
Computers and Fluids 253 (2023) 105791

A
0

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

Algebraic modifications of the 𝑘-�̃� and Spalart–Allmaras turbulence models
to predict bypass and separation-induced transition
A. Crivellini a, A. Ghidoni b, G. Noventa b,∗

a Marche Polytechnic University, Department of Industrial Engineering and Mathematical Science, via Brecce Bianche 12, 60131, Ancona, Italy
b University of Brescia, Department of Mechanical and Industrial Engineering, via Branze 36, 25123 Brescia, Italy

A R T I C L E I N F O

Keywords:
Laminar to turbulent transition
Discontinuous Galerkin
High-order solver
Transition model
RANS equations

A B S T R A C T

Many reliable and robust turbulence models are nowadays available for the Reynolds-Averaged Navier–Stokes
(RANS) equations to accurately simulate a wide range of engineering flows. However, turbulence models are
not suited to correctly described flows with low to moderate Reynolds numbers, which are characterized by
strong transitional phenomena. Therefore, numerical models able to accurately predict transitional flows are
mandatory to overcome the limits of turbulence models for the efficient design of many industrial applications.
The only ways to describe transition are Direct Numerical Simulation (DNS), Large Eddy Simulation (LES),
and transition models, where the computational cost of DNS and LES is still too high for their routine use in
industry. A modified version of the 𝑘-�̃� and Spalart–Allmaras turbulence models is here proposed to predict
transition due to the bypass and separation-induced modes. The modifications are based on the 𝛾𝑘-�̃� and
the SA-BCM models and avoid complex formulations of transport equations ad-hoc defined for transition.
Both the transition models are correlation-based algebraic models that rely only on local flow information
and an intermittency function, which damps the turbulent production according to some transition onset
requirements. The proposed transition models are implemented in a high-order discontinuous Galerkin (dG)
solver and validated on benchmark cases from the ERCOFTAC suite to the Eppler 387 airfoil, with different
transition mode, freestream Reynolds number and turbulent intensity, and pressure gradient.
1. Introduction

Laminar to turbulent transition is a common phenomenon in low
to moderate Reynolds number flows. In addition to the freestream
Reynolds number, transition is influenced by the freestream turbulent
intensity, the roughness of the surface, and the pressure gradient.
The four main transition mechanism are: natural, bypass, separation-
induced, and wake-induced. The modeling of the transition is very
difficult, due to the complex nature, and for this reason is yet a not
fully resolved problem for the scientific community.

Many reliable and robust turbulence models are available for the
Reynolds-Averaged Navier–Stokes (RANS) equations to accurately sim-
ulate a wide range of engineering flows [1–4], with a lack of fidelity
when the flow is transitional. In fact, turbulence models are not suited
to correctly describe flows with low to moderate Reynolds numbers,
which are characterized by strong transitional phenomena. As a conse-
quence, numerical models able to accurately predict transitional flows
are mandatory to overcome the limits of turbulence models for the
efficient design in many industrial fields, as aerospace, turbomachinery,
maritime, and automotive.
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The only ways to describe transitional phenomena are Direct Nu-
merical Simulation (DNS), Large Eddy Simulation (LES), and transition
models for RANS equations, where the computational cost of DNS and
LES is still too high for their routine use in industry. Many transition
models are available in literature, but none of these formulations seem
to be comprehensive and widely used both in the scientific community
and industry.

Literature classifies transition models into non-local and local mod-
els, where also the low-Reynolds version of the turbulence models can
represent a solution to describe transition. The non-local models are
based on correlations, which relate the momentum thickness Reynolds
number to local free-stream conditions, such as turbulence intensity
and pressure gradient, where several correlations have been developed
for different transition mechanisms. The main drawback is due to
the fact that the non-local formulation needs the information on the
integral thickness of the boundary layer and of the flow at the edge
of the boundary layer. While the local models are based on transport
equations for turbulent or transitional variables, similarly to the turbu-
lence models, with only local flow information. The local formulation
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Nomenclature

𝛥𝑥1 Length (in 𝑥-direction) of the first element
from the leading edge of the computational
mesh

𝛥𝑦1 Height (in 𝑦-direction) of the first element
from wall of the computational mesh

𝛿𝑖𝑗 Kronecker delta (–)
𝛾𝑔 ratio of gas specific heats (–)
∞ Freestream flow conditions
𝜆𝑇 Turbulent length scale (m)
𝜇 Dynamic viscosity (Pa s)
𝜇𝑇 ∕𝜇 = 𝜈𝑇 ∕𝜈 Viscosity ratio (–)
𝜈 Kinematic viscosity (m2∕s)
𝜔 Specific dissipation rate of turbulent kinetic

energy (1∕s)
𝛺 =

√

2𝛺𝑖𝑗𝛺𝑖𝑗 Vorticity magnitude (1∕s)

𝛺𝑖𝑗 =
(

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑗
𝜕𝑥𝑖

)

Vorticity tensor (1∕s)

𝜌 Density (kg/m3)
�̃� SA’s working variable (m2∕s2)
𝑑 Wall-distance (m)
𝐸 Total specific energy (J/kg)
𝑒 Internal specific energy (J/kg)
𝑘 Turbulent kinetic energy (m2∕s2)
𝑘𝐿 Laminar kinetic energy (m2∕s2)
𝑘𝑙 Large-scale turbulent kinetic energy

(m2∕s2)
𝑘𝑠 Small-scale turbulent kinetic energy

(m2∕s2)
𝑘𝑇𝑂𝑇 = 𝑘 + 𝑘𝐿 Total kinetic energy (m2∕s2)
𝐿𝐸 Leading edge flow conditions
𝑀 Mach number (–)
𝑛𝑒 Number of elements of the computational

mesh
𝑛𝑥 Number of elements in 𝑥-direction of the

computational mesh
𝑝 Pressure (Pa)
𝑃𝑟 Molecular Prandtl number (–)
𝑃𝑟𝑇 Turbulent Prandtl number (–)
𝑞𝑖 𝑖-component heat flux (W/m2)
𝑅𝑒 Reynolds number (–)
𝑅𝑒𝜔 = 𝑒�̃�𝑑2

𝜈 Specific dissipation rate Reynolds number
(–)

𝑅𝑒√𝑘 𝑑 =
√

𝑘𝑑
𝜈 Wall-distance Reynolds number (–)

𝑅𝑒𝜃 =
𝑅𝑒𝑑2𝛺

𝜈 Momentum thickness Reynolds number (–)

𝑅𝑒𝑑 𝑆 = 𝑆𝑑2

𝜈 Strain-rate Reynolds number (–)

𝑅𝑒𝑑2 𝛺 = 𝛺𝑑2

𝜈 Vorticity Reynolds number (–)
𝑅𝑒𝑘𝛺 = 𝑘

𝜈𝛺 Turbulent kinetic energy Reynolds number
(–)

𝑅𝑒𝑘𝜔 = 𝑘𝑒�̃�𝑟
𝜈𝛺2 Turbulent quantities Reynolds number (–)

guarantees better robustness, accuracy and easiness of implementa-
tion in modern solvers, especially for High Performance Computing
(HPC) and parallel simulations. These models can be divided into
correlation-based models [5], and phenomenological models [6].

The transition models have been proposed for the standard Finite
Volume Methods (FVMs), but the increasing required level of resolu-
2

tion naturally leads to consider discretization methods with a higher
𝑅𝑒𝑇 =
𝑓2
𝑊 𝑘
𝜈𝑒�̃� Effective turbulent Reynolds number (–)

𝑆 =
√

2𝑆𝑖𝑗𝑆𝑖𝑗 Strain-rate magnitude (1∕s)

𝑆𝑖𝑗 =
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

)

Strain-rate tensor (1∕s)

𝑇 𝑢 Turbulent intensity (–)
𝑢𝑖 𝑖-component velocity (m/s)
𝑥𝑖 𝑖-component spatial coordinate (m)

order of accuracy, such as discontinuous Galerkin (dG) methods. In
dG methods the solution of the weak or variational form of a partial
differential problem is approximated by polynomial functions over the
elements, similarly to the classical continuous Finite Element Method
(FEM). However, unlike continuous FEMs, dG discretizations use an
approximation that is in general discontinuous at the element inter-
faces. The coupling of the approximate solutions between neighboring
elements is weakly enforced by interface, or numerical, fluxes. An
appropriate definition of the numerical fluxes guarantee the consistency
and stability of the dG numerical approximation. The main drawback
of this higher accuracy is the increased computational cost compared
to FVMs, but the compact stencil of dG methods, involving only one
element and its neighbors, makes the formulation very well suited for
massively parallel computer platforms. Furthermore, the computational
efficiency of dG solvers can be substantially improved by resorting to
multilevel solution approaches, such as the 𝑝-multigrid algorithms [3].

A modified version of the 𝑘 − �̃� [7] and Spalart–Allmaras [4]
turbulence models is here proposed and implemented in a high-order
accurate dG solver, called MIGALE, in order to predict transition due to
the bypass and separation-induced mode. The modifications are based
on the 𝛾𝑘 − 𝜔 by Holman and Fürst [8,9] and Kubacki et al. [10–
12], and the SA-BCM by Cakmakcioglu et al. [13,14]. Both the models
are correlation-based algebraic transition models that rely on local
and freestream flow information and include an intermittency function
instead of an intermittency equation. The basic idea behind the models
is that, instead of writing a transport equation for intermittency, an
intermittency function multiplies the production terms of the formula-
tion of the turbulence models. In particular, the turbulence production
is damped until it satisfies some transition onset requirements. The
choice of these transition models falls in the fact that the starting
turbulence models are yet implemented and widely assessed in the
MIGALE solver (see Fig. 1). For historical reasons the 𝑘 − �̃� model [7]
is implemented both in the compressible and incompressible solvers,
while the Spalart–Allmaras model only in the incompressible solver.

The prediction capabilities of these transition models, e.g., the 𝛾𝑘−�̃�
and SA-BCM models, are proved and assessed by computing the flow
over the flat plates of the ERCOFTAC T3 series with zero and non-
zero pressure gradients, where the T3A, T3B, T3A-, and T3C cases are
investigated experimentally by Coupland [18] and the T3L cases by
Coupland and Brierley [19]. These test cases are mainly characterized
by bypass and separation-induced transition, with different freestream
Reynolds number 𝑅𝑒∞ and turbulent intensity at the leading edge of the
plate 𝑇 𝑢𝐿𝐸 . Furthermore the transitional flow around an Eppler 387
airfoil with freestream turbulent intensity 𝑇 𝑢∞ = 0.1% and Reynolds
number 𝑅𝑒∞ = 200 000, based on the chord of the airfoil and the
freestream flow quantities, and different angles of attack is considered
in comparison to the experiments by McGhee et al. [20] at Langley
Low-Turbulence Pressure Tunnel (LTPT). In particular, in the T3A,
T3B, T3A-, and T3C cases the transition is in the bypass mode, while
in the rounded leading edge flat plates, e.g., T3L cases, and in the
Eppler airfoil cases the transition is in the separation-induced mode.
In the former cases the separation is due to the geometry and only the
reattachment has to be triggered by the model, while in the latter cases
the separation is due to the pressure gradient and the models play a
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Fig. 1. Representative scheme of the MIGALE solver, where compressible and incompressible Euler, Navier–Stokes [15–17] and RANS equations are discretized and solved in a
high-order spatial and temporal dG framework. The Euler equations box is neglected for a sake of clarity. Below the RANS equations box the first line of boxes represents the
turbulence models, while the second line the transition model. The red boxes spotlight the transition models here proposed, as a further development of the 𝑘 − �̃� and Spalart–

llamaras turbulence models. The 𝑘− �̃� turbulence model are implemented also in the Explicit Algebraic Reynolds Stress Model (EARSM) version. The local and phenomenological
− 𝑘𝐿 − �̃� and the non-local 𝛾𝑘 − �̃� transition models are yet implemented in the MIGALE solver.
i

rucial role both in the flow separation and reattachment. Also in the
3C cases, e.g., T3C2, T3C3, and T3C5, the pressure gradient heavily
ffects the transition.

This testsuite assesses the good prediction capabilities of the pro-
osed transition models, not only with the comparison of the pressure
nd skin friction coefficient distribution on the wall with experiments
nd numerical results from literature, but also with the first-order
tatistics profiles in the domain and the convergence history of the
esiduals. The high-order accuracy dG solver allows to overcome mesh
imits and a strong addiction of the results from the mesh accuracy,
ut needs corrections of some terms of the formulation of the models
o improve the robustness of the convergence.

The main goal of this work is to develop an easy modification of
he turbulence models formulation in order to predict transition, i.e., to
rite transition models without the adding of ad-hoc defined transport
quations or the full rewriting of the production and dissipation terms
f the working variables. While the secondary goal is, instead, to
emonstrate the feasibility of the coupling of transition models with
ANS equations in a high-order accuracy dG framework, where already

he implementation of a standard turbulence model can prove to be a
ifficult task for the stiffness associated with the model equations.

Sections 2 and 3 describes the transition model equations, of the
A-BCM and 𝛾𝑘 − �̃� model respectively, while Section 4 the dG spatial
iscretization of the equations and the pseudo-transient continuation
trategy for the steady state solution. Then, Section 5 shows the com-
arison of the prediction capabilities of the proposed models and
ther numerical models from literature on the testsuite: Section 5.1
or the ERCOFTAC zero pressure gradient flat plates, Section 5.2 for
he ERCOFTAC non-zero pressure gradient flat plates, Section 5.3 for
he ERCOFTAC rounded leading-edge flat plates, and Section 5.4 for
he Eppler 387 airfoil. Finally, Section 6 summarizes the conclusive
emarks of this work.

