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Abstract: The mapping and monitoring of natural and semi-natural habitats are crucial activities and
are regulated by European policies and regulations, such as the 92/43/EEC. In the Mediterranean
area, which is characterized by high vegetational and environmental diversity, the mapping and
monitoring of habitats are particularly difficult and often exclusively based on in situ observations. In
this scenario, it is necessary to automate the generation of updated maps to support the decisions
of policy makers. At present, the availability of high spatiotemporal resolution data provides new
possibilities for improving the mapping and monitoring of habitats. In this work, we present a
methodology that, starting from remotely sensed time-series data, generates habitat maps using
supervised classification supported by Functional Data Analysis. We constructed the methodology
using Sentinel-2 data in the Mediterranean Special Area of Conservation “Gola di Frasassi” (Code:
IT5320003). In particular, the training set uses 308 field plots with 11 target classes (five forests, two
shrubs, one grassland, one mosaic, one extensive crop, and one urban land). Starting from vegetation
index time-series data, Functional Principal Component Analysis was applied to derive FPCA scores
and components. In particular, in the classification stage, the FPCA scores are considered as features.
The obtained results out-performed a previous map derived from photo-interpretation by domain
experts. We obtained an overall accuracy of 85.58% using vegetation index time-series, topography,
and lithology data. The main advantages of the proposed approach are the capability to efficiently
compress high dimensional data (dense remote-sensing time series) providing results in a compact
way (e.g., FPCA scores and mean seasonal time profiles) that: (i) facilitate the link between remote
sensing with habitat mapping and monitoring and their ecological interpretation and (ii) could be
complementary to species-based approaches in plant community ecology and phytosociology.

Keywords: sentinel-2; time-series; FPCA; functional data analysis; land surface phenology;
phytosociology; natura 2000

1. Introduction

Phytosociology (i.e., the Floristic–Sociologic Approach to Vegetation Classification [1])
is the most widespread method of studying and classifying vegetation in Europe [2,3]. Plant
communities, called plant associations, are the most detailed discrete units recognized in
phytosociology. These plant associations, recurring in space and time, are characterized by
a distinct floristic composition that reflects the current and past ecological–environmental
conditions (e.g., bioclimatic features, biogeography, topographic conditions, lithology, and
land-uses) [4].

Plant associations and the higher levels of phytosociological vegetation classification
(classes, orders, and alliances) are useful for the diagnosis of most natural and semi-natural
habitats listed in Annex I of the Habitats Directive [5,6]. Plant association mapping allows
for understanding of the spatial distribution of the habitats and, if repeated over time, to
evaluate and monitor their conservation status.
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Therefore, these activities are useful for achieving the goals set out in European
environmental policies (e.g., Directive 92/43/CEE) [7–10]. Due to the high heterogeneity,
fragmentation, and diversity of vegetation, the mapping and monitoring of Mediterranean
plant associations and habitats are particularly challenging, when relying only on in situ
observations [10–12].

This challenge can be supported by remote-sensing data, which, combined with
field plots, enables the accurate mapping of plant communities and habitats [13–16]. The
processing of remotely sensed data provides a better understanding of the conservation
status, which is crucial in helping decision makers to plan and evaluate the impacts of
management practices [9,17–20].

Mapping based on remote data is effective and accurate, if multi-temporal data are
used to capture the seasonal variations of the spectral reflectance, in relation to the different
phenological stages of the vegetation (i.e., vegetation seasonality) [11,14,16,21–24]. In
contrast, mapping based on the spectral information of a single scene (i.e., single-date
mapping) can be problematic, as distinct types of vegetation and habitats could have
high spectral similarities at a given time of the season [25,26], even in multi-spectral
data scenarios.

The growing availability of remote-sensing open data (e.g., Landsat, Sentinel, and
MODIS) in formats usable by non-specialists (see, e.g., [27]) has facilitated the use of mul-
tiple images and dense time-series for various purposes. Dense time-series can capture
the variations (both seasonal and inter-annual) of reflectance spectral bands or vegeta-
tion indices (e.g., NDVI) and are useful for the characterization of land-cover, ecosystem
phenology, and landscape dynamics [28].

The use of dense time-series (>30 images per year) significantly improves the dis-
crimination and mapping of natural vegetation types compared to using multi-temporal
imagery (consisting of only a few images per year) [26,29]. Lopes et al. [26] considered the
analysis of dense time-series as the new norm for tracking changes in the distribution of
natural vegetation from space. Furthermore, considering entire archives of remotely sensed
images (e.g., Landsat and Sentinel-2) as a cohesive temporal record, rather than as a series
of individual images, provides new ecologically relevant perspectives [30].

The analysis of remotely sensed time-series plays a key role, and Functional Data
Analysis (FDA) represents a reliable opportunity to analyze temporal ecological data,
such as remotely sensed time-series [31]. FDA methods consider a time-series or a series
(stack) of a remotely sensed images as a unique and cohesive temporal record. The basic
philosophy of FDA is to consider observed data functions as single entities, rather than
merely as a sequence of individual observations. The pixels to be processed are treated as
temporal curves and, hence, as functions.

One of the most popular FDA methods is Functional Principal Component Analysis
(FPCA) [32]. FPCA is a reduction tool that adapts traditional PCA concepts to functions.
FPCA, unlike PCA, preserves the order in the data (e.g., the chronological order in the
time-series) [33]. FDA techniques have been gaining in popularity in several scientific
fields, ranging from genomics to finance [34]. This tool is still rarely used in remote sensing
and ecology, despite some promising applications.

Li et al. [35] adopted the FPCA to classify Hyperspectral Images, considering that
FDA treats multivariate data as continuous functions. Hurley et al. [31] applied FPCA to
NDVI time-series to test the effects of spring and autumn phenology on the winter survival
of mule deer fawns. The analysis of dense remotely sensing time-series with the functional
approach has recently opened new avenues for plant association and habitat mapping as
well as for the integration of remote sensing and phytosociology.

