation elongation, in particular upon

insertion of proline codons. This is important in light of recent

work indicating a strong dependence on proline availability for

translation elongation by cancer cells (Loayza-Puch et al.,

2016; Sahu et al., 2016). Yet to the best of our knowledge, it

has never been described that isomerization of proline at an

early phase of translation elongation could be a limiting event

for tumor growth.

An interesting aspect of our findings relates to the role of the

PPIase activity. Indeed, our data indicate that this enzymatic
ach CDS was split into 100 equal-length bins, and the number of P-site counts

nd total P-site occupancy.

. The empty vector is plotted above the x axis, and shKBP10 is plotted below in

footprint RNA and RNA-seq total RNA levels using RiboDiff. The distribution of

reen) and non-RP genes (purple).

easured using western blot assay (normalized over beta-actin), in A549 cells

alizing counts for each codon type to total counts and codon frequency for the

lotted.

-tailed unpaired Student’s t test (D and E); *p < 0.05 and ***p < 0.001.



activity is required for the pro-tumoral action of FKBP10. How-

ever, FKBP10 is a member of a large family of PPIases. Why

are other PPIases not able to compensate for FKBP10 deletion?

One possibility is that FKBP10 is unique among these members,

as it, and not the others, could have access to the ribosome cat-

alytic center. Hence, a twofold property including its PPIase ac-

tivity and its location at the ribosome catalytic center could

render FKBP10 unique among the members of the PPIase fam-

ily. Testing this hypothesis will require complex experiments

(e.g., co-crystallography assays).

Our data reveal that FKBP10 knockdown before or after tu-

mor onset decreases tumor burden in vivo. Nevertheless,

FKBP10 knockdown before tumor onset leads to decreased

cellular proliferation (with no changes in apoptosis), whereas

its downregulation after tumor onset triggers increased cellular

apoptosis (with no changes in proliferation). This outcome rai-

ses the question of how it is possible that a similar event (i.e.,

FKBP10 downregulation) leads to two diverse outcomes. We

suggest that this apparent conundrum could be due to the

different timing at which FKBP10 downregulation is induced

(i.e., before versus after tumor onset). For example, FKBP10

downregulation before tumor onset could provide time for

compensatory mechanisms protecting tumor cells from under-

going apoptosis while its downregulation after the tumor is

induced cannot. Also, this apparent conundrum could be due

to the different degree of FKBP10 downregulation. Indeed,

the pre-tumor-onset animal model is a haploinsufficient model

(in which FKBP10 is downregulated by 50%), whereas the

post-tumor-onset animal model is a conditional knockout

model (in which FKBP10 is downregulated by 85%). Thus, it

is formally possible that a high degree of FKBP10 downregula-

tion is required for apoptosis to be achieved. To directly test

these two mutually non-exclusive hypotheses future experi-

ments are required.

Interestingly, we found that FKBP10 is expressed in cancer

cells derived from different human cancers (i.e., pancreatic

cancer and breast cancer), in which its downregulation showed

a strong anti-proliferative effect (Ramadori et al., 2015). In addi-

tion, our dataset analyses indicate that FKBP10 expression is a

negative prognostic marker in several other malignancies (e.g.,

stomach adenocarcinoma, intestinal, hepatic, bladder, and

renal cancers) (Figure S1C). Thus, these data suggest that

FKBP10 might play a role in other types of cancer. Hence,

future experiments aimed at assessing the outcome of

FKBP10 downregulation in animal models of these cancer

types are warranted.

Of note, molecular targets able to selectively and relevantly

coordinate protein translation and tumorigenesis are unknown.

Identification of such targets could represent an important step

towards the development of new anti-cancer therapeutics.

Hence, considering that FKBP10 (1) coordinates protein transla-

tion and (2) is selectively expressed in cancer lesion, (3) its

expression negatively correlates with survival of cancer patients,

and (4) its downregulation suppresses cancer growth and cancer

stem-like features, we suggest that FKBP10 is an ideal molecular

target for developing better therapeutics for NSCLC, a condition

for which there is a clear unmet medical need (Ferrer et al., 2018;

Pao et al., 2005; Román et al., 2018).
In conclusion, we have identified FKBP10-dependent protein

translation elongation as a cancer-specific and cancer-relevant

molecular mechanism for NSCLC.
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Wendel, H.G., and Rätsch, G. (2017). RiboDiff: detecting changes of mRNA

translation efficiency from ribosome footprints. Bioinformatics 33, 139–141.

Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., and Paz-

Ares, L. (2016). Current challenges in cancer treatment. Clin. Ther. 38, 1551–

1566.
Cell Reports 30, 3851–3863, March 17, 2020 3863

http://refhub.elsevier.com/S2211-1247(20)30256-4/sref29
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref29
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref30
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref30
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref30
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref30
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref31
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref31
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref31
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref32
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref32
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref32
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref32
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref33
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref33
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref34
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref34
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref34
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref35
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref35
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref35
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref36
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref36
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref37
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref37
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref37
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref37
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref38
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref38
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref39
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref39
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref39
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref39
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref40
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref40
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref40
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref40
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref41
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref41
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref41
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref41
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref42
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref42
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref43
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref43
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref43
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref44
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref44
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref45
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref45
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref45
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref45
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref46
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref46
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref46
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref46
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref47
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref47
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref47
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref47
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref48
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref48
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref48
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref48
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref49
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref49
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref49
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref50
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref50
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref50
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref50
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref51
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref51
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref51
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref52
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref52
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref52
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref53
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref53
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref53
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref53
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref54
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref54
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref54
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref54
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref55
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref55
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref55
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref56
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref56
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref57
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref57
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref58
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref58
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref59
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref59
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref59
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref60
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref60
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref60
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref61
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref61
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref61
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref62
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref62
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref62
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref63
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref63
http://refhub.elsevier.com/S2211-1247(20)30256-4/sref63


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Polyclonal FKBP65 ProteinTech Cat#12172-1-AP; RRID:AB_2102550

Rabbit Monoclonal Phospho-eIF2a (Ser51) Cell signaling Cat#3398; RRID:AB_2096481

Rabbit Monoclonal eIF2a (D7D3) Cell signaling Cat# 5324; RRID:AB_10692650

Mouse Monoclonal b-Actin (8H10D10) Cell signaling Cat#3700; RRID:AB_2242334

Rabbit Monoclonal GAPDH (14C10) Cell signaling Cat#2118; RRID:AB_561053

Rabbit Polyclonal RPS27 ProteinTech Cat#15355-1-AP; RRID:AB_2180509

Rabbit Polyclonal RPS15 ProteinTech Cat#14957-1-AP; RRID:AB_2180163

Mouse Monoclonal b-Tubulin Merck Cat#05-661; RRID:AB_309885

Rabbit Monoclonal Ki67 (D3B5) Cell signaling Cat#12202; RRID:AB_2620142

Rabbit Monoclonal Cleaved Caspase-3 (D3E9) Cell signaling Cat#9579; RRID:AB_10897512

Rabbit Monoclonal S6 Ribosomal Protein (5G10) Cell signaling Cat#2217S; RRID:AB_331355

Purified Mouse Anti-FKBP65 BD Transduction Laboratories Cat#610648; RRID:AB_397975

IRDye 680RD Goat anti-Mouse IgG Secondary Antibody LI-COR Biosciences Cat#926-68070; RRID:AB_10956588

IRDye 800CW Goat anti-Rabbit IgG Secondary Antibody LI-COR Biosciences Cat#926-32211; RRID:AB_621843

Biotinylated Goat Anti-Rabbit IgG Antibody Vector Laboratories Cat#BA-1000; RRID:AB_2313606

