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Abstract

The energy transition process, towards a carbon-neutral society, is undergoing,
yet, still at a gradual pace. To facilitate it, the implementation of sector coupling
measures is required. While the primary type of sector coupling measure, i.e. end-
users’ electrification, is a straightforward option, supported by the rapid growth of
renewable electricity production, however, it fails to meet the overall energy needs.
To overcome such limitations, the second type of sector coupling measure, i.e. cross-
vector integration, for example, adopting hydrogen integration, which enables the
coupling of two different energy vectors (thermal and electrical energy), can assume
a decisive role.

Furthermore, the energy end-users’ role must be reconsidered in the energy
paradigm. Indeed, while they played as passive actors previously, as they would
consume energy based on habits without doubting the consequences, now they
would be actively involved, by locally producing the energy, sharing it and even
trading it for economic revenues. Such a concept is the foundation of the Local
Energy Communities (LEC). By the European Commission’s definition, LECs are
legal entities that encompass the production, distribution, and utilisation of diverse
energy carriers. They aim to maximise local energy benefits, which include commu-
nity sharing, bolstering energy independence from the national grid, reducing the
community’s carbon footprint, and enhancing energy flexibility. Moreover, energy
storage systems are central to the adoption of LECs. Enabling the decoupling of
production and consumption, and unlocking cross-vector potential by the use of
hydrogen or thermal energy vectors.

With the ever-growing interest in this, also scientific research is thriving, indeed
energy systems modelling, which is the research topic to assess the impact of
such measures, to provide key insights to policymakers, supporting them in making
energy-related decisions, has been gaining progressively emphasis. Moreover,
energy systems modelling has different sub-categories. Indeed, from a system-level
perspective, where the focus is on the interconnection of different energy assets,
each of them modelled as a single entity, through the optimisation of the planning
and scheduling of LECs, i.e. management of the synergies among various energy
vectors, delivering the requested energy demands, in the most efficient way.

Commonly, for LEC energy planning, a bottom-up approach is adopted, meaning
the energy asset’s details are first investigated, to be then connected with proper
connections and limitations, finalising the whole energy community of interest. The
dominant mathematical formulation used is Mixed Integer Linear Programming, with
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time-dependent data at hourly resolution spanning a one-year planning horizon mini-
mum. However, there is a lack of proper models, that are capable of accommodating
dynamic variations in input parameters, such as energy costs, and investments.
Additionally, correlations among different technology deployments, are not widely
discussed.

From the technological perspective of energy system modelling, the single energy
asset is studied in detail, with all its subcomponents. Nevertheless, many cross-
vector technologies, like hydrogen-related energy conversion technologies, have
not received comprehensive coverage in the energy system modelling literature,
due to their technology readiness level. Likewise, the Li-ion battery, despite being a
mature energy storage solution, its technology degradation is not sufficiently explored,
especially in stationary applications within the LEC context, which affects the system
level planning, causing a mismatch of financial assessment due to its premature
replacement.

To address these limitations, from both system and technological perspectives, this
thesis serves as a comprehensive exploration of energy storage integration within
Local Energy Communities. Specifically addressing hydrogen and Li-ion battery
technology. Moreover, this work has the aim to bridge both the technology and system
perspectives of energy planning, indeed, single system details and limitations are first
analysed, to be considered further at the system level. From the system perspective,
this work addresses the necessity of having optimal alternatives during the energy
planning stage. Indeed, the correlation between different technologies that is usually
hindered, can be unveiled, thanks to these alternatives. Furthermore, the inclusion
of dynamic variations of input parameters, along with different investment stages
over the planning horizon, is explored.

As a demonstration of proposed methodologies, this thesis presents two distinct
case studies, that effectively take into account both levels of detail (technological
and system). The first reported case study concerns the optimal design of a green
hydrogen production plant, which consists of an offshore wind turbine, and an alkaline
electrolyser system with all its auxiliary components. The second case study instead,
has the the objective of analysing long-term storage solutions for a fully electrical
energy-independent LEC, through the comparison of hydrogen and Li-ion battery
solutions, taking into account the challenges posed by battery degradation.
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Chapter 1.

Introduction & scope of the thesis

Nothing in life is to be feared, it is only to be
understood. Now is the time to understand more, so
that we may fear less.

Maria Skłodowska-Curie

The environmental issue is undoubtedly one of the crucial problems of our era
and to tackle it, the energy transition is undergoing, with the focus on limiting global
warming to 1.5°C above pre-industrial levels, however, it is happening at a slow pace,
as the report from Intergovernmental Panel on Climate Change [1] illustrated.

The European Union’s energy demand is not yet entirely sustainable, as evidenced
by data from the Eurostat repository [2]. In 2021, renewable generation accounted
for 37.4% of the total energy demand (Fig. 1.1). However, it’s important to note that
this figure represents the aggregate data for all 27 countries within the Union. The
energy landscape varies significantly from one country to another.

For instance, two Nordic countries, Norway and Iceland, have emerged as note-
worthy exceptions. They managed to produce more renewable energy than their
local demand. This achievement can be attributed to several factors, including their
lower population density compared to other countries and their substantial renewable
energy system (RES) capacities. Furthermore, the abundant wind resources in these
regions have contributed significantly to their renewable energy production. On the
contrary, some other countries are still lagging behind, in the sense of the penetration
of the RES, where Malta has less than 10% of the share of the energy consumption
from renewables.

Thus, it requires a compelling effort and investment in zero-carbon power tech-
nologies, energy intensity improvements, and the development of new technologies
that can decarbonize the hard-to-abate industrial operation [3].

Indeed, To keep global warming to no more than 1.5°C, based on the statement
of the United Nations, Climate action sector [4], emissions need to be reduced
by 45 % by 2030 and reach net zero by 2050. Without a global, extensive, and
near-term action, the 1.5-degree pathway is likely out of reach. With this regard, the
European Union has taken decisive actions and set up different frameworks, to reach
its established goals which are i) cut greenhouse gas emissions by at least 55% by
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Figure 1.1.: European countries share from renewables in 2020-2021 ([2])

2030, under the so-called "Fit-for-55" framework [5], as a follow-up framework of
European Green Deal [6], and ii) Making the EU climate-neutral by 2050. the latest
European framework regarding energy is the REPowerEU [7], which was launched
in May 2022, helping the EU to deliver:

1. Diversifying and finding alternative energy supplies.

2. Green transition and investment in renewable energy.

3. Energy saving and efficiency.

The REPowerEU plan also includes numerous mid to long-term measures to bring
much of energy generation within the EU’s borders through renewable sources,
coupled with renewable import capacity to cover the remaining energy requirements.
These measures include increasing the target in the "Renewable Energy Directive"
(RED) to 45% by 2030, up from 40 % under the Fit for 55 Package, and targeting
320 Gigawatts (GW) of solar photovoltaic (PV) capacity installed by 2025 rising to
600 GW by 2030 [8]. Thus, different measures and research topics are undergoing,
all to enhance and permit the success of pre-established goals.

Regarding the historical and current situation of RES capacities, Europe has been
steadily increasing its wind energy generation capacity, with 489 TWh generated in
2022. In terms of new installations, Europe installed 19.1 GW of new wind farms in
2022, which was a record year for installations with an increase of 4% compared to
the previous year. Looking ahead, Europe is expected to install 116 GW of new wind
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farms over the period from 2022-2026, with three-quarters of these new capacity
additions being onshore wind. The EU-27 is expected to build on average 18 GW of
new wind farms between 2022-26, but they need to build 32 GW a year to meet the
EU’s new 40% renewable energy target [9]. In terms of solar PV and wind capacity,
the latest European Commission staff working document states that capacities of
592 GW of solar PV and 510 GW of wind are required by 2030 to achieve the 69%
share of renewable electricity modelled by the Commission. However, the current
expansion of solar PV and wind capacity is insufficient to reach the REPowerEU
plan’s renewable electricity objectives for 2030. In fact, the main-case forecast
predicts that average annual net additions need to be 22% higher for solar PV and
more than two times greater for wind to reach the installed capacity needed to
generate 69% of electricity from renewables by 2030 [10]. Despite these challenges,
the EU is expected to put more effort into making objectives real.

Besides the renewable production side, the European Commission has put consid-
erable efforts into promoting the development of energy communities [11], which is
defined as follows: "A Local Energy Community (LEC) is a legal entity that is involved
in power production, distribution, and use, to provide environmental, economic,
and social benefits to the local community. These communities can be physical,
originating from local initiatives and occupying a small piece of territory, such as a
neighbourhood, village, or campus, or virtual, with geographically dispersed energy
resources", which has the objective to offer a means to re-structure energy systems
by harnessing the energy and allowing citizens to participate actively in the energy
transition and thereby enjoy greater benefits, switching citizens from the passive
role, into an active player of the energy transition. Indeed, the end-users actions
have always impact on the overall energy system, yet, only with the LEC concept,
the end-user role will shift from the traditional passive subject into an active one, i.e.
their actions would be affected by the energy system behavior, to reach a common
energy beneficial goal.

This thesis has the objective of assessing energy storage integration, from both a
systematical and technological perspectives. In particular, hydrogen and Lithium-
ion battery technologies are deeply investigated in physical detail. Then the thesis
presents the illustration of their impacts, through two different case studies, within
the context of the Local Energy Community.

1.1. Local Energy Community for energy transition

The tools to achieve the energy transitions are well defined and can be divided
into two approaches of sector coupling, that are i) high electrification of end-user
loads, supported by an increasing capacity of RESs, and for the reason of easy
installation, the RES technology such as photovoltaic and wind turbines are the ones
gaining more interest, and since currently not all users can be electrified, due to
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different technological reasons, it is required to adopt ii) cross-vector coupling, that
allows coupling different energy vectors, such as power-to-hydrogen or power-to-heat,
so that also users that are not electrified, because different technical issues, like
hard-to-abate sectors, could reach the predefined energy transition goal.

While the first approach, the solution is straightforward, which consists of a change
of end users’ appliances, supported by the dedicated energy policies to increase the
production of renewable, moreover, the application is economical and policy-driven,
rather than technology-constrained, therefore has been left out from this work. For
the second approach, however, because several technologies have not reached
the complete technology readiness required, the synergies among multiple energy
carriers, indeed their impact on the current energy systems, are not widely addressed.
Both solutions can be properly integrated and tested in the context of LECs, where
the end-users have an active role, moreover, since it is easier to apply, due to its
main goal to be a smaller scale, indeed, by definition, LEC can be formed by a
small aggregate of energy consumers, which makes it a viable solution to be easy
implemented and replicated. For such context, proper energy management, through
the use of a systematic approach with advanced energy planning tools, the synergic
operation of the use of multi-energy carriers, with the integration of energy storage
solutions and distributed energy sources, all to increase energy flexibility, reducing
in the same time both economical and environmental impact of the community can
be achieved.

In the deployment of sector coupling through LECs, the role of enabling technolo-
gies is of paramount importance. The LEC concept encompasses a community of
proactive energy consumers who utilise optimisation techniques to maximize the
advantages and minimise the expenses associated with generating and distributing
energy from various sources (e.g., electricity, heating/cooling, etc.). Precisely, the effi-
cient management of diverse energy carriers is pivotal in attaining optimal operational
conditions for LECs, encompassing both energy and economic considerations.

So far, numerous energy conversion and storage technologies have been devel-
oped to handle more than two energy carriers concurrently [12]. Nazar-Heris et
al. [13] investigated the inter-dependencies among various energy carriers within
multi-carrier energy networks encompassing power, gas, heating, and water carriers.
Their study encompassed a range of generation units, such as Combined Heat and
Power (CHP) systems and gas-fired boilers, as well as storage facilities like pump
storage, water desalination units, and heat and gas storage solutions. Storage units
play a pivotal role in enhancing the overall system’s flexibility, consequently driving
down its operational costs [14]. Additionally, the adoption of multi-carrier energy
networks has significant implications for the energy market, as underscored by Nasiri
et al. [15]. Their study employed a bi-level approach to assess the impact of coupling
renewables with energy storage on both local and regional markets. Notably, their
analysis encompassed the minimisation of purchase costs (e.g., maximising energy
storage utilisation and wind energy production) and selling costs (e.g., minimising
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the utilisation of generation units and natural gas producers). The results revealed a
7.01% reduction in daily operation costs at the local level and a 1.7% decrease at
the regional level.

It’s worth noting that most of the technologies involved in multi-energy carrier
systems have already reached a Technology Readiness Level (TRL) of 9, signifying
their maturity and availability in the market. Nevertheless, some technologies are still
in development, particularly emerging energy carriers like hydrogen, which are des-
tined to play a significant role in advancing the decarbonisation efforts across various
energy-intensive sectors [16]. However, there are still technical and non-technical
(e.g., regulatory) barriers/limitations that do not allow their proper implementation
in LECs and need to be overcome quickly [16]. Technical limitations refer to those
technologies involved in the definition of multi-energy carrier systems like generation,
storage, and transportation. Technologies with different TRLs affect considerably
the deployment of LECs, particularly the definition and the final efficiency of the
overall system in which they are installed. Apart from this, the low flexibility of some
technologies has also an important impact, and flexibility services are crucial in
LECs for adjusting generation, storage, and consumption. Most of the consolidated
technologies are already available in the market and operate mainly at rated condi-
tions, while their efficiencies are lower when operating at part-load conditions due to
the end-users demand variation. This issue can be overcome by using the same
or complementary technologies, with different sizes together with energy storage
ones, capable of operating efficiently while the end-users demand changes. In this
case, proper control strategies allow to identification the most suitable technology
to operate under certain load conditions and guarantee high grid stability, reliability,
and main economic goals [17].

When it comes to modelling Multi Energy Systems (MES), as elaborated in the sub-
sequent section (1.3), a multitude of commercially available tools are applicable for
analysing and optimising their performance. These tools have distinct methodologies
and techniques, yet, all towards tackling the inherent complexities of multi-carrier sys-
tems. Nonetheless, it’s important to note that each tool has its own set of strengths,
target applications, and unique functionalities. Consequently, selecting the most
suitable tool for a particular study hinges on the specific requirements, objectives,
as well as the spatial and temporal scope of the research.

The implementation of sector coupling technologies is facing a significant limitation
related to their economic feasibility. Many of these technologies are currently not
competitive in various applications and regions, restraining their widespread adoption.
Given that the adoption of these solutions is still at its early stage, further technological
and economic investigations must be carried out [18]. In addition to economic
challenges, national and international regulations may pose restrictions on sector
coupling according to [19]; for instance, in the case study of the German energy
sector, renewable energies and storage solutions may encounter obstacles due
to CO2 emission restrictions. While cross-sector coupling measures that involve
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different energy carriers are on the rise, electrification remains the dominant approach
for integrating end-use sectors [20]. Consequently, technologies such as power-
to-hydrogen and power-to-heat, which enable cross-sector coupling, are not yet
widely adopted. Based on the findings presented in [21], the integration of power-
to-hydrogen infrastructure with other sector-coupling measures becomes vital in
achieving a zero-emission energy system in Germany. Hence, the primary technical
constraint impeding the implementation of sector coupling technologies lies in the
lack of economic and technical competitiveness of certain technologies.

While the electrification of end-user facilities has been extensively studied, cross-
sector coupling technologies still require further development both from a technologi-
cal and environmental perspective due to their relatively recent adoption.

Several reviews have been produced so far on multi-carrier energy systems ad-
dressing a wide range of aspects going from technologies to modelling, optimisation
and management approaches. Most of them only focus on technical aspects such
as [22]-[23], which deal with the typical configurations of MES and the conversion
technologies composing them. Mohammadi-Ivatloo et al. [24] addressed the issue
of the storage facilities within the MES, whereas [25] dealt with the different demand
response services that can be offered by MESs. Mohammadi et al. [26] reviewed the
energy management approaches used for the MESs, whereas [27, 28] also reviewed
the modelling approaches related to MESs, with the latter focusing the attention also
on their interaction with external markets and networks.

1.2. Energy storage technologies, and their potential

Energy Storage Systems (ESS) represent technologies that facilitate the decoupling
of energy production and consumption, allowing for asynchronous behaviour be-
tween the two. This characteristic enables a multitude of energy services, with the
primary goal of optimising energy usage and addressing the intermittent nature of
Renewable Energy Sources. Consequently, ESS holds a critical role, as it acceler-
ates the energy transition process while ensuring efficiency. Research on ESS has
numerous directions, ranging from technological advancements to material science.
For instance, there is ongoing exploration of less expensive or higher energy density
catalysts to enhance the technical performance of ESS. Additionally, the effective
integration and operation of ESS with other systems are crucial considerations in
this field.

Thanks to ongoing research efforts in this field, a diverse design of energy storage
technologies has emerged, each boosting distinct key performance metrics. These
technologies can be categorized in various ways, as illustrated by the works of
different researchers [29, 30, 31]. However, the most prevalent classification involves
categorizing them based on the storage phenomena they employ to absorb and
release energy. Presently, the most widely utilised ESS technologies fall into four
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main categories, which are briefly outlined below:

• Mechanical Storage: These technologies store energy through mechanical
means.

• Electrochemical Storage: Energy is stored through electrochemical reactions.

• Electrical Storage: Energy is stored in an electrical form.

• Chemical Storage: Energy is stored via chemicals such as alternative fuels
such as hydrogen.

The following sections provide a concise overview of these technologies, aiming to
provide a general understanding of the key attributes associated with each.

1.2.1. Mechanical Energy Storage Systems

Mechanical ESS are storage solutions based on converting electrical energy into
kinetic energy, and some of them are realized using the variation of the internal
energy of a working medium such as water, air, or rocks. The most used mechanical
ESS and their working diagrams are reported in Fig. 1.2, underlining the process of
charging and discharging energy in each of them.

Figure 1.2.: Illustarted diagrams about mechanical ESS, namely Pumped Hydro
Energy Storage (PHES), Compressed Air Energy Storage (CAES), Grav-
ity Energy Storage (GES), Liquid Air Energy Storage (LAES), Pumped
Thermal Energy Storage (PTES) and Flywheel .

Pumped Hydro Energy Storages

Pumped Hydro stands as one of the most well-established energy storage technolo-
gies. It exploits the height difference of different reservoirs, using such differences
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to convert energy between potential energy and electrical one in both ways, thanks
to the use of a turbine and a compressor. This concept is illustrated in Fig. 1.2. It
constitutes the overwhelming majority of global energy storage, capturing over 90%
of the market share with an installed capacity exceeding 130 GW worldwide [30].
Being an exceptionally mature technology, much of its adoption occurred in Europe
and the USA before 1990. More recently, China and India have been swiftly embrac-
ing PHES, as highlighted in the comprehensive review by Barbour et al. [32] on the
current status and prospects of PHES. China’s rapid growth in PHES is particularly
notable, with the Fengning Pumped Storage Power Station boasting an impressive
3,600 MW capacity, making it the largest installed capacity globally as of 2021 [33].
Nevertheless, this record is destined to be exceeded, by an ambitious Australian
project aiming to deploy a 5 GW PHES facility in Queensland [34]. The continued
expansion of PHES highlights its enduring significance in the global energy storage
landscape.

Having water as the working medium, the major limitation of this technology resides
in its geographical limitations. Moreover, in recent years, the researchers’ focus has
switched to exploiting the smaller scale reservoirs, compared with the traditional
ones, such approaches are so-called closed-loop, off-river-based PHES, which
allows accomplishing a deeper penetration of the PHES, indeed they can be also
installed in water supply systems, as demonstrated by the research carried out by
Spedaletti at al. [35], using the Pumps-as-Turbine technology, which is a single
machine that can work either as turbine or pump.

Compressed Air Energy Storage

CAES is a mechanical ESS that leverages the conversion of energy between the
electrical and internal energy of compressed air. In its charging phase, electrical
energy is employed to power air compressors, raising the air pressure to store it
in designated reservoirs. During discharging, the high-pressure compressed air is
released through turbines, thus converting the stored energy back into electricity.
This process is depicted in Fig. 1.2. Furthermore, it can be categorized into three
types based on the thermal treatment during the charging process: i) Diabatic CAES,
ii) Adiabatic CAES, and iii) Isothermal CAES.

Among various demonstrators, two of the most renowned CAES plants are the
Huntorf plant (321 MW) located in Germany and the McIntosh plant (108 MW) in
the USA. Both of these plants have been operational for decades. Despite several
large-scale CAES projects being announced during the 2010s, many of them faced
challenges that prevented their completion or led to them being put on hold. These
challenges included technical difficulties such as finding suitable storage reservoirs
and managing high operating pressures, as discussed in [36]. In contrast, small-
scale applications are not as cost-efficient as electrochemical competitors, partly
due to the decreasing costs of lithium-ion batteries.
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Gravity Energy Storage

GES employs a similar principle to PHES, involving the conversion of electrical energy
into gravitational potential energy. However, GES replaces water with solid materials,
offering a way to overcome the geographical constraints associated with traditional
PHES setups. As illustrated in Fig. 1.2, during the charging phase, electrical energy
is used to power electric motors that lift the mass from a low-gravity reservoir to a
high-gravity one. Conversely, during the discharging phase, the gravitational potential
energy of the mass is converted back into electricity through an electric generator.

GES provides a compelling solution for long-term energy storage, a prolonged
lifecycle and low-generation capacity. It effectively covers the capacity range of 1-20
MW, offering storage times spanning from 7 days to 3 years, as highlighted in [37].

Liquid Air Energy Storage

LAES operates by utilising liquid air as its working fluid, employing a thermo-mechanical
process. As depicted in Fig. 1.2, the system involves the liquefaction of atmospheric
air from its gaseous state, storing it in cryogenic liquid form. When needed, the
cryogenic liquid air is evaporated and heated before being expanded through turbines
to generate electrical energy. The heat released during the liquefaction and the cold
energy released during evaporation can be efficiently stored in specialized thermal
energy storage systems, enhancing overall energy efficiency by their integration into
the cycle.

LAES stands as a distinctive evolution of CAES, addressing the reservoir limi-
tations while also increasing energy density owing to its liquid state [38]. These
characteristics make LAES suitable for large-scale, long-duration energy storage
without geographical constraints. Notably, the largest LAES facility, with a capacity
of 50 MWe/250 MWh, is situated in the UK and was announced in 2019 [39].

Thermal Energy Storage

The TESs are indispensable parts of the power system as they can recover the
waste heat or thermal energy that is not possible to convert into another form of
energy, to be used in heat demands like for the residential cases. Indeed they are
widely deployed as support for concentrating solar panels, furthermore, they can
be used also in CAES and LAES, to reduce overall energy consumption. However,
these technologies do not couple different energy vectors, as only the thermal one is
considered. To complete the Power-to-heat-to-Power cycle, as illustrated in Fig. 1.2
the Pumped Thermal Energy Storage adopts a conventional thermal engine cycle
with a motor-compressor and expander-generator set to achieve the bidirectional
energy conversion.

As a demonstrator of the technology, a team from Newcastle University developed
a PTES plant in 2019, with 150kW/600kWh capacity with a round trip efficiency of
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65% with the pressure ratio of 12 and stores the heat at 773 K [40].

Flywheels

A flywheel is a mechanical energy storage solution that transforms bidirectionally
electrical energy into kinetic rotational energy through the acceleration or deceleration
of a rotating mass known as the flywheel. In the charging phase, electric energy
propels the electric motor to accelerate the flywheel, storing energy in kinetic form.
Conversely, when required, the kinetic energy of the flywheel is harnessed by a
generator, converting it back into electrical energy. Its performance mainly depends
on the moment of inertia of the rotor and rotating speed. they are usually categorized
as low-speed flywheel (<10’000 rpm) and high-speed flywheel (10’000-100’000 rpm).
They are characterized to have high power density and extremely low energy density
ESS solution, thus they are primarily used for short-duration applications such as
power quality and stabilization in power grids.

Currently, the largest flywheel energy storage system installed accounts capacity
of 300 kW, built in at Mt. Komekura in Yamanashi prefecture in 2015, used for
balancing a 1MW solar plant [41].

1.2.2. Electrical and electrochemical Energy Storage Systems

As for electrical and electrochemical energy storage solutions, they store the electrical
energy based on an electrical capacitive process or reversible electrical reactions
to store electrical energy. Due to their storage process, these energy storages
guarantee higher round-trip efficiency, compared to competitors, yet due to their
raw material cost, the large-scale applications (>GW) of these solutions are still not
widespread.

The ones mostly adopted are illustrated in the Fig. 1.3, illustrating their working
principles, furthermore, in the subsequent paraphs they are briefly described.

Lithium-ion batteries

Lithium-ion batteries(LiBs) have been the dominant ESS technology in the realm
of portable electronics for decades. Their exceptional energy density and cycling
performance, coupled with continuous cost reductions in raw materials, have solidified
their position. However, beyond their conventional role in small-scale applications,
LiBs have also experienced rapid adoption for grid-level energy storage. This trend
addresses the challenge of managing the intermittent output of renewable energy
sources.

As depicted in Fig. 1.3, a LiB comprises two electrodes: typically a lithium-
oxide cathode and a graphite-based anode, separated by a nonaqueous lithium-ion-
conducting electrolyte. During charging, an external electrical source prompts Li+
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Figure 1.3.: Electrical and electrochemical ESS. while the supercapacitor is the only
electrical energy storage, both Lithium-ion battery (LiB) and Redox Flow
Battery (RFB) are electrochemical ones.

ions to migrate from the cathode, traversing the electrolyte layer, until they reach the
graphite layers of the anode. Simultaneously, electrons flow externally. In contrast,
during discharging, ions move from the anode to the cathode, while electrons follow
the reverse path, inverting the process compared to charging.

LiBs are frequently classified according to the various cathode materials they
employ, as the cathode plays a pivotal role in their performance. Common cathode
materials encompass Lithium iron phosphate (LFP), Lithium manganese oxide (LMO),
Lithium nickel cobalt oxide (Li-NCA), and Lithium nickel manganese cobalt oxide
(Li-NMC). These distinct chemistries yield diverse performance indicators and trade-
offs.

At present, the evolution and widespread use of LiBs are experiencing a remarkable
surge, driven in part by the rapidly growing electric vehicle market. Furthermore,
applying LiBs in stationary scenarios has gathered attention due to their adaptability,
remarkable energy density, and fast response time. Indeed, LiBs are beginning to
be integrated into Local Energy Communities as supporting tools. This technology
has been extensively explored, evaluating its potential influence and significance
within the broader energy community context.
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1.2.3. Hydrogen Energy Storage

Over the past years, hydrogen has gained increasing attention, both from policymak-
ers and researchers, thanks to its vast applicability as an energy carrier, indeed it
can substitute the conventional fuel consumption sectors, using the so-called green
hydrogen, which is the hydrogen produced using renewable energy through the
water electrolysis process, cutting down the emissions.

Moreover, hydrogen can be effectively converted back into electric energy through
fuel cells. These technologies draw hydrogen from the storage, and oxygen from the
atmosphere, generating electric energy and water as a byproduct, as depicted in Fig.
1.4.

Hydrogen stands apart from other energy storage solutions due to its stand-
alone components for each stage, namely production, storage, and consumption
technologies. This characteristic results in a comparatively lower round-trip efficiency
(approximately 40%) compared to its counterparts. However, it offers distinctive
advantages, including cross-vector solutions, long-term storage, and energy and
power decoupling.

Figure 1.4.: Chemical ESS/Power-to-hydrogen

1.2.4. Energy Storage Systems comparison

Power and energy serve as crucial performance indicators for ESS technologies.
Based on these indicators, the most suitable technology is selected for a specific
application. Power refers to the peak power that can be injected or extracted from
the system. For the majority of ESS, this power rating remains consistent during
both the charging and discharging phases. On the other hand, energy capacity
signifies how long the ESS can sustain operation, representing the accumulation
of power over time. Fig. 1.5 provides an illustration of power ratings and operation
times for different ESS technologies. In Fig. 1.6, the energy and power density
among these ESS technologies are presented. These indicators offer insights into
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the energy-to-power ratio for the same volume. A higher value in these indicators
implies that less volume is required to store a certain amount of energy or power. By
considering these key metrics, stakeholders can effectively match ESS technologies
with specific applications, optimising their performance for various energy storage
needs.

Generally speaking, mechanical ESS is adopted for large-scale and stationary
applications, for their low energy and power densities, however, they possess an
extended lifetime with slow response time, with flywheels being a notable exception.
In contrast, electrical and electrochemical ESS provide higher energy and power
densities, making them well-suited for dynamic operations such as transportation or
electronic devices. Nonetheless, these technologies generally have a shorter lifespan
compared to their mechanical counterparts. Estimating their lifetime is intricate, as it
depends on various operational strategies such as temperature, depth of discharge,
and C-rates. Hydrogen-based solutions offer an expansive power rating range and
possess response times that complement electrochemical systems. Additionally,
they provide energy and power densities comparable to Lithium-ion batteries.

1.2.5. Energy storage systems for local energy communities

To integrate ESSs, as a support measure and enhance the deployment of LECs, as
discussed in Section 1.1, it is essential to identify the appropriate type, that meets
specific criteria:

• Suitable Power Range: Given that LECs are typically designed for residential
end-users, the selected ESS should fall within the power scale of 100-1000
kW to effectively cater to the aggregated power demand.

• Modularity: The ESS should be modular in design, allowing it to be deployed
at a smaller scale if necessary. In extreme cases, it should even be deployable
on a per-end-user basis, providing flexibility and scalability.

• High Energy and Power Density: An ESS with high energy and power density
is preferable, as it maximises the use of available space within the LEC. This
is particularly important considering the overarching goal of energy transition
and increased penetration of renewable energies.

• Stationary Application: The chosen ESS should be optimised for stationary
applications, aligning with the typical requirements of LECs for consistent and
reliable energy supply.

• Operational Time frame: The ESS should be capable of operating efficiently
within daily cycles, typically spanning a few hours. This aligns with the recurrent
patterns of energy consumption and solar production within the LEC.
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While there are several ESS that could potentially meet these requirements, two
technologies have gathered significant research attention due to their capacity to
fulfil the specified criteria. These technologies are Lithium-ion batteries and hydro-
gen energy storage. Lithium-ion batteries stand out as they fulfil all the outlined
specifications, with a high round-trip efficiency. They not only offer the potential
to enhance the electrification of end-users within the specified power range, but
they also possess the necessary modularity, high energy, and power density, and
are well-suited for stationary applications with an operational time frame matching
the recurrent behaviour of energy consumption and solar PV production in LECs.
On the other hand, hydrogen energy storage is an appealing solution for coupling
different energy carriers, such as electric and heat energy, effectively substituting
conventional natural gas-fed systems. This technology has demonstrated promise in
enhancing the energy transition within LECs. Given the suitability and importance
of both lithium-ion batteries and hydrogen energy storage, these two technologies
have been selected as the focus of this thesis study.

Figure 1.5.: Energy storage technologies comparison: power rating vs. operational
time.
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Figure 1.6.: Energy storage technologies comparison: energy density and power
density.

1.3. Energy planning & system modelling: tools to boost
energy community deployment

Models play a vital role in the strategic planning and day-to-day operation of energy
systems. They provide the capability to forecast, assess, and enhance energy frame-
works, an achievement that would be challenging without their aid. Notably, research
in local-scale energy planning has captured substantial interest over the past years,
with the goal of addressing local-scale energy policies oriented to environmental
goals. When comes to LEC energy planning, the primary constraint of the research
is to have a comprehensive overview of the interactions and synergies among dif-
ferent types of Distributed Energy Resources (DERs), energy vectors, and energy
distribution networks. Furthermore, a vast amount of tools have been developed over
the years. Moreover, Chang et al. [42] reviewed 54 of them, dedicated to energy
transition planning.

The multitude of energy modelling tools available is derived from their inherent
flexibility, allowing them to be tailored to specific application cases. In theory, an
energy modelling tool can incorporate an array of characteristics without bounds.
However, such customisation comes with a trade-off of escalating computational
demands, a challenge that is yet to be fully addressed. Moreover, energy mod-
elling tools can be generally categorised based on several criteria: i) the adopted
methodology, ii) assessment criteria, iii) multi-objective approach, iv) spatial and
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temporal resolution, v) geographical and temporal coverage, vi) analytic approach,
vii) mathematical approach, and viii) technical coverage and multiple energy carriers
integration. Despite these categorisations, energy modelling tools commonly provide
the flexibility to adapt, customise, and switch among different criteria. Furthermore,
the following paragraphs provide a brief description of these criteria, where in Fig.
1.3 the provided categorisation is summarised.

1.3.1. Energy planning: methodology

The methodology of the energy planning tools refers to the scope of the tool since it
can be used for various purposes, generally, it can be used for:

• Optimisation: Is the prevailing application case for energy modelling [43]. In
this approach, the model simulates all possible scenarios within an energy
framework and evaluates them using an objective function. By minimising or
maximising this function, the tool generates an optimised scenario [44]. Such
scenarios provide the most suitable energy system mix based on the specified
objective, and optimisation is commonly used for district-level energy system
modelling.

• Forecasting: Serve for scenario analysis purposes. They facilitate the ex-
ploration of energy systems under specific conditions, enabling predictions of
system behaviours such as future energy demands or costs [45].

• Back-casting: Are specialised for specific scenario analysis tools. Modellers
begin with a predefined future state or a set of system parameters. The objective
of back-casting models is to chart plausible pathways for the system to reach
that desired state. These models are typically employed in national-scale
energy planning, assisting energy policymakers in formulating suitable actions
to achieve their envisioned goals [46].

These diverse methods can be integrated into a single energy planning tool. De-
pending on the modeller’s focus and initial conditions, the appropriate methodology
can be selected to suit the context and objectives of the analysis.

1.3.2. Energy planning: Assessment criteria

Assessment criteria function as performance indicators in models to determine the
optimal solutions, particularly in the context of optimisation methodologies. While
the specific objectives can vary based on the modeller’s preferences, several widely
used criteria include:

• Financial: This is among the most commonly employed criteria, aiming to
identify the most cost-effective scenario. The assessment can be conducted
using various metrics such as the Levelised Cost of Energy (LCOE) or by
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considering the total investment in technologies, encompassing both capital
and operational expenses.

• Environmental: Focusing on reducing the carbon emissions of the energy
framework, this criterion addresses the environmental impact of the considered
scenarios.

• Energy efficiency: This criterion seeks to maximise the ratio of energy deliv-
ered to end-users to the consumed energy resources.

• Grid independence: To minimise the reliance on imported energy from
the national grid, this criterion aims to encourage solutions that enable island
operation.