Pesaresi et al. [36] used the main seasonal NDVI variations, extracted from NDVI
Landsat 8 dense time-series by FPCA, to recognize and characterize forest plant asso-
ciations identified on the ground by the phytosociological approach; while, in Pesaresi
et al. [37], the main seasonal NDVI variations were used (as input data and spatial predic-
tors) together with a Random Forest classifier to map four forest plant associations in a



Remote Sens. 2022, 14, 1179 3 of 22

coastal Mediterranean area of central Italy, obtaining a global accuracy of approximately
87%.

In this work, we evaluate the performance and applicability of the methodology pro-
posed by Pesaresi et al. [37] in order to map the plant associations and habitats of a Special
Area of Conservation (SAC ‘IT5320003’—Gola di Frasassi), located in a mountainous sector
of central Italy and characterized by high vegetation, topographic, and lithological diversity.

To achieve this goal, we applied: (i) FPCA to Sentinel-2 dense time-series of differ-
ent spectral-band-based vegetation indices (e.g., NDVI, NDWI) in order to identify the
main seasonal spectral reflectance variations (FPCA components); (ii) (classical) PCA to a
set of topographic terrain parameters (extracted from a Digital Elevation Model) and to
lithological types in order to identify the main topographic and lithological features (PCA
components); and, finally, (iii) supervised classification (by Random Forest) of the FPCA
and PCA components in order to map the plant associations and habitats.

2. Materials and Methods

In this section, we provide details regarding the materials and methods of our ap-
proach. Figure 1 shows the adopted pipeline, which processes Sentinel-2 time-series data
to derive maps of plant associations and habitats.

Figure 1. Supervised pipeline to derive plant associations and habitat maps from Sentinel-2 time-
series using Functional Principal Component Analysis.

2.1. Study Site

The study area is the Special Area of Conservation (SAC) Gola di Frasassi (also known
as the Gorge of Frasassi; code IT5320003). It is located in the mountainous area of the central
Apennines (between latitudes of 43◦23′06′′ N–43◦24′50′′ N and longitudes of 12◦55′50′′ E–
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12◦58′46′′ E), along the Sentino River between Mount Valmontagnana (935 m a.s.l.) and
Mount Frasassi (709 m a.s.l.).

The area is characterized by a high topographical and lithological heterogeneity. It
encompasses an area of about 728 hectares (Figure 2). The average annual precipitation is
1115 mm, while the average annual temperature is 12.7 ◦C. According to the bioclimatic
classification of Rivas-Martinez et al. [38], the area belongs to the temperate macrobioclimate
with a weak sub-Mediterranean level, which indicates low summer aridity [39].

Figure 2. Study area: (a) Overview of study area at regional scale; (b) reference data of the Digital
Elevation Model with the boundary of the Gola di Frasassi (Gorge of Frasassi) Special Area of Con-
servation (SAC IT5320003); and (c) entry point to the Gorge of Frasassi. Left: Mount Valmontangana.
Right: Mount Frasassi.

2.2. Target Classes and Reference Data

The following section describes the plant associations, recognized through the floristic-
sociological approach of Braun–Blanquet and the corresponding habitats of Directive
92/43/EEC.

Woodland: (i) Holm-oak woods (habitat 9340 “Quercus ilex and Quercus rotundifolia
forests”). Appenninic holm-oak woods differ from coastal or sub-coastal ones as they are
richer in deciduous species (e.g., Fraxinus ornus L., Acer opalus subsp. obtusatum (Waldst.
and Kit. ex Willd.) Gams, Sorbus domestica L., S. torminalis (L.) Crantz, Ostrya carpinifolia
Scop.) in the tree layer and, in the understory, mesophilous species occur, such as Melica
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uniflora Retz., Hepatica nobilis Mill., and some orchids, among others. These species are
typical of the deciduous woods surrounding holm-oak woods and easily enter in these
as well.

At the same time, the most thermophilic species are lost or become rare (e.g., Rosa
sempervirens L., Rhamnus alaternus L., and Pistacia lentiscus L.), as they cannot bear the rigors
of the winter season. Therefore, they are classified in the association named Cephalanthero
longifoliae-Quercetum ilicis, which represents the most mesophilous community of holm-oak
woods, at least in the central Apennines [40]. They are widespread throughout the area,
above and all along the vertical walls of the rocky gorge.

(ii) Downy-oak (Quercus pubescens Wiild.) woods (habitat 91AA* “Eastern white oak
woods”). In the inland areas, downy oak woods occur on poor, eroded, and stony soils,
forming open, sometimes degraded, woods with a thick herb layer and including several
shrub species (i.e., Cytisophyllum sessilifolium (L.) O. Lang, Juniperus oxycedrus L., Cotinus
coggygria Scop., and Pistacia terebinthus L.). These woods belong to the association Cytiso
sessilifolii-Quercetum pubescentis, representing the typical downy oak woods of sub-montane
areas on limestones [41,42].

(iii) Black hornbeam forests occurring in the study area are classified within the
association Scutellario columnae-Ostryetum carpinifoliae, which has a very large ecological
amplitude, as it occurs in different ecological conditions. Indeed, on rocky slopes, it hosts
species of the Mediterranean biocora, such as Q. ilex while, in mesic environments, it is
richer in nemoral species of the Temperate biocora (e.g., Fagus sylvatica L. and S. torminalis).
Black hornbeam forests are not recognized as habitats by the European Directive.

(iv) Riparian woods occur along the Sentino river flowing in the lower part of the rocky
gorge. These are linear wood formations of white willow (Salix alba L.; of the association
Rubo ulmifolii-Salicetum albae) growing along the river banks and of black poplar (Populus
nigra L.) in the alluvial terrace above (Salici-Populetum nigrae). Both communities belong to
the habitat 92A0 “Salix alba and Populus alba galleries”.

(v) Pinus sp. pl. plantation. In the Apennines, huge plantations of Pinus sp. pl. and
other conifers have been found in the past few centuries. In the study area, Pinus nigra ssp.
nigra Arnold and P. halepensis Mill. plantations are common throughout the whole area,
especially on eroded soil along the steepest slopes [43].

Shrublands: These are widespread throughout the study area, occurring on aban-
doned grasslands as dynamic stages of wood recolonization. In areas with deeper soils,
the main common species is Spartium junceum L. and, secondarily, C. sessilifolium. Together,
they form the association Spartio juncei-Cytisetum sessilifolii, which is widespread in the
central Apennines. On thinner and poorer soils, the dominant species is Juniperus oxycedrus,
constituting wide shrublands in the area. They are framed in the same association as the
previous one but with the J. oxycedrus variant [44].