Biological Samples

Tissue array Biomax Cat#LC1921 D137

Chemicals, Peptides, and Recombinant Proteins

Penicillin-streptomycin GIBCO Cat#15140

FBS Pan Biotech Cat#P30-3302

MammoCult Medium STEMCELL Technologies Cat#05620

MethoCult H4100 STEMCELL Technologies Cat#04100

Phosphatase and protease inhibitors Sigma Cat# P2714-1BTL

Tamoxifen Sigma Cat#10540-29-1

Doxycycline Clontech Cat#P2250

Heparin Solution 0.2% STEMCELL Technologies Cat#07980

Hydrocortisone STEMCELL Technologies Cat#74144

TransIT-293 transfection reagent Mirus Cat#MIR 2705

Puromycin GIBCO Cat# A1113803

Blasticidine GIBCO Cat#A1113909

Cycloheximide Sigma Cat#66-81-9

Superscript II Invitrogen Cat#18064014

SYBR Green PCR master mix Applied Biosystem Cat#4344463

RNase I Epicenter Cat#N6901K

Protein A-Agarose Santa Cruz Biotechnology Cat#sc2001

Scintillation fluid Amersham Biosciences Cat#NOCS 104

EnVision FLEX Target Retrieval Solution low pH Dako Cat#GV805

EnVision FLEX /HRP Dako Cat#GV925

Critical Commercial Assays

Aldefluor kit STEMCELL Technologies Cat#01700

Monarch Total RNA miniprep kit NEB Cat#T2010S

RNeasy Mini Kit QIAGEN Cat#74104

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Ribo-sequencing data This paper GEO: GSE129654

RNA-sequencing data This paper GEO: GSE129654

Experimental Models: Cell Lines

Human: A549 cells ATCC Cat#CCL-18

Human: H1650 cells ATCC Cat#CRL-5883

Human: DLD-1 cells X-MAN Cat#HD PAR-086

Human: HT-29 cells ATCC Cat#HTB-38

Human: MCF10DCIS cells ExPASy MCF10DCIS.com (RRID:CVCL_5552)

Human: MDA-MB-231 cells ATCC Cat#HTB-26

Human: 293T ATCC Cat#CRL-3216

Experimental Models: Organisms/Strains

Mouse: Tet-o-K-RasG12D Ramadori et al., 2015 N/A

Mouse: CCSP-rtTA Ramadori et al., 2015 N/A

Mouse: Fkbp10+/� (Fkbp10tm2a(EUCOMM)Wtsi) European Mouse Mutant Archive Cat#07823

Mouse: Fkbp10loxP/loxP This paper N/A

Mouse: Ubi-Cre: B6;129S-Tg(UBC-Cre/ERT2)1Ejb/J The Jackson Laboratory Cat#007001

Mouse: NOD/SCID: NOD.CB17-Prkdcscid/J Charles River Laboratories Cat#001303

Oligonucleotides

b-Actin forward: 50-AGGCACCAGGGC GTGAT-30 Microsynth N/A

b-Actin reverse: 50-GCCCACATA GGAATCCTTCTGAC-30 Microsynth N/A

RLP38 forward: 50-CCCGACGAAAGG ATGCCAAAT-30 Microsynth N/A

RLP38 reverse: 50-TGACCAGGGTGT AAAGGTATCTG-30 Microsynth N/A

RPS6 forward: 50-TGGACGATGAAC GCAAACTTC-30 Microsynth N/A

RPS6 reverse: 50-TTCGGACCACAT AACCCTTCC-30 Microsynth N/A

RPS27 forward: 50-ATGCCTCTCGCAAAGGATCTC-30 Microsynth N/A

RPS27 reverse: 50-TGAAGTAGGAATTGGGGCTCT-30 Microsynth N/A

RPS13 forward: 50-TCCCAGTCGGCTTTACCCTAT-30 Microsynth N/A

RPS13 reverse: 50-CAGGATTACACCGATCTGTGAAG-30 Microsynth N/A

Recombinant DNA

pLKO lentiviral containing shRNA targeting FKBP10 Open Biosystems Cat#TCRN0000053928

Cat#TCRN0000053929

pLVX modified lentivirus containing FKBP10 wild type Chen et al., 2017 N/A

pLVX modified lentivirus containing FKBP10-FY8 Chen et al., 2017 N/A

pMD2G (VSV-G protein) Addgene Cat#12259

pCMV dR8.74 Addgene Cat#22036

Software and Algorithms

FlowJo version 10.6.1 FlowJo https://www.flowjo.com/

Zen 2 Zeiss https://www.zeiss.com/

Analyze 12.0 AnayzeDirect https://analyzedirect.com/

MetaXpress version 5.1.0.41 Molecular Devices https://www.moleculardevices.com/

Prism 8.0.1 GraphPad https://www.graphpad.com/

R version 3.3.2 R www.r-project.org

riboWaltz Lauria et al., 2018 N/A

edgeR Robinson et al., 2010 N/A

RiboDiff Zhong et al., 2017 N/A
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Roberto

Coppari (roberto.coppari@unige.ch).