While these criteria represent common objectives, the modeller’s choice of criteria
can align with the specific goals and context of the analysis.

1.3.3. Energy planning: Multi-objective approach

Given the variety of potential assessment criteria, some applications require the
simultaneous evaluation of multiple objectives. This leads to multiple-objective opti-
misation, yielding the so-called Pareto curve, which comprises the optimal solutions
for the various considered objectives. Each point on the Pareto curve represents
an optimal solution, though different points correspond to varying indicators for dis-
tinct objectives. Ultimately, the selection of the best solution from the Pareto curve
depends on the modeller’s preferences and expertise.

Hence, the process of addressing the Pareto curve solutions is at the core of
multi-objective modelling, and there are several approaches to accomplish this in
the context of energy system modelling:

• Weighted-Sum: This involves converting a set of objectives into a single ob-
jective by assigning weights to each individual objective function. By adjusting
these weights, different solutions along the Pareto curve can be obtained,
allowing for trade-offs between the objectives [47].

• Epsilon-Constraint: Developed by Mavrotas in 2009 [48], this approach
transforms the multi-objective problem into a sequence of single-objective
sub-problems. It treats one objective as the main objective and the others as
constraints. Each sub-problem incorporates a constraint that limits the value
of the constrained objectives, with the trade-off governed by the parameter ϵ
(epsilon).

Both of these methods provide means to navigate the complexity of multi-objective
modelling and it is completely based modeller’s preferences and the goals of the
analysis which approach to adopt.
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1.3.4. Energy planning: Spatial & temporal resolution and coverage

Spatial resolution is essential in scenarios involving interconnected technologies
like district heating, district cooling, as well as distribution and transmission grids.
Depending on the level of detail required, the spatial resolution allows for the mapping
of energy demand at various scales, ranging from individual users and buildings to
entire districts or even entire cities.

Temporal resolution is highly application-dependent. For technologies necessitat-
ing rapid dynamics, such as frequency regulation, a high-resolution time scale of
milliseconds to seconds is imperative. On the other hand, power flow or generation
control might require resolutions in the range of minutes to hours. For medium-term
planning, like technology expansion plans and demand predictions, an hourly resolu-
tion is generally adequate. For broader energy policy analysis, scenario assessments,
and production cost modelling, an annual resolution might suffice.

Spatial coverage means the geographical extent covered by the model. It can
span from a local level (single consumer) to continental, intercontinental, or regional
scales [49]. Energy modelling tools can operate on various time frames, ranging
from a single day or year to multiple decades or the lifespan of technologies. For
district-level modelling, a time frame of at least one year is often required to capture
seasonal variations and annual patterns [46].

1.3.5. Energy planning: Analytic approach

Depending on the perspective and emphasis of the modelling, the analytical approach
can be categorised as follows:

• Bottom-up: This method starts with subsystems, which are then intercon-
nected to create an overarching system. It offers a detailed insight into techno-
logical aspects but may struggle to accurately estimate macro-economic factors.
This approach is often used for identifying suitable technologies for specific
applications and is sometimes referred to as techno-economic modelling [50].

• Top-down: Beginning with a broad view of the entire system, this approach
breaks down into subsystems. It allows for the inclusion of the entire economy
but may lack technological specifics. It frequently relies on historical data to
forecast future system behaviours.

• Hybrid: Combining elements of both the bottom-up and top-down methods, the
hybrid approach brings more complexity to the model. Despite its intricacies,
more energy planning tools are adopting this approach [51].

For the modelling of local energy communities, which is a district-level challenge,
high technical detail is essential. Consequently, district modelling tools typically opt
for a bottom-up approach to ensure an accurate representation of the technological
aspects involved.
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1.3.6. Energy Planning: Mathematical approach

Various energy models employ diverse mathematical and computational approaches
to achieve their objectives. In Fig. 1.7, the distinctions among traditional mathematical
methods are depicted. Other methods can also be employed:

• Linear Programming: This approach describes the system’s behaviour using
linear mathematical functions, to be merged finally into an objective function.
While it is one of the oldest and easiest methods, its application is limited due
to the inherent non-linearity of real-world systems [52].

• Dynamic Programming: To handle non-linear relationships, dynamic pro-
gramming divides the overarching problem into smaller sub-problems that can
be solved using linear relations. Alternatively, piece-wise linearisation functions
can be used.

• Mixed Integer Linear Programming (MILP): Combining elements from the
previous approaches, MILP introduces integer values for specific decisions.
This is beneficial for binary decisions like turning technologies on/off or speci-
fying the number of certain technologies [49].

• Stochastic Programming: An extension of linear and dynamic programming,
stochastic programming considers the statistical fluctuations of parameters
and their uncertainties. This approach provides not only an estimated solution
but also an understanding of potential solution variations [53].

• Heuristic and Artificial Intelligence (AI) approaches: Heuristic models use
a trial-and-error approach to approximate solutions. While offering detailed
problem analysis and flexibility in considering changing system properties,
these methods require significant programming knowledge and parameter
tuning. AI approaches like Fuzzy logic, agent-based programming, Particle
Swarm Optimisation, genetic algorithms, and neural networks are gaining
attention but are still relatively rare in energy modelling.

For district-level modelling, Mixed Integer Linear Programming is commonly utilised
due to its balanced complexity and level of detail. Dynamic programming approaches
are used less frequently. The use of AI techniques is still limited but is gaining traction,
while stochastic programming is applied on an occasional basis.

1.3.7. Energy planning: Technical coverage

Originally, energy modelling tools were predominantly employed for power system
analysis, focusing solely on electricity as the energy carrier and all associated electric
energy systems [54]. However, to effectively utilise energy resources and meet
evolving customer needs, these limitations need to be addressed. Consequently,
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Figure 1.7.: Illustration of different mathematical approaches: the intersection point
represents the solution of the model.

modern energy modelling tools are increasingly designed to accommodate multiple
energy carriers. This expansion typically includes electricity, heat and cooling energy,
water, and natural gas energy carriers. Moreover, in recent years, the integration of
hydrogen as an energy vector for sector coupling has also gained prominence in
these tools.

For the concept of the local energy community, the chosen tool must consider
multiple energy carriers, as the cross-sector coupling approach forms one of its
foundational pillars.

1.3.8. Energy system modelling applied to Local Energy Communities

As discussed in this section, the world of energy system modelling is expansive
and highly customisable. Consequently, pinpointing the ideal tool for each specific
application is a challenging endeavour. In the context of this thesis, which centres
on district-level, multi-energy carrier local energy communities and includes assess-
ments of energy storage integration and their ramifications, certain features become
essential criteria for selecting an appropriate tool. These features encompass:

• Methodology: Primarily optimisation-oriented, aiming to determine the optimal
energy mix, including extensive energy storage integration.

• Assessment criteria: Diverse, contingent upon the specific application’s
objectives. Given the local energy communities’ role in decarbonisation, multi-
objective (financial and environmental) modelling is essential.

• Spatial resolution and coverage: Ideally, a spatial resolution covering each
building within the energy community would be the best case. However, ob-
taining the requisite energy demand data for such detailed spatial granularity
is often challenging.

• Time resolution and horizon: Ranging from minutes to hours, covering at
least a year to provide the granularity needed for identifying optimal technology
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configurations.

• Analytic approach: Bottom-up, focusing on technological details, which is a
central theme of this thesis and vital for comprehensive impact assessments.

• Mathematical approach: Mixed Integer Linear Programming is preferable,
striking the right balance between required detail and programming complexity.

• Technical coverage: Encompassing the potential expansion for multiple en-
ergy carriers, given the multi-energy carrier nature of local energy communities.
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1.4. Research question

Having laid the foundational groundwork for this thesis by addressing the general
background (subsection 1.1), continuing with the technological perspective (sub-
section 1.2), and providing an overview of the system level (subsection 1.3), the
research question that this thesis wants to address is the following:

"Within the context of energy storage integration, how to bridge both
technical and system perspectives of the energy system modelling,
where the subsystem’s critical properties are included at the system
level, as well as systematic limitations?"

Moreover, it can be divided into the following more detailed research sub-questions:

1. How to capture the technological details of the Power-to-Hydrogen pro-
cess?

Since hydrogen production is not yet a mature technology, its production has still
many technological uncertainties, such as dynamic operations, inefficiencies
and most influenced operational parameters.

2. How to model the integration of Power-to-Hydrogen and all its related
auxiliaries?

Compared to the lithium-ion battery, which is a stand-alone technology, hydro-
gen production requires many more auxiliary technological components, such
as heat exchangers, pumps, compressors etc. To effectively consider all these
components their interconnection has to be effectively modelled.

3. How to deal with fluctuation in power supply for Power-to-Hydrogen?

To produce green hydrogen, the intermittency of energy production from re-
newable energies must be considered. Furthermore, it has a significant impact
on the operational state of the hydrogen production plant.

4. How to capture the degradation phenomena of Lithium-ion batteries?

Compared to hydrogen, the Li-ion battery, thanks to its wide application over
the last decades, is technologically mature. However, its efficient energy
management, within the context of stationary application, where it is integrated
with other energy systems, its degradation phenomena is not fully explored.

5. Which is the best solution for long-term storage?

Although for short-term energy storage, the Li-ion battery is the absolute winner,
thanks to its excellent round-trip efficiency, things can differ for long-term storage
applications, especially due to the self-discharge phenomena of batteries.
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6. How to effectively include these technologies into a system modelling
and assess their impact?

Their integration into the LEC context, moreover their integration impacts,
among them and also other technologies are investigated and discussed.

7. How to include the dynamic variation and investment stages of parame-
ters in medium-term energy planning?

The common approach of energy planning is to consider a typical year and
based on it, estimate future trends. However this approach is not suitable due
to the ever-changing energy policy situation, moreover, different investment
stages, i.e. change of the already existent technologies during the planning
horizon, due to the change of parameters, such as cost reduction, have to be
assessed.

All these compelling questions are rigorously examined and answered throughout
this thesis, spotlighting the insights discovered and their profound implications for
future advancements.

1.5. Outline of the thesis

The thesis is structured into three main parts. The initial two delve into the technolog-
ical details of the ESSs under examination. Following this, the thesis transitions into
the third part, which encompasses the system-level analysis. The subsequent part
of the thesis encompasses two distinct case studies that establish an interconnection
between the technology and system-level analyses, with the primary objective of
exploring the integration of ESS. Finally, Chapter 6, encapsulates the Conclusions
and Recommendations, offering a comprehensive overview of the the thesis.

Part I. Technological approach: Hydrogen and Lithium-ion battery
modelling

In this part, the technical modelling of the ESS is discussed, namely power-to-
hydrogen and lithium-ion battery degradation models are deeply investigated.

Part II. System approach: energy planning

Following a system approach, research gaps about searching for optimal alternatives,
and multiple investment stages are examined in this part.

Part III. Energy storage details into systems approach: case studies

This part presents two distinct case studies, that effectively integrate technological
aspects into a system-level approach.
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Conclusions, Recommendations and future development

This chapter encapsulates the thesis’s findings, offers recommendations regarding
energy system analysis, and provides insights into prospects and developments.

33





Part I.

Technological approach:
Hydrogen and Lithium-ion battery

modelling

35





Chapter 2.

Hydrogen as energy storage

I believe that water will one day be employed as fuel,
that hydrogen and oxygen which constitute it, used
singly or together, will furnish an inexhaustible source
of heat and light, of an intensity of which coal is not
capable.

Jules Verne

As briefly explained in the Introduction section, hydrogen is one of the key players
in tackling climate change. Since it is an energy carrier that can be adopted in
several sectors, like hard-to-abate industries such as the chemical and petrochemical
sectors, the steel-making industries, and the transportation sector to reduce their
carbon footprint [55]; Indeed, policymakers put substantial effort, through a dedicated
framework to incentive its adoption and research activities. Thus, almost over than
half of EU countries have developed their national hydrogen development plan [56].

Moreover, hydrogen, despite of being a versatile energy carrier, its supply chain
is far from being mature. Indeed, different perspectives, including its production,
storage, and consumption are subject to be further explored before being fully
commercially available.

With the focus on integrating hydrogen into the local energy communities, this
chapter has the goal to illustrate the research activities developed, focusing primarily
on the production and storage aspects, the reason for excluding the consumption
side are twofolds:

1. The fuel cell technology, which is the conversion system that consumes hydro-
gen to produce the electricity and heat, is similar to electrolyser ones. Moreover,
the electrochemistry process and physical equations are the same but with the
process reversed.

2. Hydrogen’s high adaptability allows it to be consumed from many potential end-
users, makes it difficult to handle the technological overview of all applications
of the potential users.

Therefore, hydrogen consumption has not been investigated in detail.
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The chapter is structured as follows; first, the introduction about hydrogen limi-
tations and applications in the local energy community context is discussed, to be
followed by the technology detailed models, developed for alkaline water electrolysis
and the metal hydrides storage1. Of course, many technologies can be adopted,
for both hydrogen production and storage, the selection of these specific ones is
as result of the low-investment cost of alkaline water electrolysis, which allows its
penetration faster, compared with other technologies, and metal hydrides storage,
as the innovative solution of storage, since is stored in the solid matter.

2.1. Hydrogen limitations and opportunities

Hydrogen, as an energy carrier, is still subject to numerous limitations from various
perspectives. From a regulatory standpoint, as of October 2023, no well-defined
national or international standards have been established. These standards should
address aspects like the adoption of green hydrogen production, standardisation of
purity levels, certification of hydrogen sources (colour-coded hydrogen categories),
and the provision of incentives. Additionally, safety concerns are associated with
hydrogen due to its highly flammable nature and lack of odour, making leaks more
difficult to detect. Furthermore, its flame is nearly invisible, adding another layer of
complexity to its safe handling.

In this thesis, two specific technological aspects of hydrogen have been thoroughly
examined. These include its low production efficiency and associated costs, as well
as challenges related to its storage. Hydrogen has an exceptionally low density of
0.0899 kg/Nm3, which is approximately ten times lower than that of natural gas [59].
This low density translates to a higher volume requirement under the same conditions,
in comparison to other gases. Despite possessing a commendable gravimetric
heating value of 141.80 MJ/kg, its volumetric heating value is approximately 12.7
MJ/Nm3, which is almost four times lower than that of natural gas.

However, hydrogen presents numerous advantages, particularly from the perspec-
tive of energy communities, which are as follows:

• High energy density and stability for long-term storage: Hydrogen offers the
advantage of high energy density and stability, making it an ideal solution for
long-term energy storage in energy communities. This capability contributes to
the potential achievement of energy independence for these communities [60].
Its suitability is particularly notable in the context of renewable energy sources
with their inherent seasonality, addressing the differing electricity production
and consumption patterns, especially during peak periods such as summer
and winter.

• Residential gas reduction: Hydrogen, when mixed with natural gas, provides
1Some of the work described in this chapter has been previously published in [57], [58]

38



2.2. Power-to-hydrogen: water electrolysis

a viable avenue for decarbonising residential gas consumption. Demonstra-
tors and pilot projects have showcased the feasibility of incorporating 10%vol
hydrogen content into the existing infrastructure without requiring significant
alterations [61, 62].

• Power-to-Heat coupling: Through the utilisation of high-temperature fuel cells,
hydrogen enables simultaneous electricity and heat generation. This capability
holds the potential to effectively meet both the electricity and heat demands
within energy communities.

• Energy storage for enhanced flexibility: Hydrogen’s can serves as an energy
storage technology, which provides the necessary energy flexibility. Beyond
a certain power threshold, energy communities can actively participate in the
flexibility market, thereby gaining additional economic advantages.

Therefore, despite numerous bottlenecks, hydrogen’s distinctive characteristics make
it a versatile and promising option for energy communities seeking sustainable and
efficient energy solutions.

2.2. Power-to-hydrogen: water electrolysis

Hydrogen can be produced in different ways, and based on the technology process
used, it can be categorised using colour codes. Despite its various colours, the main
colour codes of hydrogen are:

• Grey hydrogen: which is the hydrogen produced using the Steam Methane
Reforming or auto thermal reforming process, which requires natural gas as
feedstock. It is the most common and cheapest form of hydrogen production
but is also the most carbon-intensive.

• Blue hydrogen: It is based on the grey hydrogen process, in addition to carbon
capture technologies, yet has still a low-carbon form of hydrogen production.

• Green hydrogen: It is produced using renewable energy through water elec-
trolysis, therefore, it is considered the most sustainable and environmentally
friendly form of hydrogen production.

As the solution to the energy transition, the future perspective should be based on
the adoption of the green hydrogen pathway, using water electrolyser technologies.

Indeed, a variety of electrochemical devices designed for hydrogen production
through water electrolysis (electrolysers) are available, each at different levels of
technological maturity, each with its own distinct advantages and disadvantages.
As of the current state, there are four primary electrolyser technologies: alkaline
electrolyser, Proton Exchange Membrane (PEM) electrolyser, solid oxide electrolyser
(SOEC), and anion exchange membrane (AEM) electrolyser. Among these, only
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the first two technologies are considered commercially available on a large scale,
while the latter two are still in the demonstration phase and are not yet suitable for
large-scale commercial projects (>MW) [63].

The alkaline electrolyser technology has been in use for over a century, making
it the most mature electrolysis technology available. It boasts the longest proven
lifetime among electrolysis technologies. This technology employs a liquid electrolyte,
with the electrodes immersed in a solution containing either potassium hydroxide
(KOH) or sodium hydroxide (NaOH). Additionally, a diaphragm is used to separate
the two electrodes, allowing only hydroxide ions (OH-) to move from the cathode
to the anode. This design facilitates the electrochemical reaction responsible for
hydrogen production. Alkaline electrolysers offer numerous advantages for various
applications, with their main strengths encompassing:

1. Low investment cost, This is attributed to their technology readiness and the
use of cost-effective catalysts [64].

2. Extended lifetime, Alkaline electrolysers can operate for more than 20-25 years.
In contrast, PEM electrolysers currently offer an operational life of approximately
10 years.

Thanks to these characteristics, alkaline technologies are highly appealing for large-
scale hydrogen production applications. However, they also come with several
technical limitations:

1. Low current density: The low current density (0.7-0.7 A/cm2) leads to lower
efficiency, as current density is directly tied to hydrogen production through the
Faraday equation [63].

2. Partial load safety threshold: Alkaline electrolysers have a lower safety thresh-
old for partial load operation (15-20 %). Operating below this threshold in-
creases the hydrogen content on the anode side, potentially reaching flammable
levels. International standards set the safety threshold for hydrogen to oxygen
side at 2%, rendering partial load operation below 15-20% unfeasible [65].

3. Low working temperature: The use of a liquid electrolyte imposes a limitation
on the working temperature, generally not exceeding 80°C. Although higher
temperatures reduce electrical losses, using thermal energy recirculation (pos-
sible only in SOECs), this restriction hinders the electrolyser’s operating range
[66].

4. Low working pressure: Alkaline electrolysers generally operate at low pressure
to minimise internal losses. This contrasts with the higher pressure operation,
which mitigates the compression of gaseous hydrogen at the electrolyser outlet.
Currently, alkaline electrolysers can achieve a maximum pressure of 30 bars
[67].
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2.2. Power-to-hydrogen: water electrolysis

Other electrolyser technologies offer solutions to overcome these limitations but often
require a higher investment in catalyst materials.

This thesis exclusively delves into the technological specifics of alkaline electrolysis,
due to its strong potential for integration into energy communities in the near future,
driven by its aforementioned strengths.

For the sake of clarity, other technology concepts are presented in Fig. 2.1, and a
comparative table highlighting the main differences between these technologies is
provided in Tbl. 2.1.

Figure 2.1.: Chemical reactions of four types of available electrolyser technologies.
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Table 2.1.: Key performance indicators for four electrolyser technologies [67, 68, 69,
70].

Alkaline PEM AEM SOEC
Cell pressure [bars] <30 <70 <35 <10
Cell temperature [°C] 60-80 50-80 60-80 800-1000
System efficiency [kWh/kgH2 ] 50-78 50-83 57-79 <45-55
Lifetime [khs] 60 50 <5 <20
Partial load range [%] 15/20-100 0-100 NA 0-100
Degradation range [µV/h] <3 <14 NA NA
Investment cost [$/kWel] 500-1000 700-1400 NA NA

2.3. Alkaline water electrolysis modelling

The alkaline water electrolysis reaction is achieved in an electrolysis cell, illustrated
in Fig. 2.1. Moreover in order to achieve hydrogen production at a large scale, cells
are assembled into a stack by the mean of bipolar plates, i.e. the cells are electrically
connected in series. Understanding the dynamics of water electrolysis requires a
combination of experimental investigation and modelling. Although the experimental
approach provides higher accuracy, it comes with certain limitations:

1. High operational cost: Setting up and operating the experimental plant incurs
significant expenses.

2. Lack of customisability: Not all relevant parameters can be effectively monitored
in many cases.

3. Time-consuming: Experiment setup time can be considerable.

To circumvent these limitations, numerical modelling of alkaline electrolysis plays
a pivotal role. While most models require a limited amount of experimental data
for characterisation and validation, they effectively overcome the aforementioned
constraints. Additionally, numerical models provide insights into hydrogen production,
energy conversion efficiency, sizing, thermal energy management, and optimisa-
tion. However, the numerical modelling of alkaline water electrolysis is intricate,
encompassing multiple physical phenomena:

1. Electrochemical: This forms the core of any electrolysis modelling effort, es-
tablishing the relationship between input electrical power and hydrogen output.
Given that hydrogen flow is proportional to cell current [71], the electrochemical
physics can be represented using an I-V/polarisation curve.

2. Thermal: Temperature significantly impacts overall electrolysis performance.
Therefore, proper assessment of temperature influence, coupled directly with
the electrochemical model, is crucial.
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Over the past few decades, numerous researchers have explored the domain of
numerical modelling, leading to the development of around 50 models, as docu-
mented in a review by Olivier et al. [72]. These models collectively contribute to a
comprehensive understanding of alkaline water electrolysis.

These models can be categorised based on their adopted approach to tackling
physical phenomena, which is summarised in Fig. 2.2. As for the electrochemical
behaviours, the models can be classified as follows:

• Empirical: Meaning that the model is purely driven by experiments, and the
parameters included in the model are purely data-driven, in order to better fit the
experimental data, without providing any physical meaning to the parameters.
An example of it, is the model developed by Ulleberg in 2003 [73], which adopts
six parameters to describe the polarisation curve of the electrolysis process,
these parameters have to be tuned based on the pre-acquired experimental
data. These models are the most adopted ones as they are easy to implement,
but their performance is strongly dependent on the quality of experimental
data.

• Pure physical: When all physics are solved within a multiphysics software such
as Ansys® or Comsol®; Hammoudi et al. [74] has adopted this solution by
coupling MATLAB-Simulink® with SimPowerSystems®, validating it using a
Hydrogen Research Institute electrolyser [75]. These models allow considering
many aspects of the electrolysis process, however with an expense of deeper
knowledge of electrolysis and more time to set it up properly.

• Analytic or semi-empirical: These are based on the physical law equations,
therefore all parameters have a physical meaning, even though some of them
are computed through empirical correlations, often due to the lack of techni-
cal details. These models represent a good trade-off of the previous ones,
preserving the physical meaning while having an easy-to-implement model.

Whereas for thermal physics, the following approach has been adopted in literature:

• Lumped parameter models: where the stack is considered as unique thermal
capacitance and its temperature to be homogenous, due to its simplicity, it is
the most common approach adopted by the researchers [72, 73, 76, 77].

• Distributed parameters models: These models are based on the resolution of
Differential Equations of discretized thermal balances and can be either solving
Partial Differential Equations (PDEs) or Ordinary Differential Equations (ODEs).
They are crucial to understanding the thermal behaviour of an electrolysis cell
and studying conception modifications in order to optimise its operation and
control [58].

Each modelling approach is viable and already validated by other researchers,
therefore, the decision to pursue one modelling pathway rather than another depends
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on the application and the objective of the case study, which has to be properly
considered.

Figure 2.2.: Classification of alkaline electrolysis models

2.4. Alkaline electrolyser: modelling and temperature
control effects

The temperature highly influences the operating conditions of the alkaline electrol-
ysers. To maintain it within the opportune range, several techniques can be used
to control it. One approach is to use the water flow rate within the liquid electrolyte
to maintain the desired temperature, such that the heat generated by the cell is
efficiently dissipated or absorbed. When considering the techno-economic perfor-
mance of an alkaline electrolysis system, it is crucial to carefully analyse the impact
of temperature on the overall efficiency and cost of the system. For instance, Jang et
al. [78] have built a model assessing electrolyte flow rate, needed as a temperature
control measure, using a polynomial correlation, proposed by the same authors,
based on temperature and current density, analysing effects at various temperature
differences, between inlet and outlet, of 1-3-5-10°C.

The aim of this section is to illustrate a research output carried out, that effectively
answered the research question 1 and 2 (Section 1.4.)2:

2Work carried out during the visiting period in DTU energy, under supervision of Prof. Henrik Lund
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• How to capture the technological details of the Power-to-Hydrogen pro-
cess?

• How to model the integration of Power-to-Hydrogen and all its related
auxiliaries?

Moreover, it has the objective to cover such gap by understanding the temper-
ature dependencies of the alkaline electrolyser system, solving the temperature
evolution along the cells, and hence within the electrolyser, based on a validated
zero-dimensional/lumped model, extended to a one-dimensional model solving for
mass and energy conservation, obtaining the electrolyte flow rate information by the
physical meaning of the water electrolysis process, allowing to unlock the assessment
of system performance at any temperature difference.

The main contributions of this research are the following:

• Propose and validate, with literature data, a novel semi-empirical alkaline water
electrolysis model, capable of being applied to different types of electrolyser,
with only four parameters, while the other models adopt six or more parameters
[73, 79, 80], thus allowing a much easier parameter fitting process. Moreover,
the required experiments is also minimised.

• Formulation of a one-dimensional water electrolysis model, based on the
physical process, solving ordinary differential equations. Which can assess
the evolution of all operating parameters, such as temperature and pressure,
illustrating its comparison with other dimensions models.

• Techno-economic assessment of the temperature control, by the sense of
heating mass (electrolyte flow rate) variation, at a continuous range of gap
temperatures.

The rest of this section is structured as follows, Subsection 2.4.1 describes the
methodology adopted in this work, highlighting the novel semi-empirical model,
validated and extended to a one-dimensional model, while Subsection 2.4.3 describes
the results obtained and finally the conclusion of the work is reported in Subsection
2.4.4.

2.4.1. Semi-empirical model

As previously mentioned, the electrochemical phenomena of alkaline electrolysis are
described through the polarisation curve, which in its general form, can be described
as follows:

Vcell = Vrev + Vact + Vohm + Vbubble (2.1)

Frandsen (2022)
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Where the Vcell is the voltage of a single electrolysis cell, Vrev is the reversible voltage,
meaning the minimum electrical potential to have the electrolysis process going, Vohm

the ohmic overvoltage comprising both electrolyte and electrodes overpotential, Vact

the activation overpotential of both electrodes and finally Vbubble is the overpotential,
caused by bubble formation from the liquid electrolyte, which starts to be significant
when approaching a current density limit, as stated in the research of Hammoudi
et al. [74], such limit, based on the reseaches carried out by Vogt et al. [81], such
limitation is set as 300 kA/m2.

Each term of the Eq. 2.1 can be modelled in different ways, based on the approach
and researchers’ decisions, the ones adopted in this work are described in the
following paragraphs, using the analytical model approach, using four parameters.
The review carried out by Olivier et al. [72] has explained each possible approach
present in the literature in detail.

Figure 2.3.: Electrolysis polarisation curve, distinguished into its components. The
bubble formation overpotential is not presented as it is for high current
densities, where alkaline electrolysers commonly do not operate.

Almost all commercial alkaline electrolysers adopt bipolar electrical configurations,
meaning the cells are electrically connected in series since it allows to have higher
utilisation of the cell area, as reported in [79], therefore the whole electrolyser has
the same current of the cell level, while the overall voltage of the stack is the sum of
all the cell’s voltages. Therefore, the whole electrolyser stack current and voltage
can be easily calculated using the following equations:

Istack = Icell (2.2a)
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Vstack = Vcell ·Ncell (2.2b)

Furthermore, the polarisation curve provides insights into hydrogen production as
well as conversion efficiency due to the following reasons:

• Direct relationship between current and hydrogen production: The amount of
hydrogen produced is directly related to the current of the electrolysis cell, in
accordance with Faraday’s law:

ṅH2 =
j

2F
·Acell (2.3)

Here, the molar flow rate of produced hydrogen (ṅH2) is determined by the
ratio of the cell current (a product of the current density and the cell area) and
the product of the stoichiometric ratio (which is 2 for hydrogen) of the reaction
and the Faraday constant (96500 [C/mol]).

• Assessment of power losses and thermal energy generation: The power losses
that occur due to the voltage gap between the cell voltage and the thermoneutral
value are converted into thermal energy, causing the electrolysis stack to heat
up. The generated thermal power (Q̇gen) can be expressed as follows:

Q̇gen = (Vcell − Vth) · j ·Acell (2.4)

Here, the thermal power is the product of the electrical power due to the
overvoltage between the cell voltage and the thermoneutral value (Vth). The
thermoneutral value represents the voltage that can be entirely absorbed by
the cell without leading to excessive heat. It can be calculated as:

Vth =
∆H

2F
(2.5)

The variation of enthalpy (∆H) is specific to the chemical process. For elec-
trolysis, it is associated with the following reaction:

H2O → H2 +
1

2
O2 (2.6a)

∆H = HH2 +
1

2
HO2 −HH2O (2.6b)

All enthalpy values are temperature-dependent and can be obtained using
empirical equations from databases such as the NIST Chemistry WebBook
[82].
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Reversible voltage

The reversible voltage can be determined using the following equations, based on
the work conducted by Gambou et al. [64]:

Vrev = Vrev,T +
RT

2F
ln

⎛⎝
(︂
P − P

3/2
v,KOH

)︂
αH2O

⎞⎠ (2.7a)

Vrev,T = 1.5174− 1.5421 · 10−3T + 9.523 · 10−5T · ln(T ) + 9.84 · 10−8 · T 2 (2.7b)

Pv,KOH = exp (2.302 · a+ b · ln(Pv,H2O)) (2.7c)

a = −0.0151 ·m− 1.6788 · 10−3 ·m2 + 2.2588 · 10−5 ·m3 (2.7d)

b = 1− 1.2062 · 10−3 ·m+ 5.6024 · 10−4 ·m2 − 7.8228 · 10−6 ·m3 (2.7e)

Pv,H2O = exp

(︃
81.6179− 7699.68

T
− 10.9 · ln(T ) + 9.5891 · 10−3 · T

)︃
(2.7f)

αH2O = exp

(︃
−0.05192 ·m+ 0.003302 ·m2 +

(3.177 ·m− 2.131 ·m2)

T

)︃
(2.7g)

Here, Vrev is calculated using the Nernst equation, which comprises the standard
reversible potential (Vrev,T ) and the pressure influence expressed in [bar] as VP,T . The
remaining equations involve empirical correlations that have already been validated
by other researchers to determine the thermal properties. It’s important to note that
all these empirical correlations are dependent on temperature ([K]) and the molality
of the liquid electrolyte ([mol/kg]), and for this specific case, the KOH solution is
considered as the electrolyte.

Activation overpotential

Activation overpotential is the effect of the water electrolysis process happening
in both electrodes, Such a phenomenon can be expressed with the Butler-Volmer
equation, which for both alkaline electrolysis electrodes (Anode and Cathode) can
be expressed as follows:

i = i0

[︃
COH

COH,ref
exp

(︃
α−F

RT
· Van

)︃
− CO2

CO2,ref
exp

(︃
−α−F

RT

)︃
· Van

]︃
(2.8a)

i = i0

[︃
COH

COH,ref
exp

(︃
α+F

RT
· Vca

)︃
+

CH2

CH2,ref
exp

(︃
+
α+F

RT

)︃
· Vca

]︃
(2.8b)

These equations are not easy to solve, since it is also expressed in an implicit way
(current expressed in function of overpotential), Moreover, it has been observed that
the second term of the Butler-Volmer equation has a smaller influence, therefore it is
common to use the Tafel approximation, which ignores completely the second part.
That is valid as long as the operation current density is higher than the exchange
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current (i0) of the electrode; which for the alkaline water electrolysis, is always
true, due to the limitation on the lower partial load threshold (15-20%). Therefore
the general expression of the activation overpotential, for both electrodes can be
expressed as:

Vact =

(︃
1

α

)︃
RT

2F
(ln(j)− ln(j0)) (2.9)

which derives from the Eq. 2.8, with a further simplification of using current densities
(j) instead of current (i), Furthermore, quite often is not possible to have separate
electrodes’ information, thus, for the sake of the similarity, their activation overpotential
can be grouped together. For the other terms of the Eq. 2.9:

• α is the charge transfer coefficient, which is an experimental-based parameter,
that depends on the electrode material, which is quite often information not
accessible; indeed this is the first parameter of the model. [-]

• j0 is the exchange current density, which is also variable, based on the elec-
trode’s material, expressed as [mA/cm2] or [A/m2].

• j is the current density of the cell, expressed as [mA/cm2] or [A/m2].

• R is the universal gas constant, 8.31 [J/mol K]

• T is the cell working temperature, expressed in [K]

where the exchange current densities (j0) can be assessed using the Arrenhius
dependency:

j0 = k · exp
(︃
Ea

RT

)︃
(2.10)

where:

• k is the Arrhenius scale factor, which shares the same unit of the exchange
current densities, [mA/cm2] or [A/m2].

• Ea is the activation energy of the electrodes, expressed in [J/mol].

Despite the simplification using Tafel’s equation, many parameters remain unknown,
therefore the Eq. 2.10 can be adjusted and rewritten as:

ln(j0) = ln

(︃
k · exp

(︃
−Ea

RT

)︃)︃
(2.11a)

ln(j0) =

(︃
−Ea

R

)︃
· 1
T

+ ln(k) =

(︃
−Ea

R

)︃
· 1
T

+B (2.11b)

Where the parameters (−Ea/R) and B are additional parameters of the analytic
model since they can not be assessed without information from experimental tests.
The activation overpotential can be finally expressed as:

Vact =

(︃
1

α

)︃
RT

2F

(︃
ln(j)−

(︃
−Ea

R
· 1
T

)︃
− ln(B)

)︃
(2.12)
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Ohmic overpotential

The ohmic overpotential regards all voltages of the electrolyser cell that can be
estimated using a linear correlation with the current density. Although different
physical phenomena have this behaviour, the most contributing effects come from
the liquid electrolyte and the electrolyser diaphragm/separator. Thus the ohmic
overpotential can be assessed using the following equations:

Vohm = j ·
(︃

δel
1000 · σel

+
δd
σd

)︃
(2.13a)

σel = −2.041M−0.0028M2+0.005332M ·T 2+207.2
M

T
+0.001043M3−3·10−7M2T 2

(2.13b)
where j is expressed in [mA/cm2], the δel and δd are effective reaction distance and

diaphragm thickness, both expressed in [cm].And σel and σd are ionic conductivities
of the electrolyte and the diaphragm ([S/cm]).