. SA-BCM model

The complete set of the incompressible RANS and Spalart–Allmaras
CM transition model [13,14] equations can be written as
𝜕𝑢𝑗 = 0, (1)
3

𝜕𝑥𝑗
𝜕𝑢𝑖
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(

𝑢𝑗𝑢𝑖
)

= −
𝜕𝑝∗

𝜕𝑥𝑖
+

𝜕𝜏∗𝑗𝑖
𝜕𝑥𝑗

, (2)

𝜕�̃�
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(

𝑢𝑗 �̃�
)

= 𝛾𝐵𝐶𝑐𝑏1�̃��̃� − 𝑐𝑤1𝑓𝑤
( �̃�
𝑑

)2

+ 1
𝜎

[

𝜕
𝜕𝑥𝑗

(

(𝜈 + �̃�) 𝜕�̃�
𝜕𝑥𝑗

)

+ 𝑐𝑏2
𝜕�̃�
𝜕𝑥𝑗

𝜕�̃�
𝜕𝑥𝑗

]

(3)

where the density is a constant and the pressure and the turbulent and
total stress tensors are 𝑝∗ = 𝑝∕𝜌, 𝜏∗𝑗𝑖 = 𝜏𝑗𝑖∕𝜌, and 𝜏∗𝑗𝑖 = 𝜏𝑗𝑖∕𝜌. The
turbulent viscosity and the closure functions are given by

𝜈𝑡 = max (0, �̃�) 𝑓𝑣1, 𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3𝑣1
, 𝜒 = �̃�

𝜈
,

�̃� = 𝛺 + �̃�
𝜅2𝑑2

𝑓𝑣2, 𝑓𝑣2 = 1 −
𝜒

1 + 𝜒𝑓𝑣1
,

𝑓𝑤 = 𝑔

[

1 + 𝑐6𝑤3

𝑔6 + 𝑐6𝑤3

]1∕6

, 𝑔 = 𝑟 + 𝑐𝑤2𝐿𝑅𝑒
(

𝑟6 − 𝑟
)

.

where �̃� is kept non negative in the turbulent viscosity. 𝛺 =
√

2𝛺𝑖𝑗𝛺𝑖𝑗
s the vorticity magnitude and 𝛺𝑖𝑗 the vorticity tensor. The formulation

of 𝑟 is modified according to Crivellini et al. [4] as

𝑟 =

{

max(𝑟∗, 𝑟𝑚𝑎𝑥) 𝑟∗ < 0
min(𝑟∗, 𝑟𝑚𝑎𝑥) 𝑟∗ ≥ 0,

𝑟∗ = �̃�
�̃�𝜅2𝑑2

, (4)

which avoids the sign inversion of the source terms and greatly im-
proves the robustness of the convergence, especially for high-order
solvers.

The intermittency function 𝛾𝐵𝐶 is defined as

𝛾𝐵𝐶 = 1 − exp
(

−
√

𝑇 𝑒𝑟𝑚1 −
√

𝑇 𝑒𝑟𝑚2

)

, (5)

with two different functions, e.g., the 𝑇 𝑒𝑟𝑚1 and 𝑇 𝑒𝑟𝑚2, defined as

𝑇 𝑒𝑟𝑚1 =
max

(

𝑅𝑒𝜃 − 𝑅𝑒𝜃𝑐 , 0
)

𝜒1𝑅𝑒𝜃𝑐
, 𝑇 𝑒𝑟𝑚2 = max

(

𝜈𝑡
𝜒2𝜈

, 0
)

, (6)

where 𝑅𝑒𝜃 = 𝑅𝑒𝑑2𝛺∕2.193 is the momentum thickness Reynolds num-
ber and 𝑅𝑒𝑑2𝛺 = 𝑑2𝛺∕𝜈 is the vorticity Reynolds number. The threshold
value 𝑅𝑒𝜃𝑐 is a critical momentum thickness Reynolds number, which
is written with a formulation based on experiments, i.e.,

( )−1.027 .
𝑅𝑒𝜃𝑐 = 803.73 𝑇 𝑢∞ + 0.6067
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Table 1
Constants of the SA-BCM model.
𝜒1 = 0.002 𝜒2 = 50 𝑟𝑚𝑎𝑥 = 103

𝑐𝑏1 = 0.1355 𝑐𝑏2 = 0.622 𝜎 = 2∕3
𝑐𝑤1 =

𝑐𝑏1
𝜅2 + 1+𝑐𝑏2

𝜎
𝑐𝑤3 = 2 𝑐𝑤4 = 0.21

𝑐𝑤5 = 1.5 𝑐𝑣1 = 7.1 𝜅 = 0.41

Table 2
Constants of the 𝛾𝑘− �̃� model, where only the constants of the transitional model are
here reported. While 𝛼, 𝛼∗, 𝛽, 𝛽∗, 𝜎 and 𝜎∗ are the constants of the original 𝑘−�̃� model
[7].
𝐴0 = 4.04 𝐴𝑆 = 2.12 𝐴𝜈 = 5.20
𝐴𝑇𝐻 1 = 0.2 𝐴𝑇𝐻 2 = 0.2 𝐴𝑇𝐻 3 = 0.1
𝐶𝑇𝐻 1 = 21 𝐶𝑇𝐻 2 = 1.05 𝐶𝑇𝐻 3 = 0.002
𝐶𝑆 = 1.7 𝐶𝜆 = 2.495 𝐶𝐼𝑁𝑇 = 0.95
𝐶𝜇,𝑠𝑡𝑑 = 0.09 𝐶𝑘 = 6 𝐶𝜒 = 10
𝐴𝑆𝐼 = 1000 𝐶𝑆𝐼 = 2 𝐶𝐾𝑙𝑒𝑏 = 1∕2
𝑐𝑤 = 2 𝑏𝛾 = 150 𝑎𝛾 = 0.95
𝑎𝜔 = 20 𝑏𝜔 = 5 𝜒1 = 0.002
𝜒2 = 50 Pr = 0.72 Pr𝑡 = 0.85

𝑇 𝑒𝑟𝑚1 is mainly responsible for the production of the intermittency
function, in fact starts the production which is supported downstream
by the 𝑇 𝑒𝑟𝑚2 (see Figs. 25 and 26). Due to the fact that the vorticity
Reynolds number is based also on the distance from the wall, the
intermittency function takes a very low value inside the boundary layer.
As a consequence, 𝑇 𝑒𝑟𝑚1 is not able to generate intermittency inside
the boundary layer, and 𝑇 𝑒𝑟𝑚2 has been added recently [13,14] to
overcome this limitation. The transition model constants are tabulated
in Table 1.

The model constant 𝑐𝑤2 is replaced by 𝑐𝑤2𝐿𝑅𝑒 according to Spalart
and Garbaruk [21], defined as

𝑐𝑤2𝐿𝑅𝑒 = 𝑐𝑤4 +
𝑐𝑤5

(

𝜒
40 + 1

)2
, (7)

o introduce the dependence from the turbulence model working vari-
ble 𝜒 . This correction allows to improve the behavior of the model
t relatively low Reynolds number, and for this reason, is here im-
lemented. In fact, transitional flows applications take place in low to
oderate Reynolds number flows.

In the original model [13,14] the freestream working variable �̃�∞
s set from 0.015𝜈 to 0.025𝜈. Instead, the influence of the freestream
urbulent intensity 𝑇 𝑢∞ is taken into account through the critical
omentum thickness Reynolds number 𝑅𝑒𝜃𝑐 , and not by the freestream
orking variable �̃�∞∕𝜈. The results of all the cases here simulated

how how the choice of the freestream working variable can affect
he accuracy of the solution. It is quite natural to conjecture that 𝑇 𝑢∞

and �̃�∞∕𝜈 are somehow related, but, as the Spalart–Allmaras is a one
equation model, it is difficult to provide a reliable correlation between
these two quantities. From this point of view, the 𝛾𝑘 − �̃� model is
completely different, i.e., the freestream turbulent intensity 𝑇 𝑢∞ is
imposed through the values of the turbulent variables 𝑘∞ and �̃�∞ at
the boundaries of the domain. Finally, the standard �̃�𝑤𝑎𝑙𝑙 = 0 condition
is used at the wall boundaries.

3. 𝜸𝒌− �̃� Model

The complete set of the compressible RANS and 𝛾𝑘 − �̃� transition
model equations can be written as

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥𝑗

(𝜌𝑢𝑗 ) = 0, (8)

𝜕
𝜕𝑡
(𝜌𝑢𝑖) +

𝜕
𝜕𝑥𝑗

(𝜌𝑢𝑗𝑢𝑖) = −
𝜕𝑝
𝜕𝑥𝑖

+
𝜕𝜏𝑗𝑖
𝜕𝑥𝑗

, (9)

𝜕 (𝜌𝐸) + 𝜕 (𝜌𝑢𝑗𝐻) = 𝜕 [

𝑢𝑖𝜏𝑖𝑗 − 𝑞𝑗
]

− 𝛾𝑖𝑓𝑊 𝑓𝑆𝑆𝑓𝜈𝐶𝜇𝜏𝑖𝑗
𝜕𝑢𝑖 +
4

𝜕𝑡 𝜕𝑥𝑗 𝜕𝑥𝑗 𝜕𝑥𝑗
− max
[(

1 − 𝛾𝑖
)

max
(

2.8𝑇 𝑢∞𝜇 − 𝜇𝑇 , 0
)

𝐶𝑆𝐼𝐹𝑆𝐼𝑆
2, 𝐶𝐾𝑙𝑒𝑏𝑓𝐾𝑙𝑒𝑏𝑘𝑆

]

+ 𝛽∗𝜌𝑘𝑒�̃�𝑟 , (10)
𝜕
𝜕𝑡
(𝜌𝑘) + 𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑘) =

𝜕
𝜕𝑥𝑗

[

(𝜇 + 𝜎∗𝜇𝑇 )
𝜕𝑘
𝜕𝑥𝑗

]

+ 𝛾𝑖𝑓𝑊 𝑓𝑆𝑆𝑓𝜈𝐶𝜇𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ max
[(

1 − 𝛾𝑖
)

max
(

2.8𝑇 𝑢∞𝜇 − 𝜇𝑇 , 0
)

𝐶𝑆𝐼𝐹𝑆𝐼𝑆
2, 𝐶𝐾𝑙𝑒𝑏𝑓𝐾𝑙𝑒𝑏𝑘𝑆

]

− 𝛽∗𝜌𝑘𝑒�̃�𝑟 , (11)
𝜕
𝜕𝑡
(𝜌�̃�) + 𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗 �̃�) =

𝜕
𝜕𝑥𝑗

[

(𝜇 + 𝜎𝜇𝑇 )
𝜕�̃�
𝜕𝑥𝑗

]

+ 𝛾𝑖𝑓𝑊 𝑓𝑆𝑆𝑓𝜈𝐶𝜇
𝛼
𝑘
𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽𝜌𝑒�̃�𝑟 +
(

𝜇 + 𝜎𝜇𝑇
) 𝜕�̃�
𝜕𝑥𝑘

𝜕�̃�
𝜕𝑥𝑘

, 𝑓𝑔 (12)

here the pressure 𝑝, the turbulent and total stress tensors 𝜏𝑖𝑗 and 𝜏𝑖𝑗 ,
he heat flux vector 𝑞𝑗 , the total specific energy 𝐸, and the turbulent
iscosity 𝜇𝑇 are given by

𝑝 = (𝛾𝑔 − 1)𝜌
(

𝐸 − 𝑢𝑘𝑢𝑘∕2
)

, 𝑞𝑗 = −
(

𝜇
Pr

+
𝜇𝑇
Pr 𝑡

)

𝜕ℎ
𝜕𝑥𝑗

,

= 𝑒 + 𝑢𝑘𝑢𝑘∕2,

𝑖𝑗 = 2𝜇𝑇

[

𝑆𝑖𝑗 −
1
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

]

− 2
3
𝜌𝑘𝛿𝑖𝑗 , 𝜏𝑖𝑗 = 2𝜇

[

𝑆𝑖𝑗 −
1
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

]

+ 𝜏𝑖𝑗 ,

𝜇𝑇 = 𝛼∗𝜌𝑘𝑒−�̃�𝑟 ,

where �̃� = log(𝜔), 𝑘 = max (0, 𝑘), 𝛾𝑔 is the ratio of gas specific heats,
and Pr and Pr𝑡 are the molecular and turbulent Prandtl numbers. The
use of the logarithm of the turbulent variables was introduced by Ilinca
and Pelletier [22] for the 𝑘 − 𝜖 model and it is useful to guarantee the
positivity of the variables. Moreover, the distribution of the logarithm
of the turbulent variables is much smoother than that of the turbulent
variables themself. Bassi et al. [7,23–25] proved that, applying the idea
of logarithmic variables to the 𝑘−𝜔 model, the logarithm of 𝜔 is much

ore useful than the logarithm of 𝑘. Instead, a limit to zero, and not to
n arbitrary small value, is used to deal with possible negative values
f the turbulent kinetic energy 𝑘.

The variable �̃� in the source terms and in the turbulent viscosity is
eplaced by �̃�𝑟, to fulfill suitably defined ‘‘realizability’’ conditions [7].

The same turbulent viscosity 𝜇𝑇 is here used in the transition, or
turbulence, model equations and Navier–Stokes equations, differently
to Kubacki et al. [10–12]. The transition model constants are tabulated
in Table 2.