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
The following mice were used in this study: KrasG12D; Fkbp10+/�: Tumorigenesis was induced in littermates CC10-rtTA/Tet-o-K-

RasG12D bi-transgenic mice (hereafter indicated as KrasG12D mice) and KrasG12D mice heterozygous for a FKBP10 null allele (Ingolia

et al.) (KrasG12D; Fkbp10+/�) as previously described (Fisher et al., 2001). Male mice were used for this experiment. KrasG12D;

Fkbp10loxP/loxP; Ubi-Cre: This animal model was generated by breeding mice bearing the Tet-op-Kras (Konstantinidou et al., 2013)

and heterozygous for the lox-P-flanked Fkbp10 loci (Fisher et al., 2001) with mice bearing the CCSP-rtTA (Konstantinidou et al.,

2013) and the Ubi-Cre (Ruzankina et al., 2007) alleles and heterozygous for the lox-P-flanked Fkbp10 loci (Fisher et al., 2001).

From their offspring, this animal model bears 5 different alleles: Tet-op-Kras (Konstantinidou et al., 2013); CCSP-rtTA (Konstantinidou

et al., 2013); two lox-P-flanked Fkbp10 loci (Fisher et al., 2001); and theUbi-Cre (Ruzankina et al., 2007) allele. Femalemicewere used

for this experiment. Non-obese diabetic/severe combined immunodeficient (NOD/SCID): Mice were housed in a pathogen-free an-

imal facility. Female mice were used for this experiment.

All mice were maintained with standard rodent chow diet and water available ad libitum, under a 12 h light/dark cycle at constant

temperature and humidity. Care of mice at University of Geneva was within the procedures approved by animal care and experimen-

tation authorities of the Canton of Geneva, Switzerland (animal protocol numbers GE/78/18 and GE/83/18).

Cell Lines
The following cancer cell lines were used: A549 and H1650 (lung cancer cell lines), DLD-1 and HT-29 (colorectal cancer cell lines),

MCF10DCIS and MDA-MB-231 (breast cancer cell lines). Cells were grown in RPMI media containing 10% FBS (Pan Biotech), Peni-

cillin (100 I.U./mL), and Streptomycin (100 mg/mL) (GIBCO) at 37�C in humidified atmosphere with 5% CO2.

METHOD DETAILS

Tumorigenesis Induction
Tumorigenesis was induced in 8-weeks old mice (KrasG12D control and KrasG12D; Fkbp10+/�; KrasG12D; Fkbp10loxP/loxP and KrasG12D;

Fkbp10loxP/loxP; Ubi-Cre) by drinking water supplemented with doxycycline (Clontech) at concentration of 200 mg/mL for the length of

time indicated in the figure legends.

Fkbp10 Deletion
Tamoxifen (30mg/ml) (Sigma) was mixed with corn oil and 100ml tamoxifen/corn oil solution was administered by intraperitoneal in-

jection in each KrasG12D; Fkbp10loxP/loxP; Ubi-Cre and KrasG12D; Fkbp10loxP/loxP mouse once every 24 hours for a total of 5 consec-

utive days.

Micro-computed Tomography (Micro-CT) Experiment
Mice were anaesthetized with 5% isoflurane and transferred into a micro-CT QuantumGX (Perkin Elmer, Waltham, MA, USA), where

anesthesia was maintained by constant exposure to 1.5% isoflurane. Mice were scanned at 90 kV and 80 mA over 360� using the

retrospective dual phase (expiration and inspiration) respiratory gating protocol of the micro-CT with a field of view of 36 mm and

a resolution of 72 mm (voxel size). Analyses were performed on the expiration phase scan by Analyze 12.0 software.

Tumor Area Assessment
Mouse lungs and tumors were fixed in 4% paraformaldehyde (PFA) overnight at 4�C and cut in 5-mm-thick sections using a cryostat.