As regards the electrolyte ionic conductivity, Gilliam et al. [83] have built the
empirical equation, through the experimental tests, that depends on the molarity
([mol/l]) of the solution, which is KOH based, and the operating temperature, as
reported in Eq. 2.13b. Yet, the reaction distance δel is not possible to assess it.
Regarding the diaphragm ionic conductivity, Vermeiren et al. [84] have performed
tests on a 0.5 mm thick Zirfon-based diaphragm with KOH solution with 30% weight
concentration, from their results, is possible to have an empirical correlation for the
σd at the temperature range of 20-80°C, however, the diaphragm material can vary,
therefore the empirical equation developed by Vermeiren is not suitable to all alkaline
electrolysers. Hence, in the proposed model, for the sake of the simplicity and their
similar behaviour, to the overall cell voltage, the term δel, considered as an empirical
parameter, includes both electrolyte and diaphragm ohmic contribution. Thus:

Vohm = j

(︃
δel

1000 · σel

)︃
(2.14)

Bubble overvopotential

The bubble overpotential is caused by the formation of bubbles from the liquid
electrolyte, and such bubbles cause two main effects:

1. Modification of the activation area of the cell, as the bubbles would cover a
portion of it.

2. Change of the electrolyte ionic conductivity.

From the modelling perspective, it is still a challenging task to capture its phenomena
properly, as it considers two different phases of the electrolyte (liquid+gas), despite
many researchers’ ongoing work [74, 75, 81]. Nevertheless, since it contributes to
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the variation of the activation overpotential (effect 1) and ohmic overpotential (effect
2), where both of them are assessed through empirical parameters, meaning that
they are tuned based on the electrolyser operating data, the bubble overpotential is
implicitly included, thanks to the empirical approach.

Overall polarisation curve

To sum everything up, the overall four parameters semi-empirical model developed
is the following:

Vcell = Vrev,T +
RT

2F
ln

⎛⎝
(︂
P − P

3/2
v,KOH

)︂
αH2O

⎞⎠
+

(︃
1

α

)︃
RT

2F

(︃
ln(j)−

(︃
−Ea

R
· 1
T

)︃
− ln(B)

)︃
+ j

(︃
δel

1000 · σel

)︃
(2.15)

Where the four parameters, that have to be assessed are the following:

• α: Parameter for the charge transfer assessment, [-]

•
(︁
−Ea

R

)︁
: Parameter that comprises the ratio of the activation energy and the

gas constant, [K]

• ln(B): Parameter that captures the exchange current density influence, indeed
has the units based on the current density, [ln(mA/cm2)]

• δel, parameter that takes both electrolyte and diaphragm ohmic overpotentials,
[cm]

Moreover, the whole polarisation curve depends on only three operating parameters,
which are:

1. P , operating pressure of the electrolysis cell, [bar]

2. wt, weight concentration of the KOH-based electrolyte, [0-1]

3. T , electrolysis cell Temperature, [K]

Furthermore, both molarity (m) and molality (M ) can be assessed with the wt infor-
mation:

ρel = f(wt, T ), [kg/m3] (2.16a)

m = wt ·MWKOH · 1000, [mol/kg] (2.16b)

M = wt · ρel ·MWKOH , [mol/l] (2.16c)
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With the electrolyte density as an empirical correlation of weight concentration
and the temperature, reported in [83], and MWKOH as the molecular weight of the
potassium hydroxide, equal to 56.1 g/mol.

Thermal modelling

The thermal behaviour of electrolysis directly influences the efficiency of hydrogen
production. Hence, an exhaustive thermal model is essential to accurately capture
the electrolysis thermal process. While lumped models treat the entire cell as a
single unit and cannot adequately capture temperature evolution (Fig. 2.4), a more
advanced approach is needed. In this study, the Ordinary Differential Equations
approach has been employed. This approach is based on a lumped electrochemical
model for each element, coupled with mass and energy balances along the flow
direction. This refined model enables the assessment of variations in temperature,
pressure, and KOH concentration along the flow direction (x axis). Furthermore, this

Figure 2.4.: Thermal model differences: Lumped model vs ODE.

model is expanded to the stack level, built upon the electrical arrangement of the
cells, as depicted in Fig. 2.7.

To maintain a relatively simple model, so it can be applied at the system level,
a reasonable assumption is made. Indeed, it is assumed that all thermo-electrical
properties vary exclusively along the electrolyte flow direction (x axis), with their
variations along other axes neglected. Consequently, the mass and energy balance
differential equations are solved along the electrolyte flow axis, element by element:

dṅH2

dx
=

ji
2F

· wcell (2.17a)

dT

dx
=

(Vcell − Vth) · ji
ṅe · cpe + ṅH2 · cpH2 + ṅO2 · cpO2

· wcell (2.17b)

i = 1, 2, 3, ...nelements; wcell = constant (2.17c)

In each element (i), the molar flow rate and thermal balance are determined, con-
sidering a rectangular cell shape with a constant width (wcell). As depicted, both
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equations rely on inputs from the electrochemical calculations. Moreover, the tem-
perature outcomes from these equations are subsequently used in the next element,
as boundary conditions, for electrochemical assessments, as demonstrated earlier
in Fig. 2.2.

When considering standard chemical species, their thermodynamic properties,
including specific heat (cp), can be derived using empirical correlations available in
databases such as NASA [85]. However, for the KOH-based electrolyte, its properties
vary considerably with weight fraction, as demonstrated in experiments reported
by Bideau et al. [86]. For this study, the Zaytsev empirical relationship has been
employed to account for these variations [87].

cpel,mass = 4.236 · 103 + 1.075 · ln
(︃
TCelsius

100

)︃
+
(︁
−4.831 · 103 + 8 · wt+ 8 · TCelsius

)︁
· wt (2.18)

The temperature is expressed in Celsius, and the specific heat obtained is expressed
in [J/kg K]. As all the balances are molar-based, it’s necessary to convert this specific
heat into molar-based specific heat [J/mol K]. This conversion can be achieved using
the following equations:

Cpel = cpe,mass ·
MWe

1000
(2.19a)

wti =
ni ·MWi

mtot
;mtot = ntot ·MWtot;ntot =

∑︂
ni (2.19b)

∑︂ wti
MWi

=
1

MWtot · ntot
· ni ·MWi

MWi
(2.19c)

MWtot =
1∑︁ wti
MWi

→ MWe =
1

wt
MWKOH + (1−wt)

MWH2O

(2.19d)

The flowchart of the proposed 0D/lumped electrochemical model, along with its
extension to the 1D cell model using the ODE approach for thermal behaviour, and
further into the 1D stack model, is illustrated in Fig. 2.7.

2.4.2. Semi-emprical model validation and comparison

The proposed model is further tested and validated, using the experiments presented
in the literature by different researchers, to represent different types of alkaline
electrolysers with different set-ups of operating conditions. Such operating conditions
are namely i) temperature, ii) KOH concentration, and iii) pressure. Additionally, the
model’s robustness, i.e. its ability to have reasonable accuracy, dealing with the
minimum quantity of the data available, has been also tested.

The procedure of calibration of the model, based on the type of the electrolyser
with its results, is illustrated in Fig. 2.5, which can be divided into 3 phases:

1. Experimental data processing, ensuring at least 6 data points are present,
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ensuring a good accuracy of the model. If more data is available, they can be
also included, however, not all available data should be used, to prevent the
over-fitting problem.

2. The pre-processed data is then inserted into a curve-fitting framework, com-
monly used ones are Matlab and Python, adopting the proposed model, as-
sessing 4 calibrating parameters ( α,

(︁
−Ea

R

)︁
, ln(B), δel).

3. As a consequence of the previous step, the model is now defined, and as such,
polarisation curves at different temperatures can be obtained.

Figure 2.5.: Parameters estimation procedure. Divided into three steps: 1) collection
of experimental data at different temperatures, 2) parameter estimation,
and 3) temperature and pressure influence validation.

The results regarding the validation of different literature-based datasets, in order
to test its robustness, meaning the capability of adopt different electrolysers and
operational conditions. Four different datasets have been used, namely Sakas [88],
Ulleberg [73], Sanchez [80] and De Groot [65].

During the parameter estimation process, the dataset is split into two separate
datasets. Namely train and test datasets, to prove the model’s robustness. Indeed,
the training dataset, i.e. the data used to find parameters, is randomly selected,
with the only constraint that they need to be at least six data points, from at least
two different operating temperatures. The results of the estimation, illustrating the
model’s wide applicability, are reported in Fig. 2.6.

Whereas the temperature dependence is explicitly highlighted, in activation overpo-
tential, other operating conditions influence, namely KOH weight concentration and
pressure are implicitly considered, through the ohmic overpotential and reversible
voltage, respectively.

As shown in Fig. 2.6, the proposed model demonstrates exceptional performance
(with an R2 score exceeding 0.98) despite being applied to significantly different
electrolysers [58]. Moreover, it’s important to note that not all available experimental
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(a) Sakas (b) Ulleberg

(c) Sanchez (d) Ulleberg

Figure 2.6.: Parameter estimation and validation with temperature variation. Where
squared-dotted data are from the training dataset while the circle ones
are from the test dataset.

data were utilised for parameter determination, and the training dataset was randomly
selected. This indicates the robustness of the model.

In an extreme scenario, even with just four data points (two for each of two distinct
temperatures), the model exhibits good performance (with an R2 score > 0.8). With
only six data points, the model achieves an R2 score exceeding 0.90.

Various comparisons of thermal models at different scales have been conducted,
encompassing three distinct domain-scale models. These models were developed
utilising the potentiostatic approach, which involves providing the cell’s voltage as
input data.

• 0D model, or lumped model, only a single point is considered for the whole
cell, defined as follows:

0D : Tin; j = jin = f(Tin, V, wt, P ) (2.20)
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Table 2.2.: Semi-empirical model validation: Despite different operational conditions
(temperatures and pressures), parameters for the different datasets are
similar.

Experimental conditions Calibrated parameters
p T wt δel α −Ea

R ln(B)

[bar] [°C] [-] [cm] [-] [K] [ln( mA
cm2 )]

Sakas 16 59.6-61.15-70 0.25 0.39 0.1253 -6330 13.11
Ulleberg 7 30-40-50-60-70-80 0.30 0.66 0.1726 -5331 9.18
Sanchez 7 55-65-75 0.35 0.5711 0.12 -3592 4.77
Groot 30 50-60-70 0.28 0.2716 0.28 -3906 3.86

• 1/2 D model, it is a trade-off between the lumped and the ODE model, where
inlet and outlet points are considered, however, it is often not possible to know
the outlet conditions, thus, it generally needs an iterative loop; for this case,
the outlet data is taken from 1D model, in order to have the same conditions.

1/2D : Tin, Tout : j = javg =
jin + jout

2
(2.21)

• 1D model is the model using ODE previously mentioned, allows having infor-
mation for discrete points of assessment along the cell:

1D : Ti; i = 1, ..., nelements; j = javg =

∫︁
ji dx

nelements ·∆x
(2.22a)

Area = x · wcell;x = (1...nelements) ·∆x (2.22b)

For the sake of the comparison, a 30X30 cm squared cell is considered, in other
means 0.3m of width and the x axis can reach a maximum of 0.3 m. Moreover in
Fig. 2.8 reported the results of the 1D model of a such cell, working at 1.8V, with an
outlet temperature fixed at 80 °C with different gap temperatures, namely 1-2-10 °C.

Fig. 2.9 illustrates a comparison of models with varying dimensionality. The 1D
model serves as the reference due to its considered accuracy. The current density is
compared at a fixed potential of 1.8 V. This comparison is conducted under various
electrolyte flow rates through the stack for cooling, leading to different temperature
increases across the stack.

The results of the comparison indicate that the 0D model consistently underesti-
mates the current density and, consequently, the hydrogen production rate. Con-
versely, the 1/2D model tends to overestimate both. Furthermore, operating at 80°C
(353 K) with a voltage of 1.8 V and a 5°C temperature difference between inlet and
outlet, the half-dimensional model exhibits a nearly negligible deviation (0.75%).
However, the zero-dimensional model showcases a substantial deviation, signifi-
cantly underrating hydrogen production by approximately 11% when compared to
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Figure 2.7.: Alkaline 1D stack model flowchart. Starting with the single cell 0D model,
extended to the 1D cell model, solving mass and thermal balance, and
finally 1D stack model, based on the electrical configuration among cells.

Figure 2.8.: 1D model at 1-2-10 °C temperature difference. Illustrating namely i)
temperature, ii) hydrogen production, and iii) voltage efficiency along
the cell. Where the outlet temperature is kept constant. Despite having
a higher temperature difference and achieving a higher efficiency, the
produced hydrogen flow is lower.

the benchmark set by the one-dimensional model.

2.4.3. System level temperature control effects

Another key perspective of having such a model is the possibility of seeing its
integration with other technology components and gaining also insights about its
optimal operational strategy. For this study, temperature control and its effects on
both technological and economical perspectives, have been assessed. Indeed
the whole alkaline electrolyser stack can be connected with all necessary auxiliary
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Figure 2.9.: Different scales of electrolyser models’ comparison, at different tempera-
tures increase over the stack. Where error is the difference between the
models’ average current density, compared with the 1D model’s average
current density, in percentage.

technologies, as illustrated in Fig. 2.10.

Figure 2.10.: Systems connections. Illustrating auxiliary systems to be coupled with
electrolyser stack.

As evaluation indicators, exploiting the temperature effects, system-level efficiency
and the levelised cost of the produced hydrogen are adopted. These indicators
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criteria are assessed using the following equations:

ηtot =
Ncells · nH2,cell · LHVH2

pstack + ppump
(2.23a)

LCOH =
CAPEXstack,a + CAPEXHEX,a + CAPEXpump,a + LCOE · Eel

mH2

(2.23b)
Where all investment costs (CAPEX), that depend on the nominal size of each
technology, are actualised in annual costs, while Eel is the electrical energy required
to produce the mass of the hydrogen mH2 .

In terms of technical implications, when the temperature difference between the
inlet and outlet of the electrolyser stack exceeds 1°C, the overall efficiency remains
relatively stable at around 0.69, as shown in Fig. 2.11. Since the model keeps the
voltage fixed as an input, these results indicate that, beyond this threshold, the impact
of energy consumption by the water pump, which is dependent on the water flow
rate required for temperature control, becomes nearly negligible when compared to
the energy absorbed by the electrolyser.

From an economic perspective, as depicted in Fig. 2.12, there exists a distinct zone
(referred to as the "2° zone") where the Levelised Cost of Hydrogen (LCOH) reaches
its minimum value. This optimal range aligns with a gap temperature of approximately
1°C, regardless of the specific LCOE (see appendix A.1) used. However, the rate of
decrease or increase in LCOH varies in the two cases. In contrast, LCOH is higher
in the other two zones (referred to as the "1° zone" and "3° zone"). In the 1° zone,
this is due to the elevated operational cost attributed to the energy consumption of
the water pump. In the 3° zone, the higher gap temperature leads to a reduction in
current density, resulting in lower hydrogen production efficiency overall.

2.4.4. Model limitations and opportunities

In this section, a model that covers different scales of the alkaline water electrolysis
is proposed and validated, effectively addressing the first two research questions
posed (1.4):

• Technological details of the Power-to-Hydrogen process

• The integration of Power-to-Hydrogen and all its related auxiliaries

The model not only captures details at the cell-stack-system technology level but
also evaluates auxiliaries connected with an electrolysis stack, particularly exploring
the effects of temperature control.

The proposed model was carefully fitted to a range of data from existing literature
and demonstrated excellent fits across all considered measurements. With just four
parameters, a combination of physical and empirical parameters describing specific
physical phenomena, the model effectively represents complex behaviours.

59



Chapter 2. Hydrogen as energy storage

Figure 2.11.: Influence of temperature difference (inlet to outlet) in system efficiency.
Where the outlet temperature is set as 80°C.

To gauge the impact of model accuracy on system-level representations, a com-
parison of different model refinements was conducted, encompassing 0D, 1/2D, and
1D models. Notably, the 0D model significantly underestimates hydrogen production
(-11%), while the 1/2D model exhibits a minor overestimation (+0.75%) compared to
the more precise 1D model.

Furthermore, the effect of electrolyte flow rate on overall efficiency and economic
standpoints is evaluated. An intriguing observation is that there are clear advantages
to increasing the electrolyte flow rate, which helps maintain a temperature increase
over the stack close to 1°C. While efficiency may decrease with higher flow rates, it
remains steady when the temperature increase is maintained above 1°C. Economi-
cally, an optimal flow rate exists where losses from electrolyte pumping and stack
losses due to higher resistance at lower temperatures are harmonized.

While the proposed model holds significant potential, it’s important to acknowledge
its limitations. Notably, the model does not account for Faraday’s efficiency due
to the lack of a consistent approach in the literature. Additionally, the formation of
water vapour has not been comprehensively addressed. It’s worth noting that these
limitations are unlikely to alter the results discussed in this study. However, they
certainly provide avenues for future investigation and refinement.

2.5. Innovative hydrogen storage: Metal hydrides

Hydrogen storage presents a significant challenge due to its extremely low density,
approximately 0.089 kg/Nm3, which is nearly 10 times lower than that of natural gas.
As a result, achieving reasonable storage volumes becomes a critical bottleneck.
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(a) LCOH with minimum LCOE

(b) LCOH with maximum LCOE

Figure 2.12.: Influence of temperature difference (inlet to outlet) in the levelised cost
of hydrogen. Where the outlet temperature is set as 80°C.

Hydrogen can be stored in three phases matter: gas, liquid, and solid, as illustrated
in Fig. 2.13.

When it comes to storing hydrogen in its gaseous form, it must be stored at
extremely high pressures, and the standard pressure levels can vary based on the
application, as indicated in Tbl. 2.3. However, apart from safety concerns related
to managing high-pressure gases, an energy cost is associated with achieving and
maintaining such pressure levels. For example, raising hydrogen from standard
conditions to 70 bars would require approximately 7% of the energy contained in the
hydrogen itself [67]. Liquid hydrogen storage, on the other hand, does not have the
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Figure 2.13.: Hydrogen storage pathways: Gas, liquid, solid.

high-pressure limitation. However, to liquefy hydrogen, it needs to be cooled to a frigid
temperature of -253°C. As a result, a substantial amount of energy, around 30% [89],
is expended in the liquefaction process. Additionally, liquid hydrogen is susceptible
to the boil-off effect, which involves its gradual evaporation [90]. Finally, solid storage
of hydrogen can be achieved through the use of Metal Hydrides (MH). This approach
minimizes safety risks associated with high-pressure hydrogen storage and reduces
the energy expenditure required for containment.

Table 2.3.: Hydrogen pressure standard for different applications
Application Pressure [bar]
Gas pipelines 70
Underground gas storage 200
Busses and trucks 350
Passenger vehicles 700
Tanks 1000

As a crucial component of the Power-to-Hydrogen pathway, this section addresses
research question 2 (1.4), which inquires:

"How to model the integration of Power-to-Hydrogen and all its related auxiliaries?"

Specifically, this section delves into solid hydrogen storage. Its objective is to
investigate the technology specifics of solid hydrogen storage for modelling purposes,
alongside its integration with other auxiliary systems, including hydrogen compressors
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and conditioning systems3.

2.5.1. Metal hydrides working principle

Hydrogen can be stored in metal hydrides, which involve certain metals and alloys
and enable solid-state storage under moderate temperatures and pressures. While
this approach offers safety and volume efficiency, it has limitations due to the low
hydrogen concentration in metal hydrides. This limitation necessitates a large quantity
of metal mass to store a significant amount of hydrogen, making it suitable mainly
for stationary applications.

There are two possible methods for hydriding a metal: direct dissociative chemisorp-
tion and electrochemical splitting of water. This thesis primarily focuses on the former
method, which is more commonly used and does not require water input. This
process is described as follows:

M +
x

2
H2 ↔ MHx +Q (2.24)

Where M represents the metal and Q is the heat produced/ absorbed during the
process.

Metal hydrides are composed of metal atoms that constitute a host lattice and
hydrogen atoms. Metal and hydrogen usually form two different kinds of hydrides,
α-phase at which only some hydrogen is absorbed and β-phase at which hydride
is fully formed, as illustrated in Fig. 2.14. The absorption and desorption of the

Figure 2.14.: Metal hydrides: different phases

hydrogen, are driven by the pressure difference between the gaseous hydrogen, and
the equilibrium pressure of the metal hydride (solid).

During the absorption phase, gaseous hydrogen has a higher pressure than the
equilibrium pressure of the metal hydrides. This pressure difference drives the
hydrogen to bond with the metal, where it is absorbed. Conversely, during the
desorption stage, the MH equilibrium pressure is higher than the pressure of the

3Work already published [57]
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released hydrogen, allowing the release of hydrogen. In both cases, the magnitude of
the pressure difference directly influences the kinetics of the process. For stationary
applications, fast kinetics are expected, resulting in complete hydrogen uptake and
release in less than 3 mins [91].

The MH equilibrium pressure depends on the hydrogen concentration and temper-
ature and is typically represented using Pressure-Concentration-Temperature (P-X-T)
diagrams. It is associated with the enthalpy of the formation of the hydride (∆H) and
the associated entropy (∆S). These relationships can be assessed using the Van’t
Hoff plot [92], which follows the equation:

ln (Peq) =
∆H

RT
− ∆S

R
(2.25)

Where R is the universal gas constant and T is the absolute temperature. Further-
more, the relationship among the P-X-T curves and material-based properties, are
addressed in Fig. 2.15.

Figure 2.15.: P-X-T diagram and Van’t Hoff plot

As depicted in Fig. 2.15, the P-X-T curves provide insight into the state of the metal
hydrides based on their operating pressure and temperature. In an ideal scenario,
within the biphase zone (α+ β), the pressure remains constant. However, under real
working conditions, a slight slope of pressure increase can be observed. Additionally,
there is a pressure gap between absorption (which occurs at higher pressure) and
desorption stages due to hysteresis phenomena. For the evaluation of the Van’t Hoff
plot, the plateau pressure is generally approximated as the average value between
the pressures of the two stages within the biphasic zone.

The solid hydrogen storage systems and the proper materials have been reported
in numerous studies [93, 94, 95]. Indeed, different types of metal alloys can be
adopted for hydrogen storage, as highlighted by the review done by Modi et al.
[91], where metals operating at room temperatures (-50 °C ÷ 100 °C) are further
discussed. The most adopted alloys are the intermetallic compounds, which can be
divided into different families, as illustrated in Tbl. 2.4 with some examples.
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Table 2.4.: Intermetallic compounds families for metal hydrides [96].

Family Metal Metal hy-
drides

Concentration
limit [wt%]

Entalphy of
formation
[kJ/mol]

AB5 LaNi5 LaNi5H6 1.3 30.1
AB FeTi FeTiH1.95 1.7 28.1
AB2 ZrMN2 ZrMN2H4 1.7 53.2
A5B Mg2Ni Mg2NiH4 7.0 53.2

While there is rather extensive research on the hydrogenation-dehydrogenating
process, there is still a lack of systematic analyses of these technologies integrated
with other energy systems. Therefore, the focus of this thesis section is to present an
overview of metal hydride system control strategies, and their effects coupled with
a hydrogen source, as well as a hydrogen compressor, and a conditioning system
to adjust pressure and temperature properly. By examining these aspects, a more
comprehensive understanding of the potential of metal hydride systems for hydrogen
storage in energy applications.

2.5.2. Metal hydrides and ancillary systems

The solid hydrogen storage system is typically a pressurized tank filled with metal
powders. Based on the pressure of the gaseous hydrogen at the inlet and outlet
sections, the system is either in the charging or discharging mode (refer to Fig. 2.17).
Ancillary systems, such as hydrogen compressors and the conditioning system, are
connected to it as needed.

Figure 2.16.: Metal hydride phases: i)
solid solution phase, ii)
metal-hydrogen solution
phase, and iii) hydride
phase.

Figure 2.17.: Metal hydrides hydro-
gen storage system:
pressurized hydrogen
is injected into the tank
where the metal powder
is contained.
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The layout for both charging and discharging stages is shown in Fig. 2.18 and it
can be divided into three zones:

1. Hydrogen pressure control zone: in the charging phase, the pressure is man-
aged by the hydrogen compressor, while the pressure in the discharging phase
is set based on the hydrogen consumption request (fuel cell).

2. Metal hydride system: it presents an exothermic behaviour in the charging
phase and an endothermic one in the discharging phase.

3. Temperature control zone: this area involves the conditioning system of the
metal hydride system, which has to cool the metal hydrides down during the
charging and warm them up during the discharging stage. The application
of the heat pump is used to supply both heating and cooling energy when
required.

Figure 2.18.: Systems’ layout for both charging and discharging stages.

2.5.3. Metal hydride system modelling and testing

To gain an extended overview of the control strategies, different scenarios varying
the operating pressures and temperatures have to be included. for this study, The
operational parameters’ ranges are listed in Tbl. 2.5 where the conditioning water
temperature is set as 10 °C during the absorption phase, and 40 °C in the desorption
one. The system’s temperature is chosen from a predefined set.

As the core of this analysis, the metal hydrides numerical modelling has been
investigated deeper, which is divided into two steps:

1. The parameterization of experimental data, provided by the manufacturer of
the metal hydride system, involves assessing the metal’s technical properties
using a polynomial fitting method. This method determines the equilibrium
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Table 2.5.: MH numerical testing: Operation parameters’ range and conditions.
Absorption Desorption

X [%] 0.2→ 1.5 1.6→ 0.2
Pressure [bar] 15, 20, 25 0.78
Setting temperature [°C] 15, 20, 25 20, 25, 30, 35
Water temperature [°C] 10 40
Heat pump refrigerant type R134a
Heat pump refrigerant temperature [°C] 5-15 50-70
Overall heat exchangers efficiency [-] 0.8
Hydrogen compressor efficiency [-] 0.8 n.a.

pressure function concerning changes in concentration (X) and temperature,
thereby providing information about its value at operating conditions not directly
obtained in the experiments. Similar approaches have been employed by
Hariyadi et al. [97] and Talagañis et al. [98].

To facilitate dynamic evaluation, specific technical parameters of the material,
such as enthalpy variation, must be known in advance. Thus, a parameteri-
sation process using the P-X-T diagram and the Vant’hoff plot (as described
in Dornheim’s work [99]), which is also reported in Hariyadi’s work [97], is
employed with the relationship stated in Eq. 2.26.

Regarding the kinetic parameters of the metal, they cannot be derived from the
P-X-T curve due to the absence of the time variable. Therefore, in this study,
the kinetic parameters are sourced from the scientific literature [98].

ln(P ) =
∆H

RT
− ∆S

R
(2.26)

2. The numerical modelling of the kinetics of the metal hydride system relies on
ordinary differential equations to establish mass and energy balances. The
equations used in this work are based on the by various researchers (Gambini
et al. [100, 101] and Talagañis et al. [98]).

The mass concentration variation within the solid is described by the following
equation with its upper limit occurring during the charging phase, specifically
when the β phase has been reached, while for the discharging stage, such
limit is equal to zero.

dX

dt
= Ka,de

−
Ea,d
RT · ln

(︃
P

Peq

)︃
· |Xlim −X| (2.27)

This can be converted into solid hydrogen mass using the definition of X, which
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is defined as the mass ratio:

X =
mH2

mH2 +ms
(2.28)

therefore, the mass balance of the gaseous hydrogen is expressed as follows:

dmH2,g

dt
= −d(X · (mH2 +ms))

dt
+ ṁH2,in − ṁH2,out (2.29)

Under the assumption of an ideal scenario, where the mass of the gaseous form
of hydrogen within the metal hydrides system remains constant, the hydrogen
mass flow balance is defined as follows:

ṁH2,in − ṁH2,out =
d(X · (mH2 +ms))

dt
(2.30)

Finally, the energy balance can be expressed by Eq. 2.31, where the specific
heat capacity of the system includes both solid and gaseous hydrogen (see
Eq. 2.34).

C
dT

dt
=

− ∆H

MWH2

d(X · (mH2 +ms))

dt
+mḟ cf ϵ(Tf −T )+ ṁH2,in ·hin− ṁH2,out ·hout

(2.31)

C = (mH2g · cpH2 + (mH2 +ms) · cps) (2.32)

It is assumed to have a constant supply pressure; as a consequence, the
temperature of the system must remain constant over time:

mḟ cf ϵ(Tf − T ) =
∆H

MWH2

d(X · (mH2 +ms))

dt
− ṁH2,in · hin + ṁH2,out · hout

(2.33)
Additionally, since the solid mass of the hydrogen (mH2) can reach up to 1.6
-2% of the metal mass (for AB2-type metals), its contribution to the overall mass
can be neglected.

(mH2 +ms) ≈ ms (2.34)

For the evaluation of different sets of operational parameters (pressure and tempera-
ture), the following indicators have been used to evaluate both economic and control
perspectives:

• The time required to reach the pre-defined weight concentration condition,
indicating the amount of hydrogen stored or discharged (Tbl. 2.5), is considered
as one performance indicator.
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• Another set of indicators is the energy consumption of the heat pump and
the hydrogen compressor during the capture and release of hydrogen. These
indicators are linked together and provide preliminary insights into the operating
cost of the entire process.

2.5.4. Evaluation of operational strategies

The results of the dynamics in both stages are presented Fig. 2.19. In the charging
stage, the hydrogen gas is injected at the inlet with the set pressure. The exothermic
nature of the absorption process, along with the gaseous hydrogen inlet, leads to an
increase in the system temperature, but the conditioning system compensates for it
by controlling the water mass flow rate (heat transfer fluid) flowing through the storage
system. Conversely, in the discharging stage, the dynamics are similar but reversed
with the conditioning system working to recover the temperature drop. Moreover, the
concentration variations differ between the absorption and desorption stages that
are influenced by the kinetic and activation energy parameters. As a consequence,
the required thermal energy varies significantly between the two phases with the
desorption one requiring a lower thermal energy.

Numerous combinations of the operational parameter sets are explored to provide
a comprehensive understanding of the performance indicators as shown in Figures
2.20a and 2.20b. When only one controllable parameter is considered, the influence
of changing operational conditions is straightforward. Indeed, for the desorption
phase, the dynamic indicator and the energy indicator form a Pareto-curve shape
where both indicators cannot be minimised at the same time. However, the absorption
phase presents a more complex situation due to the presence of multiple controllable
parameters, including temperature and pressure. Additionally, their associated
energy consumption is connected with the dynamics. It is observed that to store the
same amount of mass, the dominant parameter for the dynamics is the pressure;
indeed, over a certain pressure threshold (e.g., 15 bar), the set temperature would
not affect the charging time considerably. Moreover, under such a pressure threshold,
the system cannot reach the targeted charged mass due to the low-pressure gap.
By reducing the system set temperature, not only the energy dedicated to the heat
pump compressor is reduced, but the hydrogen compressor would benefit from it
since the charging time lowers.

2.5.5. Study’s potential and limitation

This section of the thesis delves into the exploration of dynamic control strategies
for a metal hydride (AB2 type) system employed in solid hydrogen storage. The
numerical modelling relies on experimental data characterizing the P-C-T diagram
provided by the system’s supplier. In the absorption stage, it becomes evident
that hydrogen pressure significantly influences the process time, surpassing the
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(a) Absorption stage dynamics

(b) Desorption stage dynamics

Figure 2.19.: Examples of metal hydrides hydrogenation and de-hydrogenation ki-
netics.

impact of conditioning temperature. However, this does lead to increased energy
consumption by the hydrogen compressor. To counterbalance the energy costs of
the hydrogen compressor, one approach could involve reducing the system’s set
temperature, despite the consequent increase in heat pump power. Nevertheless,
the overall energy consumption is reduced due to the process’s shorter duration. In
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(a) Performance indicators in the absorption phase. Various colours
representing different set temperatures (blue,green, and red), shapes
indicating setting pressures ( ,', and ■), and dotted lines denoting
the time needed for charging.

(b) Performance indicators during desorption.

Figure 2.20.: Performance indicators for the evaluation of metal hydrides operational
strategy.

the desorption stage, achieving faster hydrogen release would come at the expense
of higher conditioning energy supply costs. Determining an optimal operational
strategy for both phases is no easy task, and future investigations may explore the
following directions:

1. System controllers into the model, such as partial integral differential ones, to
explore the response time of the system.
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2. Conducting experimental tests to ascertain material kinetic parameters and
activation energy.
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Chapter 3.

Battery Energy Storage Systems: Li-ion
battery

A clever person solves a problem. A wise person
avoids it.

Albert Einstein

Rechargeable lithium-ion batteries are currently the leading choice for Battery
Energy Storage Systems (BESS) in mobile applications, including electric vehicles,
thanks to their impressive energy and power density. Furthermore, they are also
extensively employed in stationary applications.

Despite their high energy/power density, these batteries are subject to performance
degradation in terms of both capacity and power over time. Furthermore, issues like
electrolyte leakage and micro-short circuits may arise, potentially leading to battery
failure and even triggering thermal runaway, as discussed in [102]. As a result, the
implementation of an advanced battery management system becomes crucial for
monitoring and optimizing battery behaviour and safety, preventing its accelerated
degradation, throughout the entire electrification system, as emphasized in [103].

The Battery’s State of Health (SOH) serves as a critical indicator of its overall
condition and longevity. It assesses the battery’s health in terms of its capacity (in
Ah) and its current performance compared to its initial state.

Unlike other battery parameters, SOH cannot be directly measured. Its deter-
mination relies on various factors, including the battery’s usage history, external
conditions like current rates (C-rates), temperature, and operating range. These
variables collectively influence the battery ageing process, resulting in diverse age-
ing paths. Consequently, accurately estimating SOH remains a subject of ongoing
research [104, 105, 106]. Numerous research efforts have been dedicated to ex-
ploring the mechanisms underlying battery deterioration, all of which contribute to
the degradation of Li-ion batteries. Based on a comprehensive review conducted by
Edge et al. [105], the most influential factors include:

1. Solid Electrolyte Interface (SEI) layer growth.

2. Lithium plating.
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3. Particle fracture.

4. Loss of Active Material (LAM).

Moreover, these mechanisms are interconnected, making it challenging to isolate
their effects, thereby adding to the complexity of SOH estimation.