The bypass transition prediction capabilities of this model are rep-
resented by different damping functions, e.g., the shear-sheltering 𝑓𝑆𝑆 ,
the wall 𝑓𝑊 and the viscous 𝑓𝜈 function, the turbulent viscosity co-
efficient 𝐶𝜇 and the intermittency function. In comparison with the
original 𝛾𝑘−𝜔 model proposed by Kubacki et al. [10–12] and Holman
and Fürst [8,9], where only the shear sheltering function is defined,
here several damping functions are added according to the local and
phenomenological 𝑘 − 𝑘𝐿 − �̃� transition model, proposed by Walters
t al. [6,26] and more recently by Lorini et al. [27,28]. This model
onsiders two different contributions to the turbulent kinetic energy:
he small-scale energy 𝑘𝑠, and large-scale energy 𝑘𝑙. The former in-

teracts with the mean-flow as a typical turbulence energy, whereas
the latter only contributes to the production of the laminar kinetic
energy. The production term of the turbulent kinetic energy is defined
as 𝑃𝑘 = 𝜏𝑖𝑗,𝑠𝜕𝑢𝑖∕𝜕𝑥𝑗 with 𝜏𝑖𝑗,𝑠 ∝ 𝜈𝑇 ,𝑠 and

𝜈𝑇 ,𝑠 = 𝑓𝜈𝑓𝐼𝑁𝑇𝐶𝜇
√

𝑘𝑠𝜆𝑒𝑓𝑓 , 𝑘𝑠 = 𝑓𝑆𝑆𝑓𝑊 𝑘, (13)

where 𝑃𝑘 ∝ 𝑓𝐼𝑁𝑇𝐶𝜇𝑓𝑆𝑆𝑓𝑊 𝑘. In order to compare the production term
of the original 𝛾𝑘−𝜔 and the 𝑘−𝑘𝐿−�̃� models can be noticed that both
terms are proportional to the turbulent kinetic energy and the shear-
sheltering damping function. Furthermore, the intermittency damping
function 𝑓𝐼𝑁𝑇 of the 𝑘 − 𝑘𝐿 − �̃� model, i.e.,

𝑓𝐼𝑁𝑇 = min
(

𝑘 , 0
)

, 𝑘𝑇𝑂𝑇 = 𝑘 + 𝑘𝐿, (14)

𝐶𝐼𝑁𝑇 𝑘𝑇𝑂𝑇
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is very closed to the definition of the intermittency, i.e., 𝑘∕𝑘𝑇𝑂𝑇 ,
modeled in the 𝛾𝑘 − 𝜔 model. In fact, the intermittency models the
ransition of the flow, representing the part of the turbulent kinetic
nergy in the total kinetic energy. In the laminar boundary layer, where
he intermittency function 𝛾𝑖 and the intermittency damping function
𝐼𝑁𝑇 are zero, all the total kinetic energy is given by the laminar kinetic
nergy 𝑘𝐿, while in the turbulent boundary layer the functions become

one and the turbulent kinetic energy correspond to the total kinetic
energy of the flow. The similarities between the original 𝛾𝑘 − 𝜔 model
and the 𝑘− 𝑘𝐿 − �̃� model allow to develop an improved version of the
𝛾𝑘 − 𝜔 model, where also the wall and the viscous damping functions
and the turbulent viscosity coefficient are introduced in the production
term of the turbulent kinetic energy.

The kinematic wall effect is included through an effective wall-
limited turbulent length scale 𝜆𝑒𝑓𝑓 and the wall damping function 𝑓𝑊 ,
as

𝜆𝑒𝑓𝑓 = min
(

𝐶𝜆𝑑, 𝜆𝑇
)

, 𝑓𝑊 =
(𝜆𝑒𝑓𝑓

𝜆𝑇

)

2
3
, (15)

here 𝜆𝑇 =
√

𝑘∕𝜔 is the turbulent length scale, 𝑑 is the wall distance
and 𝐶𝜆 is a model constant. The viscous wall effect is incorporated
through a viscous damping function defined as

𝑓𝜈 = 1 − exp

(

−

√

𝑅𝑒𝑇
𝐴𝜈

)

, (16)

where 𝑅𝑒𝑇 = 𝑓 2
𝑊 𝑘∕

(

𝜈𝑒�̃�
)

is the effective turbulence Reynolds number
nd 𝐴𝜈 a model constant. To satisfy the realizability constraint sug-

gested by Shih et al. [29], the turbulent viscosity coefficient takes the
form

𝐶𝜇 = 1

𝐴0 + 𝐴𝑆

(

𝑆
𝑒�̃�

) , (17)

where 𝐴0 and 𝐴𝑆 are model constants. The shear-sheltering effect is
included through the damping function 𝑓𝑆𝑆 that can be alternatively
defined with different characteristic Reynolds number, as

𝑅𝑒𝑘𝛺 = 𝑘
𝜈𝛺

, 𝑓𝑆𝑆 = exp

[

−
(

𝐶𝑆𝑆
𝜈𝛺
𝑘

)2
]

, (18)

𝑒√𝑘 𝑑 =

√

𝑘𝑑
𝜈

, 𝑓𝑆𝑆 = exp
⎡

⎢

⎢

⎣

−

(

𝐶𝑆𝑆
𝜈

√

𝑘𝑑

)2
⎤

⎥

⎥

⎦

, (19)

according to the improvement proposed by Walters and Cokljat [26–
28].

Kubacki et al. in [12] introduced a modification of the model
constant 𝐶𝑆𝑆 to take into account damping or amplification of Kle-
anoff streaks in accelerating or decelerating flows, for example due
o geometry of separation bubbles. In particular

𝑆𝑆 = 𝐶𝑆
(

1 + 𝑓𝑘𝜒
)

, (20)

= 𝑡𝑎𝑛ℎ
⎡

⎢

⎢

⎣

−𝛺 (𝑆 −𝛺)

𝐶𝜒
(

𝛽∗𝑒�̃�
)2

⎤

⎥

⎥

⎦

, 𝑓𝑘 = 1 − 𝑡𝑎𝑛ℎ
(

𝑘
𝐶𝑘𝜈𝑒�̃�

)

, (21)

where the 𝐶𝑆 , 𝐶𝜒 and 𝐶𝑘 are model constants. The effect of acceler-
ation, or deceleration, is taken into account by the 𝜒 function, which
is positive in accelerating flow due to the curvature, and increases the
model constant, thus enlarging the shear sheltering and delaying the
transition. The 𝑓𝑘 function equals unity near the walls and becomes
zero away from walls, and allows to limit the modification of the
model constant to the middle part of a pre-transitional boundary layer.
𝐶𝑆𝑆 is larger in the middle part of a pre-transitional boundary layer
in an accelerating flow due to curvature, and the reduction is very
small in a decelerating flow. This modification damps or amplifies the
Klebanoff streaks, where Zaki et al. [30] showed that Klebanoff streaks
are damped in the front part of the suction side of a compressor blade
due to strong local flow acceleration, with a delayed transition with
respect to the transition on the pressure side of the blade.
5

3.1. The separation-induced transition production term

The separation-induced production term of the turbulent kinetic
energy can be written as

𝑃𝑆𝐼 = (1 − 𝛾)max
(

2.8𝑇 𝑢∞𝜇 − 𝜇𝑇 , 0
)

𝐶𝑆𝐼𝐹𝑆𝐼𝑆
2, (22)

where

𝑒𝑑2 𝑆 = 𝑆𝑑2

𝜈
, 𝐹𝑆𝐼 = exp

[

−
(

𝐴𝑆𝐼
𝑅𝑒𝑑2 𝑆

)]

= exp
[

−
(

𝐴𝑆𝐼
𝜈

𝑆𝑑2

)]

.

(23)

n comparison with Kubacki et al. [12], where 𝑃𝑆𝐼 = (1 − 𝛾)𝐶𝑆𝐼𝐹𝑆𝐼𝜇𝑆2

nd 𝐹𝑆𝐼 = min
[

max
(

𝑅𝑒𝑑2 𝑆∕
(

2.2𝐴𝑆𝐼
)

− 1, 0
)

, 1
]

, the term here pro-
osed adds an exponential function to increase the smoothness, sim-
larly to the intermittency and the shear-sheltering damping functions.
ax

(

2.8𝑇 𝑢∞𝜇 − 𝜇𝑇
)

term is added to limit the production of the tur-
bulent kinetic energy downstream near the reattachment region of
the flow, and is similar to the term proposed by Menter et al. [5].
In particular, 3𝜇 is replaced with 2.8𝑇 𝑢∞𝜇 to introduce an influence
f the freestream turbulent intensity also in the separation-induced
ransition cases. Furthermore, without this term and in plates with a
lunt leading edge, there is an unphysical creation of turbulence due
o normal straining, and this is important for low freestream turbulence
ntensities, where the turbulent intensity in the separation region shows
n over-prediction [9].

The function 𝐹𝑆𝐼 guarantees that the production of the turbulent
inetic energy is only active for sufficiently large values of the Strain-
ate Reynolds number 𝑅𝑒𝑑2 𝑆 . In the formulation of the separation-
nduced production term an essential role is played by the shear
erm 𝜇𝑆2, which becomes active in a separated boundary layer at
ow freestream turbulent intensity levels. This term effectively boosts
urbulence production, allowing fast transition and turbulent boundary
ayer reattachment. Alternatively, 𝜇𝑆2 can be substituted with 𝜇𝑆𝛺,
ccording to Menter et al. [5], or 𝑘𝑆, to emphasize the proportionality

between the production term and the turbulent kinetic energy.
Recently, Kubacki et al. in [12] introduced a minimum intensity of

the production term of the turbulent kinetic energy due to separation-
induced transition, where this term is rewritten as the maximum func-
tion between two different contributions to the production of the
turbulent kinetic energy, i.e., 𝑃𝑆𝐼 = max

(

𝑃𝑆𝐼 1, 𝑃𝑆𝐼 2
)

, where

𝑃𝑆𝐼 1 = (1 − 𝛾)max
(

2.8𝑇 𝑢∞𝜇 − 𝜇𝑇 , 0
)

𝐶𝑆𝐼𝐹𝑆𝐼𝜇𝑆
2, (24)

𝑃𝑆𝐼 2 = 𝐶𝐾𝑙𝑒𝑏𝑓𝐾𝑙𝑒𝑏𝑘𝑆. (25)

The first term 𝑃𝑆𝐼 1 correspond to the original 𝑃𝑆𝐼 term and rep-
resents the breakdown of the separated shear layer due to the Kelvin–
Helmholtz instabilities under low freestream turbulent intensities,
while the second term 𝑃𝑆𝐼 2 adjusts the production for moderate and
high intensities. In fact, with an higher level of turbulent intensity
the Klebanoff streaks helps the transition mechanism also for the
separation-induced transition mode. The 𝑓𝐾𝑙𝑒𝑏 function, which detects
a separated shear layer similarly to 𝐹𝑆𝐼 , is given by three different
functions, i.e., 𝑓𝐾𝑙𝑒𝑏 = 𝑓𝛾𝑓𝜔𝑓𝑤, defined as

𝑓𝛾 = 1
1 + exp

[

𝑏𝛾
(

𝛾 − 𝑎𝛾
)] , (26)

𝑓𝜔 = 1
1 + exp

[

−𝑏𝜔
(

𝑅𝑒𝜔 − 𝑎𝜔
)] = 1

1 + exp
[

−𝑏𝜔
(

𝑒�̃�𝑑2
𝜈 − 𝑎𝜔

)] , (27)

𝑓𝑤 = exp

[

−
(

𝑅𝑒𝑇
𝑐𝑤

)2
]

, (28)

where 𝑅𝑒𝜔 = 𝑒�̃�𝑑2∕𝜈 [12]. The 𝐹𝑆𝐼 is active in a separated boundary
layer and contributes to the production of the turbulent kinetic energy
when the local turbulence level is very low. While the product of the
𝑓𝛾 and 𝑓𝜔 functions becomes different from zero in the outer zone of a
separated laminar boundary layer under moderate or high free-stream
turbulent intensity.
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3.2. The intermittency function

The activation of the intermittency function represents the excita-
tion of the streaks by the fine turbulence scales in the edge zone of a
laminar boundary layer, which leads to the breakdown of the boundary
layer and the transition. After transition, the intermittency becomes one
in the turbulent part of a turbulent boundary layer. It stays zero at the
wall and evolves towards unity inside the viscous sublayer, where the
formulation influences the growth inside the boundary layer. The inter-
mittency function is traditionally defined according to the definition of
the shear-sheltering function [9–12], i.e., to the characteristic Reynolds
number used in the shear-sheltering function, as

𝑅𝑒√𝑘 𝑑 =

√

𝑘𝑑
𝜈

, 𝛾∗1 = min

(

max

(√

𝑘𝑑
𝜈

− 𝐶𝑇𝐻 1, 0

)

, 1

)

, (29)

𝑅𝑒𝑘𝛺 = 𝑘
𝜈𝛺

, 𝛾∗2 = min
(

max
(

𝑘
𝜈𝛺

− 𝐶𝑇𝐻 2, 0
)

, 1
)

, (30)

where 𝐶𝑇𝐻 is the threshold value of transition and the wall-distance
and turbulent kinetic energy Reynolds numbers, 𝑅𝑒√𝑘 𝑑 and 𝑅𝑒𝑘𝛺, work

here as threshold parameter. According to Kubacki et al. [31], the
intermittency formulation can be also based on the dissipation rate of
the turbulent kinetic energy, as

𝑅𝑒𝑘𝜔 = 𝑘𝑒�̃�𝑟

𝜈𝛺2
, 𝛾∗3 = min

(

max
(

𝑘𝑒�̃�𝑟

𝜈𝛺2
− 𝐶𝑇𝐻 3, 0

)

, 1
)

. (31)

An exponential law is here used to improve the smoothness of the
intermittency function and the transition, i.e., 𝛾𝑖 = 1 − exp

(

𝛾∗𝑖 ∕𝐴𝑇𝐻 𝑖
)

.
Furthermore, the performance of these formulations is compared

with an alternative formulation from the Spalart–Allmaras BCM transi-
tion model [13,14], here called 𝛾4. In particular the 𝛾𝐵𝐶 intermittency
unction is rewritten for the 𝛾𝑘 − �̃� model as

4 = 1 − exp
(

−
√

𝑇 𝑒𝑟𝑚1 −
√

𝑇 𝑒𝑟𝑚2

)

, (32)

𝑒𝑟𝑚1 =
max

(

𝑅𝑒𝜃 − 𝑅𝑒𝜃𝑐 , 0
)

𝜒1𝑅𝑒𝜃𝑐
, 𝑇 𝑒𝑟𝑚2 = max

(

𝜈𝑇
𝜒2𝜈

, 0
)

,

𝑅𝑒𝜃 =
𝑅𝑒𝑑2𝛺
0.25

, 𝜈𝑇 =
𝜇𝑇
𝜌

= 𝛼∗𝑘𝑒−�̃�𝑟 ,

𝑅𝑒𝜃𝑐 = 803.73
(

𝑇 𝑢∞ + 0.6067
)−1.027 .