Lung sections were stained with Hematoxylin and eosin (H&E). Slides were scanned by Zeiss Axio-scanZ1, and tumor area was as-

sessed by digital quantification of the area occupied by tumors in the left lobe compared to unaffected tissue using Zen2 software

(Zeissig et al., 2015).

Mouse Xenograft Assay
Cells were trypsinized, suspended in PBS, and injected subcutaneously into the flank of 8-week-old NOD/SCID mice. A549 and

H1650 cells were injected at the following concentrations: 1x104, 5x104 and 1x105. Mice were checked every 3 days for tumor

appearance.
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Lentiviral Production and Generation of Stable Cell Lines
For the knockdown of FKBP10, cancer cells (A549, H1650, DLD-1, HT-29, MCF10DCIS and MDA-MB-231) were infected with len-

tiviruses carrying pLKO (control vector), or pLKO shFKBP10 (Open Biosystem). Cells were selected with puromycin to generate sta-

bly transfected cells.

For FKBP10 overexpression, cancer cells (DLD-1 and MDA-MB-231) were infected with pLVX modified lentiviruses expressing

FKBP10-WT, FKBP10-8FY or empty (control vector) [FKBP10-8FY plasmid was kindly provided by Prof. Kurie JM, The University

of Texas, and produced as previously described (Chen et al., 2017)]. This recombinant lentivirus was produced as mentioned pre-

viously. Cells were selected with blasticidin to generate stably transfected cells.

The recombinant lentivirus was produced by transfecting 293T cells, using TransIT-293 transfection reagent (Mirus), with pMD2G

(VSV-G protein), pCMV dR8.74 (lentivirus packaging vector) and lentiviral constructs.

Immunohistochemistry (IHC)
Mouse lungs and tumors were fixed in 4% PFA overnight at 4�C and cut in 5-mm-thick sections using a cryostat. Sections were incu-

bated with primary antibodies overnight at room temperature. Primary antibodies used were: Ki67 (Cell Signaling; dilution 1:400) and

cleaved Caspase-3 (Cell Signaling; dilution 1:300). Secondary antibody usedwas Biotinylated Goat Anti-Rabbit IgG Antibody (Vector

Laboratories; dilution 1:100 for Ki67 and 1:1000 for cleaved Caspase-3). Hematoxylin was used as counterstaining in IHC for both

markers. In order to quantify the percentage of Ki67 and cleaved Caspase-3 positive cells, a total of 200 cells were scored/slide

for at least 3 replicates.

To determine FKBP10 expression in human paraffin embedded lung samples (Biomax), we used the following procedure. Sections

were deparaffinized and the detection of antigens has occurred in automated manner with Dako PT Link using EnVision FLEX Target

Retrieval Solution low pH (50X) (Dako) at temperature of 98�C. After 70minutes of treatment, sections were treated with 3%hydrogen

peroxide and incubated for 30 minutes with unconjugated anti-mouse IgG at room temperature. Subsequently, sections were incu-

bated for 1 hour at room temperature with mouse Anti-FKBP10 antibody (1:750, BD Transduction Laboratories). The staining was

completed using EnVision FLEX /HRP (Dako), as detection system; 3,3-diaminobenzidine-hydrogen peroxide was used as chro-

mogen. Then, slides were counterstained with Meyer’s hematoxylin for 1 minute, dehydrated in a graded series of alcohol, treated

with xylene, and coverslipped. Immunohistochemical staining was semiquantitatively assessed by considering the ‘‘percentage of

positive tumor cells’’ (range 0%–100%).

Quantitative Real-Time PCR (q-RTPCR)
RNAwas extracted using RNeasyMini Kit (QIAGEN). Complementary DNAwas generated by Superscript II (Invitrogen) and usedwith

SYBR Green PCR master mix (Applied Biosystem) for q-RTPCR analysis. mRNA contents were normalized to b-Actin mRNA levels.

All assays were performed using an Applied Biosystems Quant Studio 5 Real-Time PCR System. For each mRNA assessment,

q-RTPCR analyses were repeated 3 times as previously done (Anderson et al., 2015; Aras et al., 2019; Ramadori et al., 2019).