Over the years, extensive research has been dedicated to numerical modelling
of Li-ion batteries, primarily aimed at assessing SOH, particularly for automotive
applications to promote electric vehicle adoption [104]. Broadly, there are two main
branches of battery models: Equivalent Circuit Models (ECM) and Physical-Based
Models (PBM), as highlighted in Zhao et al.’s review [107]. ECMs represent batteries
using an equivalent electrical circuit, employing essential electrical components like
resistors and capacitors to simulate battery behaviour. While ECMs are relatively
easy to implement and offer fast solutions, they often lack the accuracy needed
for real-world battery applications, especially in dynamic scenarios. On the other
hand, PBMs delve deeper into battery physics, encompassing phenomena such
as Butler–Volmer kinetic equations [108, 109]. PBMs provide insights into internal
battery dynamics, including Li-ion diffusion, ohmic effects, and electrochemical
kinetics. Consequently, they enable a more comprehensive assessment of battery
degradation. To enhance the accuracy of PBMs further, an increasing number of
researchers are incorporating data-driven and machine-learning techniques [106].
As the level of physical detail increases, so does the computational burden, as
illustrated in Fig. 3.1. The available PBMs include the Single Particle Model (SPM)
[110], Single Particle Model with electrolyte (SPMe) [110], and Doyle-Fuller-Newman
Model or Pseudo Two Dimensional (PS2D) [108].

From the perspective of energy systems, particularly in the context of stationary
applications like local energy communities, a comprehensive assessment of SOH
offers several advantages:

• Preventing Premature Battery Depletion: Assessing SOH helps prevent
situations where the battery’s lifetime expires before the intended design time.
Such scenarios often lead to discrepancies between the planning phase of the
LEC and its actual operation.

• Reducing Capital Expenditure: By extending the battery’s lifespan through
proper BMS, LECs can reduce their overall capital expenditure, thus achieving
cost savings.

• Facilitating Accurate Comparisons: SOH assessment enables more precise
comparisons with alternative energy storage solutions. Battery degradation,
although complex, is often not considered in energy planning and optimisation
models, allowing batteries with extended lifespans to outperform other options.

Therefore, this chapter of the thesis focuses on highlighting the efforts done during
the Ph.D. study to investigate both types of numerical models of Li-ion battery

74



3.1. Li-ion modelling: Equivalent Circuit Models’ robustness

Figure 3.1.: Battery models comparison

degradation, from a different perspective1, with the objective to answer research
question 4 (1.4):

How to capture the degradation phenomena of Lithium-ion batteries?

This chapter is structured as follows:

1. Firstly, a study that assesses different ECM data-driven models’ sensitivity,
aiming to provide a exhaustive overview of the robustness of the most commonly
adopted data-driven models is presented.

2. Next, a section involves the application of physical modelling of the battery
using Pybamm, to evaluate the SOH of the battery. This evaluation is based
on multi-objective multi-energy system scheduling, ultimately providing the
optimal solution from the Pareto frontier.

3.1. Li-ion modelling: Equivalent Circuit Models’
robustness

Microscopic ageing mechanisms in batteries are closely tied to the storage conditions,
whether the battery is at rest or undergoing cycling. These conditions give rise to two
distinct types of ageing: calendar ageing and cycle ageing. While both ageing modes

1Works described in this chapter is published in [111], or under revision.
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occur throughout the battery’s life, investigating their combined effects presents a
non-trivial challenge, and thus, the scientific community often studies them separately.
Calendar ageing includes all the mechanisms that take place when the battery is at
rest, stored under fixed conditions. It directly depends on the storage temperature
and the State of Charge (SOC) level of the battery. Conversely, cycle ageing is
characterized by the battery’s cycling operational conditions, influenced by factors
such as temperature (e.g., ambient, pack, or cell temperature), Depth of Discharge
(DOD), charge or discharge current (C-rate), and the total number of cycles [112].
Fig. 3.2 illustrates the relationships between these two distinct ageing modes and
highlights the key parameters influencing each mode.

Figure 3.2.: Relation between calendar and cycle ageing: as a result, the capacity
drops and the resistance increases.

The internal resistance, often denoted as R0, plays a critical role in determining
the energy dissipated as heat due to the Joule effect. It’s important to note that
R0 cannot be measured directly, but its nominal value is typically provided in the
datasheets. R0 differs significantly from the resistance that can be estimated from
the electrical model, and it depends on the amount of current injected into the battery.

Apart from ageing effects, R0 is generally influenced by both temperature and
the State of Charge (SOC) level. Its resistance decreases promptly as the tem-
perature increases and vice versa [113]. Operating batteries at high temperatures
is unfavourable as it can lead to substantial battery degradation due to the Joule
effect. However, the impact of SOC level on R0 in Li-Ion batteries is considered minor
compared to its variations caused by ageing processes and operating temperature
changes [114].

The maximum capacity of a battery denoted asC, and its residual capacity, denoted
as Cres, represent the maximum amount of charge the system can store and release,
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respectively. These values cannot be directly measured and must be estimated
by the BMS, which calculates the amount of energy transferred into or out of the
system. Estimating residual capacity can be challenging and may become more
accurate after deeper operational cycles, while it can present difficulties in the case of
short charge and discharge cycles. Similar to R0, residual capacity depends on both
ageing and temperature factors [115]. Since there is a strong relationship between
the residual capacity and the ageing of the BESS, the residual capacity is considered
the main parameter to define the SOH of a battery. Typically, the SOH of a battery is
defined as the ratio between the residual Cres and the rated capacity C0 according
to Eq. 3.1:

SOH(t) =
Cres(t)

C0
(3.1)

Moreover, R0 plays a key role in defining the SOH, albeit with less prominence in
the scientific literature. Thus, the specific formula that relates R0 with the SOH has
not been provided in this work since it is out of the scope of the current study. The
SOH value is the determining factor to define the EOL, and it is specifically tailored
for each application according to the minimum operative conditions required by the
storage system. For instance, the EOL for automotive applications is usually set
equal to 80% since the residual capacity reflects the vehicle range. A similar metric
to EOL is the remaining useful life (RUL) which defines the residual operating life of
a BESS, which is usually expressed in the number of cycles.

Despite an extensive review of the scientific literature on BESS’ ageing models,
using the ECM approach, where the machine-learning techniques are adopted,
that the models are firstly trained based on controlled experiments. None of them
investigated so far incorporate a sensitivity analysis to assess the models’ response
to input variations post-training. Indeed, this is a crucial aspect that still remains
unexplored, which is the focus of this thesis section.

3.1.1. Sensitivity analysis

The sensitivity analysis, which aims to evaluate the robustness of models and how
these deal with an unexpected variation in the input variables compared to the training
dataset, is conducted. This analysis allows the identification of which parameters
have the greatest impact on model predictions and determines the range of values
over which a specific model is most accurate. This study considers the variation of
both temperature and current since they represent the principal cycling factors that
impact the battery life [116].

Univariate and multivariate analyses are performed to study how the variation
of a single quantity, or both quantities simultaneously, affects the model response.
Each ageing model is described by a parametric equation, which changes based on
the model selected, reported in the dedicated appendix section (B.1). The analysis
comprises firstly a training phase to compute model parameters that are then tested
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on another dataset. Simulated data are obtained with an algorithm based on a least-
squares support-vector machines model, which has been trained using experimental
data obtained by [117]. As a result, a simulated dataset of 160 Ah BESS is used in
these analyses.

Regarding the univariate analysis, data are obtained by changing the temperature
and keeping the current and vice versa. Temperature and current values for the
univariate analysis are changed as shown in Table 3.1.

Table 3.1.: Operating conditions of simulated data through the univariate analysis.
Temperature 20 °C 25 °C 30 °C 35 °C
C-rates 0.1C 0.25C 0.5C 0.75C 1C

A residual capacity curve is generated per each value as shown in Fig. 3.3 and
3.4.

The models are trained considering current values of 0.1C and 1C and, temper-
ature values of 20 °C and 35 °C; then, each model previously trained is tested to
the excluded values, namely 0.25C, 0.5C, and 0.75C concerning the current and
25 °C and 30 °C regarding the temperature. Conversely, the dataset used for

Figure 3.3.: Simulated dataset used for the temperature sensitivity analysis: the
residual capacity of the battery is plotted as a function of the number of
cycles. Temperature values range from 20 °C to 35 °C.

the multivariate analysis is composed of degradation curves that are generated
using different temperatures and currents as reported in Fig. 3.5. The value pairs
reported in Table 3.2 are the operating conditions simulated to resemble the ageing
phenomena for the multivariate analysis. It is worth noting that only the pairs (0.1C,
20° C) and (1C, 35° C) have been used for the training process, while the remaining
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Figure 3.4.: Simulated dataset used for the current sensitivity analysis: the residual
capacity of the battery is plotted as a function of the number of cycles.
Current values range from 0.1C to 1C.

Table 3.2.: Variation in operating conditions of simulated data for the multivariate
analysis. Temperature and current are simultaneously changed

Temperature C-rate

20°C 0.1C

24°C 0.25C

27.5°C 0.5C

31°C 0.75C

35°C 1C

ones have been employed for the model testing. The values used for the testing
phase are those that have not been used in the training process of both univariate
and multivariate analyses. The other parameters that affect an ageing degradation
are kept fixed as reported in Tbl. 3.3.

The Particle Swarm Optimisation algorithm [118] is used to get the optimum model
parameters due to its effectiveness in dealing with non-linear functions.
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Figure 3.5.: Dataset used for the multivariate sensitivity analysis: the residual ca-
pacity of the battery is plotted as a function of the number of cycles.
Temperature values range from 20° C to 35° C, while the current ones
between 0.1C and 1C.

Table 3.3.: Other parameters used in the testing process

Fixed input Values Notes
DOD 85% Depth Of Discharge in each cycle
SOC average 50% Average SOC level in each cycle
C-rate 0.1C Current fixed in the univariate temperature analysis
T 20 °C Temperature fixed in the univariate current analysis

3.1.2. Selected models

For this study, three models described in the scientific literature have been selected
to assess the ageing phenomena of the simulated 160 Ah BESS, that are namely:

• Omar et al’s [117].

• Wang et al’s. [119].

• Baghdadi et al.’s [120].

These models have been chosen due to their completeness in terms of inclusion of the
principal macroscopic quantities affecting the ageing phenomena (e.g., temperature,
charge/discharge current, DOD, SOC, easiness of training, and frequent employment
in the scientific literature).

Omar et al. [117] used four mathematical equations to describe the data acquisition
separately based on the variation of the principal quantities affecting the ageing
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phenomena. Since the input variables are treated individually, these models can be
easily trained. Wang et al. [119] used an exponential model that is widely employed
when dealing with cumulative degradation dynamics due to its robustness and easier
identification procedure of the parameters [121]. The authors of [120] implemented
both calendar and cycle ageing using only one model, thus improving its application
when dealing with several conditions. The selected models are further discussed in
Appendix B.1.

3.1.3. Comparison metric

The main metric used to compare the effectiveness of the used models is the Mean
Average Percentage Error (MAPE) as described in Eq. 3.2. This parameter provides
a coherent comparison between the models of [119] and [120] because the outputs
are the same (e.g., capacity), while it represents an error indication in all the models
of [117] whose outputs are expressed in terms of number of cycles at a different
scale.

MAPE =
100%

n

n∑︂
t=1

⃓⃓⃓⃓
yt − ŷt

yt

⃓⃓⃓⃓
(3.2)

3.1.4. Comparison results

Different data of temperature and current are employed in the training and evaluation
phase to define which model provides a more reliable and robust characterisation. In
particular, both temperature and current are varied either singularly or simultaneously
while keeping the other quantities unchanged, as reported in Tbl. 3.4.

Table 3.4.: Training & test sets
Train Test

Temperature varying univariate 20°C 25°C
35°C 30°C

Current varying univariate
0.1C 0.25C
1C 0.25C

0.75C

Multivariate
(0.1C, 20°C) (0.25C,25°C)
(1C,35°C) (0.5C,27.5°C)

(0.75C, 31°C)

Temperature univariate analysis

For the temperature-varying univariate analysis, the model’s performances are re-
ported in Tbl. 3.5. Among the studied models, the most robust one when dealing
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with temperature variations is Baghdadi’s model. A slightly worse performance is
obtained by using Omar’s model, particularly at the 30 °C curve. Conversely to the
other models, Omar’s one is not a viable solution as it solely considers a single
quantity and requires a more complex parameter computation, making it unfeasi-
ble in practical applications. Although both Baghdadi and Wang’s models cannot
significantly discriminate the ageing evaluation among the two values of the temper-
ature, Baghdadi’s model is slightly more robust and represents the best choice when
considering temperature variations. However, experimental data reported by Omar
et al. [117] indicate that 20°C is the optimal temperature condition that ensures a
greater Remaining Useful Life, whereas a decrease of the life cycles is expected
with a temperature lower and greater thanks to 20 °C. Conversely to Omar’s model
which describes each residual capacity point at different temperatures with a con-
cave downward parabola, Baghdadi and Wang’s models are not able to reproduce
that behaviour, unless a training curve with temperatures lower than 20 °C is used.
Therefore, further models should be investigated for possible future development.

Table 3.5.: MAPE computed in the temperature sensitivity analysis

Temperature Wang Baghdadi Omar
25°C 1.19 % 1.05 % 14 %
30°C 1.79 % 1.54 % 14 %

Current univariate analysis

The MAPE calculated during the current sensitivity analysis to compare the perfor-
mance of all models is presented in Tbl. 3.6. Wang’s model exhibits the highest
robustness across all C-rate values. The poorest performance was observed with
Omar’s model, particularly at 0.25C. Furthermore, considering that Omar’s model
does not account for other variables and involves a more complex training phase,
resulting in a set of parameters for each capacity value, it is not a practical choice
compared to the others. Baghdadi’s model does not perform as effectively as Wang’s
model. Consequently, Wang’s model is the most robust and represents the optimal
choice when accounting for current variations.

Table 3.6.: MAPE computed in the current sensitivity analysis.

C-rate Wang Baghdadi Omar
0.25 C 0.85 % 4.83 % 16.53 %
0.5 C 0.96 % 4.84 % 13.46 %
0.75 C 1.26 % 3.09 % 10.18 %

82



3.2. Li-ion battery degradation modelling: State of health as Pareto frontier indicator

Multivariate analysis

The MAPE values computed for the multivariate analysis, used to compare model
performance, are presented in Tbl. 3.7. Wang’s model demonstrates the highest
robustness when considering variations in both temperature and current. Omar’s
model has been excluded from this analysis because each of its equations assesses
ageing based solely on the variation of a single input variable, rendering it unsuitable
for multivariate analysis.

Table 3.7.: MAPE computed for the multivariate sensitivity.

C-rate, Temperature Wang Baghdadi Omar
0.25C, 24°C 0.55 % 4.43 % NA
0.5C, 27.5°C 0.76 % 4.49 % NA
0.75C, 31°C 0.73 % 2.79 % NA

3.1.5. Study’s remarks and limitations

The study presented in this section presents a sensitivity analysis of data-driven
ECMs for battery ageing, to evaluate how a model deals with the variation of the
BESS operating conditions. Three different ECMs have been included in the study,
using the data of a 160 Ah battery.

Regarding the univariate analysis of temperature, the best model is represented
by Baghdadi et al. [120] when dealing with both temperature values of 25°C and
30°C. Differently, the model of Wang et al. [119] is the most robust solution when
dealing with current variation for values of 0.25 C, 0.5 C and 0.75C.

The results of the sensitivity analysis showed that all three models were able to
predict battery ageing under various operating conditions. However, some models
were more sensitive to the variation of certain factors than others. The inclusion of
other mathematical or data-driven models in a future sensitivity analysis of battery
ageing could provide interesting results. Particularly, data-driven models such as
neural networks use deep learning algorithms to identify patterns and non-linear rela-
tionships in data, and can often provide more accurate predictions than mathematical
models, particularly when working with complex systems such as batteries.

3.2. Li-ion battery degradation modelling: State of health
as Pareto frontier indicator

In the energy system modelling sector, When there are multi-objectives to optimise,
a trade-off among them has to be found, and there are different techniques to find
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the set of the trade-off solutions, among them, ϵ-constraint method proposed by
Mavrotas [48], and weighted sum method, are the most adopted ones by scientific
community [122]. And as a result of both methods, the Pareto curve or Pareto frontier
is obtained.

The Pareto curve is a graphical representation of the set of non-dominated solu-
tions in a multi-objective optimisation problem. Each point on the curve represents a
solution that is optimal in the sense that no other solution is better for all objectives.
However, selecting the "ultimate" solution from the Pareto front depends on the
decision maker’s preferences and priorities among the different objectives. One way
to select the best solution from the Pareto front is to use a decision-making method
that incorporates the decision maker’s preferences, such as weighting coefficients
for objective functions or a utility function approach [123]. Another way is to use an
interactive method where the decision maker provides feedback on the solutions pre-
sented and the algorithm generates new solutions based on this feedback. Ultimately,
the "best" solution is subjective and depends on the decision maker’s priorities and
preferences.

The aim of this section is2, to propose a novel approach, that assesses the
battery’SOH, through a Li-ion battery physical modelling framework (Pybamm [124]),
characterized by the battery manufacturer datasheet data, i.e. no experimental testing
on the battery is required, due to different multi-objective scheduling operational
strategies, each of them is a solution from Pareto curve, assessed from Home Energy
Management System (HEMS), of a smart home case, where four distinct energy
carriers and its related systems are included. It represents the smallest scale of the
multi-carrier energy community. therefore the same methodology can be up-scaled
to a bigger scale of energy communities. Finally, by using such an approach, the
best solution is automatically identified, without any additional input from modellers.
Indeed, compared to the previous sections’ methodology, although ECMs are easy
to implement and fast to solve, compared to PBMs, as previously illustrated in Fig.
3.1, they are data-driven, meaning the vast amount of the experimental data, under
different operating conditions, have to be present [106], which quite often is not
possible to have, the reason why for this study, physically based modelling is applied.

3.2.1. Pybamm framework and battery parameterization

PyBaMM (Python Battery Mathematical Modelling) is an open-source battery sim-
ulation package written in Python, and developed by a team of experts, funded by
the British funding scheme, the Faraday Institution [125]. The whole repository of
the framework can be found on the GitHub page at [126]. It solves physics-based
electrochemical models of various types, like Doyle-Fuller-Newman (DFN) and also
the Single Particle Model with Electrolyte, proposed by Marquis et al. [110], using

2Work carried out during the visiting period in Technical University of Eindhoven, under the supervision
of Prof. Christina Papadimitriou (2023)
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state-of-the-art automatic differentiation and numerical solvers, such as CasADi
[127], indeed multiple scientific papers are produced by the same developers, de-
scribing the framework modelling process [110, 128, 129, 130, 131, 132]. All models
are implemented in a flexible manner, and a wide range of models and parameter
sets are available. Is also possible to set specified drive cycles of the battery, using
user-defined current, voltage, or power curves.

The parameterization of the Li-ion battery is the process of including the Li-ion
battery characteristics into the Pybamm framework so that it can reproduce the
battery’s operational properties accurately, even under different operating conditions.
Parameterization, therefore, has a fundamental role in the methodology, and it is
divided into two steps, initialization and parameters tuning, which is based on the
experimental data, that can be retied by the battery manufacturer.

Cell level model initialisation

The first step of the parameterization is the initialization of the Pybamm model using
the datasheet’s operational data, reported by Li-ion battery manufacturers:

1. Battery chemistry, which can be Lithium iron phosphate (LFP), Nickel Man-
ganese Cobalt oxide (NMC) or Nickel-cobalt-aluminum (NCA). And based on
the chemistry, the Modelers can select among the built-in parameter sets from
the Pybamm framework, all of them can be consulted at [133].

2. Charging mode, although almost every manufacturer is adopting Constant
Current-Constant Voltage (CC-CV) mode, is possible to have some exceptions.

3. Electrode geometry, which is crucial to assess the electrical properties such
as current densities, however, this information is not often reported in the
datasheet.

From the modeller’s perspective, the numerical model for the battery has to be
selected, among different available ones, with the increasing physics details, but
also the computational burden, as illustrated in Fig. 3.1. The ones based on physics
are the Single Particle Model [110], Single Particle Model with electrolyte [110],
Doyle-Fuller-Newman Model or Pseudo Two Dimensional [108].

The entire initialisation process is reported in Fig. 3.6, and once completed, is
already possible to perform experiments and assess the operational behaviour of
the Li-ion battery, however, since the parameter set is based on the built-in ones,
some of the properties may differ from the ones from the datasheet, the reason why
the second step of the parameterization is needed.

Parameters tuning

As the second step of the parameterization, different parameters of the model have
to be tuned, to fit the experimental data, provided by battery manufacturers. The
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Figure 3.6.: Workflow of the initialization of Pybamm model.

whole workflow is represented graphically in Fig. 3.9.
From the datasheet provided by battery manufacturers, the following lab test results

are usually reported:

1. Discharge curves at different C-rates.

2. Discharge curves at different temperatures.

3. Aging/degradation curves at 1-C cycles.

The parameters tuning is not trivial, since it is not straightforward which parameters
to tune in order to have the best accuracy, compared with the experimental data.
Additionally, thermal and electrical properties are strictly connected, by the kinetics of
the electrode, governed by the Butler-Volmer equation, hence, making the parameters
tuning even more arduous and complex. However, it is not impossible, and in this
work, a data-driven technique, through the use of Mean Absolute Error (MAE) as
an index, widely adopted in the machine learning research field, has been adopted.
The process is illustrated in Fig. 3.7, and it has two steps:

1. Sensitivity analysis, of all tunable parameters, changing them from the default
value and twice its original value, and observing the variation of MAE; Generally
speaking, for proper sensitivity analysis, more data points of the parameters
should be assessed, yet, with the vast amount of parameters to be evaluated,
the computational effort would be enormous.

2. Selection of the most important parameters based on the previous step, and
through the grid-search method, where all selected parameters are defined
within their range, based on the physical meaning of the parameter, to finally
obtain the values of the selected parameters, that minimise the MAE.

86



3.2. Li-ion battery degradation modelling: State of health as Pareto frontier indicator

Figure 3.7.: Parameters selection and tuning process

Despite the intrinsic link between electrochemical and thermal properties, their
parameterization can be decoupled, making the whole process easier. Indeed,
the electrochemical experiments are done at a constant, standard temperature of
25°C/298 K, where the thermal properties are not subject to any variation. Sub-
sequently, ageing parameterization can proceed as it requires the outputs of the
electrochemical one. Furthermore, the ageing part requires an extended exper-
iment, i.e. more than 2000 cycles of charging and discharging, meaning that it
requires more computational time, compared to the other two parameterization steps.
Thus, the whole parameters tuning is sequential consisting of the following steps: 1)
electrochemical parameterization, 2) thermal parameterization, and finally 3) aging
parameterization.

3.2.2. State Of Health assessment

In addition to the battery physical model ( Section 3.2.1), the power curve of the
battery, for each of the Pareto curve solutions from HEMS, is obtained. The complete
workflow is depicted in Fig. 3.9. Where the battery cell power assessment module
serves the purpose of converting power at the module level, sourced from HEMS,
into the cell level. This distinction is vital as Pybamm operates at the cell level. On
top of that, the electrical design of the battery cell-to-module must be carried out,
with the already known cell characteristics (voltage, current, and capacity), provided
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Figure 3.8.: Workflow of the parameters tuning for Pybamm model: 1) electrochemi-
cal parameterization, 2) thermal parameterization, and 3) ageing param-
eterization

by the manufacturer datasheet and already parameterized previously. The design
process is initiated by selecting the nominal voltage of the battery module, which,
based on market standards, can typically be 12, 24, or 48 V. Following this, the
capacity of the module is determined. However, for the sake of simplicity and given
that designing the battery management system is not within the scope of this work, it
is assumed that the battery power is equally distributed across each cell.

Ncells,series =
Vbatt

Vcell
(3.3)

Ncells,parallel =
Ebatt

Vbatt · Ccell
(3.4)

Pcell(t) =
Pbatt(t)

Ncells,series ·Ncells,parallel
(3.5)

For each Pareto curve solution, there’s a distinct power curve, meaning a distinct
experiment for the parameterized model, with its own SOH indicator of the battery at
the end of the evaluation time.

3.2.3. Results of the case study and limitation of the approach

LFP-type battery cells are adopted for the case study, with fifteen Pareto curve
solutions based on two objectives, which are economical and environmental, for a
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Figure 3.9.: Workflow of assessing the Pareto curve using SOH as indicator

four-energy-carrier energy system.
Thus, fifteen different experiments are performed using Pybamm, obtaining dif-

ferent SOH at the end of the evaluation time frame. Notably, due to the choice of
a constrained evaluation window lasting 24 hours, this duration was insufficient to
induce substantial battery degradation. To facilitate a comparative analysis of these
solutions, it is established a benchmark case.

(a) Pareto (b) Difference

Figure 3.10.: SOH as Pareto indicator. The differences among the different cases
are extremely low due to the limited time frame of the study.

The process of automatically selecting the ultimate case using a portable computer
took approximately 10 minutes. Detailed specifications regarding computational
resources and the case study are provided in the Appendix section, Tbl. B.4. While
the results are visually depicted in Fig. 3.10. Fig. 3.10a presents a colour map
illustrating the SOH difference among the 15 Pareto frontier solutions, using it as a KPI.
In general, solutions without PV integration tend to have higher SOH compared to the
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benchmark case. Notably, Case 8 represents a solution that effectively divides the
Pareto frontier into two distinct zones. However, it’s not a straightforward relationship
where more PV penetration necessarily means lower SOH. In fact, Case 2 has
the maximum SOH despite not having the least PV integration. Therefore, from
a real-time scheduling perspective, the operational strategy employed in Case 2
emerges as the ultimate solution among all optimal scenarios. This strategy ensures
the maximum health of the battery at the end of the evaluation time.

The results affirm the suitability of the proposed methodology for automatically
determining the optimal solution, employing SOH as a performance metric. Overex-
tended operational periods, such as 10 years, with consistent scheduling strategies,
this approach can yield savings of up to 26.67% in battery lifespan. This is particularly
significant in the context of multi-energy systems economics, given the frequency of
battery replacements and their related investment costs. It is worth noting that while
integrating PV systems can accelerate battery degradation due to increased usage,
it is not immediately evident that the highest PV integration (case 15) leads to the
worst SOH. In fact, the 10th scenario in the case study represents the worst SOH
case, as illustrated in Fig. 3.10a. Therefore, the utilisation of SOH as a key indicator
provides valuable insights.

The process of parametrizing the Li-ion cell is undeniably time-consuming, and
its duration cannot be precisely estimated due to its inherent complexity. However,
the Python-based architecture of Pybamm offers a practical advantage: once the
parameters are determined and stored, they can be readily applied to any number of
experiments involving the same type of cells. This eliminates the need to repeat the
entire parameterization process for each subsequent study.

One-day evaluation time window was chosen to validate the methodology, primarily
for computational efficiency. Nonetheless, it’s important to note that this relatively
short timeframe has a limited impact on battery degradation. Simulations over a
more extended period should be performed for a proper analysis. While this will entail
greater computational demands, it will provide a more comprehensive understanding
of battery behaviour over time. Moreover, although the proposed approach has the
novelty of automatic selection of the best solution from the Pareto curve, it also
establishes a connection between battery operational parameters, such as SOH,
and the optimization and scheduling problem of energy modelling. Nevertheless,
it is important to acknowledge that the approach remains passive, in the sense
that the SOH assessment and scheduling are conducted independently. Thus,
there is a possibility to look for active integration, whereby the SOH derived from
the Pybamm model serves as an indicator directly considered during the energy
modelling optimization problem. With active integration, it would provide information
that can directly influence the outputs of the optimisation process.
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Chapter 4.

Energy systems planning

The best way to predict the future is to create it.

Abraham Lincoln
Peter Drucker

The optimal planning of Local Energy Communities is a challenging task. Due
to the presence of multiple energy technologies operating with different carriers,
that interact with each other to satisfy the time-varying end-users energy demands.
In addition, economic aspects are not sufficient to be considered for the optimal
planning problem, whereas environmental constraints should be also taken into
account. In summary, the most convenient LEC configuration and related operation
strategies should be identified in terms of the choice of the energy technologies, their
sizes, and their operation by ensuring both the economic and the environmental
sustainability of the system.

The selection of the right model for designing a local multi-carrier energy system
from scratch, while finding a trade-off between model accuracy and computation
efforts, is not a minor task. Therefore, it is preferable to design LECs starting from a
baseline scenario and then analyse further ones with different design possibilities
and objectives to be compared with the baseline one. Indeed, since the analysed
scenarios share the same level of detail for the modelling approach, their differential
evaluation eliminates the uncertainty of the results.

To achieve energy policy’s goals, storage and sector coupling technologies are
essential. However, they are still economically expensive compared to other fossil
fuel-based technologies. Furthermore, technological details of the energy storage
systems of interest have been elaborated upon in previous chapters (2 and 3). These
details can be integrated into the energy system modelling process, unlocking the
possibility of predicting, optimising, and analysing future energy system scenarios.

However, there are several research gaps that remain unexplored. As previously
discussed in Section1.4, the following research questions, from the system level
remain unanswered:

• How to effectively include these technologies into a system modelling
and assess their impact?
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• How to include the dynamic variation and investment stages of parame-
ters in medium-term energy planning?

Therefore, this chapter is dedicated to displaying the efforts undertaken during this
Ph.D. study to address these critical questions.

The chapter is structured into two sections, each dedicated to answering one of
the research questions. First, potential solutions for determining optimal alternatives,
rather than relying solely on a single optimal solution, are explored. This approach
helps mitigate uncertainties associated with modelling parameters. Second, the
chapter delves into the dynamic evaluation of parameter variations, such as techno-
logical cost reductions over planning horizons, as well as the inclusion of various
investment stages throughout the planning process1.

4.1. Energy planning: Optimal alternatives

Energy planning is inherently reliant on input parameters, encompassing both tech-
nological and economic aspects. Notably, financial investments are susceptible to
significant fluctuations, influenced by technological advancements and unforeseen
circumstances. To address this challenge, many researchers have turned to stochas-
tic programming approaches [136, 137, 138]. However, these approaches often
demand extensive computational resources and expertise in operational research, a
skill set not always possessed by energy modellers.

With the aim to answer the following research question (1.4):

How to effectively include these technologies into a system modelling and
assess their impact?

This thesis section aims to explore an innovative methodology for medium-term
energy planning within a multi-energy carrier system, where besides the optimal
solution, also other alternatives are presented. The case study revolves around the
Marche Polytechnic University campus in Ancona, Italy, towards carbon neutrality,
specifically a 50% reduction in carbon emissions, while maintaining economic viability.

The university campus exemplifies the concept of a multi-carrier LEC, incorporating
various technologies such as PV systems, Combined Heat and Power units, gas-
fired boilers, and absorption and electric chillers, all aimed at fulfilling the energy
needs of its users. Building upon this foundational scenario, different combinations
of existing and new technologies, including electrolysers, fuel cells, heat pumps,
and electric/thermal/hydrogen storage, are explored for medium-term planning. The
objective is to ensure both environmental sustainability and economic feasibility
within the LEC.

1Some work described in this chapter has been previously published in [134] and [135]
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To tackle the challenges posed by oscillating investment costs, the Spatially-explicit
Practically Optimal REsultS (SPORES) mode within the Calliope framework [139] is
employed. This approach offers an alternative to stochastic programming, reducing
the computational complexity while maintaining effectiveness.

4.1.1. Calliope framework and scenario analysis

Calliope is an open-source multi-energy system modelling framework: it is user-
friendly and highly customisable [139]. Indeed, Calliope allows an evaluation of
energy systems with user-defined spatial and temporal resolutions, besides their
modelling at different levels using a scale-agnostic mathematical formulation based
on the power nodes modelling framework which has been proposed by Heussen
et. Al. [140]. Calliope executes many runs based on the same base model and
has a clear separation of the framework (code) and model (data). Calliope adopts a
bottom-up approach and a MILP optimisation problem formulation to minimize the
overall user-defined costs of the whole scenario (Eq. 4.1), which is the sum of each
technology cost considering multiple energy balance restrictions per each energy
carrier. The mathematical modelling of the energy systems and the energy balance
constraints can be found in [141].

min : z =
∑︂

loc,tech,k

(cost (loc : tech, cost = costk)) (4.1)

where loc, tech, k represents three levels of the model: (i) locations/sites, (ii) technol-
ogy, and (iii) type of costs, whereas loc : tech, cost = costkrefers to a specific cost
voice related to a specific technology installed in a determined location.

Calliope accepts types of costs, namely (i) investment costs related to the capac-
ity of the technology and (ii) Operation and Maintenance (O&M) costs, which are
expressed as a fraction of the investment cost or/and an annual capacity-based
cost. Furthermore, the depreciation rate is adopted to compare various technologies’
investments as defined in Eq. 4.2.

dr =
i · (i+ 1)lt

(1 + i)lt − 1
(4.2)

where dr is the depreciation rate, lt is the lifetime of the technology (expressed in
years), and i is the interest rate. The depreciation rate enables the comparison of
all the technologies considering the same equivalent year, different lifetimes, and
interest rates. Hence, the overall cost of a single technology considering a year of
reference is the sum of all the cost types:

Ctot = S · dr(1 +O&M%) + S ·O&Myear (4.3)

where S is the capacity of the technology and the design variable of the optimisation
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model. Regarding the constraints, all the energy carriers coming from the modelled
technologies are balanced at each time step and they are mainly divided into five
families of systems [141]:

1. Energy supply;

2. Energy demands;

3. Energy storage;

4. Energy transmission;

5. Energy conversion.

for the purpose of this work, as output data, Calliope provides the following ones:

• Costs of each technology (CAPEX and OPEX).

• Technologies size.

• Levelised Cost of Energy, which is calculated as the ratio between the costs for
the energy carrier production (CAPEX and OPEX) and the amount of energy
produced in the planning horizon.