Both the production terms of the turbulent kinetic energy and the
specific dissipation rate are damped by the intermittency function,
differently from the models proposed by Holman and Fürst [9] and
Kubacki et al. [10,11]. In fact, as spotlighted by Lorini et al. [27,
28], the intermittency function in the production term of the specific
dissipation rate avoids shorter transition flow regions. The same inter-
mittency function is used for both production terms without any range
constraint, differently to [27,28]. The intermittency function is also
activated when a large value of the turbulent kinetic energy appears
together with a relatively large value of the distance to the wall, which
occurs with a large separation zone caused by a very strong adverse
pressure gradient combined with a high freestream turbulence level.

3.3. Boundary conditions

At solid walls the homogeneous Neumann condition for the specific
dissipation rate 𝜕𝜔∕𝜕𝑛 = 0 is prescribed, as suggested in [26]. Further-
more, since the velocity is equal to zero due to the no-slip condition,
the turbulent kinetic energy at the wall is also zero. At freestream
the specific dissipation rate and turbulent kinetic energy values are
computed according to the definition of freestream turbulent intensity
and turbulent viscosity ratio as

𝑇 𝑢∞ =
√

2
3
𝑘∞
𝑢2𝑟𝑒𝑓

,
(

𝜇𝑇
𝜇

)

∞
=

𝐶𝜇𝑘∞
𝑒�̃�∞𝑢𝑟𝑒𝑓𝐿𝑟𝑒𝑓

𝑅𝑒

where 𝑢 and 𝐿 are the reference velocity and length of the case.
6

𝑟𝑒𝑓 𝑟𝑒𝑓 t
4. Numerical framework

The system of governing equations can be written in compact form
as

𝐏 (𝐰) 𝜕𝐰
𝜕𝑡

+ ∇ ⋅ 𝐅c (𝐰) + ∇ ⋅ 𝐅v (𝐰,∇𝐰) + 𝐬 (𝐰,∇𝐰) = 𝟎. (33)

here 𝐰 ∈ R𝑚 is the vector of the 𝑚 variables, 𝐅c ∈ R𝑚 ⊗ R1,2,3 and
𝐅v ∈ R𝑚 ⊗R1,2,3 are the inviscid and viscous flux functions, 𝐬 ∈ R𝑚 the
sum of the transition model source terms and the volume forces terms,
and 𝐏 (𝐰) ∈ R𝑚 ⊗ R𝑚 a transformation matrix.

Usually, the compressible solver employs the conservative variables
𝐰𝑐 = [𝜌, 𝜌𝑢𝑖, 𝜌𝐸, 𝜌𝑘, 𝜌�̃�]𝑇 , while the incompressible solver the primitive
variables 𝐰𝑝 = [𝑝, 𝑢𝑖, �̃�]𝑇 . The matrix 𝐏 reduces to the identity matrix
(𝐏 = 𝐈) in the former case and to the difference between the identity and
a single-entry matrix (𝐏 = 𝐈−𝐉11) in the latter case. Here, the primitive
variables (𝑝, 𝑢𝑖, 𝑇 , 𝑘, �̃�) and (𝑝, 𝑢𝑖, �̃�) are used for the compressible and
incompressible equations, respectively, to improve the robustness of the
convergence.

4.1. Discontinuous Galerkin space discretization

An arbitrary smooth test function 𝐯 = {𝑣1,… , 𝑣𝑚} multiplies the
Eq. (33), which is integrating by parts an written as

∫𝛺
𝐯 ⋅

(

𝐏 (𝐰) 𝜕𝐰
𝜕𝑡

)

d𝛺 − ∫𝛺
∇𝐯 ∶

(

𝐅c (𝐰) + 𝐅v (𝐰,∇𝐰)
)

d𝛺

∫𝜕𝛺
𝐯⊗ 𝒏 ∶

(

𝐅c (𝐰) + 𝐅v (𝐰,∇𝐰)
)

d𝜎 + ∫𝛺
𝐯 ⋅ 𝐬 (𝐰,∇𝐰) d𝛺 = 𝟎, (34)

o obtain the weak formulation of the dG discretization, where the
omain is approximated with a computational mesh ℎ = {𝐾} con-
isting of a set of non-overlapping and arbitrary shaped elements. 𝒏 is
he unit normal vector to the boundary. A discontinuous finite element
pace with polynomial functions of degree 𝑙 continuous only inside each
lement 𝐾 is defined on the mesh as
𝑙
ℎ

def
= [P𝑙

𝑑 (ℎ)]
𝑚,

𝑙
𝑑 (ℎ)

def
=

{

𝑣ℎ ∈ 𝐿2(𝛺ℎ) ∶ 𝑣ℎ|𝐾 ∈ P𝑙
𝑑 (𝐾), ∀𝐾 ∈ ℎ

}

.

In the weak form of Eqs. (33), the solution 𝐰 and the test function
are replaced with a finite element approximation 𝐰ℎ and 𝐯ℎ respec-

ively, of the space 𝐕𝑙
ℎ. Orthogonal and hierarchical basis functions are

efined in the physical reference frame, as a satisfactory basis for the
pace 𝐕𝑙

ℎ [7,32]. Any function 𝑣ℎ can be considered as a combination
f the elements and of the basis. 𝜙𝑖 is the element basis, where 𝑖 ∈
1,… , 𝑁𝐾

DoF} and 𝑁𝐾
DoF is the number of degrees of freedom of the

olynomial space local to an element 𝐾, the dG discretization of the
ompressible RANS consists in seeking the elements 𝑤ℎ,1,… , 𝑤ℎ,𝑚 of
ℎ ∈ 𝐕𝑘

ℎ such that

∑

∈ℎ
∫𝐾

𝜙𝑖𝑃𝑗,𝑘
(

𝐰ℎ
)

𝜙𝑙
d𝑊𝑘,𝑙

d𝑡
d𝛺

−
∑

𝐾∈ℎ
∫𝐾

𝜕𝜙𝑖
𝜕𝑥𝑘

(

𝐹 c
𝑗,𝑘

(

𝐰ℎ
)

+ 𝐹 v
𝑗,𝑘

(

𝐰ℎ,∇ℎ𝐰ℎ + 𝐫𝑔
([[

𝐰ℎ
]]))

)

d𝛺

+
∑

𝑓∈
∫𝑓

[[

𝜙𝑖
]]

𝑘

(

𝐹 c
𝑗,𝑘

(

𝐰±
ℎ
)

+ 𝐹 v
𝑗,𝑘

(

𝐰±
ℎ ,
(

∇ℎ𝐰ℎ + 𝜂𝑓 𝐫𝑓
([[

𝐰ℎ
]]))±)) d𝜎

+
∑

𝐾∈ℎ
∫𝐾

𝜙𝑖𝑠𝑗
(

𝐰ℎ,∇ℎ𝐰ℎ + 𝐫𝑔
([[

𝐰ℎ
]]))

d𝛺 = 0,

∀𝑖 ∈ {1,… , 𝑁𝐾
DoF}, (35)

here 𝑗 = 1,… , 𝑚,

ℎ,𝑗 = 𝜙𝑙𝑊𝑗,𝑙 ,

nd 𝐖 is the global vector of unknown degrees of freedom. Fur-
hermore, 𝐫𝑔 and 𝐫𝑓 ∶ [𝐿1(𝑓 )]𝑚×𝑑 → [P𝑙 (

)

]𝑚×𝑑 are the global
𝑑 ℎ
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and local lifting operators used to guarantee a consistent, stable and
accurate discretization of the viscous part of the equations [7,32]. As
the functional approximation is discontinuous, the flux is not uniquely
defined over the elements boundary, and thus a numerical flux vector is
suitably defined both for the inviscid and viscous part of the equations.

The inviscid numerical flux is computed from the solution of local
Riemann problems in the normal direction at each integration point
on elements faces. For the compressible solver, the exact Riemann
solver of Gottlieb and Groth [33] is used, while for the incompressible
solver, the main idea is to solve, at the interfaces, an exact Riemann
problem associated with a local compressibility perturbation of the
Euler equations [1,32]. As the perturbation is only included at the level
of the flux evaluation, no time derivative for the pressure variable is
added to the discrete continuity equation, resulting in a time-consistent
algorithm. The viscous part is given by

𝐅v
(

𝐰±
ℎ ,
(

∇ℎ𝐰ℎ + 𝜂𝑓 𝐫𝑓
([[

𝐰ℎ
]]))±) def

=
{

𝐅v (𝐰ℎ,∇ℎ𝐰ℎ + 𝜂𝑓 𝐫𝑓
([[

𝐰ℎ
]]))}

,

where 𝜂𝑓 is the stability parameter [7,32].

4.2. Implicit solver for the time integration

The discrete problem corresponding to Eq. (35) can be written as

𝐌𝐏
d𝐖
d𝑡

+ 𝐑 (𝐖) = 𝟎, (36)

here 𝐑 is the residuals vector and 𝐌𝐏 is the global block diagonal
atrix. 𝐌𝐏 is due to the discretization of the first integral of Eq. (35)

nd couples the degrees of freedom of the different variables within
he element of the mesh through the variable transformation matrix
. In particular, Eq. (36) defines a Differential–Algebraic system of
quations (DAEs) for the incompressible solver, and an Ordinary Dif-
erential system of Equations (ODEs) for the compressible solver. For
teady simulations, these systems of equations are solved by means of
Linearized Backward Euler (LBE) scheme, i.e,

[𝐌𝑛
𝐏

𝛥𝑡
+

𝜕𝐑 (𝐖𝑛)
𝜕𝐖

]

𝛥𝐖 = −𝐑 (𝐖𝑛) . (37)

The linear system arising at each time-step is solved with the matrix-
ased Generalized Minimal RESidual (GMRES) algorithm, where the
lock Jacobi preconditioner with one block per process ILU(0) is used
o make the convergence of the GMRES solver acceptable in problems
f practical interest. The linear algebra and parallelization are han-
led through the PETSc [34] library (Portable Extensible Toolkit for
cientific Computations) and MPI, the standard for message-passing
ommunication.

In order to advance the solution to the steady state, a pseudo-
ransient continuation strategy is used, with the local time step given
y

𝑡𝐾 = CFL
ℎ𝐾

𝑢𝑐 + 𝑢𝑑
,

𝑢𝑐 = |𝐮| + 𝑎, 𝑢𝑑 = 2
𝜇𝑒 + 𝜆𝑒
ℎ𝐾

, ℎ𝐾 = 𝑑
𝑉𝐾
𝑆𝐾

,

where 𝑢𝑐 and 𝑢𝑑 convective and diffusive velocities and ℎ𝐾 , 𝑉𝐾 and
𝑆𝐾 are the reference dimension of the element 𝐾. The coefficients
𝜇𝑒 and 𝜆𝑒 are the effective dynamic viscosity and conductivity, while
𝑎 is the speed of sound in the compressible solver and the artificial
compressibility coefficient in the incompressible solver [4]. All the
quantities depending on 𝐰ℎ are computed from its mean value. Devising
an effective and robust strategy to increase the CFL number as the
residual decreases is far from trivial, especially for transitional or
turbulent simulations, and an empirically determined ‘‘CFL law’’ is here
used to speed-up the convergence. It is based on the 𝐿∞ and 𝐿2 norms
of the residual and depends on three user-defined parameters. The first
and second parameters are CFLmin and CFLmax to set the minimum
and maximum limit of the CFL number during the simulation. The
7

third parameter is an exponent 𝛼 governing the growth rate of the CFL
number, where typically 𝛼 ≤ 1.