Immunoblotting and Immunoprecipitation
Immunoblots were performed according to standard procedures in RIPA buffer (150 mM NaCl, 10 mM Tris pH 7.5, 1% NP40, 1%

Deoxycholate, 0.1% SDS) and supplemented with phosphatase and protease inhibitors (Sigma). Samples were resolved by SDS-

PAGE and finally transferred to a nitrocellulose membrane by electroblotting. The following primary antibodies were used:

p-eIF2a and eIF2a (Cell signaling), b-Actin (Cell signaling), GAPDH (Cell signaling), b-Tubulin (Merck), FKBP10 (ProteinTech), S6

Ribosomal Protein (Cell signaling), RPS27 and RPS15 (ProteinTech). The following secondary antibodies were used: Goat anti-

Mouse IgG and Goat anti-Rabbit IgG (LI-COR Biosciences).

For immunoprecipitation with FKBP10 antibody (1mg) we used 500mg of whole protein lysate from A549 cells and we followed the

protein A-agarose immunoprecipitation reagents and protocol from Santa Cruz Biotechnology.

Tumorsphere Assay
Tumorsphere formation was induced in ultralow-adherent 6-well plates. Cancer cells (A549, H1650, DLD-1, HT-29, MCF10DCIS and

MDA-MB-231) were plated at a density of 5,000 cells per well in triplicate in a 6-well plate in a 1%methylcellulose containing media

(MammoCult supplemented with MethoCult media, STEMCELL Technologies). Tumorsphere formation was quantified 7 days after

plating, by MetaXpress version 5.1.0.41. Spheres with a diameter equal or higher than 50 mm were deemed tumorspheres. Exper-

iments were repeated three times for each condition.

Aldehyde Dehydrogenase (ALDH) Activity Assay and Fluorescence-Activated Cell Sorting (FACS)
ALDH activity was measured in cancer cells using the Aldefluor kit (STEMCELL Technologies) following the manufacturer’s protocol.

A549, H1650 and DLD-1 cancer cells (at concentration of 1x106) were incubated with Aldefluor reagent and N,N-diethylaminobenzal-

dehyde (DEAB; represented in blue) or Aldefluor reagent only (represented in red). After 40 minutes of incubation period, cells were

analyzed by flow cytometry, following the supplier’s recommendation, and results were generated using FlowJo software. Values

mentionedalongwith thegraphs indicatepercentageofcellswithhighALDHactivity. Experimentswere repeated twice for eachcell line.

A549 cells with high or low ALDH activity were isolated by FACS, and tumorsphere assay was performed in these cells.
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Measurement of [35S]-Labeled Methionine Incorporation in Cells
Equally grown (60% confluency) A549 cells harboring empty vector or shFKBP10 were incubated with 300 mCi [35S]-labeled methi-

onine for 30minutes and were extracted in lysis buffer [10mMHEPES, 100mMKCl, 5mMMgCl2, 100 mg/ml cycloheximide and 2%of

Triton X-100 (ph 7.4)]. Protein extract was trichloroacetic acid (TCA) precipitated with 300 ml of ice-cold 25% TCA containing 2% of

casamino acids for 30minutes on ice. The precipitate was collected by vacuum filtering of 250 ml of the TCA reactionmix onWhatman

GF/A glass fiber filters. Amino acids were removed by rinsing the filter 3 times with 1 mL of ice-cold 5% TCA. For determination of

[35S]-labeled methionine incorporation into translation products, the filter was placed into scintillation fluid (Amersham Biosciences)

and counted in a Wallac 1409 liquid scintillation counter.

Polysome Profiling
A549 cells were treated for 30 minutes with 100 mg/ml cycloheximide prior to harvesting, then were scraped at 4�C and lysed in lysis

buffer [10mM HEPES, 100mM KCl, 5mM MgCl2, 100 mg/ml cycloheximide and 2% of Triton X-100 (ph 7.4)]. Cleared lysates were

loaded on sucrose gradients and fractionated by ultracentrifugation. Fractionation was monitored by the continuous reading of

OD254 values.