Grasslands: While grasslands are not particularly widespread in the area, the most
consistent nucleus is located at the top of Mount Valmontagnana, where cattle breeding
is still practiced. However, these are rather sparse and arid meadows, due to the strong
stonyness of the substrate and the low depth of the soil. The reference association is Asperulo
purpureae-Brometum erecti, which belongs to priority habitat 6210(*) “Semi-natural dry
grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (*important
orchid sites)” [45].

Garrigues and vegetation of rock and scree: These are strictly interpenetrated and,
therefore, have been mapped as a mosaic. Garrigues are formed by dwarf chamaephytes,
such as Satureja montana L., Fumana thymifolia (L.) Spach ex Webb, and Thymus sp. pl.,
occurring on eroded soil and rocky outcrops where they form the association Cephalario
leucanthae-Saturejetum montanae [45,46]. Habitats 6110 “Rupicolous calcareous or basophilic
grasslands of the Alysso-Sedion albi” and 6220 “Pseudo-steppe with grasses and annuals of
the Thero-Brachypodietea” are present in the clearings of this vegetation.

On shady and wet rocky walls, particularly along the gorge’s wall, chasmophytic
vegetation occurs (habitat 8210 “Calcareous rocky slopes with chasmophytic vegetation”),
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belonging to the association Moehringio papulosae-Potentilletum caulescentis. Other mapped
typologies are crop lands, mainly represented by cereal crops, and urban land comprised
of small towns, villages, and scattered houses.

The collected reference data, distributed over the study area (Figure 2), was based on
308 plots and used as training data for supervised plant association mapping (see Table 1).
Phyto-sociological surveys were performed in 74 plots (during 2018 and 2019) in order to
identify the different plant associations and their mean specific composition. Subsequently,
another 94 plots, through an expert-based similarity comparison in the field, were assigned
to the identified plant associations. Finally, 140 plots were assigned to the target classes by
visual interpretation of Google Earth imagery. The data set and R code used in the study
are available from [47].

Table 1. Reference data. Target classes for the supervised map are listed. For plant associations,
we report the syntaxa name and the corresponding habitat code (Annex 1 of the European Union
Habitats Directive). The * denotes a priority habitat. In the case of 6210 if is an important orchid
sites (*).

Class Plant Association (Syntaxa) Habitat Code Plots

Woodland
1 Holm-oak wood (Cephalanthero longifoliae-Quercetum ilicis) 9340 37
2 Downy-oak wood (Cytiso sessilifolii-Quercetum pubescentis) 91AA * 34

3 Black hornbeam wood (Scutellario columnae-Ostryetum carpini-
foliae) - 60

4 Pinus sp. plantations - 32

5 Riparian woods (Rubo ulmifolii-Salicetum albae and Salici-
Popolutem nigrae) 92A0 16

Shrublands

6 Spartium junceum shrub (Spartio juncei-Cytisetum sessilifolii
Spartium junceum variant) - 16

7 Juniperus oxycedrus shrub (Spartio juncei-Cytisetum sessilifolii
Juniperus oxycedrus variant) - 15

Grasslands
8 Bromus erectus grassland (Asperulo purpurei-Brometum erecti) 6210 (*) 16

Mosaic of garrigues and chasmophytic vegetation

9
Garrigues and vegetation of rock and scree (Cephalario
leucanthae-Saturejetum montanae and Moehringio papulosae-
Potentilletum caulescentis)

6110, 6220, 8210 49

Other
10 Crop land - 18
11 Urban land - 15

2.3. Topographic and Lithological Factors

Two different groups of ancillary features were included in the classifications: to-
pography and lithology. Topography and lithology are natural factors that influence the
composition of plant communities, as well as their spatial distribution [48]. Table 2 summa-
rizes the terrain topographic parameters (quantitative data), extracted from a DEM with
30 m resolution (the DEM was derived from the NASA Shuttle Radar Topography Mission
(SRTM)) and the lithological types (qualitative data derived from the lithological map of
the Marche Region [49]).

Lithology and terrain parameters were processed by the Principal Component Analysis
for mixed data (quantitative and qualitative) (dudihillsmith() of ade4 [50]). The obtained
PCA scores were used as input (predictors) for modeling plant associations and habitats
using a supervised Random Forest (RF) algorithm.
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Table 2. Lithology and terrain parameters used as predictors in this work, derived from a Digital
Elevation Model using the System for Automated Geoscientific Analyses (SAGA) GIS software.

Type Description

Terrain Parameters

Altitude (m a.s.l)
Slope of the terrain (°)
Topographic Position Index (TPI)
Topographic Wetness Index (TWI)
Northness
Eastness
Incoming solar radiation

Lithology
“Calcare Massiccio” formation; micritic limestone:“Bugarone” and
“Maiolica formation”; marly-calcareous formation; landslide deposits; slope
deposits; alluvial deposits

2.4. Remote Sensing Time-Series

L2A Sentinel-2 images were collected using the Sen2r [51] package. We considered
scenes (from April 2017 to April 2020) with a cloud cover in the areas of interest lower
than 25%. The clouds were masked and the images co-registered. A spatial resolution
of 20 m was used; this value is suitable for forest plant communities studies (in our case,
forests had almost full-coverage of the study area). The four spectral bands at 10 m (blue
B2: 497 nm, green B3: 560 nm, red B4: 664 nm, and infrared B8: 835 nm) were re-sampled
to 20 m. We obtained a stack of 93 Sentinel-2 pre-processed, co-registered images with 20 m
spatial resolution.

We considered a set of vegetation indexes (see Table 3) to capture seasonal variation
in the VIS-NIR range. The selected (six) vegetation indexes were applied to the 93 images
stack obtaining a data-cube (6 × 93). Tables A2 and A3 summarize the list of distributions
and the list of the Sentinel-2 selected images for this study.

Table 3. Vegetation indices applied to the time-series image stacks.