For the compressible solver the ‘‘CFL law’’ is

CFL =

⎧

⎪

⎨

⎪

⎩

CFLmin∕𝜉𝛼 if 𝜉 ≤ 1

min
(

CFLexp + 𝛽𝑒𝛼
CFLmin

𝛽 (1−𝜉),CFLmax

)

if 𝜉 > 1
(38)

where CFLexp = min(1∕(2𝑙 + 1),CFLmin) is the minimum value be-
tween the maximum CFL number proper of an explicit scheme and the
user-defined minimum value, 𝛽 = CFLmin − CFLexp, and

𝜉 =

⎧

⎪

⎨

⎪

⎩

min
(

1, 𝜉2
)

if 𝜉∞ ≤ 1, 𝜉2
def
= max

𝑖=1,…,𝑚

(

‖𝑅𝑖‖2∕‖𝑅𝑖 0‖2
)

,

𝜉∞ if 𝜉∞ > 1, 𝜉∞
def
= max

𝑖=1,…,𝑚

(

‖𝑅𝑖‖∞∕‖𝑅𝑖 0‖∞
)

,

where ‖ ⋅‖2 and ‖ ⋅‖∞ are the 𝐿2 and 𝐿∞ norms, respectively, 𝑅𝑖 is the
residual vector of the 𝑖th equation of the system, 𝑅𝑖 0 is the correspond-
ing residual at the first iteration. While for the incompressible solver
the SA-BCM model allows a simpler formulation, which is

CFL = max

(

CFLmin

max
(

𝜉2, 𝜉∞
)𝛼 ,CFLmax

)

. (39)

In fact, the turbulent variables of the 𝛾𝑘 − �̃� model, as well as in the
original turbulence model [1,7,32], introduce a lack of robustness and
a more sophisticated law is mandatory.

5. Numerical results

The proposed transition models, i.e., the 𝛾𝑘 − �̃� model and the SA-
BCM model, are assessed and validated by computing the flow over the
flat plates of the ERCOFTAC T3 series with zero and non-zero pressure
gradients, investigated experimentally by Coupland [18] and Coupland
and Brierley [19]. These test cases are mainly characterized by bypass
and separation-induced transition, with different freestream Reynolds
number 𝑅𝑒∞ and turbulent intensity at the leading edge of the plate
𝑇 𝑢𝐿𝐸 . Furthermore the transitional flow around an Eppler 387 airfoil
with freestream turbulent intensity 𝑇 𝑢∞ = 0.1% and Reynolds number
𝑅𝑒∞ = 200 000, based on the chord of the airfoil and the freestream flow
quantities, and different angles of attack is considered in comparison
with the experiments by McGhee et al. [20] at Langley Low-Turbulence
Pressure Tunnel (LTPT). In particular, in the ERCOFTAC zero and
non-zero pressure gradient flat plats, e.g., T3A, T3B and T3A- cases
with zero pressure gradient and T3C2, T3C3, and T3C5 with non-zero
pressure gradient, the transition is in the bypass mode, while in the
ERCOFTAC rounded leading edge flat plates, e.g., T3L cases, and in
the Eppler 387 airfoil cases the transition is in the separation-induced
mode. In the former cases the separation is due to the geometry and
only the reattachment has to be triggered by the model, while in the
latter case the separation is due to the pressure gradient and the model
play a crucial role both in the flow separation and reattachment.

All the simulations are carried out in parallel by initializing the
piecewise constant P0 solution, for the 𝛾𝑘 − �̃� model, and the P1 so-
lution, for the SA-BCM model, from the uniform flow at the freestream
conditions and the higher-order solutions from the lower-order ones.
The lower solution approximation of the SA-BCM model is P1, instead
P0, due to the fact that the solver is incompressible and pressure has a
lower by one order of accuracy of the solution.

5.1. Zero pressure gradient flat plates

The T3A, T3B and T3A- flat plates of the ERCOFTAC T3 series
with zero pressure gradient are here used to validate and calibrate
the transition models with bypass transition. They are characterized by
different values of the freestream velocity 𝑢∞ and turbulence intensity
at the leading edge of the plate 𝑇 𝑢𝐿𝐸 , ranging from 0.9% to 6% (see

Table 3). The freestream turbulent quantities of the 𝛾𝑘 − �̃� model,
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Fig. 2. Zero pressure gradient flat plates. Computational mesh of the T3A, T3B and T3A- cases. The boundary conditions in clockwise direction from the leading edge of the plate
(𝑥, 𝑦) = (0, 0) are: symmetry, inflow, slip wall (or freestream), outflow, and no-slip wall.
Fig. 3. Zero pressure gradient flat plates. Skin friction coefficient 𝑐𝑓 along the plate for the zero pressure gradient T3A flat plate with the 𝛾𝑘− �̃� model and different intermittency
functions: 𝛾1 (top, left), 𝛾2 (top, right), 𝛾3 (bottom, left) and 𝛾4 (bottom, right), from P1 to P4 solution approximation. 𝐷𝐺−P1, 𝐷𝐺−P2, 𝐷𝐺−P3, 𝐷𝐺−P4,

Holman and Fürst 𝛾𝑘 − 𝜔 model, Cakmakcioglu et al. SA-BCM model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.
Table 3
Zero pressure gradient flat plates. Flow conditions for the T3A, T3B and T3A- flat plates
[18].

T3A T3B T3A-

𝑢∞ [m/s] 5.4 9.4 19.8
𝑇 𝑢𝐿𝐸 [%] 3.0 6.0 0.9

e.g., 𝑇 𝑢∞ and (𝜇𝑇 ∕𝜇)∞, are chosen in order to match the experimental
turbulent intensity at the leading edge of the plate and the decay of
the turbulent intensity along the domain. The same mesh, made of
𝑛𝑒 = 8800 quadrilateral elements, is used for all the testcases, where
the inflow boundary is set at 𝑥∕𝐿 = −0.06 from the leading edge of the
plate and adiabatic no-slip wall boundary condition is set on the plate
(see Fig. 2). The mesh has 𝑛𝑥 = 100 number of element in 𝑥-direction
on the wall, i.e., 𝑥∕𝐿 > 0, 𝑛𝑦 = 80 number of element in 𝑦-direction,
and 𝛥𝑦1∕𝐿 = 𝛥𝑥1∕𝐿 = 0.0002 as height and length of the first element
from the wall and from the leading edge of the plate in 𝑥-direction,
respectively. The results of the proposed models are compared with the
available experimental data of Coupland [18] and the numerical solu-
tion of the 𝛾𝑘−𝜔 model of Holman et al. [8,9], Kubacki et al. [10–12],
and the SA-BCM model of Cakmakcioglu et al. [13,14].
8

With the 𝛾𝑘 − �̃� model all the intermittency functions, e.g. 𝛾1,
𝛾2, 𝛾3, and 𝛾4 are similar on all the cases, and can be used without
significant difference in the solutions. For example, Fig. 3 shows the
skin friction coefficient distributions on the T3A plate with different
solution approximations and intermittency function formulations. The
comparison of an average error respect to the experimental distribution
of the skin friction coefficient is out of the goals of this work, and
for this reason the accuracy of the different intermittency functions
should be considered similar. Instead, the choice of the intermittency
function can be based on the convergence speed-up and the robustness
of the solver. The 𝛾2 formulation guarantees more robustness during the
convergence and for this reason is used in all the cases. In fact, Fig. 4
shows the convergence history of the 𝛾𝑘−�̃� model with the same ‘‘𝐶𝐹𝐿
law’’, e.g., CFLmin = 1, CFLmax = 1020 and 𝛼 = 1, and the different
intermittency functions. Furthermore, 𝛾2 allows to increase the CFLmin
parameter more than the other formulations and, thus, to reduce the
computational cost of the simulation.

Fig. 5 shows the skin friction coefficient distributions on the plate
with the 𝛾𝑘 − �̃� model and different solution approximations. Fur-
thermore, Fig. 5 shows also the decay of the turbulent intensity and
the 𝑥-component velocity along the domain outside of the boundary
layer in order to prove the correctness of the boundary conditions of
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g

Fig. 4. Zero pressure gradient flat plates. The convergence history, in terms of the 𝐿2 norm of the density residuals, of the 𝛾𝑘− �̃� transition model, with the different intermittency
functions in the T3A case, from P0 to P4 solution approximation. In order to have a easy comparison symbols represent 1 iteration of 10.
Fig. 5. Zero pressure gradient flat plates. Turbulent intensity 𝑇 𝑢 and 𝑥-component velocity 𝑢𝑥 along the domain and skin friction coefficient 𝑐𝑓 along the plate for the zero pressure
radient flat plates with the 𝛾𝑘− �̃� model, T3A (top), T3B and T3A- (bottom), from P1 to P4 solution approximation. 𝐷𝐺−P1, 𝐷𝐺−P2, 𝐷𝐺−P3, 𝐷𝐺−P4,

Holman and Fürst 𝛾𝑘 − 𝜔 model, Cakmakcioglu et al. SA-BCM model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.
the turbulent quantities. While Figs. 6 and 7 show the skin friction
coefficient distributions on the plate with the SA-BCM model and
different solution approximations and values of the freestream working
variable �̃� ∕𝜈 = 1.5 × 10𝑖 with 𝑖 = 0,… ,−15 , respectively.
9

∞ { }
Regarding the 𝛾𝑘− �̃� model the solutions of the skin friction coeffi-
cient are almost overlapped with experiments in the T3A and T3A- case,
where starting from P2 approximation the solution has no significant
difference increasing the accuracy. In the T3B case the skin friction
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Fig. 6. Zero pressure gradient flat plates. Skin friction coefficient 𝑐𝑓 along the plate for the zero pressure gradient flat plates with the SA-BCM model, T3A (top, left), T3B (top,
right) and T3A- (bottom), from P1 to P4 solution approximation. The solutions are here reported with the best values of the freestream working variables, e.g., �̃�∞∕𝜈 = 1.5 × 10−2,
1.5×10−1 and 1.5×10−14 for T3A, T3B and T3A-, respectively. 𝐷𝐺−P1, 𝐷𝐺−P2, 𝐷𝐺−P3, 𝐷𝐺−P4, Holman and Fürst 𝛾𝑘−𝜔 model, Cakmakcioglu
et al. SA-BCM model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.

Fig. 7. Zero pressure gradient flat plates. Skin friction coefficient 𝑐𝑓 along the plate for the zero pressure gradient flat plates with the SA-BCM model and different freestream
working variables �̃�∞, T3A (top, left), T3B (top, right) and T3A- (bottom), P4 solution approximation. T3A: �̃�∞∕𝜈 = 1.5× 10−1, �̃�∞∕𝜈 = 1.5× 10−2, �̃�∞∕𝜈 = 1.5× 10−3,

�̃�∞∕𝜈 = 1.5×10−4, Holman and Fürst 𝛾𝑘−𝜔 model, Cakmakcioglu et al. SA-BCM model, Kubacki et al. 𝛾𝑘−𝜔 model, Coupland exp. T3B: �̃�∞∕𝜈 = 1.5×100,
�̃�∞∕𝜈 = 1.5 × 10−1, �̃�∞∕𝜈 = 1.5 × 10−2, �̃�∞∕𝜈 = 1.5 × 10−3, Holman and Fürst 𝛾𝑘 − 𝜔 model, Cakmakcioglu et al. SA-BCM model, Kubacki et al.

𝛾𝑘−𝜔 model, Coupland exp. and T3A-: �̃�∞∕𝜈 = 1.5 × 10−2, �̃�∞∕𝜈 = 1.5 × 10−12, �̃�∞∕𝜈 = 1.5 × 10−13, �̃�∞∕𝜈 = 1.5 × 10−14, Holman and Fürst 𝛾𝑘−𝜔 model,
Cakmakcioglu et al. SA-BCM model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.
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Fig. 8. Zero pressure gradient flat plates. Turbulent intensity 𝑇 𝑢 =
√

2∕3𝑘∕𝑢∞ at different locations 𝑥∕𝐿 along the domain with the 𝛾𝑘− �̃� model and the 𝑘𝐿 − 𝑘− �̃� model [27,28]

in the T3A case, P4 solution approximation. For the Coupland experiments [18] only the 𝑥-component velocity fluctuations are here considered, i.e., 𝑇 𝑢 =
√

𝑢′𝑥
2∕3∕𝑢∞, in fact the 𝑦-

and 𝑧-component are negligible. For the 𝑘𝐿 −𝑘− �̃� [27,28] transition model the dashed lines represent the turbulent intensity based on the total kinetic energy 𝑇 𝑢 =
√

2∕3𝑘𝑇𝑂𝑇 ∕𝑢∞
and 𝑘𝑇𝑂𝑇 = 𝑘 + 𝑘𝐿, while the solid lines the turbulent intensity based on the turbulent kinetic energy 𝑇 𝑢 =

√

2∕3𝑘∕𝑢∞.
Fig. 9. Zero pressure gradient flat plates. 𝑥-component velocity at different locations 𝑥∕𝐿 along the domain with the 𝛾𝑘− �̃� transition model, the 𝑘− �̃� turbulence model and the
𝑘𝐿 − 𝑘 − �̃� transition models [27,28] in the T3A case, from P1 to P4 solution approximation.
coefficient distribution near the transition is over-predicted, although
the transition location is well predicted. Overall the results of the 𝛾𝑘−�̃�
model show a better prediction of the transition in comparison to
Holman et al. [8,9] in every case. In particular, the model of Holman
et al. [8,9] predicted transition onset more accurately while transition
length is captured better with the proposed model in T3A and T3A-
cases.