Considering that the costs can assume different natures, as defined by the modeller,
it is possible to have different types of levelised costs. Precisely, in this work, there
are economic (€/kWh) and environmental levelised costs (g CO2 /kWh), where the
latter considers the achievement of 50% emissions reduction.

It is worth noting that the stochastic behaviour is not included in Calliope due
to its complexity and computational efforts; however, this can be evaluated using
other energy modelling tools such as Temoa [142]. Furthermore, it is possible to
obtain any number of optimum alternatives through SPORES mode [143] where not
only the best configuration is based on a predefined objective, but also any defined
number of alternatives within a range of optimal cost solutions are obtained. Each
alternative is called “spore”, whereas the range of acceptance is called “slack”: this
mode considers the variability of the costs and provides also a wider perspective of
the analysed scenario.

4.1.2. Three phases analysis and the case study

The analysis is divided into three phases, achieving a comprehensive overview of the
energy system scenarios, which is divided into (i) the Business As Usual (BAU) case,
where its environmental cost is used as input for an additional constraint to obtain
the (ii) optimal economic scenario for energy transition, where the expansion of the
existing energy system with sustainable technologies is considered. Furthermore, the
economical result from (ii) is the starting point to assess the (iii) optimal alternatives
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scenario, where each alternative is a case scenario with the same environmental
constraint but different economic costs, i.e., different technology types and/or sizes.

These three phases must be performed sequentially since each phase result is
used as input data for the following one. For each phase, both economic and environ-
mental costs are the results of the optimisation problem; indeed, the environmental
cost of the first phase (BAU) is used as an additional constraint for the second and
third phases.

CCO2 ≤ 0.5 · CCO2,BAU (4.4)

where CCO2 is the environmental cost of scenarios after the first phase, which must
be lower than 50% of the first phase’s one (CCO2,BAU ).

After the second phase (optimal economical solution), the economic costs are used
as input for the third phase (optimal alternatives) and updated at each alternative
based on Eq. 4.5 :

Ce,i ≤ Ce,0

[︃
i · (1 +m)

n

]︃
; i ∈ Z, i = 1, . . . n (4.5)

where Ce,0 is the economic cost from the second phase, while m and n are the
acceptance range and the number of optimal alternatives, respectively. The flowchart
of all three phases, which highlights the required input data and results together with
the additional constraints between phases, are reported in Fig. 4.1, Fig. 4.2, and
Fig. 4.3, respectively.

Figure 4.1.: First phase flowchart.

Thanks to the three-phase methodology, the expansion plan of the energy system
toward the carbon reduction mission of the LEC is well defined, thus providing a
differential comparison with the BAU scenario (first phase). Furthermore, the best
economic configuration (second phase), together with different alternatives (third
phase), provides a wide range of possible solutions, including the possibility of
assessing the correlation among the technologies.

However, despite the similarity, the proposed methodology is not stochastic, mean-
ing that it does not provide the statistical probability of each alternative. Indeed, the
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Figure 4.2.: Second phase flowchart.

Figure 4.3.: Third phase flowchart.

number of alternatives and the acceptance range are user-defined. Both parameters
directly impact the possible solutions; however, there is no proper guideline on how
to choose them besides the modeller’s experience.

The case study under investigation is the university campus of “Marche Polytechnic
University” (UNIVPM) located in Ancona (Italy). It is a medium-scale campus that
accounts for almost 17’000 people among students and academic, administrative,
and technical staff.

It hosts different faculties, namely Engineering, Agriculture, and Natural Sciences.
The UNIVPM campus is divided into several buildings that are dedicated to offices,
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classrooms, and laboratories that are shown in Fig. 4.4 and covers an area of around
31’000 m2. The UNIVPM campus is connected to the national electrical grid with a
medium voltage cabin, being a single node of connection with the local distribution
system operator, and one connection node for the natural gas network.

Figure 4.4.: UNIVPM Campus map, recreated with Geopandas [144].

The UNIVPM campus is configured as a multi-energy LEC where several types
of energy demands must be satisfied; in particular, there are (i) electrical energy
demands for office appliances, lighting, and laboratory equipment plus (ii) thermal
energy and cooling demands for the space heating and space cooling. The electrical
energy demand is satisfied by distributed energy resources and the national electrical
grid, while the thermal energy demand is fulfilled by natural gas boilers located in
the thermal power plant.

Currently, the energy technologies already installed in the UNIVPM campus are:

• A PV system with a peak power of 20 kWp.

• A CHP system, which is fed by the natural gas coming from the national
network, with a rated power of 575 kWel/610 kWth connected to the district
heating network. Its yearly average electrical and thermal efficiency are equal
to 0.415 and 0.44, respectively.

• Eight natural gas boilers, each of them having a rated capacity of 1 MWth and
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an average thermal efficiency of 0.91.

• Two absorption chillers with an overall capacity of 500 kWth and an average
efficiency of 0.80.

• Three electrical chillers with 900 kWth of total capacity and an average Coeffi-
cient Of Performance (COP) of 3.

In 2019, the overall electrical energy consumption was equal to 5.0 GWh with a
peak power of 1,368 MW as reported in Fig. 4.5a. The thermal energy demand was
related to space heating purposes only in the cold months; in particular, around 4.0
GWh of thermal energy was consumed with a power peak request of 4.4 MW, which
occurred on the 4th of January as reported in Fig. 4.5b. This power peak was due
to the “rebound effect” caused by powering up the space heating infrastructure that
remained inactive during the Christmas holidays; thus, a considerable amount of
heat was needed to restore the temperature set-point of the internal spaces. On the
other hand, the cooling energy demand was present only in July-September when
0.5 GWh of cooling power was consumed with a power peak of 1.3 MW as shown in
Fig. 4.5c.

(a) Electrical energy demand in the year 2019 (b) Thermal energy demand in the year 2019

(c) Cooling energy demand in the year 2019

Figure 4.5.: Multiple energy demands with hourly resolution.

The planning horizon is based on a typical year. The current technologies and the
new ones considered for the potential expansion plans sorted by the energy nature
are the following:
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• Energy supply: national electric network and natural gas grid.

• RES: PV systems whose input is the solar irradiance. The irradiance data,
which are adjusted with the panel efficiency, has been reconstructed with
RenewablesNinja [145] that is an online tool that allows to perform an estimation
of the PV system production based on the location of the installation site.

• Energy conversion technologies: CHP unit, natural gas boilers, PEM electrol-
yser (EZ), PEM fuel cell (FC), absorption chiller, electrical chiller (EC), and
heat pump (HP).

• Energy storage technologies: thermal and cooling energy storage, battery, and
hydrogen storage.

• A mixer is a conversion system that allows to have natural gas-hydrogen
blending. This energy carrier, named “blend”, can be used as input for the
CHP unit and boilers. It is worth noting that the mixer is a figurative conversion
system with no financial cost and with 100% efficiency since its function is to
supply hydrogen-natural gas blends.

The functional scheme of all the technologies is reported in Fig. 4.6. This scenario
presents six energy carriers and a RES plant, two energy supply technologies, eight
conversion technologies, four types of ESSs, and three kinds of energy demand.
Once the energy technologies involved in the baseline scenario have been estab-

Figure 4.6.: Functional scheme of the energy carriers and technologies involved in
all the scenarios

lished, their technical and cost parameters must be defined, which are reported in
the Appendix section C.1.
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4.1.3. Results and limitations of the approach

Baseline results

In the baseline scenario, which refers to the case with the technologies already
installed, the UNIVPM campus must withstand 1.39 M€ due to the import of the
energy carriers from the national supply, and therefore it has an annual carbon
emission of 2.4 tons. In this scenario, the UNIVPM campus is dependent on the
supply grids despite the DERs installed on site; however, the CHP unit plays a crucial
role in the energy demand fulfilment.

As reported in Fig. 4.7, the CHP unit does not only contribute to 38.5% of the
overall electricity production, but it also provides thermal energy that covers 54.8%
of the overall thermal energy demand. As for the cooling energy, both the absorption
and the electric chillers share almost the same percentage of energy production.

(a) Electrical energy (b) Thermal energy

(c) Cooling energy

Figure 4.7.: Energy share of the baseline scenario.

Both the monetary and environmental LCOEs are reported in Fig. 4.8, where both
thermal and electrical energy depend on the cost of natural gas and electricity supply,
in addition to the technical efficiencies of the CHP plant, which is equal to 0.33 and
0.25 €/kWh, respectively.
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Figure 4.8.: LCOE of the energy carriers in the baseline scenario

Economical optimal scenario

The economically optimal scenario is based on the constraint of reaching the pre-set
environmental goal, i.e., 50% of carbon emissions reduction in the multi-carrier LEC.
Such a goal is based on the baseline results; thus, the scenario must have annual
carbon emissions lower than 1.2 ktonCO2 . The best economic solution has been
reached by installing new energy technologies: positive results are obtained not
only from an environmental point of view (-50% of CO2 emissions) but also from
an economical point of view (-6%). Indeed, the LCOEs of every single carrier face
a significant decrease: such changes are due to the use of new technologies that
allow for drastically lower supply dependence. As can be noticed in Fig. 4.9, the
energy demand matrix experiences an important change compared to the baseline
scenario. For instance, the supply of both electricity and natural gas, which have
both considerable economic and environmental expenses, is drastically reduced
compared to the baseline scenario due to the use of newly installed technologies.
The natural gas supply value can be derived by the share of the CHP unit and natural
gas boilers for thermal energy production since they are only natural gas consumers.

Compared to the BAU case, the configuration of the technologies involved in
this scenario includes i) a wider expansion of the already installed technology (PV)
and ii) the inclusion of new ones like heat and cooling energy storage, fuel cell,
electrolyser, hydrogen storage, and heat pumps: this information can be found in
Fig. 4.10. Furthermore, the levelised cost of each energy carrier is notably dropped
compared to the baseline scenario (see Fig. 4.8), while the cooling energy is the
most expensive carrier with monetary and emission expenses of 2.5 €/kWh and 2.1
kgCO2 /kWh, respectively.
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(a) Electrical energy (b) Thermal energy

(c) Cooling energy

Figure 4.9.: Energy matrix of the optimal scenario.

Figure 4.10.: Technologies difference between the optimal and baseline scenario.

Optimal alternatives

Starting from the optimal scenario, twenty alternatives have been analysed. In
particular, the objective of the problem is still economically driven by the environmental
limitations and the acceptance range of the objective value (monetary costs), which
is set equal to 50% to consider the variability of the costs of the different systems.
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Figure 4.11.: LCOE of the optimal scenario

Each alternative can have different results of planning if they do not exceed 50% of
the economic costs addressed to the optimal scenario. The large acceptance range
is required to assess the large cost variability of the different energy systems; indeed,
these alternatives can assume a wide range of size values since the equipment has
not been installed yet and the objective is to find their optimal size, whereas the
existent technologies cannot vary.

Precisely, the technologies that are allowed to vary their size in the different
scenarios are:

• Electrolyser.

• Fuel cell.

• Hydrogen storage.

• Battery.

• Cooling energy storage.

• Heat pumps.

• Photovoltaic systems.

• Thermal energy storage.

• Mixer.

No solution has shown the use of a mixer, meaning that the blended energy carrier
is not economically feasible in the acceptance range due to the lower density of
hydrogen. Indeed, a 15% of natural gas-hydrogen blending volume leads to a 5.13%
emissions reduction as already stated in [59]. For this reason, rather than using
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the natural gas-hydrogen blend, the model chooses a more economically efficient
decarbonisation path using hydrogen or heat pumps. Among these alternatives, the
results regarding both the emissions and the economic levels are the same and equal
to 1.11 ktonCO2 and 1.96 M€, respectively, where the latter value corresponds exactly
to the maximum allowable cost that is 1.5 times higher than the one obtained in the
optimal scenario. However, the size of the technologies can change significantly
because of the high slack (50%).

The analysis of different alternatives allows us to assess the dependency among
the energy technologies, which is carried out through the Spearman correlation,
depicted in Fig. 4.12. It is a correlation indicator of the monotonic relationship for
two generic parameters (x and y), ranging from -1 to +1, where 0 stands for no
correlation. Correlations of -1 or +1 imply an exact monotonic relationship, while
positive correlations indicate that, as the parameter x increases, the parameter y
increases as well. On the contrary, negative correlations suggest that as x increases,
y decreases. The correlation indicator is considered significant only if the absolute

Figure 4.12.: Spearman correlation matrix of technologies from twenty optimal alter-
natives.

value of the correlation indicator exceeds the value of 0.4. Indeed, three hydrogen
technologies are strictly connected. The same behaviour occurs for the heat pumps
and thermal energy storage with a correlation of 0.9. Furthermore, the whole hy-
drogen infrastructure has a notable negative correlation with PV, heat pumps, and
thermal storage. The increase of the battery capacity does not only allow a slight
reduction of the PV system size but also the deployment of heat pumps and thermal
energy storage capacity as well.
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Approach’s potential and limitation

With the approach presented in this thesis section, a multi-carrier LEC planning
problem has been established and solved to achieve the goal of 50 % emissions
reduction without neglecting the crucial economic factor. Furthermore, twenty optimal
alternatives have also been analyzed.

Results show that, to reach the environmental goal, the energy matrixes face a
quite radical change due to the new technologies installation and, as a result, the
levelised costs of each energy carrier dropped.

The optimal alternative result assesses (i) the variability, (ii) the priority, and (iii)
the correlation among the new technologies. Indeed, to achieve the modelling goal,
the PV system capacity increases from 3 MWp to 6.3 MWp, and then battery, heat
pumps, and thermal storage are embedded since they are technologies downstream
of the PV system. The electricity surplus generated by the PV system can be either
stored in the battery or used in heat pumps to produce thermal energy. Lastly,
thermal storage has the role of absorbing the excess thermal energy from heat pump
production.

Moreover, different technical solutions of the expansion plan can be assessed:
they are highly dependent on the number of alternatives and the acceptance range,
and this represents a limitation of the presented methodology. Thus, the use of other
technologies has to be taken into account. The integration of stochastic aspects
(statistical distributions) is also not included in this approach. Therefore, this approach
is important for analysing possible energy cost fluctuation, thanks to the numerous
optimal alternatives, with a reasonable computational time and complexity. Achieving
a possible overview of a LEC to cut down the costs and be as much as possible
self-sufficient from an energy point of view.

4.2. Energy planning:Dynamic medium-term energy
planning

As already discussed in previous sections, different types of energy systems mod-
elling inputs are subjected to high variability like the investment cost, especially those
having a low TRL like hydrogen systems. In addition, the degradation rate of the
technology and the energy demands variability over the years are important aspects
to be aware of.

To deal with these uncertainties, Piao et al. [146] developed an optimization model
that considers the oscillation of the electricity demand in Shanghai, China. The
stochastic simulation-optimisation model not only managed to predict the electricity
demand perfectly, but it also allowed us to assess uncertainties such as interval
values and probability distributions. Mavrotas et al.[147] combined both MILP and
Montecarlo approaches to consider the deviation of financial parameters (e.g., interest
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rate). Several probability functions have been obtained and provided to the decision-
makers; as a result, the stochastic programming came out to be more time-consuming
due to the additional complexity given by the statistical behaviour of the model.

For the time being, methodology addressing multiple energy carriers at the level
of district energy communities and with multiple financial decision stages, which is
able to support the investment decisions coherent with the dynamic of the energy
market, the technology degradation, and the demand growth has not been deeply
investigated so far. Moreover, most of the energy modelling approaches assume
continuous design variables that require a customisation of the equipment, with a
consequent increase in costs or possible infeasible solutions. A more realistic, or
at least less expensive, design of energy systems should require the use of integer
decision design variables (e.g., power/capacity) able to capture the modular nature
of the equipment of real energy systems; indeed, equipment and technologies are
provided by manufacturers in distinct variants, each one with detailed specifications.
Thus with the aim to answer the research question (1.4):

How to include the dynamic variation and investment stages of parameters
in medium-term energy planning?

In this section, an approach for the integrated short and long-term (decades)
district-level planning of multi-energy carriers is introduced. In particular, a MILP-
based two-step iterative method dealing with multi-stage investment decisions over
the whole planning horizon of 30 years is proposed. Investment costs, energy
demands, and each time-dependent data are assumed over the whole planning
horizon. Such a time period is discretised into stages, one year each, and an
energy system expansion plan is computed for each stage. In the first step, a MILP
formulation is solved to set long-term investment decisions (the changes over time of
the energy system configuration), while the short-term decisions (e.g., the operations
on the technologies) are kept on a coarse-grained yearly scale. In the second
step, a modified version of the MILP formulation provides the best scheduling of
the deployed technologies in representative weeks of the time horizon, each one
discretized into intervals of one hour. The MILPs employed in the two steps interact
through linking inequalities, and they are embedded in an iterative scheme that leads
to good integrated long/short-term solutions.

The robustness and the computational efficiency of the proposed approach have
been tested and validated with data coming from the case study of the UNUIVPM
campus, same as the one presented in the previous section 4.1.2. Historical multi-
energy carrier demands have been used to compute optimal energy plans over 30
years in three different scenarios: i) BAU, ii) sector-coupling scenario, and, finally,
iii) hydrogen deployment, the latter being the most-likely energy scenario in the
future since, according to the European REPowerEU strategy targets, 20 million
tons of hydrogen will be needed by 2030, whose 10 million tons will be produced
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in Europe and the other 10 million tons will be imported. Then, this thesis section
proposes an efficient computational approach for obtaining effective energy plans in
the context of multi-energy carrier communities that consider dynamic multi-stage
investments, fluctuating parameters, and realistic technology design. In particular,
the main novelties of this study are:

1. Dynamic multi-stage investments: the proposed method takes considers the
entire energy system at each year of the planning horizon, thus allowing for
changes and expansions in response to ever-changing conditions. The objec-
tive function and operational conditions are the drivers of such adjustments.

2. Variation of parameters over time: time fluctuating parameters, such as tech-
nology degradation and energy demand growth, are embedded into the model
to ensure a more comprehensive and realistic energy planning process.

3. Realistic modular design: the proposed approach adopts integer selection vari-
ables typical of the modular design instead of continuous variables describing
the device features. Indeed, according to a more realistic representation of the
technology deployment, the selection variables model the choice of a suitable
device among a given number of available variants, each of them described by
manufacturers’ datasheets.

4. Two-step iterative approach: the solution of MILPs within the proposed iterative
scheme, on the one hand, trades off between the computational effort and the
solution accuracy while, on the other hand, it makes viable the integrated long-
and short-term planning over a wide time horizon of 30 years.

4.2.1. Methodology

The optimisation approach described in this work aims to find solutions for multi-
energy systems planning problems. A system layout is designed throughout the
whole planning horizon, and selected technologies operate with technical constraints
to fulfil the energy demand using different energy carriers. To explore multi-carrier
energy communities, electricity, gas, heat, and cooling are considered as energy
carriers along with water and hydrogen that are used only in the hydrogen deployment
scenario.

Decisions are taken to minimise the overall economic cost, which is composed of
investment, maintenance, and operative ones. A preliminary version of this approach
has been described in [148] where it has been tested and validated for the energy
planning of a residential district in the United States considering a multi-year horizon.
The methodology has been further developed and refined to:

• Make use of integer variables in the MILP approach for modelling investment
choices.
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• Includes the efficiency degradation of technologies over time and the discount
rate of expenditures at present values.

• improve the exchange of information between the long- and short-term optimi-
sation by means of refined constraints.

• Integrate hydrogen systems with the other considered technologies.

Dynamic variation of parameters

The proposed approach considers the variations of several parameters over a plan-
ning horizon of 30 years. This time horizon has been chosen to reach 2050 when
the net zero global targets should be achieved according to [3]. The following list
provides an overview of the parameters involved in this study and explains how they
have been chosen/considered:

• Energy demand, where according to [149] and in line with the European Com-
mission vision [150], the electricity one increases by 0.32 %/year due to the
electrification process, whereas other demands, e.g., natural gas, are kept
constant according to [151].

• Battery technology where both investment cost reduction and ageing phenom-
ena (e.g., capacity loss over time of 0.2%/day) have been modelled according
to [152].

• Efficiency degradation of technologies where all the involved technologies are
subjected to a 1%/year of energy efficiency degradation, except Photovoltaic
(PV) which has a degradation rate of 0.3%/year.

• Hydrogen technology whose investment cost is based on the outcomes of
[152].

The investment cost reduction of the involved technologies plays a key role in the
analyses carried out in this work since the objective of the model is economic-driven.
Fig. 4.13 shows that 2030 will be the turning point for the investment cost reduction
of most of the involved technologies according to [149, 150, 152].

MILP-based two-step scheme

Solution models for multi-energy systems planning problems can be broadly divided
into monolithic and decomposition-based approaches [153]. The former typically
aims at finding optimal, or nearly optimal, solutions by relying on a single and very
detailed description of the whole problem. However, since the related mathematical
formulations typically embed time-indexed (binary) variables and constraints, such
an approach rapidly becomes infeasible as the size of the problem increases due to
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(a) Cost forecast of BESS equipment available
in the 3 variants of 500-1500-2500 kW.

(b) Cost forecast of hydrogen technologies: electrol-
yser and fuel cell devices are considered in 3
available variants of size.

Figure 4.13.: Outlook of the trends of investment costs: BESS and hydrogen tech-
nologies.

a wide time horizon and/or a refined time discretisation. As an example, a planning
horizon of 10 years discretised in intervals of one hour corresponds to roughly
87600 hours. A formulation for a multi-energy system with 3 energy carriers and 20
technologies has at least 20× 87600 = 1752k variables and 3× 20× 87600 = 5256k

constraints. Clearly, MILP solvers may struggle in such instances of only a moderate-
size planning horizon. Decomposition-based techniques, as the two-step MILP
approach described in this work, overcome such limits by leveraging in several
possible ways the separation between the long-term decisions (investment stage)
and the short-term ones (operative stage), still providing good quality solutions.

While the general structure of the approach is reported in Fig. 4.14, the whole
mathematical formulation, and the algorithm are reported in detail in of appendix
section C.2.1. Furthermore, Tbl. C.7 in the Appendix reports the details of the
mathematical notation.

Figure 4.14.: Flowchart of the iterative MILP-based two-step approach
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Scenarios definition

While the case study is the same as the previous section one, namely the UNIVPM
Montedago campus (subsection 4.1.2), different scenarios have been analysed to
assess different future perspectives of the present case study from energy, environ-
mental, and economic points of view. However, it is worth recalling that the MILP
approach is economic-driven and does not optimise the environmental costs. The
analysis started with the BAU scenario, which was validated with real data and then
used as a reference scenario before carrying on the other two studied scenarios,
namely the Sector-coupling and the Hydrogen deployment. The former scenario
provides insights into the impact of PV and ESSs, whereas the latter is more focused
on the employment of hydrogen technologies along with their viability. In particular:

• BAU: this case consists of forecasting the energy planning based on the
BAU scenario from today over 30 years, meaning that the energy will be
mainly provided by the grid connection and already installed DERs. These
technologies will be replaced with the same technologies once their lifetime
will run out;

• Sector-coupling: in this scenario, a higher share of PV is introduced, which is
constrained by the available surface area. Additionally, different types of ESSs
are incorporated, including batteries and thermal energy storage, to mitigate PV
production fluctuations. Heat Pumps (HPs) are also included as cross-carrier
sector coupling solutions to enhance the performance of the overall system;

• Hydrogen deployment: this scenario provides insights into the economical
feasibility of the deployment of hydrogen technologies within the UNIVPM
campus considering its production only with water electrolysis. Various ELs
are available in the market such as Alkaline (ALK), PEM, Anion Exchange
Membrane, and Solid Oxides. Among them, the PEM technology has been
chosen for the proposed scenario due to its maturity and good performance
in managing part-load operating conditions, which is warmly suggested when
dealing with variable loads like in the present case study The produced hydro-
gen is then stored in a pressurised tank and subsequently used to generate
electricity through a PEM FC.

4.2.2. Results of the case study

In this section, the results of both the planning (long-term) and the operational (short-
term) perspective are reported and discussed. The assessment of the proposed
approach has been performed by an analysis of the three scenarios previously
mentioned. In particular, the capability of making multi-stage investments over the
entire planning horizon and achieving an energy balance by a refined operational
control has been evaluated.
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Regarding the computational aspects, the MILP-based two-step algorithm was
implemented with AMPL (version 20221013, MSVC 19.29.30146.0, 64-bit) and
solved by Cplex (version 12.10.0) with an integrality gap relative tolerance set to
2 · 10−3 in the first step and to the default (i.e., 10-4) in the second step. Each MILP
was solved optimally within the time limit of 600 seconds. Experiments were carried
out on an Intel® CoreTM i7-7500U 2.90 GHz with 16GB RAM.

Planning results and scenarios comparison

Numerical results of all three scenarios are presented. Where Fig. 4.15 reports the
results of the BAU scenario, highlighting both the economic and environmental LCOE
of each energy carrier. In particular, cooling energy is expensive in both economic and
environmental terms since its demand is lower than other involved energy carriers.
The economic LCOE of heat is higher than that of the electricity because it also
includes the costs of locally installed equipment for energy conversion,while the
electricity can be obtained from the national grid. However, the environmental LCOE
of heat is lower because of (i) the high efficiency of energy conversion systems
and (ii) the lower environmental impact of primary sources for its production. The
investment plan over the entire planning horizon is reported in Fig. 4.15b, where all
the technologies are deployed in the first year and replaced once their lifetime runs
out. The investment decisions beyond the 1st year have been strictly considered to
satisfy the technical constraints rather than pursuing the economic strategies.

(a) Economical and environmental
LCOE.

(b) Investment decisions: no introduction of new technolo-
gies, but only replacement of the ones deployed at the
first year once their lifetime runs out.

Figure 4.15.: BAU: levelised costs and investment stages

As for the Sector-coupling scenario, the maximum PV capacity is limited by the
rooftop area, and it reaches a maximum value of 3300 kWp. The optimal investment
(actually replacement) plan considers a high share of PV and different types of BESS
solutions, as reported in Fig. 4.16 where the economic-driven objective has been
chosen to adopt the highest deployable PV installation capacity. Furthermore, the
whole energy system fleet supports more diversified technologies to cover the energy
demand; among them, different types of environmentally beneficial technologies have
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been selected such as HPs with sizes of 270 and 380 kW together with electric and
cooling/thermal energy storage. Multi-stage investments have been also highlighted
in Fig. 4.16; indeed, different changes occurred in the technologies deployment
during the planning horizon. As evidence, not all the technologies deployed in the
first year are replenished when their lifetime runs out. Some of these technologies
are replaced with different ones that can accommodate the required energy demands
together with the investment of battery at the 11th year, which is the year 2031 when
its investment cost is significantly lower than it was in the first year.

Figure 4.16.: Sector coupling scenario: multi-stage investment decisions.

Finally, The results of the Hydrogen deployment scenario are similar to those of the
Sector-coupling one (see Fig. 4.16). The hydrogen infrastructure is deployed in the
10th year (2030) when its cost will reach a rather low relative level. In particular, the
whole hydrogen infrastructure, namely PEM EZ, hydrogen storage (SH), and PEM
FC, are deployed starting at 10th year as shown in Fig. 4.17, when their investment
costs will reach a threshold value that is economically and environmental convenient.
Furthermore, both EZ and FC must be re-bought every 10 years because of their 10-
year lifetime. A key behaviour proving the model capability of capturing the dynamic
conditions over the years is the decision of progressively increase the number of 500
kW ESSs devices to take advantage from the technology cost reduction and, at the
same time, to pursue a more sustainable impact of the system since the copies of
the natural gas boilers are contextually reduced (see Fig. 4.13a.)

The differential assessment has been done on the BAU benchmark scenario,
using LCOEs as indicators, while the different investment decisions have been
previously reported. Indeed, the economic levelised cost of electricity in the sector-
coupling scenario grows by 43% compared to the BAU case, while the levelised cost
of both heat and cooling energy reduces by 61 and 73%, respectively, thanks to
the presence of Cold and Heat Thermal Energy Storage (CTES and HTES), see
Figure 4.18 and Table 4.1. Furthermore, such a scenario, which introduces new and
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Figure 4.17.: Hydrogen deployment scenario: multi-stage investment decisions

sustainable solutions, has a positive impact from an environmental point of view,
reaching a minimum environmental levelised cost reduction of 51% per each involved
energy carrier. A higher reduction of the carbon footprint (80% compared to the
BAU scenario) is reached by the hydrogen deployment scenario since the hydrogen
technologies integration is directly affected by the electricity. On the other hand, it
leads to an increase of the economic cost by 89%.

(a) Economical LCOEs (b) Environmental LCOEs

Figure 4.18.: Scenarios comparison: LCOEs of different energy carriers.

Fig. 4.19 reports the overall costs of all the analysed scenarios over the whole
planning horizon. It is observed that the hydrogen deployment scenario exhibits
the minimum economic cost due to its higher independence from the grid. As a
result, expenses related to grid imports are minimised. As regards the environmental
benefits, the high share of PV and BESS integration together with the hydrogen
deployment scenarios have similar effects, with the latter having a slightly further re-
duction; indeed, both of them have reached the maximum decarbonisation allowable
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Table 4.1.: Scenarios analysis: LCOEs variation
Scenarios Energy carrier Values Variation (%)
Economic LCOE (€/kWh)

BAU
Cooling 0.64 n.a.
Electricity 0.22 n.a.
Heat 0.37 n.a.

Sector coupling
Cooling 0.17 -73
Electricity 0.31 +43
Heat 0.15 -61

Hydrogen deployment
Cooling 0.18 -72
Electricity 0.41 +89
Heat 0.20 -47

Environmental LCOE (kgCO2 /kWh)

BAU
Cooling 4.72 n.a.
Electricity 1.06 n.a.
Heat 0.54 n.a.

Sector coupling
Cooling 1.89 -60
Electricity 0.23 -79
Heat 0.27 -51

Hydrogen deployment
Cooling 2.41 -49
Electricity 0.21 -80
Heat 0.26 -52

level that is constrained by the available surface for the PV.

Figure 4.19.: Scenarios comparison with overall costs of the entire planning.

116



4.2. Energy planning:Dynamic medium-term energy planning

Operational results

Results on various aspects of the case study operation’s planning, such as hourly
scheduling and energy balance, are illustrated in the following figures. For the sake
of clarity and conciseness, only operational decisions of a day randomly selected
are reported, instead of the complete 30-year span.

Figure 4.20 displays the hourly energy balance for all the energy carriers being
examined. Where all the energy carriers maintain a flawless balance, demonstrating
the validity and robustness of the mathematical constraints of the model.

(a) Electricity energy balance (b) Heat energy balance

(c) Gas energy balance (d) Cooling energy balance

Figure 4.20.: Operations’ results. To illustrate energy balances during the scheduling.

Load distribution over technological devices

Figure 4.21 shows how the loads of the conversion and storage systems are dis-
tributed among the discrete set of available variants of each technological device.
The mathematical model does not exhibit any preference for prioritizing the opera-
tions of one variant over those of others. Instead, the load distribution is scheduled
randomly, while still adhering to all constraints, including size limitations.
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(a) Conversion systems (CHPs production): No
preference for any specific copies over oth-
ers is exhibited. However, a slight rotating
behaviour among copies can be observed
between 2:00 and 7:00. It is worth noting
that this behaviour is not explicitly accounted
for in the mathematical model.

(b) Storage systems (HTES): No preferences for
one copy over another can be observed.

Figure 4.21.: Examples of load distribution among the same technologies. Data
taken from the Hydrogen deployment scenario, year 1, week 2.

4.2.3. Methodology’s potential and limitation

This thesis section has the objective of answering the research question (1.4):

How to include the dynamic variation and investment stages of parameters
in medium-term energy planning?

With this perspective, a MILP-based two-step iterative approach for medium/long-
term (30 years) multi-energy systems planning is presented. The approach suggests
multi-stage investment decisions by taking into account the dynamic of different
parameters throughout the planning horizon, as well as the modular design, and
hence the availability of devices in a limited number of variants, of the involved
technologies.

In the first step of the algorithm, each year of the planning horizon is considered
as an investment stage where the new technologies procurement can be applied. In
the second step, the operations of the designed system are then scheduled on an
hourly basis along the whole planning horizon. The optimisation is devoted to the
overall minimisation of economic costs. Such a methodology has been applied and
validated using the same case study of the previous section’s study (section 4.1).
Yet, with significant differences in methodology, such as:

• All 30 years are considered and analysed in this approach, rather than using a
typical year planning;

• Multiple investment stages, one per each year;

• Dynamic variation over the planning horizon.
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The results obtained on three different scenarios have been analysed to gain
an extended assessment of the model’s capabilities and limitations under different
conditions. Considering the overall planning horizon (30 years), the BAU case
needs 40.95 million € of financial investment with a carbon footprint of 69.03 kton
CO2, while the two other analysed scenarios, namely the Sector-coupling and the
Hydrogen deployment, have significantly reduced both economic and environmental
costs, namely 24.98 million € and 45.34 ktonCO2 for the former and 15.66 million €
and 43.81 ktonCO2 for the latter. In particular, a different study on the same case
(Presented in the previous section 4.1), where however the planning horizon is
traditionally modelled by representative year, led to comparable results of LCOEs for
the BAU scenario (0.22 €/kWh vs. 0.25 €/kWh obtained in section 4.1 (Fig. 4.8) for
the electricity and 0.37 €/kWh vs. 0.33 €/kWh for the heat energy), so validating the
proposed approach.

Indeed, the results show that it has not only captured different stages of invest-
ments, but it also handled well all dynamic variations of the involved parameters,e.g.,
an increasing number of ESSs devices are purchased over the years in the hydrogen
deployment scenario, according to their investment costs reduction. Furthermore,
hydrogen-related technologies become economically viable by acting as a cross-
sector coupling solution in the 10th year based on the forecast of the investment cost
reduction. Additional results on the operational side, such as the dynamic balance
of all the energy carriers and the load distribution among the technologies, show
the effectiveness of the method in capturing the expected behaviours of the energy
system.

On the computational side, the proposed methodology efficiently provided opti-
mised solutions in reasonable running time by leveraging the separations among
investment and operation scheduling stages.

However, contrary to all-encompassing single-step MILPs, the two-step algorithm
may lose effectiveness because of the heuristic decomposition. Moreover, parame-
ters reported in Appendix section C.2.3 (C.23)-(C.24), are partially sensitive to the
case study features and hence require accurate tuning to allow the computation of
high-quality solutions. Further investigations on the algorithmic side are needed to
identify the settings of the well-performing parameters, possibly based on inference
and/or learning. On the modelling side, several aspects of the energy systems
have been simplified or neglected. Also input data, e.g., costs and demands, which
clearly are neither deterministic nor completely predictable, require a more precise
estimation and/or an explicit handling by, e.g., stochastic programming, which can
be investigated in future studies.