Vegetation Index Acronym References

Normalized Difference Vegetation Index NDVI [52]
Green Normalized Difference Vegetation Index GNDVI [53,54]
Modified Chlorophyll Absorption in Reflectance Index MCARI [55]
Normalized Difference Red-Edge NDRE [56]
Normalized Difference Water Index NDWI [57]
Modified Normalized Difference Water Index MNDWI [58]

The collected scenes cover a multi-year period. We grouped/sorted them by their
Day of the Year (DoY) to derive a dense annual time-series (e.g., [59,60]). We identified
and removed the outlier values (function clean.ts() of the R package “forecast”; [61,62])
for each pixel, and then we aggregated (average) the DoY values in weekly values (1–52).
We applied the Generalized Additive Model (GAM) [32] to smooth data obtaining a cubic
spline representation of the pixel based time-series. We finally obtained six stack (veg-
etation indexes) of 52 rasters (weeks) that represent the spectra of all pixels over a year
(Figure A2). The six time-series generated were then used to feed the FPCA analysis to
enable classification using the FPCA scores.

Functional Principal Component Analysis (FPCA)

Functional Data Analysis (FDA) considers data as continuous functions. Therefore,
each single pixel-based time-series was considered as a single entity (i.e., continuous
function), rather than a mere sequence of discrete observations (e.g., a vector with 52 values
as the number of weeks in a year).
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Considering that the entire time-series of a pixel is a statistical unit, FPCA treats
the entire raster stack (data cube) as a single object, consisting essentially of as many
functions (trajectories of variation over time) as there are pixels in the study area. As in
PCA, FPCA compresses information on an ortho-normal basis. The main difference is the
capability of preserving the functional structure (i.e., the chronological order, in our case)
of the analyzed data [33]. FPCA, similarly to PCA, provides eigenvalues that describe the
variation explained by each component. The FPCA scores quantify the similarities between
the functions (time-series based on pixels), while the eigenfunctions represent the main
modes of variation of the data.

FPCA scores are a core aspect of this study, as they can be used in subsequent analyses
(e.g., correlation analysis, functional data clustering [63], and supervised classification [35]).
Using FPCA scores, it is possible to generate a reduced space where the functions (here,
pixel-based time-series) can be plotted in an ordered way, thus, supporting domain experts
in ecological interpretation [31]. The scores could be also used to fit the plant association sea-
sonal temporal profiles (curves); in particular, in this study, we used the CreatePathPlot()
function of the fdapace package [64] for this purpose.

This package was also used to perform six distinct FPCAs, one for each pixel-based
vegetation index time-series. The pixel-based time-series were decomposed into their
main variation modes over the year (FPCA components), and the related scores (i.e.,
pixel-based FPCA scores) were obtained. The FPCA scores were then used as inputs
(predictors) to create plant associations and habitat models using a supervised algorithm
(i.e., Random Forest).

2.5. Supervised Mapping Using Random Forest

RF is an ensemble learning classifier [65] that is often used in habitat mapping studies
based on remote sensing. Belgiu and Drăguţ [66] presented a detailed review of RF and its
efficiency in remote sensing. In RF, it is necessary to adjust certain parameters and aspects,
such as: (i) the number of trees (the ntree parameter) that will be created by randomly
selecting the samples from the training samples and (ii) the number of variables used for
the division of the tree nodes (the mtry parameter).

We set ntree to 1500 and evaluated mtry from 1 to the square root of the number
of input variables, as is typically done [66]. An RF can be biased if the proportions of
training and validation data are unbalanced (as was the case in this study; see Table 1).
This aspect could present issues and could lead to over-prediction of the majority classes
and under-prediction of the minority classes. Over- and under-sampling can be used to
produce more balanced data sets [67].

In order to make the frequency of the majority class closer to that of the rarest class, we
incorporated down-sampling in the RF, when evaluating the training data subset (subset
parameter). We set subset = 11 * nmin, where 11 is the number of target classes and
nmin is the minimum between target classes (Table 1). This means that the RF model with
ntree = 1500 can obtain a balanced random sample without a loss of information for the
majority classes.

We considered two main groups of features:

• pixel-based FPCA scores, representing the main seasonal (intra-annual) variations of
the time-series;

• pixel-based PCA scores, representing the topographic and lithological features.

RF models were constructed using the predictors both individually and jointly in
order to evaluate and compare their contributions to the final accuracy of the map. We
preliminarily applied Recursive Feature Elimination (RFE) to consider only the most dis-
criminating predictors and reduce the (possibly high) number of dimensions. Mappings
based on random forest models and accuracies were performed and assessed using the
packages raster [68] and caret [69].
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2.6. Classification and Mapping Accuracy Assessment

The mapping accuracy (classification) was evaluated using the Overall Accuracy
(OA), Producer Accuracy (PA), and User Accuracy (UA) metrics [70], as well as the κ
coefficient [71]. We executed 10-fold cross-validation five times in order to calibrate the
model and provide a robust estimate of the accuracy, thus limiting any potential bias.
We provide the mean OA and κ index (and their respective Standard Deviations) and a
cross-validated confusion matrix (representing the error distribution for class among the
five repeats).

We also performed a comparison between the reference data and a 1:10,000 scale
vegetation map. The previous map was derived from acquisitions performed in 2009
and published online on a webGIS platform in 2014 (SIT-REM webGIS available here:
http://sitbiodiversita.ambiente.marche.it/sitrem/, accessedon 10 February 2022) [72]. The
types of vegetation and habitats between the different maps were appropriately harmonized
(in terms of classes). We tested the matching between the maps and defined the respective
levels of agreement through the κ statistics.

3. Results
3.1. Main Seasonal Variations of Time-Series

FPCA was used to extract the orthogonal main modes of variation (FPCA components)
from the multi-index Sentinel-2 time-series. Figure A1 shows the number of identified
functional components (eight for the MCARI time-series and seven for all of the other
time-series) and their fraction of variation explained (i.e., eigenvalues). FPCA components,
in practice, represent the amount of deviation from the overall mean of the time-series,
thus, reflecting the main contrasting modes of variation throughout the year.