Also the SA-BCM model demonstrates to be able to well predict the
transition location in each case, although with different values of the
freestream working variable �̃�∞. In fact, the more accurate solution in
comparison with experiments is given by �̃�∞∕𝜈 = 1.5 × 10−2 in the

3A case and �̃� ∕𝜈 = 1.5 × 10−1 in the T3B case, where the turbulent
11

∞

intensity is moderate and high (3% and 6% respectively), while is given
by �̃�∞∕𝜈 = 1.5 × 10−14 in the T3A- case, where the turbulent intensity
is very low (0.9%). The values for the former cases are similar of the
recommendation by Cakmakcioglu et al. [13,14], while for the latter
case the value must be decreased to a very low value. The motivation of
this value can be found in the very low level of the turbulent intensity,
which allows to get closer to a natural transition mode case. Fig. 7
shows also the skin friction coefficient distribution in the T3A- case
with the recommended value �̃�∞∕𝜈 = 1.5 × 10−2 to demonstrate the
wrong prediction of the transition location and the skin friction’s level
of the fully turbulent boundary layer.
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Fig. 10. Zero pressure gradient flat plates. 𝑥-component velocity at different locations 𝑥∕𝐿 along the domain with the SA-BCM transition model and �̃�∞∕𝜈 = 1.5 × 10−2 in the T3A
case, from P1 to P4 solution approximation.
Fig. 11. Zero pressure gradient flat plates. The convergence history, in terms of the 𝐿2 norm of the density residuals, of the 𝛾𝑘−�̃� transition model, the 𝑘−�̃� turbulence model [35]
and the 𝑘𝐿 − 𝑘 − �̃� transition model [27,28] in the T3A case,from P0 to P4 solution approximation. In order to have a easy comparison symbols represent 1 iteration of 5, for
𝑘 − �̃�, and of 10, for the transition models.
Fig. 12. Zero pressure gradient flat plates. The convergence history, in terms of the 𝐿2 norm of the pressure residuals, of the SA-BCM transition model and �̃�∞∕𝜈 = 1.5 × 10−2 and
the SA turbulence model [4] in the T3A case, from P1 to P4 solution approximation. The results with the SA turbulence model are reported with the prescribed value �̃�∞∕𝜈 = 3 [4]
and the same value of the transition model �̃�∞∕𝜈 = 1.5 × 10−2 of the freestream working variable.
Fig. 13. Non-zero pressure gradient flat plates. Computational mesh of the T3C2, T3C3 and T3C5 cases. The boundary conditions in clockwise direction from the leading edge of
the plate (𝑥, 𝑦) = (0, 0) are: symmetry, inflow, slip wall, outflow, and no-slip wall.
12
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Fig. 14. Non-zero pressure gradient flat plates. Turbulent intensity 𝑇 𝑢 and 𝑥-component velocity 𝑢𝑥 along the domain and skin friction coefficient 𝑐𝑓 along the plate for the zero
pressure gradient flat plates with the 𝛾𝑘 − �̃� model, T3C2 (top), T3C3 and T3C5 (bottom), from P1 to P4 solution approximation. 𝐷𝐺 − P1, 𝐷𝐺 − P2, 𝐷𝐺 − P3,

𝐷𝐺 − P4, Cakmakcioglu et al. SA-BC model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.
In order to compare the performance of the models not only with
the skin friction coefficient distributions, Fig. 8 shows the turbulent
intensity profiles at different locations along the domain with the 𝛾𝑘−�̃�
model, the 𝑘− �̃� turbulence model and the 𝑘𝐿 −𝑘− �̃� model [27,28] in
the T3A case. For the Coupland experiments [18] only the 𝑥-component
velocity fluctuations are here considered, i.e., 𝑇 𝑢 =

√

𝑢′𝑥
2∕3∕𝑢∞. While

for the 𝑘𝐿 − 𝑘 − �̃� model [27,28] the turbulent intensity can be based
both on the turbulent kinetic energy 𝑘, i.e., 𝑇 𝑢 =

√

2∕3𝑘∕𝑢∞, and the
total kinetic energy 𝑘𝑇𝑂𝑇 = 𝑘+ 𝑘𝐿, i.e., 𝑇 𝑢 =

√

2∕3𝑘𝑇𝑂𝑇 ∕𝑢∞. The latter
is able to model the kinetic energy also in the laminar and transitional
boundary layers and for this reason guarantees an higher fidelity and a
better agreement with experiments. While the turbulent intensity based
only on the turbulent kinetic energy should represent the reference for
the 𝛾𝑘 − �̃� model, where only the turbulent kinetic energy is defined.
The solution of the 𝛾𝑘− �̃� model underestimates the turbulent intensity
in the laminar and transitional boundary layers, in comparison with
the experiments and the numerical results of the 𝑘𝐿 − 𝑘 − �̃� model.
Furthermore the turbulent kinetic energy of the 𝛾𝑘 − �̃� model grows
slower moving away from the wall.

Furthermore, Figs. 9 and 10 shows the 𝑥-component velocity pro-
files at different locations along the domain in the T3A case with the
13
𝛾𝑘 − �̃� and the SA-BCM models, respectively, with different solution
approximations in order to investigate more carefully the influence
of the spatial accuracy on the solutions. Where, Fig. 9 shows also
the solutions with the 𝑘 − �̃� turbulence model and the 𝑘𝐿 − 𝑘 − �̃�
model [27,28]. The solutions are overlapped between the transition
models, i.e., the 𝛾𝑘 − �̃�, SA-BCM, and 𝑘𝐿 − 𝑘 − �̃� models, in the
laminar and fully turbulent boundary layer, while the solution of the
𝛾𝑘− �̃� model guarantees a lower accuracy in the transitional boundary
layer. As demonstrated also with the turbulent intensity profiles, the
𝛾𝑘 − �̃� model suffers lower capabilities to reproduce each aspect of
the transitional phenomena in comparison to a more comprehensive
model. It is quite natural to conjecture that the 𝑘𝐿 − 𝑘 − �̃� model can
model more aspects of the transitional mechanism. In fact, the 𝑘𝐿−𝑘−�̃�
model [27,28] is a phenomenological model with a transport equation
also of the laminar contribution of the kinetic energy. In this model
the turbulent kinetic energy is first due by the bypass transfer term,
from the laminar kinetic energy transport equation, and after by the
production term of its transport equation.

Finally, to assess the convergence behavior of both models, Figs. 11
and 12 show the convergence history of the 𝛾𝑘−�̃� model in comparison
with the 𝑘−�̃� turbulence model [35], and the 𝑘𝐿−𝑘−�̃� model [27,28],
and of the SA-BCM model in comparison with the Spalart–Allmaras



Computers and Fluids 253 (2023) 105791A. Crivellini et al.
Fig. 15. Non-zero pressure gradient flat plates. Skin friction coefficient 𝑐𝑓 along the plate for the zero pressure gradient flat plates with the SA-BCM model and different freestream
working variables �̃�∞, T3C2 (top, left), T3C3 (top, right) and T3C5 (bottom), P4 solution approximation. �̃�∞∕𝜈 = 1.5 × 10−1, �̃�∞∕𝜈 = 1.5 × 10−2, �̃�∞∕𝜈 = 1.5 × 10−3,

�̃�∞∕𝜈 = 1.5 × 10−4, Cakmakcioglu et al. SA-BC model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.
Fig. 16. Non-zero pressure gradient flat plates. Turbulent intensity 𝑇 𝑢 =
√

2∕3𝑘∕𝑢∞ at different locations 𝑥∕𝐿 along the domain with the 𝛾𝑘−�̃� model and the 𝑘𝐿−𝑘−�̃� model [27,28]

in the T3C2 case, P4 solution approximation. For the Coupland experiments [18] only the 𝑥-component velocity fluctuations are here considered, i.e., 𝑇 𝑢 =
√

𝑢′𝑥
2∕3∕𝑢∞, in fact the

𝑦- and 𝑧-component are negligible. For the 𝑘𝐿−𝑘−�̃� [27,28] transition model the dashed lines represent the turbulent intensity based on the total kinetic energy 𝑇 𝑢 =
√

2∕3𝑘𝑇𝑂𝑇 ∕𝑢∞
and 𝑘𝑇𝑂𝑇 = 𝑘 + 𝑘𝐿, while the solid lines the turbulent intensity based on the turbulent kinetic energy 𝑇 𝑢 =

√

2∕3𝑘∕𝑢∞.
turbulence model [4] in the T3A case, with the same ‘‘𝐶𝐹𝐿 law’’,
e.g., CFLmin = 1, CFLmax = 1020 and 𝛼 = 1. The results with the
Spalart–Allmaras turbulence model are reported with the prescribed
value �̃�∞∕𝜈 = 3 [4] and the same value of the transition model
�̃�∞∕𝜈 = 1.5 × 10−2 of the freestream working variable to demonstrate
that the higher number of iterations to reach the convergence can be
ascribed mainly to the value of the boundary condition and not to the
modifications of the transition model formulation.

5.2. Non-zero pressure gradient flat plates

The T3C2, T3C3 and T3C5 flat plates of the ERCOFTAC T3 series
14

with non-zero pressure gradient are here used to validate and calibrate
the transition models with bypass transition under a continuous varia-
tion of the pressure gradient, representing an aft-loaded turbine blade.
They are characterized by different values of the freestream velocity 𝑢∞
and the same value of the turbulence intensity at the leading edge of
the plate 𝑇 𝑢𝐿𝐸 (see Table 4). The freestream turbulent quantities of the
𝛾𝑘− �̃� model, e.g., 𝑇 𝑢∞ and (𝜇𝑇 ∕𝜇)∞, are chosen in order to match the
experimental turbulent intensity at the leading edge of the plate and
the decay of the turbulent intensity along the domain. The same mesh,
made of 𝑛𝑒 = 10 600 quadrilateral elements, is used for all the testcases,
where the inflow boundary is set at 𝑥∕𝐿 = −0.06 from the leading edge
of the plate and adiabatic no-slip wall boundary condition is set on
the plate (see Fig. 13). The mesh has 𝑛𝑥 = 200 number of element

in 𝑥-direction on the wall, i.e., 𝑥∕𝐿 > 0, 𝑛𝑦 = 50 number of element
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Fig. 17. Non-zero pressure gradient flat plates. 𝑥-component velocity at different locations 𝑥∕𝐿 along the domain with the SA-BCM model and �̃�∞∕𝜈 = 1.5×10−2, the 𝛾𝑘− �̃� model,
and the 𝑘𝐿 − 𝑘 − �̃� model [27,28] in the T3C2 case, P4 solution approximation.
Fig. 18. Rounded leading edge flat plates. Computational mesh of the T3L cases. The boundary conditions in clockwise direction from the leading edge of the plate (𝑥, 𝑦) = (0, 0)
are: symmetry, inflow, slip wall (or freestream), outflow, and no-slip wall. The mesh is here showed with linear edges.
Fig. 19. Rounded leading edge flat plates. Contours of the 𝑥- and 𝑦-component velocity, the turbulent intensity
√

2∕3𝑘∕𝑢∞ and the turbulent lengthscale
√

𝑘∕𝑒�̃�, with the 𝛾𝑘 − �̃�
model in the T3L3 case, P4 solution approximation.
in 𝑦-direction, and 𝛥𝑦1∕𝐿 = 𝛥𝑥1∕𝐿 = 0.00005 as height and length of
the first element from the wall and from the leading edge of the plate
in 𝑥-direction, respectively. The end-wall, with a slip wall boundary
condition, and the height ℎ∕𝐿 allows to match the experimental 𝑥-
component velocity distribution and the pressure gradient along the
plate outside of the boundary layer. In particular, ℎ∕𝐿 is defined as

ℎ = 3.845
( 𝑥 )6

− 12.32
( 𝑥 )5

+ 15.198
( 𝑥 )4

−

15

𝐿 𝐿 𝐿 𝐿
−8.973
( 𝑥
𝐿

)3
+ 2.659

( 𝑥
𝐿

)2
− 0.418

( 𝑥
𝐿

)

+ 0.123.

At the end of the shaped slip end-wall, i.e., 𝑥∕𝐿 > 1, an horizontal
wall is set until 𝑥∕𝐿 = 1.06 in order to improve the robustness of the
convergence. The results of the proposed models are compared with
the available experimental data of Coupland [18] and the numerical
solution of the 𝛾𝑘−𝜔 model of Kubacki et al. [10–12], and the SA-BCM
model of Cakmakcioglu et al. [13,14].
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Fig. 20. Rounded leading edge flat plates. Turbulent intensity 𝑇 𝑢 along the domain for the rounded leading edge flat plates, from T3L1 (top, right) to T3L6 (bottom, left) with
he 𝛾𝑘 − �̃� model, from P1 to P4 solution approximation. The references from Vlahostergios et al. [36] are here reported with linear, solid lines, and non-linear, dashed lines,
𝐿 − 𝑘 − 𝜔 model. 𝐷𝐺 − P1, 𝐷𝐺 − P2, 𝐷𝐺 − P3, 𝐷𝐺 − P4, Vlahostergios et al. 𝑘𝐿 − 𝑘 − 𝜔 model, Coupland and Brierley exp.
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Table 4
Non-zero pressure gradient flat plates. Flow conditions for the T3C2, T3C3 and T3C5
flat plates [18].

T3C2 T3C3 T3C5

𝑢∞ [m/s] 5.0 3.7 8.4
𝑇 𝑢𝐿𝐸 [%] 3.0 3.0 3.0

Fig. 14 shows the skin friction coefficient distributions on the plate
ith the 𝛾𝑘 − �̃� model and different solution approximations. Further-
ore, Fig. 14 shows also the decay of the turbulent intensity and the

-component velocity along the domain outside of the boundary layer
n order to prove the correctness of the boundary conditions of the
urbulent quantities. Fig. 15 shows the skin friction coefficient distri-
utions on the plate with the SA-BCM model and different values of
he freestream working variable �̃�∞∕𝜈 = 1.5 × 10𝑖 with 𝑖 = {−1,… ,−4}.