Another promising direction lies in linear programming decomposition schemes
(e.g., Dantzig-Wolfe decomposition, Benders decomposition) that can provide useful
duality gaps and optimal-guaranteed solutions while keeping the computational
viability.

Other aspects, like a detailed description of the environmental impact, the balancing
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of the same technologies’ loads (and therefore prioritise one copy over another) and
among the loads of interconnected multi-energy systems can be addressed as future
research directions.

120



Part III.

Energy storage details into
systems approach: case studies

121





Chapter 5.

Bi-level interconnection case studies

Today’s scientists have substituted mathematics for
experiments, and they wander off through equation
after equation and eventually build a structure that has
no relation to reality.

Nikola Tesla

Energy system analysis is a multidisciplinary field encompassing the examination
of energy systems and their various components, behaviours, and interactions.
This area of study bridges the disciplines of engineering and economics, offering
valuable insights into the complex world of energy. Energy system analysis operates
at different tiers, with a primary distinction between technology-level and system-
level analysis. Technology level analysis involves the study of individual energy
technologies, such as PV panels, wind turbines, and batteries, and their performance
characteristics, costs, and environmental impacts [154, 155], as discussed in Part I
of this thesis. System-level analysis, on the other hand, involves the study of entire
energy systems, including their components, such as power plants, transmission
lines, and distribution networks, and their interactions, such as energy flows, demand
patterns, and environmental impacts, already discussed in Part II.

Energy system analysis is important for understanding the complex interactions
between different components of energy systems and for identifying opportunities for
improving their performance, reducing their costs, and mitigating their environmental
impacts. It is also important for informing policy decisions related to energy, such
as the development of renewable energy targets, the design of energy efficiency
programs, and the regulation of energy markets [156].

Both levels of analysis, technology, and system, offer unique insights, as depicted
in Fig. 5.1, complementing each other. However, they are often treated as distinct
studies. While technology-level analysis investigates the physical details of energy
systems, exploring multi-physical phenomena, system-level analysis emphasizes
the interconnections and synergies among various systems, sometimes relying on
simplified linear equations.

The characteristics details at the technology level, owing to their nonlinear be-
haviour, cannot be integrated into system-level analyses, typically characterized
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by linear models. Nevertheless, leveraging the comprehensive analysis previously
conducted, it becomes feasible to capture and incorporate these nonlinear effects,
instead of directly including multi-physical details into the system-level models, often
after linearisation. This approach serves to mitigate the complexity of the bi-level
interconnection and has been embraced by other researchers in the field [157].

The preceding chapters of this thesis have delved into both levels of analysis, with
a particular focus on energy storage technology. Nonetheless, these analyses have
largely operated in isolation, and this chapter aims to bridge this gap.

Furthermore, it is essential that the applications are grounded in real-world case
studies, amplifying the practical relevance and usability of the thesis work. This
chapter introduces two distinct case studies. Each case study provides a unique
vantage point on the integration of technology details into the broader system level,
all while pursuing specific research objectives. With the aim to answer the following
research questions (1.4):

• How to deal with fluctuation in power supply for Power-to-Hydrogen?

• Which is the best solution for long-term storage?

In the initial section of this chapter, the coupling of hydrogen production technology
(already described in Chapter 2) and its related auxiliary systems, with an intermittent
renewable source, is investigated 1. The second section, on the other hand, has the
objective of including the degradation effects of the Li-ion batteries, to properly com-
pare their performance with the hydrogen storage solutions, dedicated to seasonal
applications, in the context of the Local Energy Communities2.

Figure 5.1.: Approach adopted for connecting two levels of energy systems analysis.

1Work carried out in collaboration with DTU colleagues, during the visiting period in DTU Energy,
Lyngby in Denmark, 2022.

2Some of the work described in this chapter has been previously published in [158, 159].
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5.1. Case study 1: Wind turbine design optimisation for
hydrogen production

A year ago (March 2022), the European Council agreed to phase out dependence
on Russian natural gas and become independent before 2030. Each year, the EU
uses 10 Mt of natural gas to produce hydrogen for fertilizers, refining, and other
chemical applications [160]. The main alternative to "grey" hydrogen from natural gas
is "green" hydrogen produced using electrolysis and zero-carbon electricity. Green
hydrogen may be a path for the EU to reduce import dependence and support the
green transition. As green hydrogen requires about 55 kWh/kgH2 , it also represents
a potential 120 GW market for the wind industry (at a capacity factor of 0.5) just for
this use case alone.

While placing electrolysers and Power-to-X plants on land provides the highest
possible integration with other energy sources [161], placing them offshore close to
the power source may still be an advantage. The main reason is that electrical cables
are far more expensive than hydrogen pipes, and energy transportation becomes
cheaper. [162] show that importing hydrogen to Germany is more affordable than
producing it locally. This will be even more evident with the establishment of the
European Hydrogen Backbone [163], which will provide a cost-effective option for
long-distance hydrogen transport.

The costs and constraints of electrical infrastructure determine the boundary con-
ditions for today’s offshore wind turbine design. Changing the energy transportation
to hydrogen eliminates electrical components and power conversion losses of tradi-
tional grid-connected electrolyser facilities and potentially allows for a simpler and
cheaper wind turbine design. On a Hydrogen Wind Turbine (HWT), the electrolysis
stack is integrated with the WT generator and operates off-grid. As the H2 production
requires water as feedstock, it is natural to think of offshore concepts that include a
seawater desalination system [164, 165].

One of the main design choices for an HWT is the rating of the electrolysis stack
(Pe) compared to the generator (Pg). Since the efficiency of the considered alkaline
electrolyser stack drops at high loads [166], [167] suggest that it may be beneficial to
"oversize" the electrolyser compared to the generator. They find that an electrolyzer
rating 20% higher than the generator results in a drop of the LCOH of about 5%.
However, the oversizing ratio is sensitive to the efficiency curve of the electrolysis
system, which is not explicitly modelled by [167]. If the generator output exceeds
the electrolyser capacity, it may be curtailed. Having battery storage can reduce the
curtailment, but its size needs to be chosen wisely to minimise the LCOH.

Another critical parameter in the HWT design is the specific power, which is the
ratio of the rated power to the swept area. Modern wind turbines have a relatively
low specific power, designed to reach maximum rated power at relatively low wind
speeds to maximise the capacity factor. However, [168] argues that an HWT should
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have a high specific power to increase electrolyser efficiency and lower the LCOH.
This thesis section, therefore presents a first case study of integrating different

scales of the energy system analysis, with the objective of dealing with the following
research question:

How to deal with fluctuation in power supply for Power-to-Hydrogen?

In particular, the design of an HWT is discussed. where the first conceptualise
an electrolyser system for the IEA 10 MW reference wind turbine [169]. Next, the
evaluation of how the size of the alkaline electrolysis stack and the battery would
impact the LCOH. Finally, a parametric study of the main wind turbine design param-
eters (specific power) is conducted to investigate the potential of reducing LCOH
by optimising the wind turbine design. Such a study tries to answer the following
specific questions:

1. How should an electrolyser system for an HWT be designed?

2. Does hydrogen production change the boundary conditions for wind turbine
design?

3. How does changing the main HWT components affect the LCOH?

5.1.1. The HWT model

The HWT modelling framework consists of three main elements:

1. The wind climate,

2. The wind turbine (WT),

3. and the electrolysis system (ES).

A battery is also included to provide the grid-forming service for off-grid operation
and to reduce curtailment when WT power exceeds the electrolyser rating. Each
subsystem provides the input for the next subsystem until pressurised H2 is finally
output (Figure 5.2). As the paper focuses on the design of an isolated HWT, it does
not consider the integration with the remaining energy system. The H2 production is,
therefore, not constricted to follow a demand profile and is simply exported when
produced. Consequently, costs and losses due to wind farm infrastructure, H2
transport and storage are not considered. The following sections describe each of
the subsystems, followed by a section that describes how we evaluate the system’s
performance.
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Figure 5.2.: The subsystems of HWT model: the wind climate, the wind turbine with
an integrated battery, and the electrolysis system.

The Wind climate

The location of the planned energy island in the North Sea in Denmark was selected
to get a realistic wind climate for the simulations. The hub-height wind climate for
2021 was estimated using the ERA5-GWA2 method [170] with the resulting all-
sector Weibull parameters given in Table 5.1. The Weibull distribution represents
the frequency distribution of wind speed,

f(v) =
k
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)︂k−1
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−
(︂ v

A

)︂k
)︃

(5.1)

where f(v) is the frequency of occurrence of the wind speed v. The wind climate
is assumed to represent the lifetime average conditions of the wind turbine, e.i.
no long-term correction of the wind climate has been performed. To estimate the
wind climate for varying hub heights, the Weibull-A is a scaled parameter using
a logarithmic velocity profile with a roughness length of 0.0002 m. The Weibull-k
parameter and the air density are kept fixed.

Table 5.1.: Parameters of the reference wind climate

Vref Reference mean wind speed 9.78 m/s
zref Reference height 119 m
k Weibull shape parameter 2.28 -
A Weibull scale parameter 11.0 m/s
z0 Roughness length 0.0002 m
ρ Air density 1.225 kg/m3

Wind turbine

The IEA 10-MW off-shore WT [169] is used as a reference wind turbine (RWT). It has
a rated power of 10 MW, a rotor diameter of 198.0 m, and a hub height of 119.0 m
giving it a specific power of SP = 325 W/m2. To evaluate the effects of optimising the
main WT parameters (Tbl. 5.2), we model the wind turbine as a simple parametric
power curve. The power in the full load region is equal to the rated power, while we
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use the power equation in the partial load region, assuming optimal power coefficient
(Cp=0.49):

P (V ) =
1

2
ρV 3Cp · π

(︃
D

2

)︃2

(5.2)

Knowing the wind turbine power curve and the wind climate, the gross Annual
Energy production (AEP) and the capacity factor (Cf ) can be calculated. Since this
work only analyses a single wind turbine, the wake effects are ignored, and the RWT
has a high capacity factor of 0.628 and an AEP of 55.0 GWh.

The electrical system for an HWT is very different to traditional WTs. The WT
generator and a battery are connected to a DC bus through separate converters.
The primary role of the battery is to provide grid-forming services necessary for
the HWT to operate in off-grid/island mode [171]. However, the battery also serves
as a reserve for "cold" upstarts and reduces curtailment in situations where power
production exceeds the rating of the electrolysis system. The optimal battery capacity
(Eb) is investigated in the following subsection 5.1.3.
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Figure 5.3.: The power curve of the reference wind turbine

Knowing the wind turbine power curve P (v) and the Weibull parameters, the
Annual Energy production (AEP) can be calculated:

AEP =

∫︂ ∞

0
P (v)f(v)dv (5.3)

The wind turbine capacity factor (Cf ) is the ratio of the actual energy production
to the theoretical maximum production:
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Table 5.2.: The main parameters of the reference wind turbine including the design
parameters.

Vrated Rated wind speed 11 ms-1

Vin Cut-in wind speed 4 ms-1

Vout Cut-out wind speed 25 ms-1

Cp Optimal power coefficient 0.49 -
Ωr Rated rotational speed 8.68 rpm
Design parameters:
Pg Generator rating 10 MW
D Rotor diameter 198 m
HH Hub height 119 m

Cf =
AEP

Prated × 8760
(5.4)

Since the current work only analyses a single wind turbine and wake effects are
ignored, the RWT has a high capacity factor of 0.628 and an AEP of 55.0 GWh.

An electrical system for HWT is proposed, which is very different to traditional WTs.
The WT generator is connected to an AC/DC converter and a battery is connected
to the DC bus through a separate DC/DC converter. The primary role of the DC/DC
converter to which the battery is connected is to provide grid-forming services, which
is essentially required since the external grid is unavailable. The battery also serves
as a reserve for “cold” upstarts and to reduce curtailment in situations where power
production exceeds the rating of the electrolysis system. For the RWT, a battery
capacity of 1.25 MWh is determined by minimising the LCOH. When optimising the
WT design parameters the battery capacity is chosen as Eb = 0.125Pg.

The AC/DC converter is used to control the active power output of the WT and
helps meet the dynamic requirements of the electrolysis system. A super-capacitor
could have been connected to the system to mitigate the high-frequency fluctuations
from the wind as there is a risk that the fluctuating power will negatively influence
hydrogen production and result in a shorter lifetime of the electrolyser system [164].
This work focuses on how the fluctuating power influences hydrogen production
and the potential lifetime reduction has not been analysed. To analyse the most
severe case the super-capacitor has been omitted. Instead, a 1-second resolution
WT generator time series was simulated as described by [172] and used directly as
input for the electrolyser system without applying any low-pass super-capacitor filter.

Electrolysis system

Based on the model developed and discussed in thesis section 2.4, an alkaline
electrolysis stack operating at nominal conditions of 30% wt. KOH, 80 °C, 7 bar, is
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adopted.

Once produced, hydrogen is separated from the electrolyte and compressed in
a multi-stage process to a pipeline, which is kept pressurized at 70 bar [67]. A
desalination unit (based on the reverse osmosis process) constantly replaces the
water consumed in the electrolyser and the cooling towers. The proposed design for
the electrolysis system is illustrated in Fig. 5.4 and the main modelling assumptions
are summarized in Tbl. D.1, reported in a dedicated Appendix section.
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Figure 5.4.: Flowsheet of the electrolysis system

It is important to highlight that the electrolysis system does not follow a H2-demand
profile, but it is assumed that all hydrogen produced is purchased by an off-taker
and, therefore, hydrogen storage and onshore transport are not considered. The
thermodynamic model for the electrolysis system was developed using Python with
the libraries Numpy [173] and Scipy [174], and the system is solved using a MILP
optimisation algorithm using Julia with the JuMP modelling framework [175] and the
Gurobi solver [176].

The cell voltage model is based on the equations proposed by Ulleberg [73], which
were modified to reduce the number of calibrated parameters (i.e. from 6 down to 4)
and to be more physically consistent, previously described in section 2.4.1.

The fitted values and the model results compared with experimental data ([73]) can
be observed in Tbl. 5.3 and Fig. 5.5, respectively. It can be observed that despite
having only four parameters, the model can replicate the experimental values very
closely (R2 = 0.9967) . Moreover, the model results are as fitted as those reported
by [73], which used 6 parameters for calibration. A similar procedure is made for the
Faraday efficiency, in which the parameters f1 and f2 were re-calibrated to assure
their accuracy (R2 = 0.9989). The comparison with experimental data and fitted
values are shown in Fig. 5.6 and Tbl. 5.4, respectively.
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Table 5.3.: Parameters fitted for experimental data reported by [73].
Parameter Value Unit
δel 0.6637 cm
α 0.17255 -
k 1.0267 · 10-4 A/cm2

Ea 44’324 J/mol K
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Figure 5.5.: Comparison of cell voltage model results with experimental data reported
by [73].

Table 5.4.: Faraday efficiency parameters fitted for experimental data reported by
[73].

Parameter Value Unit
f1 0.9945 -
f2 1.015·10−4 A2/cm4

5.1.2. System evaluation

To evaluate the HWT performance for different configurations of electrolyser rating,
generator rating, and rotor diameter, different key performance indicators (KPI) are
defined.

Energy curtailment:

If the power supply from the wind turbine generator exceeds the rating of the electrol-
ysis system, the oversupply can charge the battery; otherwise, it must be curtailed.
Energy curtailment may also occur when the power generation is less than the
minimum power load of the AEC stack (15% of Pe). Curtailment is presented as a
fraction of AEP, where Ec is the annual energy curtailed:
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Figure 5.6.: Comparison of Faraday efficiency model results with experimental data
reported by [73].

ϕc =
Ec

AEP
(5.5)

Energy efficiency:

The overall energy efficiency of the HWT system compares the energy content of
the produced H2 to the total energy supplied by the WT. LHV is the lower heating
value of H2 (33.33 kWh/kg):

η =
AHP × LHV

AEP
(5.6)

Levelised cost of hydrogen:

The LCOH measures the H2 cost per unit H2 produced:

LCOH =

∑︁t
i=1 (CAPEX +OPEX) /(1 + r)i∑︁t

i=1AHP/(1 + r)i
, (5.7)

where, CAPEX is the capital cost and OPEX is the yearly operational cost, t is the
project duration (20 years), and r (8%) is the discount rate.

To evaluate the costs, The DTUs off-shore wind farm cost model [177] implemented
in the TOPFARM Python package [178]. The model includes the CAPEX and OPEX
of the wind turbine, foundation, and balance of the plant (BOP). For this work, simple
cost models for the electrolyser and battery were added ( reported in the appendix
chapter, in Tbl. D.2). The model inputs include the wind climate (Table 5.1), the WT
configuration (Tbl. 5.2), and the BOP (water depth, distance to shore, number of
turbines). The analysis aims to investigate the trade-offs between efficiency and costs
for different design choices rather than precisely estimating the cost of hydrogen.
Thus, the AHP and LCOH are normalized relative to the results of a base case
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condition: the reference wind turbine with a 10 MW electrolysis stack system and no
battery support. The normalized results are calculated as described in Eqs. (5.8)
and (5.9).

AHPn =
AHP

AHPbase
(5.8)

LCOHn =
LCOH

LCOHbase
(5.9)

5.1.3. Results of the case study

Optimisation of the electrolysis system

To determine the optimal size of the electrolysis system, the KPIs (Subsection 5.1.2)
for different ratings of the electrolysis stack are assessed while keeping wind climate
(Tbl. 5.1) and the WT configuration (Table 5.2) fixed. The results in Figure 5.7a
indicate that the electrolysis system’s optimal size depends on the chosen KPI. For
instance, a minimal LCOHn = 0.987 may be obtained for a 9.5 MW stack size,
although lower curtailment (1.7% for 9.7 MW) and higher AHPn (1.019 for 15.0
MW) can be achieved for larger systems. The relationship between the cost of the
electrolysis system and the WT determines the optimum. Even though the AHP
increases for larger electrolysis systems, the cost becomes too high as the design
surpasses the minimal curtailment point. A similar trend is observed for different
battery capacities (Figure 5.7b), where the minimum LCOH is estimated to be 97.6%
of the base case for a storage capacity of 1.25 MWh and stack size of 9.5 MW.

Optimisation of the wind turbine

This section explores the optimal wind turbine design for hydrogen production for the
electrolysis/battery configuration derived from the previous section. The sensitivity
of the wind turbine production and cost to the main top-level design parameters
is studied. The main parameters comprise the rated power, rotor diameter and
hub height. The range of parameters explored corresponds to realistic modern
offshore wind turbine designs, although certain combinations result in infeasible
designs. When optimising the main WT parameters, the electrolyser rating is set to
Pe = 0.9Pg, and the battery capacity is set to Eb = 0.125Pg. The parameters and
their range are shown in Table 5.5.

In Fig. 5.8 left, the resulting LCOH is shown as a function of rated power and rotor
diameter for a hub height of 110 m. The optimal design gives the minimum LCOH
of 1.48 €/kg, for Pg = 11 MW, D = 240 m and HH = 110 m. Compared to the initial
design of the RWT (Pg = 10 MW, D = 198 m and HH = 119 m) with an LCOH of
1.56 €/kg, this results in a 5% LCOH reduction. It is seen that, for the given design
assumptions, the LCOH-optimised design moves towards a larger rotor. The specific
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Figure 5.7.: Impact of the electrolysis stack rating (upper) and battery capacity (lower)
on AHP, curtailment and LCOH. The battery capacity and battery rating
are assumed to be the same.

power for the LCOH-optimised WT is SP = 243W/m2 compared to SP = 325W/m2

of the RWT.

It is interesting to compare the optimal design trends with the ones for a traditional
LCOE-optimised wind turbine. In Figure 5.8 right, the resulting LCOE is shown as
a function of rated power and rotor diameter for a hub height of 90 m. The optimal
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Table 5.5.: Range of wind turbine design parameters
Parameter Range
Rated power 5:2:15 [MW]
Diameter 130:10:240 [m]
Hub height 90:20:150 [m]

Figure 5.8.: Left: LCOH as a function of rated power and rotor diameter for a hub
height of 110m. The initial (RWT) and optimal (min LCOH) points are
also indicated. Right: LCOE as a function of rated power and rotor
diameter for a hub height of 90m.

design gives the minimum LCOE of 0.0129€/kW for Pg = 15 MW, D = 240 m and
HH = 90 m. Although this design combination is infeasible due to the low hub height,
results are comparable to the closest feasible design for a hub height of 130 m.
Compared to the initial design of the RWT (Pg = 10 MW, D = 198 m and HH = 119
m) with an LCOE of 0.0144€/kW, this results in a 10% LCOE reduction.

The specific power for the LCOE-optimised WT (SP = 332 W/m2) is close to the
one of the RWT (SP = 325 W/m2), indicating that the RWT is an LCOE-optimised
design, as expected. For the given design assumptions, the LCOH-optimised design
moves towards a smaller generator than the LCOE-optimised design. This indicates
that HWTs should have lower specific power (SP ≈ 240 W/m2 ) than traditional
LCOE-driven WT designs (SP ≈ 330 W/m2). This is different from [168], who argues
that an HWT should have a high specific power to increase electrolyser efficiency
and lower the LCOH.

5.1.4. Approach’s potential and case study’s results

This study represents a milestone in the interconnection of both system and technology-
level analysis of the energy systems. It includes:

• The design of different energy systems, including an optimisation problem,
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which is a typical system approach,

• Alkaline electrolyser operational details, including the non-linear behaviour of
the polarisation curves.

These efforts have been instrumental in addressing the research question 1.4:

How to deal with fluctuation in power supply for Power-to-Hydrogen?

It’s imperative to highlight that this investigation owes its depth and effectiveness
to prior exhaustive technology-level studies (Section 2.4). These earlier studies have
provided invaluable insights into:

1. Dynamic response due to input fluctuations

2. Non-linearities due to multi-physical phenomena.

Case study’s conclusion

Specifically, this work investigated how an off-shore wind turbine designed for hydro-
gen production differs from a traditional WT. The analysis is based on a modelling
framework that can estimate the hydrogen production and cost of an HWT for a given
wind climate. The work includes a detailed thermodynamic model of the electrolysis
system that can calculate the system efficiency at different stack loads. Using the IEA
10 MW WT as a reference, the main parameters of the HWT system (generator rating,
rotor diameter, electrolyser rating and battery capacity) were changed to minimise
the levelised cost of hydrogen and then compared the design to an LCOE-optimised
WT. The following conclusions can be drawn:

1. The analysis revealed an optimal electrolyser rating of 9.5 MW and a battery ca-
pacity of 1.25 MWh for the 10 MW RWT. This finding aligns with the research by
Gea Bermudez et al. [161], who identified an optimal electrolyser-to-generator
ratio of 0.92. In contrast, Mehta et al. [167] propose an ’oversizing’ strategy
for the electrolyzer compared to the generator and suggest a suitable ratio
of 1.2. The choice between these ratios hinges on the efficiency and cost of
the electrolysis system. Increasing the system’s cost tends to result in a lower
electrolyzer-to-generator ratio, all other factors being equal. In the proposed
electrolysis system, the alkaline electrolysis cell stack accounts for 96.3% of
the total power consumption, while H2 compression contributes 2.6%, and the
remaining 1% is attributed to cooling and desalination.

2. The impact of varying the rotor diameter and rated power of the RWT (Pg =

10 MW, D = 198 m) on both LCOH and LCOE was investigated. Within the
permissible parameter range, the LCOE optimisation results in a shift towards
larger generators and rotor diameters (Pg = 15 MW, D = 240 m). However, it’s
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noteworthy that the specific power for the LCOE-optimised design (SP = 332
W/m2) remains in proximity to that of the RWT (SP = 325 W/m2), signifying
that the RWT is indeed LCOE-optimised, as anticipated. On the other hand,
when optimising for hydrogen production, the design veers towards a smaller
generator (Pg = 11 MW, D = 240 m) and a reduced specific power (SP = 243
W/m2). This observation suggests that HWTs should ideally possess lower
specific power (SP ≈ 240 W/m2) compared to conventional LCOE-driven WT
designs (SP ≈330 W/m2). This finding contrasts with [168], which argues for
a high specific power in HWTs to enhance electrolyser efficiency and lower the
LCOH.

3. The findings suggest that the incorporation of a 9.5 MW electrolyser and a
1.25 MWh battery leads to a 2.4% reduction in LCOH when compared to a
configuration utilizing a 10 MW electrolysis stack without a battery. Additionally,
optimisation of rotor diameter and generator rating yielded an extra 4.6%
reduction in LCOH. These outcomes collectively indicate the presence of viable
opportunities for cost reduction in hydrogen production through the design of
wind turbines tailored for optimal hydrogen production.

5.2. Case study 2: Storage solutions comparison

Among ESSs, the Battery Electric Storage System is one of the most known and
commonly used. However, BESSs present relevant self-discharge phenomena
due to the crossover reactions and material degradation that limit their long-term
storage capabilities; indeed, they can present a 5% loss of stored energy in a month
[179], Furthermore, the BESS’s degradation phenomena have been also partially
investigated, in the Chapter 3.

On the other hand, long-term chemical-based ESSs (e.g., hydrogen storage)
are promising solutions due to the higher energy density and stability over time
compared to BESSs [60]. At the same time, although the energy loss in the round-
trip conversion is considerable, the hydrogen storage solution is suitable for long
charging/discharging periods due to the high energy density per unit of mass and
long-term stability in its stored form. Since the hydrogen storage solution is based on
open conversion systems (e.g., electrolyser and fuel cell), the stored energy volume
depends only on the storage capacity, and it does not affect the power rating of the
conversion systems; in this way, substantial increases in the investment costs can
be avoided [180].

Generally, Battery energy storage and hydrogen storage systems are being used
for short- and long-term periods, respectively; thus, their comparison in terms of both
the design and the usage is crucial for properly assessing their optimal operation. For
sure, the characteristics of the renewable source affect considerably the choice of
the two previous technologies, providing an advantage of one of them over the other
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[181]. Indeed, BESSs and hydrogen storage systems have been already defined
by other researchers as mutual alternatives to be embedded in the energy systems
[182]. However, both ESSs have been identified as attractive solutions in different
combinations to enhance the reliability and resiliency of national grids and energy
systems.

This thesis section presents the second case study carried out for bi-level intercon-
nection, including both BESS energy loss over time and the hydrogen technologies,
with the aim of investigating different ESSs, namely the BESS and the hydrogen
storage system, coupled with an existent 220 kW small-scale hydropower plant, for
fulfilling the electricity demand of a LEC completely.

Indeed this section of the thesis has the aim to unveil the answers to the following
research question (1.4):

Which is the best solution for long-term storage?

Specifically applied to the context of local energy community perspective. Where
both technologies (BESS and hydrogen) are analysed over a year to achieve an
off-grid, decarbonised LEC. Using the scenario analysis approach, all the scenarios
are analysed with a model-based approach by implementing the energy modelling
framework Calliope, already illustrated in subsection 4.1.1, which is based on a MILP
algorithm, to minimise the user-defined objective.

Furthermore, with the implementation of this case study, by assessing the seasonal
application of this ESS integration to provide a fully grid-independent operated LEC,
several contributions to the scientific literature can be delivered:

• Provides an investigation on the loss of BESSs’ stored energy when dealing
with long-term storage;

• Assess the hydrogen storage benefits in LECs since it is not subjected to stored
energy loss over time;

• Investigate energy-power coupling issues due to the ESSs’ integration;

• Compare the Levelised Cost Of Storage (LCOS) of both ESS technologies in
seasonal storage applications.

5.2.1. Methodology adopted

The method adopted, to compare BESS and hydrogen storage systems coupled with
a small-scale hydropower plant for the off-grid operation of a LEC is described in detail
in the following paragraphs. Based on historical data of i) the small-scale hydropower
plant’s power production, ii) Italian energy price, and iii) the LEC’s electricity demand,
all of them with an hourly resolution, a two-stage study is performed with the Calliope
framework (already described in section 4.1.1).
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The description of both stages, as well as the connection between the involved
energy systems, are reported; then, the case study under investigation is described
by reporting all operational data required for the analysis.

Description of the two-stage analysis

As previously mentioned, the analysis is divided into two distinct stages, namely
baseline and off-grid operation. Their main characteristics are described as follows:

1. The baseline stage (Fig. 5.9) is the case where no energy storage is present.
In this case, the overall energy demand is mainly provided by the national
grid and, when available, from the small-scale hydropower plant. The use of
hydropower electricity over the one withdrawn from the national grid is driven
by the market cost, which is different in the two cases. When the small-scale
hydropower plant’s production is higher than the LEC’s energy demand, the
energy surplus is injected into the grid. Such a stage represents the benchmark
scenario that allows having a reference case of the current situation (on-grid
operation) and a base for carrying out the analysis with the implementation of
ESSs.

Figure 5.9.: Baseline scenario (on-grid operation of consumers).

2. Off-grid operation stage assesses the grid independence of the LEC, and it is
further divided into two scenarios:

• The BESS scenario (Fig. 5.10) assesses the off-grid operation of the
LEC with a battery, where both capacity and energy management are
considered. Technological barriers, such as self-discharge losses, are
also included;

• The hydrogen scenario (Fig. 5.11) assesses the Power-to-Power (P2P)
route for the off-grid operation of the LEC. This stage is devoted to the
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Figure 5.10.: BESS scenario (off-grid operation of consumers).

design of the electrolyser, the hydrogen storage, and the fuel cell, stressing
the energy (hydrogen storage) - power(electrolyser/fuel cell) decoupling.

Figure 5.11.: Hydrogen system scenario (off-grid operation of consumers).

In the off-grid operation, a seasonal energy storage strategy has to be considered
to provide the off-grid operation of the LEC because of the fluctuation of the small-
scale hydropower production in some months of the year. Precisely, this strategy
consists in storing the energy surplus produced by a RES system into an ESS for
an extended period of time and using it afterwards, when the RES system is not
operating, to fulfil the energy demand of the LEC completely. Thus, the national grid
has been excluded in this stage; indeed, the main three elements involved in the
analysis are (i) the small-scale hydropower plant, (ii) the end-user’s demand, and (iii)
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the ESS.
As reported in Fig. 5.10, the BESS is modelled as a single component. On

the other hand, even though the hydrogen storage system can be considered a
single energy storage solution, it has been divided into two conversion systems (e.g.,
electrolyser and fuel cell) plus one storage (e.g., hydrogen tank) to evaluate the
power and energy decoupling nature of this solution. It is worth noting that both
the BESS and the hydrogen storage system have been analysed separately. For
hydrogen, only the re-electrification through a fuel cell is studied to compare two
Power-to-Power storage routes; by doing this, it is possible to perform a comparative
analysis of the two ESSs by addressing their technical and economic differences.

The single national price of the Italian energy market

In the case of the on-grid operation of the LEC, the electricity cost takes the name
of the “Single National Price" (PUN), which is the wholesale reference price of
the electricity that is purchased from the electric market. The PUN represents the
national weighted average of the zonal sales prices of the hourly electricity day, and
it considers both quantities and prices formed in the different areas of Italy and at
different day times. The historical values of the PUN (hourly resolution) are publicly
accessible on the National Energy Market Operator named Gestore dei Mercati
Energetici database [183]. In this work, the historical data of the PUN, regarding
the year 2019, have been adopted, ensuring the time-horizon alignment with the
hydropower plant production data.

(a) Historical trend of the PUN (b) Daily trend of the PUN

Figure 5.12.: Single National Price/PUN trend

In 2019, as reported by Figure 5.12, the PUN values varied between 0.01-0.12
€/kWh and its daily trend is recurrent throughout the year. As it is highlighted by
the same figure, its value has skyrocketed, starting in 2021, due to the energy
crisis. Indeed, from 0.05 €/kWh in January 2019, it achieved a value of 0.4 €/kWh in
December 2022, thus further enhancing the economic importance of operating in
off-grid mode. The period between 3-6 am is characterised by the lowest PUN value
of that day, while it increases during the day at 10-12 am until the maximum daily
value is achieved at 6 pm.
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Small-scale hydropower plant

The case study consists of a 220 kW small-scale hydropower plant (e.g., run-of-
the-river) in the Center of Italy. It is constituted by a Kaplan turbine with movable
runner blades to adjust their operating point according to the available flow rates.
The main characteristics and performance curves of the Kaplan turbine are shown in
Table 5.6 and Figure 5.13, respectively. In particular, the Best Efficiency Point (BEP)
is obtained at 417 rpm with a flow rate of 3.04 m3/s and a head of 4.05 m with an
overall efficiency of 90%. An inverter is also connected to the electric generator of the
hydraulic turbine to provide more flexibility to the machine operation by shifting the
operating point while changing the rotational speed: indeed, this procedure allows
the hydraulic turbine to operate in a wider range of flow rates keeping high hydraulic
efficiency.

Hydropower generation implies variable power production throughout the year
since it depends on the occurrences of rainfalls, and thus on the flow rate of the water
resource. Fig. 5.13 shows the measured data of the power output of the hydraulic
turbine in 2019. The seasons characterised by a lack of hydropower production
are usually the spring and the summer when the water shortages do not allow the
hydropower plants to operate at their rated operating conditions. The minimum vital
flux defined by the legislation of each country, which must be guaranteed to preserve
both the local flora and fauna [184], affects the variability of the hydropower plants’
production. The average power output recorded in 2019 was equal to 70.07 kW
considering the shutdown of the small-scale hydro-power plant in two periods of the
year (e.g., March-April and July-November), as previously mentioned, where the
second extended shutdown lasts more than 140 days.

Table 5.6.: Main characteristics of the Kaplan turbine

Parameter Value Unit of measure

Diameter 0.9 m
Rotational speed 417 rpm
#n of blades 5 −
Head 4.05 m
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Figure 5.13.: Trend of the hourly power output of the small-scale hydropower plant
in 2019

Energy demand of the Local Energy Community

The electricity demand of the end-users is required to obtain the design requirements
of the ESSs. Due to the lack of data related to the end-users close to the small-
scale hydropower plant, the energy demand has been obtained using the “mid-rise
apartment” dataset of the Building Energy Codes Program, which is a database
widely used in the scientific literature by assuming the characteristics of the loads
[185]. The “mid-rise apartment” from BECS is a non-industrial, multi-use building
(both residential and offices) divided into 4 floors with 32 small apartments that cover
an overall area of nearly 3400 m2. The electric load is reconstructed through (i)
the occupancy of the end-users and the electrical activities during the day (e.g.,
appliances and lighting), (ii) the rated surface, and (iii) the specific electric power
consumption by lighting and appliances as shown in Fig. 5.14. It is possible to
modify the data of the 32 small apartments of the single building with 32 stand-alone
houses and offices, thus constituting a small-scale LEC to analyse a more common
urban environment in Italy. Furthermore, this modification does not affect the overall
electricity consumption and the model output since the total energy demand is taken
as a whole as input of the model.