In all of the considered cases, the two first FPCA components explained about 90% of
the total variation (NDVI: FPCA1 66.40%, FPCA2 24.53%; NDWI: FPCA1 66.57%, FPCA2
24.26%; GNDVI: FPCA1 71.42%; FPCA2 18.76%; MNDWI: FPCA1 74.62%, FPCA2 16.01%;
NDRE: FPCA1 60.97%, FPCA2 29.04%; and MCARI: FPCA1 56.31%, 26.54%) (Figure A1).

Figure A2 shows the temporal and spatial patterns of the two first FPCA components
extracted from the 18,631 weekly pixel-based time-series (we considered all of the pixels
belonging to the study area), while Figure A3 shows the mean seasonal profiles of plant
associations and habitats. These profiles describe, in a compact and easily readable manner,
the distinct phenological behaviors in relation to the different vegetation indices presented
in this work (see Table 3).

3.2. Plant Community Modeling Using the Main Topographic–Lithological and
Phenological Predictors

In this sub-section, we provide results from the RF models performed using both
individual and joint predictors, where the pixel-based FPCA scores summarize the main
seasonal (i.e., intra-annual) multi-spectral variations, while the pixel-based PCA scores
summarize the topographic and lithological predictors. Table A1 summarizes the global,
producer, and user accuracies.

The RF model based solely on topographical predictors achieved an overall accuracy
of 59.25% (±8.32) with k = 0.53 (±0.09). Only Riparian woods, Juniperus oxycedrus shrubs,
and Urban land achieved producer accuracies above 80%. All others showed very low
performance (see Table A1). This demonstrates that it is necessary to consider and integrate
different predictors.

In particular, as introduced in the previous sections, we evaluated several vegetation
indices that have been widely used in related works. Each model (ranging from b to h)
in Table A1) highlights the different behaviors for each class, mainly related to a certain
vegetation index. The NDVI index for a given class performed better than other vegetation
indices (e.g., class 4 NDVI and GNDVI).

However, when combining all time-series while also including the topography, the
overall accuracy reached 85.5%—also showing optimal performances in terms of UA and

http://sitbiodiversita.ambiente.marche.it/sitrem/
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PA. This suggests that each vegetation index contributes in a different (mostly constructive)
way to accurately and precisely predict the target class, while non-radiometric features, such
as the topographic and lithological predictors, also contributed to the overall performance
(see columns i and l of Table A1).

3.3. Comparison of Obtained Results with Ancillary Data

As mentioned in the previous section, we also performed a comparison with an
existing map (Figure 3b). The latest official map (produced by an expert through photo-
interpretation) [72], compared with the reference data, showed an OA of 59.42% and
k = 0.54. The best PAs were those of the Bromus erectus Huds. grasslands, the riparian
woods, the Pinus sp. plantations, and the Juniperus oxycedrus shrubs, while various classes
were less than 60% (e.g., Holm-oak, Downy-oak, and black hornbeam woods; see Table A1).

Both maps showed a similar trend over large areas, even if the supervised approach
(Figure 3a) was able to output a more accurate map. Changes over time were negligible,
considering that the intrinsic dynamics are significantly slower than the span of time
between the construction of the SIT-REM maps [72] and that in this work.

Figure 3. Plant associations and habitat maps of SAC “Gola di Frasassi”—code IT5320003 (Central
Italy): (a) Map obtained by the supervised random forest classification of the main seasonal remotely
sensed phenological variations as well as the main topographic and lithological predictors; and
(b) map derived from the SIT-REM of Marche region [72] produced by experts through the photo-
interpretation phytosociological traditional method. Legend numbers correspond to the plant associations
and habitats listed in Table 1.

4. Discussion

1. Main results. Our results confirmed that remotely sensed data can be used to (auto-
matically) map plant associations and habitats, particularly due to their multi-spectral
seasonal profiles (phenological behaviors). The main seasonal multi-spectral vari-
ations were effective predictors for the production of accurate maps as previously
discussed in [16,37].
In particular, the main seasonal variations extracted from Sentinel-2 time-series data
using FPCA, according to the methodology proposed in Pesaresi et al. [37], proved
to be an effective tool for mapping several plant associations (of different structure
and specific composition) for an entire SAC. We used supervised random forest clas-
sification, similarly to Zhu and Liu [29,73–75], and revealed that the main spectral
(phenological) seasonal variations contributed to the OA (here, 85.58%) of the pro-
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duced map, much more strongly than the lithological and topographic features (see
Table A1).

2. Simultaneous use of multiple time-series We confirmed the importance of using
the popular NDVI time-series [76]. It was demonstrated (as in other related works,
e.g., [8,24,75]) that the integration of multi-spectral (vegetation index) time-series can
improve the performance of vegetation and habitat mapping, as seasonal patterns
manifest differently in different spectral bands and vegetation indices [28] (Figure A3).
For example, holm-oak wood and Pinus sp. plantations had similar seasonal temporal
profiles, in terms of the NDVI, while presenting clearly different MCARI profiles
(Figure A3). The supervised RF models constructed using the time-series individually
revealed that, for the study area, seasonal variations of the NDVI time-series were
the most explanatory (OA 73.13% alone), while RF model constructed using the time-
series jointly revealed some complementarity between the time-series, where each
appeared to be useful in classifying different plant associations.
The integration of all six considered spectral vegetation indices supplied the RF with
crucial variations characterizing and discriminating the different plant associations.
With the combined model, an improvement of 9% in the OA over the best single
time-series was obtained. When we also considered the topographic and lithological
features, an additional 3.4% improvement was achieved (Table A1).

3. Mapping accuracy The obtained results, in terms of the OA (85.58%), demonstrated a
meaningful gain of performance when compared with the existing map [72]. Habitat
(92/43/EEC) and plant association maps (using the Braun–Blanquet approach) rarely
reach an overall accuracy greater than 80% [17]. In most cases, the number of classes
is up to five [11,14,37,77–80], while an increase in the number of classes typically
has a negative impact on the overall performance, reaching values close to 75%, as
in [9,16,80–84].
From a methodological point of view, it is necessary to define an acceptable level of
accuracy of a map generated using remotely sensed data [85,86], taking into consid-
eration the related use-cases and scenarios. Although it is challenging to define a
minimum value threshold for the mapping of plant communities and habitats, ac-
cording to the above-mentioned references, we could consider that, with a number of
target classes greater than five, an OA value of 80% represents a good result, while the
range of 75–80% could be sufficient. When the number of classes is ≤5, a good result
should exceed 85% OA, and it can be considered satisfactory if it exceeds the 80%.