The skin friction coefficient distributions of the 𝛾𝑘−�̃� model are almost
overlapped with experiments in all the cases, where the transition flow
region is shorter than in the experiments in the T3C2 and T3C3 cases.
Starting from P2 approximation, the solution does not show significant
16
difference increasing the accuracy, as spotlighted also in the previous
cases. Overall, the results show a better prediction of the transition in
comparison to Kubacki et al. [9–12] and Cakmakcioglu et al. [13,14]
in every case. Also the SA-BCM model demonstrates to be able to
well predict the transition location in each case, with slightly different
values of the freestream working variable �̃�∞. In fact, the more accurate
solution in comparison with experiments is given by �̃�∞∕𝜈 = 1.5×10−2 in
the T3C2 case, �̃�∞∕𝜈 = 1.5×10−3 in the T3C3 case, and �̃�∞∕𝜈 = 1.5×10−2

in the T3C5 case. This confirms that, where the turbulent intensity is
not too low, the values of �̃�∞∕𝜈 are similar to the recommendation by

akmakcioglu et al. [13,14].
In order to compare the performance of the models not only with

he skin friction coefficient distributions, Fig. 16 shows the turbulent
ntensity profiles at different locations along the domain with the 𝛾𝑘−�̃�

model and the 𝑘𝐿 − 𝑘− �̃� model [27,28], and Fig. 17 the 𝑥-component
velocity profiles at different locations along the domain with the 𝛾𝑘−�̃�,
the SA-BCM models, and the 𝑘𝐿 − 𝑘 − �̃� model [27,28] in the T3C2
case. For the Coupland experiments [18] only the 𝑥-component velocity
fluctuations are here considered, i.e., 𝑇 𝑢 =

√

𝑢′𝑥
2∕3∕𝑢∞. While for the

𝑘 − 𝑘 − �̃� model [27,28] the turbulent intensity can be based both
𝐿
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Fig. 21. Rounded leading edge flat plates. Skin friction coefficient 𝑐𝑓 along the domain for the rounded leading edge flat plates, from T3L1 (top, right) to T3L6 (bottom, left)
ith the 𝛾𝑘 − �̃� model, from P1 to P4 solution approximation. The vertical dashed line represent the experimental length of the laminar separation bubble [19]. The reference

rom Vlahostergios et al. [36] are here reported with linear 𝑘𝐿 − 𝑘−𝜔 model. In the T3L4 case both the experimental data, calculated (dots) and modeled (crosses), are reported.
𝐷𝐺 − P1, 𝐷𝐺 − P2, 𝐷𝐺 − P3, 𝐷𝐺 − P4, Vlahostergios et al. 𝑘𝐿 − 𝑘 − 𝜔 model, Bassi et al. ILES, Coupland and Brierley exp.
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on the turbulent kinetic energy 𝑘, i.e., 𝑇 𝑢 =
√

2∕3𝑘∕𝑢∞, and the total
kinetic energy 𝑘𝑇𝑂𝑇 = 𝑘 + 𝑘𝐿, i.e., 𝑇 𝑢 =

√

2∕3𝑘𝑇𝑂𝑇 ∕𝑢∞. Similarly
to the previous cases, i.e., T3A, T3B and T3A-, the turbulent kinetic
energy of the 𝛾𝑘 − �̃� model grows slower moving away from the wall,
in comparison with the experiments and the numerical results of the
𝑘𝐿 − 𝑘 − �̃� model. Also the 𝑥-component velocity profiles shows the
same differences of the previous cases between the 𝑘𝐿 − 𝑘 − �̃�, 𝛾𝑘 − �̃�,
and SA-BCM models. In fact, the solutions are overlapped between the
transition models in the laminar and fully turbulent boundary layer,
while the solution of the 𝛾𝑘 − �̃� model guarantees a lower accuracy
in transitional boundary layer. Instead, the solutions of the SA-BCM
model are in agreement with those of the 𝑘𝐿 − 𝑘 − �̃� model also in
the transitional boundary layer.

5.3. Rounded leading edge flat plates

The T3L1–T3L6 rounded leading edge flat plates of the ERCOFTAC
T3 series with zero pressure gradient are here used to validate and
calibrate the transition models with separation-induced transition. They
are characterized by different values of the freestream Reynolds num-
17

ber 𝑅𝑒∞ and turbulent intensity at the leading edge of the plate 𝑇 𝑢𝐿𝐸 , t
ranging from 0.2% to 5.6% (see Table 5). The freestream turbulent
quantities of the 𝛾𝑘 − �̃� model, e.g., 𝑇 𝑢∞ and (𝜇𝑇 ∕𝜇)∞, are chosen in
order to match the experimental turbulent intensity at the leading edge
and the decay of the turbulent intensity along the domain. In particular
the following turbulent intensity and Reynolds numbers are considered:
𝑇 𝑢𝐿𝐸 = {0.2%, 0.65%, 2.3%, 5.6%} and 𝑅𝑒∞ = {3 450, 1 725, 6 900}. The
Reynolds number is based on the diameter of the leading edge of the
plate 𝐷 and the freestream flow conditions. The same mesh, made of
𝑒 = 15 500 quadrilateral elements with quadratic edges, is used for all
he testcases, where the outflow boundary is set at 𝑥∕𝐷 = 50 from the
eading edge of the plate and adiabatic no-slip wall boundary condition
s set on the plate (see Fig. 18). The mesh has 100 surface elements

on the rounded leading edge and 600 on the flat plate, i.e., 𝑛𝑥 = 700
umber of elements in 𝑥-direction on the wall, and 𝛥𝑦1∕𝐷 = 0.002 as
eight of the first element from the wall. The results of the proposed
odels are compared with the available experimental data of Coupland

nd Brierley [19] and the numerical solution of Bassi et al. [37], with
n high-fidelity implicit LES (ILES), and Vlahostergios et al. [36], with
he linear and non-linear 𝑘 − 𝑘𝐿 − 𝜔 transition model.

Fig. 19 shows the contours of the 𝑥- and 𝑦-component velocity,
he turbulent intensity 𝑇 𝑢 =

√

2∕3𝑘∕𝑢 and the turbulent length scale
∞
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Fig. 22. Rounded leading edge flat plates. Skin friction coefficient 𝑐𝑓 along the domain for the rounded leading edge flat plates with the SA-BCM model and different freestream
orking variables �̃�∞, from T3L1 (top, right) to T3L6 (bottom, left), P4 solution approximation. The vertical dashed line represent the experimental length of the laminar separation
ubble [19]. The reference from Vlahostergios et al. [36] are here reported with linear 𝑘𝐿 − 𝑘 − 𝜔 model. In the T3L4 case both the experimental data, calculated (dots) and

modeled (crosses), are reported. �̃�∞∕𝜈 = 1.5 × 101, �̃�∞∕𝜈 = 1.5 × 100, �̃�∞∕𝜈 = 1.5 × 10−1, �̃�∞∕𝜈 = 1.5 × 10−2, Vlahostergios et al. 𝑘𝐿 − 𝑘 − 𝜔 model,
Bassi et al. ILES, Coupland and Brierley exp.
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Table 5
Rounded leading edge flat plates. Flow conditions (top) and length of the laminar
separation bubble 𝑙∕𝐷 as a function of the freestream Reynolds number 𝑅𝑒∞ and the
urbulent intensity at the leading edge of the plate 𝑇 𝑢𝐿𝐸 (bottom). The lengths of the
aminar separation bubble of the SA-BCM model are here reported with the best values
f the freestream working variables, e.g., �̃�∞∕𝜈 = 1.5 × 10−2, 1.5 × 100, 1.5 × 100, 1.5 × 100,
.5 × 100 and 1.5 × 100 respectively in the different cases.

T3L1 T3L2 T3L3 T3L4 T3L5 T3L6

𝑅𝑒∞ [–] 3450 3450 3450 3450 1725 6900
𝑇 𝑢𝐿𝐸 [%] 0.20 0.65 2.30 5.60 2.30 2.30

Bassi et al. ILES [37] 2.69 2.00 1.49 1.08 2.74 1.00
𝛾𝑘 − �̃� model 2.70 2.00 1.51 1.16 2.74 1.00
SA-BCM model 2.89 2.08 1.61 1.44 2.82 1.03

𝜆𝑇 =
√

𝑘∕𝑒�̃�, with the 𝛾𝑘 − �̃� model in the T3L3 case. Evans [38] and
olland and Evans [39] spotlighted that the unsteadiness in turbulent
oundary layers results in higher time-averaged boundary layer integral
arameters. After the reattachment the boundary layer increases the
elocity fluctuations and the momentum loss with a local increment
lso of the skin friction coefficient. For this reason, in the results
18

o

ere reported, the (steady) transition models should underestimate
he distribution of the skin friction coefficient in comparison with
he (unsteady) ILES by Bassi et al. [37] after the reattachment of
he boundary layer, due to a natural inability to predict the velocity
luctuations of steady simulations and the averaged formulation of the
ANS equations. Probably due to probe position, sampling frequency,
nd time-averaged issues of the measurements also the experiments of
oupland and Brierley [19] suffer from inaccuracy in the reattachment

low region downstream of the bubble, where the unsteadiness of the
oundary layer is higher.

Fig. 20 shows the decay of the turbulent intensity along the domain
utside of the boundary layer with the 𝛾𝑘 − �̃� model in all the cases

in order to prove the correctness of the boundary conditions of the
turbulent quantities. While Figs. 21 and 22 show the skin friction
coefficient distributions on the plate in all the cases with the 𝛾𝑘 − �̃�

odel and the SA-BCM model, respectively. Fig. 21 shows the solutions
f the 𝛾𝑘 − �̃� model with different solution approximations, while
ig. 22 shows the solutions of the SA-BCM model with different values
f the freestream working variable �̃� ∕𝜈 = 1.5×10𝑖 with 𝑖 = 1,… ,−2 .
∞ { }
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Fig. 23. Rounded leading edge flat plates. 𝑥-component velocity 𝑢𝑥∕𝑢𝑚𝑎𝑥 at different locations 𝑥∕𝐷 along the domain in the T3L1 (top) and T3L2 (bottom) case, with the 𝛾𝑘− �̃� and
A-BCM models, P4 solution approximation. The results with the SA-BCM model are here reported with the best values of the freestream working variables, e.g., �̃�∞∕𝜈 = 1.5 × 10−2

nd 1.5 × 100 in the T3L1 and T3L2 case, respectively.
Fig. 24. Rounded leading edge flat plates. 𝑥-component velocity 𝑢𝑥∕𝑢𝑚𝑎𝑥 at different locations 𝑥∕𝐷 along the domain in the T3L3 (top) and T3L4 (bottom) case, with the 𝛾𝑘− �̃� and
A-BCM models, P4 solution approximation. The results with the SA-BCM model are here reported with the best values of the freestream working variables, e.g., �̃�∞∕𝜈 = 1.5 × 100

nd 1.5 × 100 in the T3L3 and T3L4 case, respectively.
t
I
i

Regarding the 𝛾𝑘 − �̃� model the solutions of the skin friction coef-
icient are almost overlapped with experiments in all the cases, where
tarting from P2 approximation the solution has no significant differ-
nce increasing the accuracy. The results show a better prediction of
19

f

he transition in comparison to Vlahostergios et al. [36] in every case.
n particular the main discrepancy of the results of the 𝛾𝑘 − �̃� model
s in the intensity of the skin friction coefficient in the reattached and
ully turbulent boundary layer, in fact these values are in agreement
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Fig. 25. Rounded leading edge flat plates. Contours of the 𝛾𝐵𝐶 intermittency function of the SA-BCM model in the T3L1 (right) and T3L3 (left) case, P4 solution approximation.
Fig. 26. Rounded leading edge flat plates. Contours of the 𝑇 𝑒𝑟𝑚1 (left) and 𝑇 𝑒𝑟𝑚2 (right) of the intermittency function formulation 𝛾𝐵𝐶 of the SA-BCM model in the T3L3 case,
P4 solution approximation.
Fig. 27. Eppler E387 Airfoil. Contours of the 𝑥- and 𝑦-component velocity with the SA-BCM model and �̃�∞∕𝜈 = 1.5×10−2 in the case with 0◦ (top) and 6◦ (bottom) angle of attack,
P4 solution approximation.
with experiments and the numerical results of Vlahostergios et al. [36],
while underestimates the numerical results of Bassi et al. [37]. In fact,
as previously described, the higher skin friction coefficient distribution
of the high-fidelity simulations is due the unsteadiness of the flow and
in particular the velocity fluctuations.

Also the SA-BCM model demonstrates to be able to well predict
the transition and reattachment location in each case, although with
different values of the freestream working variable �̃�∞. In fact, the
more accurate solution in comparison with experiments is given with
�̃�∞∕𝜈 = 1.5 × 10−2, 1.5 × 100, 1.5 × 100, 1.5 × 100, 1.5 × 100 and 1.5 × 100

respectively in all the cases. Also on this testsuite, as in the T3A-
case, lower levels of the turbulent intensity need lower values of the
freestream working variable �̃�∞ for the SA-BCM model. In fact, in the
T3L1 case the more accurate solution is with the lower value of the
freestream working variable value, i.e., �̃�∞∕𝜈 = 1.5×10−2. In comparison
with the natural transition mode cases the freestream working variable
has a lower influence on the performance of the SA-BCM model and
the solutions with different values of �̃�∞ are more similar with higher
Reynolds numbers and turbulent intensities.