Figure 5.14.: Daily electrical load of the LEC [185].
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The yearly electric load is simulated with a recurrent daily trend (hourly resolution).
During the day, the trend follows the occupancy and the people’s behaviour at
work/home. Finally, the energy is equal to 614 kWh/day, thus resulting in a maximum
stored energy requirement of 85 MWh for the maximum hydropower plant shutdown
(about 140 days as described previously in 5.2.1).

5.2.2. Calliope set-up

All scenarios of the work are investigated through a system-level simulation using
the energy modelling framework Calliope, which allows modelling energy systems
at different levels through a scale-agnostic mathematical formulation based on the
power nodes modelling framework proposed by Heussen et. al [140]. As already
presented in section 4.1.1, Calliope is based on a bottom-up approach; indeed, every
single energy system (j) is modelled with its own characteristics and constraints
based on the type of technology (e.g., supply, conversion, storage, demand, and
transmission).

For all stages of the study, the optimisation problem is to find the best economic
system design to provide the energy request during the entire planning horizon. Such
a problem can be described by the following equations, where the objective is:

min : z =
J∑︂
j

Cj (5.10)

where Cj are the costs of each energy system involved in the study. Additionally, the
problem is subjected to the following technical constraints:

J,H∑︂
j,h

Eprod(j,h) =

J,H∑︂
j,h

Econs(j,h) (5.11)

Eprod(j,h) + Econs(j,h) · ηj = 0 (5.12)

Eprod(j,h) ≤ Sj ∀h ∈ H (5.13)

Estored(j,h) = Estored(j,h−1)
· (1− ϵj)− Econs(j,h) · ηj −

Eprod(j,h)

ηi
(5.14)

Sj · δj ≤ Estored(j,h) ≤ Sj ∀h ∈ H (5.15)

Eprod ≥ 0;Econs ≤ 0 (5.16)

While the overall systems energy balance is described in Eq. (5.11), Equation

144



5.2. Case study 2: Storage solutions comparison

(5.12) describes the energy conversion process and Equation (5.13) sets the tech-
nology size constraint (Sj). Finally, storage technical characteristics, including the
self-discharge behaviour (ϵ), are present in the hourly balance in Eq. (5.14) as well
as the minimum State Of Charge (δj) reported in Eq. (5.15).

The national grid is modelled as an unlimited supply, meaning that it is an energy
system that has only Eprod, which is variable and associated with both economic
(PUN, time-dependent) and environmental costs, where the latter is set equal to
281.4 gCO2/kWh as reported by the Italian energy and climate regulatory agency
[186]. The small-scale hydropower plant, instead, is an energy system with already
known Eprod over the entire planning horizon since its historical production data is
known. Finally, the energy demand is modelled as an energy system with only Econs,
which is time-dependent but known as input data.

As an economic evaluation, Calliope allows defining different costs that are divided
into fixed (e.g., investment costs related to the capacity of the technology and the
Operation and Maintenance (O&M) ones that are expressed as a fraction of the
investment cost) and variable. Furthermore, the depreciation rate is adopted to
compare different types of technologies:

dr =
i · (i+ 1)lt

(i+ 1)lt − 1
(5.17)

where dr is the depreciation rate, lt the lifetime of the technology expressed in years,
and i is the interest rate. The depreciation rate allows comparing all the technologies
into an equivalent year considering the different lifespans and interest rates as well.
Hence, the overall cost for a single technology is the sum of all of the costs previously
mentioned:

Cj = Cfix + Cvar = Sj · CAPEX · dr(1 +O&M) + cvar · Eprod(j) (5.18)

that is divided into fixed costs (Cfix) and variable ones (Cvar). While the fixed
part is strictly dependent on the technology size S, which is the design variable of
the optimisation model, CAPEX represents the investment cost of the technology
expressed either in €/kW or €/kWh, and O&M is the operation and maintenance
costs of the technology expressed as a ratio of the investment cost. Regarding the
variable part, it depends on the operational strategy; indeed, it is based on the energy
produced and the cost per kWh of produced energy (cvar).

Based on the case study’s characteristics, only supply technology (e.g., national
grid and small-scale hydropower plant), conversion technology (e.g., electrolyser and
fuel cell), storage (either Li-ion battery or hydrogen tank), and energy demands are
included in the analysis. Still, Calliope offers more advanced and complex modelling
in terms of both technology types and constraints; however, since this is not the focus
of the study, further details can be found in [141]. The techno-economic parameters
of the BESS and the hydrogen storage system (e.g., PEM electrolyser, PEM fuel cell,
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and compressed hydrogen tank) are listed in Tbl. D.3 and Tbl. D.4 (in a dedicated
Appendix section), which have been taken as a reference for the inputs of the
Calliope model [187]. It is worth noting that PEM electrolyser and fuel cell have been
chosen due to their high technology readiness level and availability in the market.
Furthermore, the good performance at a low current density makes them suitable for
managing transient loads as in the case of the hydropower plant under investigation.
These parameters are not included for the small-scale hydropower plant yet since
it is an already existent installation with previously monitored data. Regarding the
BESS, the technical parameters such as round-trip efficiency and minimum SOC
have been taken from the scientific literature [187]. The self-discharge rate, which
is defined as the hourly loss of the stored energy over time and expressed as a
percentage of the previously stored energy, was adjusted to have a calendar ageing
(without BESS operation) of 5% in a month, which is aligned with the data available
in the scientific literature [188]. On the other hand, the conversion efficiencies of
the two systems (e.g., PEM electrolyser and fuel cell) are considered separately
in the hydrogen storage system. It is worth noting that the minimum SOC and the
self-discharge rate of the compressed hydrogen tank are not applicable. Indeed,
it has been assumed that the charging and discharging phases occur via a mass
transfer of the hydrogen with no losses.

Evaluation indicators

Both off-grid operating stages’ designs are assessed to further compare them both
technically and economically. Additionally, the LCOS has been calculated to evaluate
and compare the competitiveness of the two ESSs to store energy over a fixed time
period. The LCOS analysis is performed daily and for a period of 140 days. In
particular, the analysis of the LCOSs trend with increasing storage periods from a day
up to 180 days (e.g., stored energy volumes) allows evaluation of the storage duration
limit that indicates the competitiveness of each ESS. The rated BESS capacity per
scenario is obtained considering the self-discharge calculated on an operational
basis. The LCOS analysis is carried out with the same economic parameters reported
in Tbl. D.4, in the dedicated Appendix section (D.2), thus evaluating the number of
cycles that the ESS can sustain with an overall time horizon of 20 years. The LCOS
is calculated as follows:

LCOS =
CESS,y

Estored,y
(5.19)

where CESS,y is the annualised cost of the selected scenario obtained with the eco-
nomic parameters reported in Tbl. D.4, and Estored,y is the total energy volume
that could be annually stored in the ESS. The latter considers the number of charg-
ing/discharging cycles according to the storage period, where the charging duration
is assumed to be equal to the discharging one.
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5.2.3. Results of the case study

The configuration of the Calliope framework and the modelling parameters employed
for this case study can be found in Appendix Section D.2. The results of the two-stage
scenarios under analysis are presented subsequently.

Initially, the results of the baseline scenario provide insights into the grid-connected
stage. This is followed by an examination of the off-grid operational mode, elucidating
the consequences of this choice.

Baseline scenario

As previously mentioned, the first stage refers to the standard operation mode where
no energy storage is used. As it can be noticed in Fig. 5.15, the LEC cannot operate
in off-grid mode using only the electricity produced by the small-scale hydropower
plant due to its discontinuous energy production throughout the year.

Figure 5.15.: Production and load frequencies (sorted by power).

Figure 5.16 shows that, in a single year, about 104 MWh of electricity from the
grid (46%) and about 122 MWh of electricity from the small-scale hydropower plant
(54%) is required by the LEC to fulfil its overall energy demand. In this case, there
are both economic and environmental costs due to the dependence of the LEC on
the national grid.

Off-grid operation mode

The cost-optimal model determines the lowest values of the design parameters of
the BESS and the hydrogen storage system to supply the energy demand of the
LEC in the whole period of the small-scale hydropower plant shutdown by exploiting
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(a) Load share (b) Baseline costs

Figure 5.16.: Baseline scenario results

the surplus of the stored energy. Results for the design parameters of both the
ESSs to meet the long-term storage requirements, including the characteristics of
the technologies, are reported in Table 5.7 and Table 5.8 as follows:

• BESS storage: 280 MWh (capacity) and 193 kW (maximum power rating during
the charging phase);

• Hydrogen storage: 137 kW electrolyser, 5’247 kg of hydrogen tank capacity
(175 MWh, based on the Lower Heating Value of hydrogen), and 42 kW fuel
cell.

Table 5.7.: BESS scenario results

BESS scenario Value Unit of measure
BESS capacity 280 MWh
BESS power 193 kW
BESS energy-to-power ratio 1’451 −
Min charge 56 MWh
Min SOC 20 %
Annualized BESS cost 3.38 M€/year
Overall cost 5.61 M€/year
LCOS 50’271 €/MWh

While the BESS capacity sizing is mainly driven by the energy rating (e.g., a
larger stored energy volume implies a larger capacity), the sizing of the hydrogen
system follows the power rating for the conversion systems and the energy rating
for the hydrogen tank. Following the power production profile of the small-scale
hydropower plant, the operational SOC of the ESSs (Fig. 5.17) reaches its peak at
the end of the producibility before using the stored energy capacity to cover the lack
of the small-scale hydropower plant operation. Due to the minimum SOC constraint
(e.g., 20% of the capacity), high efficiency (91%), and modest self-discharge, the
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Table 5.8.: Hydrogen scenario results

Hydrogen scenario Value Unit
Electrolyser capacity 137 kW
Hydrogen storage tank capacity 5’247 kgH2
Hydrogen storage tank capacity 175 MWh
Fuel cell capacity 42 kW
Annualized electrolyser cost 14.2 k€/year
Annualized hydrogen storage tank cost 290.5 k€/year
Annualized fuel cell cost 5.9 k€/year
Overall annualized cost 0.31 M€/year
LCOS 258 €/MWh

BESS capacity is discharged during the lack of small-scale hydropower production
(July-November), but it is not completely depleted. Furthermore, due to the higher
charge efficiency, its energy capacity remains higher than the one of the hydrogen
tank during the subsequent start-up of the small-scale hydropower plant after the
long period where it did not operate (e.g., November-December).

It is worth noting that a cyclic SOC (e.g., the SOC at the end of the evaluation
time) for this case study cannot be achieved due to the characteristics of the plant
since there is a gap between the yearly hydropower production and consumption;
therefore, there is an abundant excess of hydrogen (i.e. 4’155 kgH2) stored in the
hydrogen tank or electrical energy stored in the BESS (i.e. 280 MWh) at the end of
the year.

The electrical energy that can be delivered from both ESSs to the LEC is reported
in Fig. 5.17. It is possible to spot that, with the inclusion of the battery self-discharge
loss, the available electrical energy has a steeper slope and decreases much faster
than the hydrogen storage system. For larger stored volumes, the possibility of
decoupling the power and energy rating allows sustaining moderate sizes of the
conversion systems (e.g., electrolyser and fuel cell) that are the most expensive
components. For this reason, the total cost and LCOS of the hydrogen solution (0.31
M€/year; 3 k€/MWh) is significantly more competitive with respect to the BESS (5.61
M€/year; 50 k€/MWh) as an effect of the high energy-to-power ratio, thus leading to
an uneconomical result in terms of BESS investment cost.

By analysing the LCOS trend reported in Fig. 5.18, it can be observed that, with
increasing storage periods, the hydrogen storage system is more competitive when
dealing with periods greater than 30 h (e.g., between 1-2 days) and energy volumes
greater than nearly 1 MWh. The intersection of the LCOS curves related to the two
ESSs occurs at around 400 €/MWh. For energy volumes higher than 1 MWh, the
additional cost for a larger BESS exceeds the CAPEX of the hydrogen conversion
system, while the hydrogen storage tank only marginally contributes to the LCOS.
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Figure 5.17.: Available electrical energy to end-users from the two ESS solutions

For storage periods beyond 1’000 h (about 40 days), the LCOS of the BESS storage
(about 10 k€/MWh) is one order of magnitude higher than the LCOS of the hydrogen
storage (about 1 k€/MWh). The LCOS trends are coherent with what has been
previously discussed regarding the sizing of the hydrogen storage system and the
scientific literature as reported in [189].

Figure 5.18.: LCOS as a function of the storage period

5.2.4. Case study’s insights

This work is the second case study of the interconnecting of both technology and
system level of energy systems analysis, using as input the historical RES data, with
the objective to assess the following research question:

Which is the best solution for long-term storage?
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Specifically, in this work, the integration of different ESSs coupled with a 220 kW
small-scale hydropower plant (e.g., run-of-the-river) is investigated to provide an
off-grid operated 48 kW LEC. In particular, a BESS and a hydrogen storage system
are used as a Power-to-Power route and their energy and economic performance
are compared. In particular, the study consisted of three stages, where firstly the
baseline scenario is analysed to be then followed by other two stages related to
the off-grid operation of the LEC with two different ESSs (e.g., BESS and hydrogen
storage system).

Despite the difference in the rated power between the small-scale hydropower
plant and LEC’s energy demand, the former satisfies 54% of the LEC’s energy
demand, while the rest is covered by the electricity withdrawn from the national grid
with an expense for power purchasing of 5.59 k€ and a carbon footprint of 29.15
ktonCO2 per year. However, such expenses can be avoided with a LEC operating
completely off-grid.

Off-grid operation requires the prerequisite of seasonal storage integration, mean-
ing storing the energy surplus produced by the small-scale hydropower plant into the
ESS for an extended period of time (months)). Afterwards, this stored energy is used
to fulfil the LEC’s energy demand completely when the small-scale hydropower plant
is not running. With the focus on achieving a fully electrically sustainable LEC (e,g.,
complete off-grid operation), the ESS technologies have been considered separately.

While the hydrogen storage can meet the storage requirements through 137 kW
of electrolyser, 42 kW of the fuel cell, and a 5’247 kg capacity hydrogen tank (173
MWh), the BESS must have 280 MWh of energy capacity. The inclusion of the
BESS self-discharge loss behaviour makes its discharging slope much steeper than
the hydrogen discharging one. Furthermore, it has a higher round-trip efficiency
but, since it is an energy-power coupled into a single energy system, it is not more
economically convenient compared to hydrogen when a high imbalance among such
parameters (e.g., extremely high Energy-to-Power ratio) is present.

Indeed, by analysing the LCOS trend, it can be observed that, with increasing
storage times, hydrogen is more competitive when dealing with periods greater than
30 h (e.g., between 1-2 days) and energy volumes greater than nearly 1 MWh. For
energy volumes higher than 1 MWh, the additional cost for a larger BESS exceeds
the CAPEX of the hydrogen conversion system, while for storage periods beyond
1’000 h (about 40 days), the LCOS of the BESS (about 10 k€/MWh) is one order of
magnitude higher than the LCOS of the hydrogen storage (about 1 k€/MWh).

Finally, the study has proven hydrogen storage systems as viable solutions when
dealing with long periods of RES plant shutdowns. Indeed, although battery storage
allows to achieve a higher round-trip efficiency, it suffers several limitations when
operating for long-term storage periods, not to mention the bottleneck of having
energy and power coupled which is not a limitation with hydrogen solutions as they
are separated systems.
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Chapter 6.

Conclusions, recommendations and
future developments

The only thing that is constant is change.

Heraclitus

Energy system analysis, from both technologies and system levels, is crucial for
reaching energy transition goals. However, they are seldomly integrated each over.
This thesis has the objective of answering the following research question:

"Within the context of energy storage integration, how to bridge both
technical and system perspectives of the energy system modelling,
where the subsystem’s critical properties are included at the system
level, as well as systematic limitations?"

The thesis begins by identifying the technological limitations and key aspects of
energy storage solutions considered (hydrogen and Li-ion battery). Subsequently,
a thorough investigation of systematic limitations is undertaken. The ultimate goal
is to integrate the critical aspects of energy storage into the energy planning and
optimization stages, particularly in the context of multi-carrier energy communities.

6.1. Conclusions

In this section, firstly technological and system perspective conclusions are presented,
highlighting the results obtained, to be followed by a discussion of their integration,
assessed with two case studies. Furthermore, the final remarks of the thesis are
discussed at the end of this section.

Power to hydrogen: alkaline electrolysis

A four-parameter semi-empirical model for alkaline cells has been successfully
developed, demonstrating its accuracy through validation against four distinct sets
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of experimental data obtained from various literature sources. Furthermore, the
model’s robustness was tested, revealing its capability to provide reasonably accurate
predictions with only six input data points.

This model was further expanded by incorporating ordinary differential equations
to explore the impact of various properties throughout the cell. Using this extended
cell model, the study delved into the effects of temperature control, particularly
its optimization through water flow rate adjustments, from both technological and
economic perspectives.

Key findings from this research include:

1. The numerical model has the R2 score higher than 0.90 for four different
datasets, coming from different types of electrolysers.

2. In terms of efficiency evaluation, the 1/2 D model strikes a reasonable balance
between capturing cell details and maintaining model simplicity.

3. Temperature control plays a significant role in overall efficiency. Optimal tem-
perature regulation not only enhances electrolyser efficiency but also impacts
the cost of hydrogen production, which reaches its lowest point when the
temperature gap between the stack inlet and outlet is approximately 1°C.

Hydrogen storage: metal hydrides

Solid hydrogen solutions are being explored as innovative alternatives to address
the limitations posed by the low density of gaseous hydrogen storage.

A numerical modelling framework has been devised to facilitate the integration
of auxiliary systems with metal hydride-based hydrogen storage. Furthermore, this
study delves into both the kinetics and economics of this storage approach under
varying operating conditions, specifically focusing on pressure and temperature. The
principal findings are as follows:

1. In stationary applications, metal hydrides emerge as viable contenders when
compared to alternative hydrogen storage methods.

2. Notably, the control of pressure exerts a substantial influence on hydrogen
charging and discharging kinetics, while thermal control exhibits a relatively
minor impact.

3. Material properties, encompassing activation energies and kinetic parameters,
are pivotal for a comprehensive assessment.

4. A trade-off is observed between minimizing energy consumption and optimizing
hydrogen charging/discharging kinetics.
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Li-ion battery degradation

This thesis has examined both Equivalent Circuit Models and Physics-Based Models
from various angles.

• ECMs, while capable of achieving accuracy with a substantial dataset, tend to
lack robustness when faced with unforeseen conditions.

• PBMs, on the other hand, display an advantage in that they can be tuned
with a relatively limited amount of data, often obtainable from readily available
commercial datasheets.

Moreover, this research has explored the robustness of ECMs using data from a 160
Ah battery and discussed the application of PBMs as inputs for determining optimal
solutions in a multi-objective scheduling problem within a smart home case study.
Key findings include:

1. In the univariate analysis of temperature, the model proposed by Baghdadi
et al. [120] stands out as the best performer, while Wang et al.’s model [119]
proves to be the most robust solution when dealing with variations in current.

2. State of Health can effectively serve as an automatic selection criterion for
identifying the best solution on the Pareto frontier. This is achieved through
the utilization of PBMs, which can accurately determine SOH across various
battery working schedules.

3. It’s worth noting that the parametrization of PBMs can be exceedingly time-
consuming, representing a critical aspect of accurately assessing SOH.

4. Over extended operational periods, when employing consistent scheduling
strategies based on SOH as the indicator for selecting the best solution, poten-
tial lifespan savings of up to 26.67% in battery lifespan are obtainable.

Energy planning

Two distinct energy planning methodologies have been developed and rigorously
tested using the same case study. Remarkably, both approaches share similar results,
mutually validating their accuracy and robustness. Furthermore, each approach has
thoughtfully addressed specific limitations found in current energy planning tools,
such as:

• Optimal alternatives, besides the optimal solution.

• Inclusion of the dynamic variations of the input data.

In the context of the same case study, both methodologies offer valuable insights:
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1. Optimal alternatives give key insights, such as the technologies deployment
priority, and technologies correlations. Moreover, the assessment of different
alternatives allows the stakeholders to have an extended overview of possible
solutions.

2. The consideration of multiple investment stages throughout the entire planning
horizon can be enabled. This flexibility empowers decision-makers to explore
various expansion plans for the energy system.

3. By accommodating changes in input parameters over time, such as reductions
in technology investment costs, these methodologies accurately reflect the
evolving landscape of energy planning.

Bi-level integration studies

This thesis encompasses two enlightening case studies dedicated to the integration
of technological details into the broader energy system context:

1. Alkaline electrolyser system dynamics: This case study has the primary
objective to optimise the design of an offshore wind turbine in conjunction with
this electrolyser system.

2. Seasonal storage comparison for an independent energy community:
The second case study focuses on comparing seasonal storage solutions for
an energy-independent community.

The key findings derived from these case studies are as follows:

• Alkaline electrolyser operational details, including the non-linear behaviour of
the polarisation curves, can be effectively included.

• Optimal electrolyser-to-wind generator ratio is around 0.92.

• With increasing storage times, hydrogen is more competitive, compared to the
Li-ion battery solution.

• While Li-ion battery energy and power are coupled, representing a limitation in
sometimes, hydrogen solutions can prevail, as they are separated systems.

Final remarks

As illustrated by previous subsections, both energy storage solutions have still many
technological limitations. Especially for hydrogen, where both its production and
storage need proper assessment, including thermal-electrochemical phenomena
as they play a significant role in efficiency identification. Moreover, their behaviours
are far from linear, which has to be considered for their integration at the system
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level. Furthermore, although Li-ion batteries have already reached the technology
readiness and are widely adopted, their degradation still can’t be accurately assessed,
especially in stationary applications such as energy communities, where they play a
passive role, as a support measure of other services, instead of having a degradation
prevention control, and as result of this, the battery life could be mismatched from
the initial energy community planned.

Also at the system level, many opportunities and research gaps are there. Due to
the high fluctuation of the input parameters, and as a result of this, the outputs can’t be
considered exact, therefore having optimal alternatives would give a much clearer pic-
ture allowing the energy planners to consider different possibilities. Moreover, when
medium-long-term energy planning is considered (i.e. >20 years), multi-investment
stages planning is beneficial, to include different kinds of oscillations and respond to
them.

Finally, the integration of the technology details into the energy planning stage
has the potential of unlocking new horizons, obtaining a more accurate financial
assessment, new design strategies, and assessing different energy storage solutions
integration.

6.2. Recommendations

Several extensions and deepening of the research presented in this work are possible.
A non-exhaustive list of possible directions are following:

1. The semi-empirical alkaline electrolyser proposed in this work, designed with a
focus on computational efficiency, currently does not incorporate considerations
for Faraday’s efficiency. Furthermore, the comprehensive treatment of water
vapour formation within the system has not been addressed. Both of these
aspects represent potential areas for further investigation and refinement.

2. To ensure the accuracy and reliability of the results obtained through numerical
evaluation, it is imperative to conduct experimental validation of the temperature
control system within the alkaline electrolyser. This experimental validation
will serve to confirm the performance of the temperature control mechanisms
under real-world conditions, adding an important layer of verification to the
research.

3. To conduct a more comprehensive analysis of the metal hydride system, the
inclusion of advanced system controllers, such as partial integral differential
controllers, would be beneficial. These controllers can provide a deeper un-
derstanding of the system’s response time and behaviour, allowing for a more
detailed examination of its dynamics and performance characteristics. This
addition would enhance the overall analysis of the metal hydride system and
provide valuable insights into its operation.
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4. Conducting experimental tests on the materials involved in metal hydride sys-
tems is essential to evaluate material-specific kinetic parameters and activation
energy. These experimental data are crucial inputs for numerical models and
simulations. Enhancing the precision and validity of the numerical models used
in the analysis of metal hydride systems.

5. In the evaluation of Li-ion batteries, particularly when considering them from
a module perspective where each cell is assessed independently, effective
thermal management emerges as a critical factor. This is essential not only for
preventing thermal runaway but also for mitigating degradation issues. Further
research into this aspect, with a focus on advanced thermal management
techniques and strategies, can be a valuable area for future investigation.

6. The inclusion of the State Of Health of the battery in the energy planning
and scheduling stage is a promising avenue for future research. This goes
beyond the passive consideration discussed in this work, where the SOH could
assume an active role in influencing energy planning decisions. Investigating
how SOH can be integrated into decision-making processes and optimising
energy systems accordingly is certainly a possible research direction.

7. The proposed two-step algorithm designed for energy planning, particularly
regarding the inclusion of dynamic input parameters, may face a reduction in
effectiveness due to its heuristic decomposition. Therefore, future research
can delve into refining the algorithmic aspects. This could involve identifying
optimal parameter settings through techniques like inference or learning, aiming
to enhance its performance and robustness.

8. In the context of system-level studies presented, it’s essential to recognize that
certain aspects of energy systems have been simplified. For instance, factors
such as costs and demands, which exhibit non-deterministic and often unpre-
dictable characteristics, call for more accurate estimation and explicit treatment.
One avenue for addressing this challenge is the utilization of stochastic pro-
gramming methods, which can provide a more robust and comprehensive
analysis of these dynamic system elements.

9. While this thesis has successfully captured numerous technical and system-
level details, it’s important to note that not all intricacies have been integrated
into the analyzed case studies. The bi-level integration case studies presented
here represent initial attempts at interconnection, incorporating only a limited
set of technical details. This future work can leverage the research foundation
established in this work to expand the scope and depth of such interconnections,
thereby enhancing our understanding of these complex energy systems.
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6.3. A glimpse of the future

By conducting incremental research activities focused on both energy storage tech-
nologies and the development of advanced management, all supported by supportive
energy policies, it’s possible to foresee a reduction in investment costs. This effort
will enhance accessibility and enable wider deployment of these energy storage
solutions within local energy communities. To conclude the thesis, several direc-
tions, about energy storage integration in energy communities, and their efficient
management during the planning stage, are listed.

More intensive R&D efforts are required to make hydrogen competitive, in particu-
lar:

• Effective thermal management of electrolysers plays a decisive role in the
production of hydrogen, and its proper control can lead to a substantial reduction
in the overall cost associated with hydrogen production [190, 191].

• One of the most critical limitations of hydrogen storage is its low density. To
address this limitation, metal hydrides can be adopted, leading to the following
key directions:

– While metal hydride solutions can be suitable for stationary applications,
their limitation in terms of low hydrogen concentration (typically ≤ 7.6
wt%) makes them unsuitable for use in vehicles and dynamic operations.
Therefore, there is a need for ongoing research and development to
discover materials that can absorb higher levels of hydrogen content [91].

– Material degradation in various types of metal alloys will be thoroughly
investigated to advance the TRL of metal hydride technology [192].

• Dynamic assessments of the power-to-hydrogen system, encompassing the
balance of the plant, will undoubtedly contribute to determining the optimal
operational stages, including shutdown and stand-by phases, in alignment with
the constraints of the electrolyser [193, 194].

In the case of Li-ion batteries, with a specific emphasis on degradation assessment:

• Additional experimental data needs to be collected to account for the wide array
of possible Li-ion battery chemistries. This will streamline the parameterization
process, making it less time-consuming. Furthermore, it is essential that this
data is openly accessible to the broader research community [195, 126, 196].

• Research into stationary applications for second-life batteries will be undertaken
to prolong their lifespan. These batteries have typically reached 80% of their
SOH, making them unsuitable for electric vehicles [197, 198].

When focusing on energy system planning, an ideal modelling tool should possess
the following characteristics:
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• Adaptable: The modelling tool should be flexible enough to accommodate an
expanding array of energy carriers and associated technologies effectively
[199].

• Diverse output solutions: The modelling tool should be capable of generating
multiple output solutions to offer a comprehensive view of the expansion plan.

• Incorporation of diverse objectives: The tool should be able to handle different
objectives and facilitate multi-objective evaluations.

The above list is not exhaustive, as new concepts and potential research directions
continue to be explored and tested by researchers globally.
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Appendix A.

Hydrogen technologies

In this part all supplementary information for the chapter 2 is reported.

A.1. Alkaline system level modelling parameters

This section reports all the modelling parameters used in the work described in
section 2.4, regarding the temperature control in alkaline water electrolysis. All
parameters are reported in Tbl. A.1.

Table A.1.: Modelling parameters for alkaline water electrolysis temperature control
Pheobus electrolyser

Cell area [m2] 0.25
#n of cells 21
Nominal pressure [bar] 7
Nominal power [kW] 26
Unitary cost [€/kW] 830
Stack lifetime [years] 10

Water pump
Efficiency 0.7
Input power P = ηpump ·∆P ·Qe

∆P 1
Investment cost [€/kg/s] 60

Heat exchanger
Investment cost [€] C = C1

(︂
AHEX
0.093

)︂0.78

C1 [€/m2] 110
U [W/m2 K] 700
∆THEX [K] 5
AHEX [m2] AHEX =

ṅH2O
·MWH2O

/1000·cpH2O
·∆TH2O

U ·∆THEX

Lifetime [years] 15
Levelised Cost of Electricity

min-max [€/MWh] 20-60
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A.2. Metal Hydride and ancillary systems model’s
parameters

This section provides an overview of all the modelling parameters related to solid
hydrogen storage used in this thesis work. These parameters are described in
Section 2.5 and are associated with the effects of temperature and pressure control
on the system’s kinetics.

Table A.2.: MH Modelling parameters
Values Description

R 8.31 Universal gas constant [J/mol K]
T 15-35 System initial temp [°C]
Pcharging 5-30 System charging pressure [bar]
Pdischarging 0.78 System discharging pressure [bar]
ka 58 Absorption kinetics [s-1]
kd 9.6 Desorption kinetics [s-1]
xd 1.6 Initial state of discharging [%]
xa 0.2 Initial state of charging [%]
ms 15500 Metal alloy mass [g]
cps 355 Specific heat of metal [J/kg K]
cpH2 14300 Specific heat of gaseous hydrogen [J/kg K]
MWH2 0.002 Molecular weight of hydrogen [kg/mol]
cf 4181.3 Specific heat of the conditioning water [J/kg K]
Tf 10 or 40 Fluid temperature [°C]
Ea 21.17 Absorption activation energy [kJ/mol]
Ed 16.42 Desorption activation energy [kJ/mol]
ϵ 0.8 Heat transfer efficiency [-]
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Li-ion battery

B.1. ECMs

In this section all three models used for the study described in section 5.2, assessing
the robustness of numerical models for SOH forecast, are reported.

B.1.1. Baghdadi

This model is the most comprehensive among the selected methods, but it also tends
to be the most complex, which introduces a higher risk of overfitting.

In essence, this method provides an estimate of the maximum available capacity
at a given point in time while taking into account both cycle and calendar ageing
effects. It relies on the computation of two key parameters, denoted as kcyc and kcal,
which are associated with cycle and calendar ageing, respectively. Consequently,
this method can be applied effectively in various real-world contexts, considering the
interplay between these ageing phenomena.

kcal(T, SOC) = exp

(︃
k1

SOC

R

)︃
· exp

(︃
k2
R

)︃
· exp

(︃
− k3
RT

)︃
(B.1)

a(T ) = exp

(︃
k4
RT

+ k5

)︃
(B.2)

kcyc = exp

(︃
a(T ) · I

I0

)︃
(B.3)

ktot = kcal · kcyc (B.4)

C(t) = C0 · exp ·
(︂
−ktott

k6
)︂

(B.5)

Application: energy and power intensive contexts.
Input: SOC [%], temperature [K], time [d], and current [A].
Parameters: k1, k2 [Jmol−1K−1], k3, k4 [Jmol−1], k5, k6 dimensionless
Coefficients: I0, reference current A; C0, rated capacity expressed in Ah; R, universal
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gas constant expressed in Jmol−1K−1.
Outputs: C(t) that is the capacity at a specific time expressed in Ah.
Storage size: validated with two storage at 5.3 Ah and 4.2 V and 7 Ah and 4 V,
scalable to other sizes.
Pros: both calendar and cycle ageing are considered.
Cons: the model validation proposed is performed by keeping constant both SOC
and temperature; furthermore, the analysis is focused on a single Li-ion cell, thus
ignoring the internal resistance variation.
Note: the calendar contribution computation is simplified. Differently from this model
that computes the calendar factor as the average of kcal with respect to the SOC
interval, the calendar contribution is evaluated using the average SOC of charge and
discharge cycles.

B.1.2. Wang

This model assesses capacity loss as a percentage of the current utilised and injected
into the electric storage system. It’s important to mention that exponential modelling
is a well-established approach extensively utilized in the scientific literature for this
purpose.

Qloss = k1 · exp
(︃
k3 + 370 · Crate

RT

)︃
· (Ah)k2 (B.6)

Application: energy- and power-intensive contexts.
Inputs: temperature [K], total amount of capacity supplied and extracted to and from
the battery [Ah], C-rate.
Parameters: k1, k2 dimensionless, k3 [J mol-1].
Output: Qloss [%] that is the capacity loss in percentage due to the ageing phe-
nomenon.
Storage size: validated with 2.2 Ah with 3.6 V, scalable to other sizes of storage.
Pro: computational efficiency and robustness due to the single exponential equation.
Input data is always noted.
Cons: a single exponential model does not adequately describe the high variation of
the quantities. Different training is needed based on the operating conditions.
Note: k3 is an additional parameter that improves the model performance instead of
using a constant value as in the original study.

B.1.3. Omar

This model allows defining the degradation of a battery in terms of life cycles (e.g.,
Remaining Useful Life to achieve 80% of the residual capacity due to the effect of the
cycle ageing). Each model is univariate, meaning that it evaluates the ageing effect
according to the variation of a single input, while the remaining ones are kept fixed.
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B.2. PBM model for SOH assessment

Since the interest of this study is restricted to temperature and current analyses, only
the models that include them are here reported.