4. Data Reduction using FPCA FPCA is an efficient input data reduction tool. First, it
is the central idea of the FDA itself—compressing the input data. Indeed, it considers
the pixel-based time-series as a function and as the (unique) object of analysis. Con-
sequently, FPCA considers a stack of remote sensed images as a single container of
pixel-based functions, regardless of the number of images that compose it.
Then, FPCA extracts, from these pixel-based functions (considered as cohesive tempo-
ral record of pixel-based time-series), the main and orthogonal modalities of variation
(i.e., functional components, numerically represented by the FPC scores that express
the different seasonalities), preserving the order (i.e., chronology) of the data and
facilitating ecological interpretation of the derived temporal and spatial patterns (see
Figure A2; as well as [31,36,37]).
In this work, for each vegetation index, we derived the time-series (set of values
over 52 weeks) and then applied FPCA. This technique reduced the size to a total of
43 functional components (considering multi-spectral seasonality); see Figures A1
and A2.
Furthermore, functional analysis allows for the study of derivatives, thus, providing
complementary information to describe the seasonal cycles derived from satellite data
(see, e.g., [87,88]). The FPCA components with a low fraction of variance explained
could also be evaluated by experts in order to derive local changes that are potential
indicators of different plant communities [89].
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5. Benefits for habitat directives, phyto-sociology, and landscape management The
overall accuracy obtained (OA 85.58%) was greater than 80% and much higher than
that obtained with the traditional method (photo-interpretation), thus, making the
produced map (Figure 3) a reliable and usable tool in the main procedures of habitat
directives (e.g., Appropriate Assessments and filling in of Standard Data Forms).
In the study area, the high temporal resolution of the Sentinel-2 mission makes
mapping (through the functional approach) of the vegetation and habitats up-to-date
and repeatable, according to the timing required by the directive (six years), as well as
with higher frequencies (e.g., every 2–3 years) [9]. Cyclical mapping (at least every
six years, in accordance with the Habitats Directive) of the plant associations—and,
therefore, of the habitats—with high accuracy (in terms of OA) could provide a valid
tool for monitoring the transformation of habitats over time [10,90].
For example, the conservation status of the grasslands in the studied area is strongly
determined by the presence of invasive shrubs or species. The grasslands of habitat
6210, in fact, if not adequately managed, tend to be colonized by shrubs (e.g., Spar-
tium junceum and Juniperus oxycedrus) and by a few perennial grasses, such as those
of the genera Brachypodium, with a consequent loss of the floristic diversity of the
grasslands [91–94].
Any variation or modification of the phenological profile of the habitat (as identifiable
through the use of the proposed methodology) can be used as a warning signal that,
in certain areas, a transformation process is underway, therefore, highlighting the
need for an inspection on the ground and, consequently, the need for corrective and
timely management actions.
The limitation for modeling and mapping plant communities is no longer the access
and processing of satellite data, but rather the time it takes to access and generate
reference data in the field. Therefore, it is crucial to disseminate the vegetation
plots in databases (e.g., VegItaly [95]) [9]. The production of reference data at the
plant associations level could benefit from the help of drones. An unmanned aerial
vehicle could enable the recognition of the plant species (see, e.g., [96]) while reaching
inaccessible places for human beings due to orography and many other factors.
Recognizing few indicator species (by drone) could by key for the quick identification
of vegetation types (plant association) in the field in complex environments [97] where
the vegetation types and their species composition are available. Despite the high
global accuracy of the map, the error matrix (Table 4) showed that black hornbeam
wood and downy-oak wood (habitat 91AA*) could be misclassified.
This was due to the fact that both woods share some species in the dominant tree
layer, although the underlying, dominated layers are well-differentiated, in terms of
mesophilic species dominating in the first case, with more thermophilic in the sec-
ond. Therefore, from an ecological point of view, they are different woods, even
if the tree structure and composition is partially similar. This confusion led to
over-representation of downy-oak wood (PA 82.5% and UA of 65.9%) and under-
representation of black hornbeam wood (PA 68.3% and UA 85.4%) in the predicted
map (Figure 3). However, these accuracies were still much better than those obtained
with traditional mapping.
The methodology presented in this work enables a concrete link between the remote
survey perspective and the (phyto-sociological) field-based one. Manual (traditional)
approaches could be empowered by supervised ones, which, in any case, still rely on
reference data generated by domain experts.
Vegetation has unique spectral signatures that evolve along with the plant life cy-
cle over the year [75], which represents an important trait of plant associations
(Figure A3). The quantification of patterns in the seasonal behavior of the spectral re-
flectance can provide better characterization of plant communities [74]. Furthermore,
FPCA scores represent reduced ordination spaces (i.e., useful tools for botanists and
ecologists) [31,35,36] that are suitable for the ecological interpretation of the results
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and that contribute to the study of the relationships between the data observed in the
field and those that are remotely sensed.

Table 4. Cross-validated confusion matrix (10-fold, repeated five times) between the predicted target
classes of the SAC “Gola di Frasassi”, code IT5320003 (Central Italy). The Overall accuracy, Producer
accuracy, User accuracy (in percentage), and κ Statistic are given. Row and column numbers denote
the plant associations and habitats listed in Table 1.