Figs. 23 and 24 show the 𝑥-component velocity profiles at different
locations along the domain in the cases from T3L1 to T3L4, with the
𝛾𝑘 − �̃� and the SA-BCM models. The solutions of the models are in
20
agreement both with the experiments and the high-fidelity ILES by
Bassi et al. [37]. Only negligible differences can be noticed in the
location of the reattachment of the shear layer on the plate between
the solutions with the 𝛾𝑘 − �̃� model and the references. In fact, the 𝑥-
component velocity gradient in wall-normal direction is higher in the
ILES solution [37] in those regions, confirming also the higher values
in the distribution of the skin friction coefficients. While the solutions
of the SA-BCM model underestimate the height of the bubble near the
leading edge of the plate in the T3L1 case.

Fig. 25 shows the contours of the intermittency function 𝛾𝐵𝐶 of
the SA-BCM model in the T3L1 and T3L3 cases, while Fig. 26 shows
the 𝑇 𝑒𝑟𝑚1 and 𝑇 𝑒𝑟𝑚2 contributions of the intermittency function in
the latter case. The intermittency function 𝛾𝐵𝐶 can assume different
values in the freestream, for example in the T3L1 case is ∼0 while
in the T3L3 case ∼0.5. In fact, in the T3L3 case the value of the
freestream working variable �̃�∞∕𝜈 = 1.5×100 immediately activates the
intermittency function, where the freestream 𝛾𝐵𝐶 value is due to the
𝑇 𝑒𝑟𝑚2 contribution. Indeed, it is possible that the 𝜒2 constant should be
re-calibrated for such a large value of the freestream working variable,
which was clearly not considered in [13,14].

For the 𝛾𝑘 − �̃� the 𝛾2 and 𝛾3 formulations are closer to the wall
after the reattachment of the boundary layer, in comparison with the
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other formulations. In fact, these formulation are not based on distance
from the wall and, furthermore, the 𝛾3 formulation is written with the
dissipation rate which is high near wall. Instead, the 𝛾1, 𝛾2 and 𝛾4 for-
mulations contain the turbulent kinetic energy which slows the growth
of the intermittency moving in normal direction from the wall. 𝑇 𝑒𝑟𝑚2
of 𝛾𝐵𝐶 , and of 𝛾4, allows the production of the intermittency inside
the boundary layer, even if this term has to follow the behavior of the
turbulent kinetic energy and the SA’s working variable, respectively in
the 𝛾𝑘 − �̃� and SA-BCM model, which are zero near wall.

5.4. Eppler387 airfoil

The last testsuite with separation-induced transition is the flow
around an Eppler E387 airfoil, where the experiments by McGhee
et al. [20] at Langley Low-Turbulence Pressure Tunnel (LTPT) are
available in literature at different angles of attack. The freestream
Reynolds number is 𝑅𝑒∞ = 200 000, based on the freestream flow
conditions and the chord of the airfoil, and the freestream turbulent
intensity is 𝑇 𝑢∞ = 0.1%. The freestream Mach number is 𝑀𝑎∞ = 0.1 to
consider the flow essentially incompressible. The freestream turbulent
quantities of the 𝛾𝑘 − �̃� model, e.g., 𝑇 𝑢∞ and (𝜇𝑇 ∕𝜇)∞, are chosen
in order to match the turbulent intensity at the leading edge of the
airfoil. No information are available about the experimental decay of
the turbulent kinetic energy along the domain. In order to compare
different pressure gradient conditions different angles of attack are
considered: 𝛼 = {0◦,… , 10◦}. The same mesh, made of 𝑛𝑒 = 2880
quadrilateral elements with quadratic edges, is used for all the cases,
where the freestream boundary is set at 100𝑐 from the airfoil and
adiabatic no-slip wall boundary condition is set on the airfoil (see
Fig. 28). The mesh has 60 surface elements on the airfoil and 𝛥𝑦1∕𝐷 =
0.0002 as height of the first element from the wall. The results of the
proposed models are compared with the available experimental data of
McGhee et al. [20] and the numerical solution of the SA-BCM model of
Cakmakcioglu et al. [13,14]. Fig. 27 shows the contours of the 𝑥- and
𝑦-component velocity with the SA-BCM model and �̃�∞∕𝜈 = 1.5×10−2 in
the case with 0◦ and 6◦ angle of attack.

Figs. 29 and 30 show the pressure coefficient distributions on the
airfoil with the 𝛾𝑘 − �̃� model, with different solution approximations,

Fig. 28. Eppler E387 Airfoil. Computational mesh of the Eppler E387 cases. The
boundary conditions are freestream on the outer boundary and no-slip on the airfoil.
The mesh is here showed with linear edges.
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and the SA-BCM model, with different values of the freestream working
variable �̃�∞∕𝜈 = 1.5×10𝑖 with 𝑖 = {0,… ,−3}, respectively. The solutions
of both the models, starting from P2 solution approximation for the
𝛾𝑘− �̃� model, are almost overlapped with the experiments. The 𝛾𝑘− �̃�
model introduces serious difficulties in the convergence, in fact these
cases need an higher number of iterations to convergence, probably due
to the low turbulent intensity in a large domain with large elements
near the freestream boundary.

In order to compare the performance of the models not only with the
pressure coefficient distributions, Fig. 31 shows the lift 𝑐𝑙 and drag 𝑐𝑑
coefficient and the laminar separation (LS) and turbulent reattachment
(TR) location with the 𝛾𝑘− �̃� and the SA-BCM model. Both the models
are able to predict the transition, the separation and the reattachment
of the flow at every angles of attack, where the SA-BCM model slight
overestimate the bubble length for 𝛼 < 7◦ and underestimate the
bubble length for 𝛼 > 7◦. With the higher angles of attack, e.g., 𝛼 >
8◦, the separation takes place at the leading edge of the airfoil and
the transition flow features are closed to those of the ERCOFTAC
rounded leading-edge flat plates. In the experiments [20] between 7◦

and 8◦ the flow is attached and natural transition happens, whereas
all the transition models from literature [40] show separation-induced
transition. Also with the 𝛾𝑘 − �̃� and the SA-BCM models a laminar
separation and a turbulent reattachment of the flow can be noticed at
this critical range of values of the angle of attack. Furthermore, while
the transition location is sensitive to the model’s prediction capabilities,
the lift and drag coefficients are similar for both the models.

6. Conclusions

The implementation of a modified version of the 𝑘 − �̃� [7] and
Spalart–Allmaras [4] turbulence models in a high-order dG solver to
predict bypass and separation-induced transition is here presented. The
modifications of these turbulence models are based on the 𝛾𝑘 − 𝜔 by
Holman and Fürst [8,9] and Kubacki et al. [10–12], and the SA-BCM
by Cakmakcioglu et al. [13,14].

Both the proposed transition models, e.g., the 𝛾𝑘 − �̃� and SA-
BCM model, are correlation-based algebraic models that rely on local
and freestream flow information and include an intermittency function
instead of an intermittency equation, and are validated on benchmark
cases from the ERCOFTAC T3 suite to the Eppler 387 airfoil, with
different transition mode, freestream Reynolds number and turbulent
intensity, and pressure gradient. The accuracy of both the models is
demonstrated in comparison with experiments and numerical results
from literature with similar models [8–11,13,14,36], for increasing
order of accuracy. A good choice of the freestream working variable for
the SA-BCM model is mandatory. In particular cases with a low level
of the freestream turbulent intensity need lower values of the working
variable at the boundary, which are out of the prescribed range of
values [13,14]. The work is in progress in the application of the models
on more complex testcases, as turbine or compressor cascades, and in
the coupling of the models with a 𝑝-multigrid algorithm [3].
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Appendix. Mesh sensitivity

To validate the implementation of both the transition models, a
spatial sensitivity analysis is carried out for on T3A test case. Three
22
different meshes with 2400 (coarse), 8800 (medium) and 33 600 (fine)
quadrilateral elements, are used, where the inlet boundary is set at
𝑥∕𝐿 = −0.06 from the leading edge of the plate and adiabatic no-
slip wall boundary condition is set on the plate. The medium mesh
is the same used in Section 5.1 for the comparison of the prediction
capabilities of the models. The same solution approximations are used
on all the meshes, where Table A.6 shows the details and the degrees
of freedom (DoFs) of the different meshes and solution approximations.
Fig. 29. Eppler E387 Airfoil. Pressure coefficient 𝑐𝑝 distribution on the airfoil at different angles of attack, from 0◦ (top, right) to 6◦ (bottom, left), with the 𝛾𝑘 − �̃� model, from
P1 to P4 solution approximation. 𝐷𝐺 − P1, 𝐷𝐺 − P2, 𝐷𝐺 − P3, 𝐷𝐺 − P4, Cakmakcioglu et al. SA-BCM model, McGhee exp.
Fig. 30. Eppler E387 Airfoil. Pressure coefficient 𝑐𝑝 distribution on the airfoil at different angles of attack, from 0◦ (top, right) to 6◦ (bottom, left), with the SA-BCM model
nd different freestream working variables �̃�∞, P4 solution approximation. �̃�∞∕𝜈 = 1.5 × 100, �̃�∞∕𝜈 = 1.5 × 10−1, �̃�∞∕𝜈 = 1.5 × 10−2, �̃�∞∕𝜈 = 1.5 × 10−3,

Cakmakcioglu et al. SA-BCM model, McGhee exp.
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Fig. 31. Eppler E387 Airfoil. Lift 𝑐𝑙 and drag 𝑐𝑑 coefficient and the laminar separation (LS) and turbulent reattachment (TR) location with the 𝛾𝑘− �̃� and the SA-BCM model, P4

olution approximation.
Fig. A.32. Zero pressure gradient flat plates. Skin friction coefficient 𝑐𝑓 along the plate for the zero pressure gradient T3A flat plate with the 𝛾𝑘− �̃� model and different meshes:
coarse (top, left), medium (top, right), and fine (bottom, left) and P1 to P4 solution approximation, and P4 solution approximation on the different meshes (bottom, right): coarse
(dotted line), medium (dashed line) and fine (solid line) mesh. 𝐷𝐺 − P1, 𝐷𝐺 − P2, 𝐷𝐺 − P3, 𝐷𝐺 − P4, Holman and Fürst 𝛾𝑘 − 𝜔 model,
Cakmakcioglu et al. SA-BCM model, Kubacki et al. 𝛾𝑘 − 𝜔 model, Coupland exp.
Figs. A.32 and A.33 show the skin friction coefficient distributions
n the T3A plate with the 𝛾𝑘 − �̃� model and the SA-BCM model, with
he different meshes and solution approximations, respectively. For the
A-BCM model the solutions are reported with the best values of the
reestream working variables, e.g., �̃� ∕𝜈 = 1.5 × 10−2. Figs. A.32 and
23

∞

A.33 show also the comparison of the 𝐷𝐺 − P4 solution approximation
on the different meshes, in order to prove the convergence of the
results increasing the order of the solution approximation as well as
the number of elements of the mesh. The skin friction coefficients are
almost overlapped and are in agreement with the experiments from



Computers and Fluids 253 (2023) 105791A. Crivellini et al.
Fig. A.33. Zero pressure gradient flat plates. Skin friction coefficient 𝑐𝑓 along the plate for the zero pressure gradient T3A flat plate with the SA-BCM model and different meshes:
coarse (top, left), medium (top, right), and fine (bottom, left) and P1 to P4 solution approximation, and P4 solution approximation on the different meshes (bottom, right): coarse
(dotted line), medium (dashed line) and fine (solid line) mesh. The solutions are here reported with the best values of the freestream working variables, e.g., �̃�∞∕𝜈 = 1.5 × 10−2.

𝐷𝐺 − P1, 𝐷𝐺 − P2, 𝐷𝐺 − P3, 𝐷𝐺 − P4, Holman and Fürst 𝛾𝑘−𝜔 model, Cakmakcioglu et al. SA-BCM model, Kubacki et al. 𝛾𝑘−𝜔 model,
Coupland exp.
Table A.6
Zero pressure gradient flat plates. Mesh details (top) and degrees of freedom (bottom)
of the spatial sensitivity analysis. 𝑛𝑒 is the number of elements, 𝑛𝑥 is the number of
element in 𝑥-direction on the wall, i.e., 𝑥 > 0, 𝑛𝑦 is the number of element in 𝑦-direction,
and 𝛥𝑦1∕𝐿 and 𝛥𝑥1∕𝐿 are the height and length of the first element from the wall and
from the leading edge of the plate in 𝑥-direction, respectively.

Coarse mesh Medium mesh Fine mesh

𝑛𝑒 2400 8800 33 600
𝛥𝑦1∕𝐿 = 𝛥𝑥1∕𝐿 0.0004 0.0002 0.0001
𝑛𝑥 50 100 200
𝑛𝑦 40 80 160

𝐷𝐺 − P1 7200 26 400 100 800
𝐷𝐺 − P2 14 400 52 800 201 600
𝐷𝐺 − P3 24 000 88 000 336 000
𝐷𝐺 − P4 36 000 132 000 504 000

𝐷𝐺 − P2 solution approximation on the coarse and medium meshes,
while with the fine mesh also the 𝐷𝐺 − P1 solution approximation is
overlapped with the higher order solutions.
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