Ribosome Profiling (Ribo-Seq)
Ribo-Seq was performed on A549 cells harboring empty vector or shFKBP10 in biological duplicates as described previously (Ingolia

et al., 2009). Briefly, cells were grown to reach 70% confluence, and treated for 1 minute with 100 mg/ml cycloheximide at 37�C. Cells
were lysed in a lysis buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1% Triton X-100, 25 U/ml Turbo DNase I, 1mM DTT,

100 mg/ml cycloheximide, and Protease inhibitors). 0.4 mL of total extracts containing 150 mg of total RNA were treated with RNase I

(Epicenter) (0.005U/1 mg of RNA), and monosomes were isolated after separation on a 10%–50% sucrose gradient. Libraries were

made from the ribosome-protected fragments and subjected to deep sequencing.

RNA Sequencing
An aliquot of the extract used for ribosome profiling was kept for total RNA sequencing. RNA was extracted using the Monarch Total

RNA miniprep kit (NEB) and sent for library preparation and sequencing to Fasteris.

RiboSeq and RNASeq Mapping
For the Ribo-Seq samples, all fastq files were adaptor stripped using cutadapt. Only trimmed reads were retained, with a minimum

length of 20 and a quality cutoff of 2 (parameters: -a CTGTAGGCACCATCAATAGATCGGAAGAGCACACGTCTGAACTCCAGTCAC–

trimmed-only–minimum-length = 20–quality-cutoff = 2). Histograms were produced of ribosome footprint lengths and reads were

retained if the trimmed size was between 32 and 35.

For all Ribo-Seq and RNA-Seq samples, reads were mapped, using default parameters, with HISAT2 (Kim et al., 2015) to GRCh38,

using Ensembl release 84 gtf for transcript definitions. Only primary alignments were retained and reads were removed if they

mapped to rRNA, tRNA and pseudogenes according to hg38 RepeatMasker definitions from UCSC. A full set of transcript and

CDS sequences for Ensembl release 84 was then established. Only canonical transcripts [defined as those with the longest coding

sequences (CDS) for each gene] were retained with their corresponding CDS. Reads were then mapped to the canonical transcrip-

tome with bowtie2 (Langmead and Salzberg, 2012), using default parameters.

Ribo-Seq Analysis
The P-site position of each read was predicted by riboWaltz (Lauria et al., 2018) and confirmed by inspection (reads were shifted 13

bases from the 50 end). Counts weremade by aggregating P-sites overlapping with the CDS and P-sites Per KilobaseMillion (PPKMs)

were then generated through normalizing by CDS length and total counts for the sample. Differential expression was performed be-

tween empty vector and shFKBP10 duplicates using edgeR (Robinson et al., 2010) on default settings. Transcripts were only kept in

the analysis if they had a CPM > 1 in both duplicates for either empty vector or shFKBP10 or both.

For further analysis transcripts were filtered if their CDS length was not a multiple of three and if they did not begin with a standard

start codon (Lawrence et al., 2000) and end with a standard stop codon (UAG, UGA, UAA). This left 19364 remaining from the original

20346 transcripts. For various groups of genes, summary profile plots were made for start and stop sites by summing p-sites falling

into each codon in the first and last 201 bases of eachCDS in the gene groupwith a length greater than 402 bases (a flanking region of

30 bases up and downstream was also included for context). Scaled plots summarizing the p-site depth profile over all genes for the

whole CDS was plotted by splitting every CDS in the gene group into 100 equal bins and aggregating the number of p-sites falling in

each.

RNA-Seq Analysis
Counts were made by aggregating any reads overlapping with the CDS and RPKMs were then generated through normalizing by

CDS length and total counts for the sample. Differential expression was performed as with the Ribo-Seq.
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Translational Efficiency (TE) Analysis
TEwas assessed using RiboDiff (Zhong et al., 2017) with default parameters with the sameRibo-Seq and RNA-Seq samples as input,

using the same expression pre-filters as the edgeR differential expression analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

A two-tailed unpaired Student’s t test was used for comparisons between two groups. A log-rank (Mantel–Cox) was used to compare

survival curves. All statistical tests were performed with GraphPad Prism software 8.0.1, or R version 3.3.2. p < 0.05 was considered

statistically significant. Data are reported as mean ± SEM. No statistical methods were used to predetermine sample size.

DATA AND CODE AVAILABILITY

The accession number for our data is GEO: GSE129654.

The data supporting the findings of the current study that have not been deposited in a public repository are available from the

corresponding author upon request.
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