Reference Data

1 2 3 4 5 6 7 8 9 10 11 UA

Pr
ed

ic
ti

on

1 34 0 5 1 0 0 0 0 0 0 0 85.0
2 0 29 12 0 0 2 0 0 1 0 0 65.9
3 1 4 41 1 0 0 0 0 0 0 1 85.4
4 2 0 1 29 0 0 0 0 0 0 0 90.6
5 0 0 1 0 16 0 0 0 0 1 0 88.9
6 0 0 0 0 0 13 0 1 1 2 0 76.5
7 0 0 0 1 0 1 14 0 0 0 0 87.5
8 0 0 0 0 0 0 1 14 1 1 0 82.4
9 0 1 0 0 0 0 0 0 43 1 1 93.5
10 0 0 0 0 0 0 0 1 0 13 0 92.9
11 0 0 0 0 0 0 0 0 3 0 13 81.3

PA 91.9 82.5 68.3 90.6 100.0 81.3 93.3 87.5 87.8 72.2 86.7

OA 85.58 (±5.28)

K 0.83 (±0.06)

Limits and Challenges for Future Work

1. We found that the combined use of different spectral vegetation indices led to better
results compared with using a single one. Of course, the six selected vegetation indices
have been widely adopted by researchers; however, we cannot exclude that a different
set of vegetation indices combining two or more bands could improve the overall
performance, perhaps also fixing the misclassification between black hornbeam and
downy-oak woods. The typical formula adopted for the NDVI is in the form of
(a− b)/(a + b) where a and b are spectral bands; this formula is only an example,
and other formulas/functions may improve the final mapping.

2. If we need to consider multiple time-series derived from a wider set of vegetation
indices, we must adapt an approach considering more advanced FDA techniques.
A possible solution is to adopt the Multidimensional FPCA (MFPCA) [98], which
enables reduction of the time-series (i.e., a lower number of components extracted
from multiple time-series), thus, providing a single phenological ordering space to
make the ecological interpretation easier [37]. Although harmonic and phenological
features have recently been used to improve forest type mapping, as in [29,74], new
vegetation indices could be derived, with novel formulas, in order to increase the
spectral separation among target classes.

5. Conclusions

Functional Data Analysis (FDA) (e.g., FPCA) is relatively recent and not yet widely
used in remote sensing and ecology, even if it represents a powerful way to analyze tempo-
ral ecological data, such as remote-sensing time series [99]. FDA represents a promising
novelty to map habitats that belong to the Natura 2000 network sites. Pesaresi et al. [36,37]
applied the FPCA to NDVI Landsat 8 time-series to map and characterize forest plant
associations and habitats identified with the phytosociological approach in a small area
belonging to the Natura 2000 network.

In this work, we demonstrated the utility of using FPCA applied to Sentinel-2 time
series of vegetation indexes to improve the mapping of plant associations and habitats of
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an entire Special Area of Conservation. Despite its limited size (∼728 ha), the study area is
rich in terms of species, plant communities and habitat diversity.

The global accuracy achieved in the study area adopting the proposed methodology
was 85.58%. The obtained results outperformed the threshold of the 80% that was rarely
exceeded in remote sensing applications for habitat mapping and the existing map of
the same area that was obtained by experts using photointerpretation. The main seasonal
phenological variations (FPCA components and scores), extracted by FPCA from the remote
sensed time series, contributed to the global accuracy of the map much more than the
topographic and lithological variables.

Furthermore, this work highlighted that the plant communities, together with their
own typical floristic composition, exhibited exclusive phenological dynamics that manifest
differently with respect to vegetation indexes. These different temporal patterns are quan-
tified by FPCA scores and graphically represented by their mean seasonal profiles. The
proposed methodology can be used to detect future changes in phenological patterns that
can serve as a warning sign of habitat change. Indeed, they act as a sensible and pragmatic
tool to show, monitor, and preview environmental changes.

FPCA scores and multi-index mean seasonal profiles are important vegetation at-
tributes that could be complementary to species-based approaches in plant community
ecology and phytosociolocy and that facilitate the link between remote sensing with habitat
mapping and monitoring and their ecological interpretation.

The results confirm that FDA applied to remote-sensing times-series opens new sce-
narios to map vegetation and habitats of the Natura 2000 network. Vegetation and habitat
mapping are still mostly performed in the traditional way with the photo-interpretation
method. Most of approaches to map habitat from remotely sensed data rely on single or
sparse time-series (few images per year); however, the dynamics of phenology suggest
using denser time series to set up a supervised classifier (Random Forest, LDA, SVM, etc.).

The FDA techniques, considering the time series of a pixel as a single statistical object
(function) allow the use of many images (dense time-series) in an efficient and ecologically
relevant way considering entire archives of remotely sensed images (e.g., Landsat and
Sentinel-2) as a cohesive temporal record, rather than as a series of individual images.

Considering these results, we plan to extend the temporal coverage of time-series
embedding different combinations of bands (indexes) that could improve the overall classi-
fication performance in a multi-dimensional scenario by using the Multivariate Functional
Principal Component Analysis (MFPCA). The proposed method could be easily applied on
different, larger areas with denser time-series.

We believe that the mapping of plant associations and habitats with the functional
approach has a relevant impact on the decisions taken by policy makers to monitor and
preserve our environments. The automation of the process also gives the opportunity to
detect changes over time that could be relevant for stakeholders to plan and enact policies
to preserve the environment.
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Appendix A

Table A1. Comparison of performance (OA, K, UA, and PA) between traditional map (a) and models
based on components: (b) topography, (c) NDVI, (d) GNDVI, (e) MCARI, (f) NDRE, (g) NDWI, (h)
MNDWI, (i) all time-series, and (l) all time-series + topography. Legend numbers correspond to plant
associations and habitats listed in Table 1.

a b c d e f g h i l
OA 59.4 59.2 73.1 69.5 63.7 69.5 67.9 67.3 82.1 85.5

8.3 7.2 7.6 7.2 8.7 7.1 7.6 6.3 5.2
K 0.54 0.53 0.69 0.65 0.58 0.65 0.63 0.62 0.79 0.83

0.09 0.08 0.08 0.08 0.10 0.08 0.08 0.07 0.06

PA
1 43.2 70.3 86.5 78.4 67.6 81.1 81.1 73.0 91.9 91.9
2 44.1 38.2 79.4 76.5 64.7 79.4 70.6 64.7 79.4 85.3
3 56.7 56.7 58.3 71.7 60.0 56.7 46.7 68.3 65.0 68.3
4 90.6 37.5 78.1 62.5 59.4 84.4 78.1 84.4 90.6 90.6
5 87.5 93.8 56.3 87.5 62.5 68.8 68.8 56.3 87.5 100.0
6 37.5 50.0 75.0 68.8 37.5 68.8 68.8 68.8 68.8 81.3
7 80.0 93.3 80.0 80.0 86.7 86.7 73.3 80.0 93.3 93.3
8 93.8 62.5 81.3 81.3 75.0 68.8 81.3 75.0 81.3 87.5
9 36.7 53.1 69.4 63.3 55.1 65.3 55.1 51.0 77.6 87.8
10 72.2 61.1 66.7 61.1 72.2 66.7 72.2 66.7 72.2 72.2
11 73.3 80.0 80.0 73.3 80.0 86.7 86.7 60.0 80.0 86.7

UA
1 47.1 68.4 78.0 72.5 64.1 83.3 85.7 64.3 82.9 85.0
2 36.6 44.8 57.4 68.4 47.8 57.4 49.0 51.2 60.0 65.9
3 57.6 64.2 79.5 86.0 75.0 82.9 68.3 77.4 83.0 85.4
4 63.0 44.4 75.8 60.6 57.6 71.1 78.1 84.4 90.6 90.6
5 100.0 75.0 60.0 87.5 47.6 68.8 37.9 60.0 77.8 88.9
6 40.0 42.1 57.1 45.8 35.3 45.8 68.8 61.1 64.7 76.5
7 100.0 66.7 52.2 60.0 68.4 61.9 47.8 66.7 70.0 87.5
8 55.6 43.5 76.5 86.7 85.7 78.6 81.3 75.0 81.3 82.4
9 78.3 65.0 91.9 86.1 71.1 84.2 87.1 71.4 88.4 93.5
10 50.0 61.1 85.7 64.7 86.7 75.0 65.0 63.2 100.0 92.9
11 100.0 60.0 75.0 57.9 66.7 76.5 81.3 52.9 75.0 81.3

Figure A1. Number of components (and their fraction of variation explained) extracted by Functional
Principal Component Analysis from Sentinel-2 time-series: (a) NDVI, (b) GNDVI, (c) MCARI, (d) NDRE,
(e) MNDWI, and (f) NDWI. Cumul. FVE is the cumulative Fraction of the Variance Explained.
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Figure A2. Spatiotemporal pattern of mean seasonal spectral variations, extracted by FPCA from the
Sentinel-2 dense time-series. The first column shows the six vegetation index time-series (18,631 pixel-
based time-series). FPCA considering a single time-series as a single object of analysis (as a function),
and identifies main contrasting modes of variation during the year between the functions (second
and third columns) and the respective spatial patterns according to the FPCA scores (fourth and fifth
columns). Only the first two components are shown in this figure, for illustrative purposes.
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Figure A3. Seasonal temporal profiles of the target classes in the different spectral vegetation indices.
The plotted MCARI values are scaled by a factor of 1000. The bold red line is the mean vegetation
index value. The red polygon is the 10–90th percentile. The black line is the mean vegetation index
values of whole study area (which is useful to appreciate the differences between the target class and
mean of the study area). Row numbers correspond to the plant associations and habitats listed in
Table 1.
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Table A2. Distribution of selected Sentinel-2 images, by month.

Month Frequency

January 4
February 8

March 7
April 7
May 8
June 9
July 12

August 14
September 9

October 7
November 3
December 5

sum 93

Table A3. List of Sentinel-2 images selected for this study.

Num Date Doy Month Num Date Doy Month

1 21 April 2017 111 4 48 3 October 2018 276 10
2 1 May 2017 121 5 49 13 October 2018 286 10
3 11 May 2017 131 5 50 12 November 2018 316 11
4 31 May 2017 151 5 51 7 December 2018 341 12
5 20 June 2017 171 6 52 12 December 2018 346 12
6 10 July 2017 191 7 53 27 December 2018 361 12
7 20 July 2017 201 7 54 26 January 2019 26 1
8 30 July 2017 211 7 55 5 February 2019 36 2
9 9 August 2017 221 8 56 15 February 2019 46 2
10 19 August 2017 231 8 57 20 February 2019 51 2
11 29 August 2017 241 8 58 25 February 2019 56 2
12 18 September 2017 261 9 59 2 March 2019 61 3
13 8 October 2017 281 10 60 12 March 2019 71 3
14 18 October 2017 291 10 61 17 March 2019 76 3
15 28 October 2017 301 10 62 22 March 2019 81 3
16 27 November 2017 331 11 63 1 April 2019 91 4
17 7 December 2017 341 12 64 16 April 2019 106 4
18 22 December 2017 356 12 65 31 May 2019 151 5
19 6 January 2018 6 1 66 5 June 2019 156 6
20 15 February 2018 46 2 67 15 June 2019 166 6
21 6 April 2018 96 4 68 25 June 2019 176 6
22 16 April 2018 106 4 69 30 June 2019 181 6
23 21 April 2018 111 4 70 5 July 2019 186 7
24 26 April 2018 116 4 71 20 July 2019 201 7
25 11 May 2018 131 5 72 25 July 2019 206 7
26 16 May 2018 136 5 73 30 July 2019 211 7
27 21 May 2018 141 5 74 4 August 2019 216 8
28 31 May 2018 151 5 75 9 August 2019 221 8
29 10 June 2018 161 6 76 14 August 2019 226 8
30 15 June 2018 166 6 77 19 August 2019 231 8
31 20 June 2018 171 6 78 24 August 2019 236 8
32 30 June 2018 181 6 79 29 August 2019 241 8
33 10 July 2018 191 7 80 8 September 2019 251 9
34 15 July 2018 196 7 81 13 September 2019 256 9
35 20 July 2018 201 7 82 18 September 2019 261 9
36 25 July 2018 206 7 83 8 October 2019 281 10
37 30 July 2018 211 7 84 23 October 2019 296 10
38 4 August 2018 216 8 85 7 November 2019 311 11
39 9 August 2018 221 8 86 1 January 2020 1 1
40 19 August 2018 231 8 87 6 January 2020 6 1
41 24 August 2018 236 8 88 5 February 2020 36 2
42 29 August 2018 241 8 89 15 February 2020 46 2
43 3 September 2018 246 9 90 20 February 2020 51 2
44 8 September 2018 251 9 91 11 March 2020 71 3
45 18 September 2018 261 9 92 16 March 2020 76 3
46 23 September 2018 266 9 93 21 March 2020 81 3
47 28 September 2018 271 9
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