CL(T ) = k1T
2 + k2T + k3 (B.7)

CL(Id) = k1 exp(k2Id) + k3 exp(k4Id) (B.8)

Application field: energy- and power-intensive contexts.
Inputs: temperature [K] and Crate (Id).
Parameters: k1 [K -2], k2 [K -1], ki, i = 3, . . . , 5 dimensionless.
Outputs: Cycle life or RUL of the battery expressed in the number of cycles.
Storage size: 2.3 Ah with 3.3 V. It is scalable to other dimensions.
Pros: it allows to study of multiple parameters regarding aging. It has been also
experimentally tested and validated.
Cons: the variables that are not evaluated through equations are considered constant
parameters. Since each model equation evaluates the ageing based on the variation
of a single input quantity, they are not suitable for performing multivariate analysis.
Consequently, Omar’s model is not included in the multivariate analysis study.
Note: the polynomial Eq. B.7 is reduced to one degree with respect to the model
proposed in the literature. The simplification is introduced to avoid over-fitting and
simplify the training phase since the coefficient relative to the third-degree term is
evaluated to be close to zero. Since these models estimate the number of cycles
executed to reach a specific capacity threshold, many sets of parameters are com-
puted, each for a different residual capacity value, so that the capacity degradation
curve can be modelled. Moreover, k1 is forced to be lower than zero according to
data reported in [200] regarding the temperature modelling.

B.2. PBM model for SOH assessment

In this section, all support materials for the work reported in 3.2.1 are presented.
These materials include two different types of details:

1. Pybamm parameterization results, including some problems and solutions
encountered.

2. Battery design characteristics, the rack design of battery modules, computa-
tional efforts, case study specifics, tuned parameters, as well as some experi-
mental results from Pybamm (including voltage, current, and SOH).

B.2.1. Parameterization

The initialization process is done through values from Table B.1, with the Parameter
set of Prada2013 [131], Using SPMe modelling, as the best compromise between
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the accuracy and computational effort (Figure 3.1). The selection of the parameters
is established according to the cell’s chemistry, specifically Lithium Iron Phosphate.

Electrochemical parameterization

During the electrochemical parameterization process, two main inconsistencies from
the initialized model and test results at different C-rates. i) firstly the dischargeable
energy from the cell is different from the nominal value, due to dataset inconsistencies,
and ii) the voltage drop slopes (Fig. B.1a).

Addressing the first inconsistency is relatively straightforward. It involves adjusting
the electrode geometry to match the required dischargeable capacity. Since dis-
chargeable capacity is directly proportional to current density (A/m2), and the current
is determined by an internal formulation that is not easily accessible, altering the
electrode’s surface area offers a practical solution to achieve the desired outcome
more efficiently. In contrast, resolving the voltage drop slope inconsistency is a more
intricate process. It necessitates adopting the comprehensive approach described
in section 3.2.1. The key parameters to fine-tune in this case are the porosities of
both the electrode and separator, which can vary between 0 and 1. These porosities
are critical for ion transport within the battery and have been the subject of study
for researchers like Parikh et al. [201]. Importantly, all three porosities are intercon-
nected, making it challenging to isolate the effect of each one. Therefore, a grid
search method is indispensable for this optimization process.

The results after the electrochemical parameterization are illustrated in Fig. B.1b,
where the MAE is minimised for different C-rates.

(a) Voltage drop inconsistency (b) parameterized model

Figure B.1.: Electrochemical parameterization
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B.2. PBM model for SOH assessment

B.2.2. Thermal parameterization

Regarding thermal parameterization, the "lumped thermal model" is the option se-
lected. where two different natures of the difference between the reported data in
the datasheet and the initialized model are observed:

1. The voltage gap, among different discharge curves at different working temper-
atures, enlarges when it is far from the reference temperature, and as

∆V = f(T ) (B.9)

A solution to this is to adopt a new temperature, adjusted with a correction
factor that can manage such behaviour so that the model’s input temperature
is the new modified temperature. Of course, with such a process, the updated
temperature does not have a physical meaning, and for temperature variation
analysis the initial temperature is referenced.

Tnew = Tinitial · cf (B.10)

cf = 1 +m · (Tinitial − Tref ) (B.11)

Such inconsistency is fixed using a correction factor (cf ), which is a linear
interpolation, which depends on the ∆T between the working temperature and
the reference temperature (Tref=298.15 K)

2. Decreasing trend about the cell available capacity (C), working at low tempera-
tures:

∆C = f(T ) (B.12)

In order to take this into account, the available capacity of the cell at different
temperatures is gathered to be described through a polynomial function (f(T )),
and as best polynomial order, i.e. compromise between the accuracy and
complexity of it, results to be a 4th order, to describe such variation.

The entire thermal parameterization process is illustrated in Figure B.2, where
the comparison is also reported, between the tuned model and the experimental
data. As can be seen, although the different correction measures, the model can’t
accurately describe the discharge curves at low temperatures (≤ 0 °C), where the
second part of voltage drop (dV/dC) happens much earlier than the model predicts.
Despite such differences, since the objective of the work is not thermal assessment,
the cell is set to work at the reference temperature (298K).

B.2.3. Aging parameterization

Ageing parameterization is the most intricate aspect of this study, primarily owing
to the inherent complexity of the phenomena involved. The developers of Pybamm
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Figure B.2.: Thermal parameterization

have conducted a detailed analysis of ageing phenomena, which encompass the
factors contributing to the gradual reduction in a cell’s available capacity over time.
These insights have been thoughtfully incorporated into the Pybamm framework
[202], which are the following ones:

1. SEI layer growth

2. Lithium plating

3. Particle fracture/cracking

4. Loss of active material

It’s crucial to begin by understanding which phenomena should be incorporated
into the model. This necessitates a comparative analysis of various degradation
behaviours to identify the one that aligns most closely with the experimental data. In
the case study under consideration, the following ageing phenomena have been taken
into account: SEI growth, lithium plating, and alterations in lithium plating porosity.
Once these ageing phenomena have been defined, the entire parameterization
process is executed in accordance with the method detailed in Section 3.2.1.

The full ageing parameterization process is reported in Fig. B.3, where the tuned
model and its comparison with experimental data are also illustrated. Furthermore,
calendar ageing is predominant in such cells. Despite the fact that it’s not common,
calendar ageing can prevail over cycle ageing, which was also analyzed by other
researchers previously [203, 204], especially when cycle depths and current rates
are low.
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Figure B.3.: Ageing parameterization

B.2.4. HEMS results

From the HEMS, a total of 15 optimal solutions are derived from the Pareto front,
each employing distinct scheduling strategies.

The Pareto curves generated by HEMS are visually represented in Fig. B.4. This
graphical representation allows the identification of, based on the battery power
curves, which solutions effectively utilize PV production. Notably, solutions (1-7) do
not absorb the PV production, resulting in increased carbon emissions during the
day. Conversely, in other cases, reducing emissions necessitates higher economic
expenses.

Figure B.4.: Pareto curve from HEMS
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B.2.5. Battey design characteristics

Battery design characteristics, battery modules, computational efforts, case study
specifics, and tuned parameters are reported in the following tables. Where the cells
selected are from CEGASA PORTABLE ENERGY, available at [205].

Table B.1.: LFP Li-ion battery specifications
Parameter Value Units
Vnom 3.2 V
Vup,cut 3.65 V
Vlow,cut 2.5 V
Inom 1.6 A
Qcell 3.2 Ah
Top -20 ÷ 60 °C
Cratemax 3 -

Table B.2.: HEMS results: battery
Parameter Value Units
Energy 15 kWh
Nominal power 3 kW
Minumim SOC 20 %
Maximum C-rate 0.25 C

Table B.3.: Battery design
Rack configuration

#10 modules in parallel
Module specs

Configuration 4S40P
Voltage 12V
Capacity 128 Ah
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Table B.4.: Computational specs for the case study
Computation specs

Model Dell G5 15
CPU Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
RAM 8 Gb
Computation time 9 min 56 seconds

Case study details
#n of scenarios 15
Time resolution 15 mins
Time horizon 24 hours
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Table B.5.: Pybamm model tuned parameters
Parameter Value units
Initialization dataset

Prada2013 - -
Electrochemical parametrization

Positive electrode porosity 0.85 -
Separator porosity 0.04 -
Negative electrode porosity 0.3 -

Thermal parametrization
Q = aT 4 + bT 3 + cT 2 + dT + e

a 2.005 e-07 -
b -2.25933 e-04 -
c 9.443 e-02 -
d -1.732 e+01 -
e 1.177 e+03 -

Tnew = cf · Tinitial

cf = 1 +m · (Tintial − Tref)
m 0.006 -
Tref 298.15 K

Aging parametrization
SEI : ec reaction limited

SEI growth activation energy 0 J/mol
EC initial concentration in electrolyte 4541 mol/m3

SEI open-circuit potential 0.4 V
SEI resistivity 200000 ohm/m
Initial outer SEI thickness 0.5e-9 m
Initial inner SEI thickness 2.5 e-9 m
EC diffusivity 2e-18 m2/s
Inner SEI reaction proportion 0.5 -
SEI reaction exchange current density 1.5e-07 A/m2

Inner SEI partial molar volume 9.585e-05 m3/mol
Ratio of lithium moles to SEI moles 2.0 -
Outer SEI partial molar volume 9.585e-05 m3/mol
SEI kinetic rate constant 8.45e-17 m/s
Positive electrode active material volume fraction 0.295 -

Lithium plating : irreversible
Exchange-current density for plating 0.00205 A/m2

Typical plated lithium concentration 1000.0 mol/m
Initial plated lithium concentration 0 mol/m
Lithium plating transfer coefficient 3.0 -

Lithium plating porosity change : true
Lithium metal partial molar volume 1.3e-05 m3/mol

174



Appendix C.

Energy Planning

C.1. Optimal alternatives

In this section, all modelling parameters adopted in the study of the section 4.1 are
reported here, including:

1. Baseline technologies.

2. Baseline supply costs.

3. Technologies investment costs.

4. Energy systems efficiencies.

Table C.1.: Baseline technologies
Size Efficiency

Cogeneration plant 575 kWel/611kWth 0.415(el)/0.44(th)
Natural gas boilers 8 MW 0.91
Electrical chillers 900 kWth 3
Absroprtion chillers 455 0.8

Table C.2.: Supply costs
Import cost Emission cost

Electricity 0.2 €/kWh 281.4 gCO2/kWh
Natural gas 0.095 €/kWh 201 gCO2/kWh
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Table C.3.: Energy conversion technologies costs

Technology Efficiency/COP Lifetime
[years]

Investment
cost [€/kW] O&M cost

PV N.A. 30 1473 10 €/kW

Heat pump 3(heat)/3.5
(cold) 20 1600 4% CAPEX

Electrolyser 0.71 15 1295 3.5%CAPEX
Fuel cell 0.5(el)/0.34(th) 14 1500 3.8% CAPEX

Table C.4.: Storage technologies parameters

Technology Efficiency Lifetime
[years]

Investment
cost
[€/kWh]

O&M cost
[%CAPEX]

Minimum
SOC [%]

Battery 0.95 15 1000 2 20
Hot TES 0.81 24 10 1.5 0
Cold TES 0.81 24 10 1.5 0
H2 tank 0.99 23 10 2.3 0

C.2. Dynamic modelling

In this section all informative material regarding the analysis performed in section
4.2, where firstly the mathematical description of the algorithm is illustrated, followed
by the modelling parameters and input data.

C.2.1. Two-step algorithm

The algorithm is divided into two steps, focusing on both levels (planning and opera-
tion) problems.

First step: design of the system layout and planning of investments

In the first step, a MILP (MY ) is solved to define the investment actions. Each year of
the planning horizon represents a decision stage for the installation or the renewal of
technological devices. The variables of MY decide the system layout (e.g., indicate
which and how many devices, generally of different types and sizes) are selected
among a set of available ones as well as the operation management. The latter (e.g.,
supply of external energy, device activation, energy conversion and storage) are
controlled on an aggregated scale of one year by the constraints of MY .

In particular, let Y be the set of intervals in a multi-year planning horizon K the
set of available energy carriers, and K̂ ⊆ K the subset of energy carriers (e.g., heat,
cooling, and hydrogen in this case study) that cannot be fed from an external supply
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due to the lack of infrastructure. Moreover, let Q be the collection of deployable
technological devices including both conversion and storage equipment and, in
particular, let S ⊆ Q be the set of storage devices. Finally, let ℓq be the expected
lifetime of the technological device q ∈ Q. The model MY is defined upon the
following variables for each year y ∈ Y (notice: the amounts of energy are expressed
in kWh):

• xqy, zqy ∈ N0: the number of devices of type q ∈ Q purchased and active in
year y, respectively;

• pkqy ∈ R+: the amount of energy by carrier k ∈ K and produced by the
conversion device q ∈ Q \ S in year y;

• rlkqy ∈ R+: the amount of energy by carrier l converted into energy by carrier k
through the conversion device q ∈ Q \ S in year y;

• skqy ∈ R+: the amount of energy by carrier k accumulated into the storage
device q ∈ S in year y;

• fk
y ∈ R+: the amount of energy by carrier k and supplied from external sources

at year y.

Variables are defined as non-negative because of the scenario, which corresponds
to the case study where the energy system is one-way connected to the national grid
and thus no surplus of energy can be sold. Moreover, alternative profitable strategies
involving the sale of energy, possibly from non-dispatchable sources, to the external
grid (e.g., feed-in or net metering) generally make ESS technologies economically
disadvantageous. Clearly, fk

y = 0 for energy of type k ∈ K̂, see constraint (C.8).

According to the yearly granularity of the model, each parameter expresses a
yearly aggregated value. In particular, the values of parameters d̄, b̄, Ū , and C̄ are
computed as the rated hourly value times the total number Th = 8760 of hours in
one year. The model MY reads as follows:
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min
∑︂
k∈K

∑︂
y∈Y

ckyf
k
y · 1

(1 + r)y
+ Γ (C.1)

dky
¯ +

∑︂
q∈S

skqy +
∑︂

q∈Q\S

∑︂
l∈K\{k}

rklqy =

∑︂
q∈S

ekqs
k
qy−1 +

∑︂
q∈Q\S

pkqy + fk
y ∀k ∈ K,∀y ∈ Y

(C.2)

zqy =

y∑︂
τ=max{1,y−ℓq+1}

xqτ ∀q ∈ Q,∀y ∈ Y

(C.3)

pkqy =
∑︂

l∈K\{k}

ϕlk
q r

lk
qy + b̄

k
qy·⎛⎝xqy +

y−1∑︂
τ=max{1,y−ℓq+1}

(1− δq)
(y−τ)xqτ

⎞⎠ ∀q ∈ Q \ S,∀k ∈ K,∀y ∈ Y

(C.4)

pkqy ≤ Uk
q
¯ zqy ∀q ∈ Q \ S,∀k ∈ K,∀y ∈ Y

(C.5)

skqy ≤

Ck
q
¯ ·

⎛⎝xqy +

y−1∑︂
τ=max{1,y−ℓq+1}

(1− δq)
(y−τ)xqτ

⎞⎠ ∀q ∈ S,∀k ∈ K,∀y ∈ Y

(C.6)

skq0 = 0 ∀q ∈ S,∀k ∈ K

(C.7)

fk
y = 0 ∀k ∈ K̂, ∀y ∈ Y

(C.8)

xqy, zqy ∈ N0 ∀q ∈ Q,∀y ∈ Y

(C.9)

pkqy, r
lk
qy ∈ R+ ∀q ∈ Q \ S, ∀l, k ∈ K : l ̸= k, ∀y ∈ Y

(C.10)

skqy, f
k
y ∈ R+ ∀q ∈ S, ∀k ∈ K,∀y ∈ Y

(C.11)

Constraints (C.2) are the flow balancing equalities that hold for each energy carrier
k and year y: the total amount of energy by carrier k and given by the user’s annual
demand plus the possible surplus of energy stored for being used afterwards when
required plus the energy converted into a different energy carrier must correspond to
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the total quantity given by the available charge of storage devices (e.g., heat thermal,
electrical energy storage) at the previous year plus the production of installed devices
plus the amount of energy purchased from external sources.

The parameter ekq is the round-trip efficiency of the storage device q when accu-
mulating the energy of type k, and assuming that both charging and discharging
dynamics of ESSs are linear. Eq. (C.3) link the number of operative devices to the
number of those purchased in the past, also considering the device lifetime. For
each energy carrier k and year y, the equality (C.4) sets the output of the conversion
device q to the sum of two contributions. The former is the overall quantity of energy
of type k obtained by the conversion from other kinds of energy carriers involved in
the system, linearly weighted with the conversion efficiency ϕlk

q of the technology.
The latter, instead, refers to the conversion from exogenous energy carriers that
depends on exogenous factors that are all embedded into the annual base production
value b̄

k
qy (e.g., renewable technologies like PV or wind farms are strongly dependent

on weather conditions). The latter term also incorporates the parameter δq that
expresses the annual degradation of the energy production efficiency (clearly, the
contribution of δq increases as far as the device q gets older). Although the loss of
efficiency also affects the conversion from energy carriers involved in the system,
it has not been considered in the former contribution to avoid non-linearities, and
therefore pkqy only approximates the output of the (set of) device: an exact expres-
sion is used in the MILP of the second step). In any case, the production of each
conversion device is limited by the scaled upper rated power Uk

q
¯ as prescribed by

constraints (C.5).

Inequalities (C.6) bound the aggregated annual capacity of storage devices from
above: the amount of energy of type k accumulated in one year by the storage
device q ∈ S must be no higher than the scaled rated capacity Ck

q
¯ amortised by the

obsolescence of q. Moreover, all the operating storage devices are assumed to be
empty at the beginning of the planning horizon, which is a constraint as reported
in (C.7). Since BESSs are generally used to absorb the peaks of production and
because of the coarse-grained time resolution of the model, the s variables naturally
would take the zero value (there is no economic convenience to store energy from
one year to the other). To promote the investment and exploitation of energy storage
devices, the model MY is fed by the linking constraints (see Sub-subsection C.2.1),
with refined weekly-based data provided from the second step of the algorithm. Finally,
besides the constraints (C.9)-(C.11) on the variables domains, further constraints
are added to MY for modelling features and constraints of specific technologies
employed in the case study (see Sub-section C.2.2). The objective function (C.1)
minimises the overall yearly costs with a discount rate at present value r for the
whole planning horizon of |Y | = 30 years. The first term refers to the buying costs of
external energy supply (cky is the cost of energy per kWh). The analytical expression
of Γ is the following:
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Γ =
∑︂
q∈Q
y∈Y

vqyxqy ·
1

(1 + r)y−1
+

∑︂
q∈Q
y∈Y

mqyzqy ·
1

(1 + r)y

−
∑︂
q∈Q

y≥|Y |+1−ℓq

[︄
vqyxqy ·

1− (1 + r)|Y |+1−y−ℓq

1− (1 + r)−ℓq

]︄
(C.12)

Investment vqy and maintenance costs mqy are summed up over the planning
horizon for all the operating devices. The last term gives the total residual value of
the owned equipment at the end of the planning horizon. Due to the features of the
addressed case study (e.g., UNIVPM campus in Italy) and the choice of an economic-
driven optimisation, revenues due to energy sales, costs for energy storage, and
environmental costs have not been included in Γ. However, alternative/additional cost
terms could be included in the objective function, or addressed by relying on multi-
criteria optimisation methods (e.g., lexicographic, linear scaling, and ϵ-constraint),
if relevant for case studies with different characteristics and/or located in different
economic zones (e.g., environmental costs or costs in the U.S. market related to the
maximum demand-based charge).

Second step: system operations scheduling

A solution solY provided by MY gives a full description of the system layout for the
whole planning horizon. The second step of the optimisation computes a refined
time scale schedule of the components chosen by MY , evaluates the actual total
operative costs of the system, and assesses the operative feasibility of the layout.
As reported in [206], a common approach adopted in energy systems modelling to
control the computational viability consists in extracting a set of weeks through a
κ-means clustering procedure [207], which is representative of the average weekly
demands per each energy carrier and the average PV production. Therefore, a
set Wy of representative weeks for each year y ∈ Y of the planning horizon is
considered in the second step. The weeks W1 of the first year are directly obtained
by clustering the historical data of the case study, whereas the representative weeks
of the following years are obtained by considering the estimated data variations.
After tuning the parameter κ, |Wy| was set equal to 6. Each week in Wy is composed
of 168 hours and represents nw original weeks.

For each year ȳ ∈ Y and week w̄ in Wȳ, a second MILP formulation M(ȳ, w̄)

computes the hourly schedule of the energy system operations at minimum cost. Let
Hw̄ be the set of hours composing the week w̄, Qȳ the set of operating devices that
solY indicates for year ȳ, and iq the year of installation for each device q ∈ Qȳ. The
set Qȳ is obtained by adding a number zqȳ of copies of the device q for conversion
and storage operations at year ȳ, whereas iq is given from the values of xqȳ in solY .
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Finally, let S ȳ ⊆ Qȳ be the set of storage devices operating in year ȳ.
MILP M(ȳ, w̄) does not perform investment decisions, thus design variables xqy

and the corresponding constraints are not used. Variables zqy are restricted to be
binary and re-indexed as zqh to model the use of the device q ∈ Qȳ at hour h ∈ Hw̄.
All the other variables (and constraints) are similarly re-indexed (e.g., fk

y → fk
h ). The

formulation M(ȳ, w̄) reads as:

minΩȳw̄ =
∑︂

k∈K,h∈Hw̄

ckȳf
k
h · 1

(1 + r)ȳ
(C.13)

dkh +
∑︂
q∈Sȳ

skqh +
∑︂

q∈Qȳ\Sȳ

∑︂
l∈K\{k}

rklqh =

∑︂
q∈Sȳ

ekq (1− ρq)s
k
qh−1 +

∑︂
q∈Qȳ\Sȳ

pkqh + fk
h ∀k ∈ K,∀h ∈ Hw̄

(C.14)

pkqh =∑︂
l∈K\{k}

ϕlk
q (1− δq)

(ȳ−iq)rlkqh+

bkqh(1− δq)
(ȳ−iq)zqh ∀q ∈ Qȳ \ S ȳ,∀k ∈ K,∀h ∈ Hw̄

(C.15)

Lk
qzqh ≤ pkqh ≤ Uk

q zqh ∀q ∈ Qȳ \ S ȳ,∀k ∈ K,∀h ∈ Hw̄

(C.16)

skqh ≤ Ck
q (1− δq)

(ȳ−iq)zqh ∀q ∈ S ȳ,∀k ∈ K,∀h ∈ Hw̄

(C.17)

skqh1
= skqh168

∀q ∈ S ȳ, ∀k ∈ K

(C.18)

fk
h = 0 ∀k ∈ K̂, ∀h ∈ Hw̄

(C.19)

zqh ∈ {0, 1} ∀q ∈ Qȳ, ∀h ∈ Hw̄

(C.20)

pkqh, r
lk
qh ∈ R+ ∀q ∈ Qȳ \ S ȳ,∀l ̸= k ∈ K,∀h ∈ Hw̄

(C.21)

skqh, f
k
h ∈ R+ ∀q ∈ S ȳ,∀k ∈ K,∀h ∈ Hw̄

(C.22)

The objective function (C.13) is the total discounted cost of the purchased energy,
which is computed by considering the cost ckȳ per kWh of energy of type k at year ȳ.
Constraints (C.14) are the balancing equations specifying the hourly requirements of
the system and they refine (C.2) by introducing the hourly capacity loss ρq for storage.
Constraints (C.15) and (C.17) are the analogous of (C.4) and (C.6), respectively, for
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a fixed year and equipment. However, the efficiency degradation δq in constraints
(C.15) is considered in both the conversion efficiency ϕlk

q and base production bkqh. If
the conversion devices q is operating at hour h (e.g., if zqh = 1), inequalities (C.16)
bound the energy output pkqh between the upper hourly rated power Uk

q and the lower
partialisation bound Lk

q ; otherwise, if the device q is not active (i.e., if zqh = 0), pkqh
will be set equal to zero. Finally, (C.18) ensures that during the week w̄, which is
only representative, the energy storage and consumption are balanced. Further
constraints are considered on the basis of specific technologies used. ( for the
work analysed see Sub-section C.2.2). A solution solW of the whole second step
will be feasible if M(ȳ, w̄) is feasible for each ȳ ∈ Y and w̄ ∈ Wȳ. In this case, its
cost Ω is the sum of the costs Ωȳw̄ of all the solutions sol(ȳ, w̄) of M(ȳ, w̄), each
one multiplied by nw̄. subsubsectionLinking inequalities The information obtained
from the solutions of the M(ȳ, w̄) programs is used through a feedback loop, which
is implemented by the linking constraints (C.23) and (C.24), to guide MY towards
different system layouts. A solution sol(ȳ, w̄) of M(ȳ, w̄) can be either:

1. Infeasible due to the impossibility of satisfying the demand by exploiting the
operating devices in case of shortage of external supply (e.g., k belongs to K̂

and (C.19) hold), or

2. Feasible: in this case, it describes the hourly schedule of the device operations
in the current week.

In the former case, a feasibility cut constraint of MY , which pursues the operative
feasibility of the system layout on hourly scale (see line 22 in Algorithm 1), is updated.
This constraint is defined for each non-purchasable energy carrier k ∈ K̂ that do not
fulfill the demand at a given hour ĥ in at least a representative week of Wȳ for some
years ȳ:

d̂
k

ȳ ≤
∑︂

q∈Q\S

⎡⎣(1− θ)Uk
q zqȳ + bk

qĥ
(zqȳ −

ȳ−1∑︂
τ=max{1,y−ℓq+1}

δ(ȳ−τ)
q xqτ )

⎤⎦+

θ
∑︂
q∈S

Ck
q (zqȳ −

ȳ−1∑︂
τ=max{1,ȳ−ℓq+1}

δ(ȳ−τ)
q xqτ ). (C.23)

In particular, considering the energy of type k ∈ K̂ and year ȳ ∈ Y , let d̂kȳ be the
parameter indicating the largest demand per hour. d̂kȳ is initialised to dkw and increased
by ûkȳ (see lines 3 and 20 in Algorithm 1), where dkw is the largest demand per hour
among the weeks in Wȳ, ĥ is the hour when the unmet demand of the infeasible
solution is maximum, and ûkȳ is the value of such unmet demand. In (C.23), technical
parameters of devices have an hourly scale, and the estimated base production b of
renewable technologies is set to its value at hour ĥ. The hourly demand d̂

k

ȳ must be
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met by using renewable technologies together with a convex combination of the rated
power Uk

q of energy conversion technologies producing k and the storage capacity
Ck
q for k. Parameter θ ∈ [0, 1) defines the weight of each term of the combination and

balances the ratio between conversion and storage. After preliminary experiments
and tuning, its value was set equal to 0.4. Such a tuning made the investments
into ESSs more profitable, hence overcoming the lack of convenience in storage
technologies because of the aggregated annual scale of MY .

Moving to feasible solutions sol(ȳ, w̄), a constraint of MY which promotes the
autonomy of the energy system by reducing the incoming supply from external
sources, such as the national grid, and it is updated (line 23 in Algorithm 1). The
inequality for a purchasable energy carrier k ∈ K \ K̂ in year ȳ reads as:

d̃
k
ȳ ≤

fk
ȳ

Th
+

∑︂
q∈Q\S

⎡⎣Uk
q zqȳ + bk

qh̃
(zqȳ −

ȳ−1∑︂
τ=max{1,ȳ−ℓq+1}

δ(ȳ−τ)
q xqτ )

⎤⎦+

∑︂
q∈S

Ck
q (zqȳ −

ȳ−1∑︂
τ=max{1,ȳ−ℓq+1}

δ(ȳ−τ)
q xqτ ). (C.24)

The parameter d̃kȳ represents the request of energy linked to the peak of purchased
external energy of type k recorded at year ȳ. It is initialised to zero at the beginning
of the two-step algorithm. Then, the procedure looks for the hour h̃ of the feasible
solutions sol(ȳ, w̄) when the maximum quantity of energy of type k (f̃k

ȳ in Algorithm
1) is bought, and updates the parameter d̃kȳ if its current value is quite smaller than
f̃
k
ȳ + dk

h̃
(see line 21 in Algorithm 1). The updating threshold is modulated by the

parameter γ, which has been set equal to 0.6 after the parameter tuning. The idea
of the constraint is to guide MY towards the selection of a set of devices able to
meet the expected hourly residual demand, thus enhancing the autonomy of the
system. The constraint (C.24) imposes the fulfilment of the energy request d̃kȳ by
using only the mean value fk

ȳ /Th of the annual external supply, thus limiting the peak
of purchase. Similarly to (C.23), the presence of the terms associated to storage
devices implicitly promotes the installation of ESSs in the system.

The whole procedure

A solution sol of the overall multi-energy system planning problem consists of both
the long-term investment variables solY [x] and the short-term operative variables
solW [z,p, r, s,f ]. Its total cost C is given by the sum Γ + Ω. If the current solution
sol has the smallest cost obtained so far, the best total cost C∗ and the best solution
sol∗ are then updated (see lines 22-24 in Algorithm 1). The two step procedure is
repeated for a fixed number N of iterations (e.g., 5 in the experiments). The algorithm
returns the best solution sol∗ and the corresponding total cost C∗ (see line 25 in
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Algorithm 1).
The pseudo-code of the whole procedure is the following:

Algorithm 1 MILP-based two-step iterative algorithm
1: Initialise sets, parameters and variables;
2: Set C∗ = +∞;
3: Set d̃ = 0 and d̂

k

y to the largest hourly demand, for each k ∈ K̂ and y ∈ Y ;
4: for N times do
5: Solve MY , update solution solY and Γ;
6: Set solW = ∅ and Ω = 0;
7: for ȳ ∈ Y do
8: Initialise Qȳ, S ȳ from solY [zȳ]; ▷ used technologies at year ȳ
9: Set i from solY [xȳ]; ▷ year of installation per technology

10: Set ûȳ = 0 and f̃ ȳ = 0;
11: for w̄ ∈ Wȳ do
12: Solve M(ȳ, w̄);
13: if sol(ȳ, w̄) is infeasible then
14: Update ûkȳ if hour ĥ ∈ Hw̄ has the largest unmet demand, for each

k ∈ K̂;
15: Set Ω = +∞;
16: else
17: Update f̃

k
ȳ if hour h̃ ∈ Hw̄ has the largest quantity of purchased

energy, for each k ∈ K \ K̂;
18: Set Ω = Ω+ nw̄ · Ωȳw̄;
19: Set solW = solW ∪ sol(ȳ, w̄);
20: Set d̂ȳ = d̂ȳ + ûȳ and update (C.23);
21: Set d̃ȳ = max{γ · (dh̃ + f̃ȳ), d̃ȳ} and update (C.24);
22: if C∗ > Γ + Ω then
23: Set C∗ = Γ + Ω; ▷ update best solution cost
24: Set sol∗ = solY [x] ∪ solW [z,p, r, s,f ]; ▷ update best solution
25: return (sol∗, C∗)

C.2.2. Technology-dependent constraints

Some of the technologies available in the case study under investigation need specific
constraints to coherently model the requirements in MY and/or M(ȳ, w̄); in particular:

• The CHP unit needs a couple of equalities to model the simultaneous production
of electricity (index el) and heat (index th) from the same natural gas supply
with different conversion efficiencies. Let QCHP be the subset of deployable
CHP devices in model MY ; then, per each year y ∈ Y the following equalities
are imposed:
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pelqy = ϕgas,el
q rgas,elqy (C.25)

pthqy = ϕgas,th
q rgas,elqy (C.26)

Constraints are also included in M(ȳ, w̄) after re-indexing on h ∈ Hw when CHP
units operate in a week represented by the model. An analogous formalisation
is used to model the operations of a PEM Fuel Cell, which exploits hydrogen
for the simultaneous production of electricity and heat;

• The size of the PV systems is constrained to an upper bound due to physical
occupation, which is translated into a maximum deployable rated power in the
system at each year y ∈ Y for MY :

∑︂
q∈QPV

U el
q zqy ≤ UPV

max (C.27)

where QPV is the collection of the PV systems of different sizes that can be
installed;

• The Heat Pump provides alternative heating and cooling outputs. Let QHP be
the collection of available HP technologies. Each q ∈ QHP is differentiated as
follows: q1 can only generate heat, whereas q2 generates the cooling energy.
The different q ∈ QHP share the same year of installation, and each of them
contributes to half of the total costs of the device in the objective function of
MY . For each y ∈ Y , the following equalities are added to MY to model the
operation choice while observing the lifetime of the system:

zq1y + zq2y =

y∑︂
τ=max{1,y−ℓq+1}

xqτ (C.28)

Given the binary nature of variables zqh, a constraint for each hour h ∈ Hw is
introduced in M(ȳ, w̄):

zq1h + zq2h ≤ 1; (C.29)

• The PEM ELectrolyser operates with electricity and water as inputs (index
wat) for producing hydrogen (index hyd). The inequalities used to model its
operations in MY are:

phydqy = ϕel,hyd
q rel,hydqy (C.30)
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∑︁
q∈QEZ phydqy

ϕwat,hyd
q

≤ fwat
y (C.31)

per each y ∈ Y (or h ∈ Hw in M(ȳ, w̄)), with QEZ subset of available EZ
technologies.

C.2.3. Modelling parameters

In this section, tables recalled throughout the section 4.2 are reported with exhaustive
details about the mathematical notation (Tbl. C.7) and economic/technological
parameters used in the discussed scenarios (Tables C.5-C.9).

Table C.5.: Scenario parameters employed in the case study.

Parameters CO2 emission factors
Electricity price [€/kWh] 0.195 Grid electricity [gCO2/kWh] 281.4
Natural gas price [€/kWh] 0.0695 CHP [gCO2/kWh] 353.3
Water price [€/m3] 3.79 GB [gCO2/kWh] 231.1
Electrical demand per year in-
crement 0.32%

Discount rate r 5%

Table C.6.: Performance characteristics and cost coefficients of PV technology.

PV characteristics
Rated power [kWp] 20, 500, 1000, 1500, 2000,2500, 2700, 3300
Efficiency factor 17%
Efficiency degradation per year 0.3%
Lifetime [y] 20
Investment cost [€/kWp] 1200
Maintenance cost factor 1.3%
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Table C.7.: Sets, parameters and variables common to the two formulations, exclusive of
My and Mw.

Sets
Common

K: energy vectors in the system
My Mw

T : yearly planning horizon T : hourly scheduling horizon
Q: deployable technologies Qt̄: installed technologies in year t̄
S ⊆ Q: deployable storage devices S t̄ ⊆ Qt̄: installed storage devices in year t̄
QCHP ⊆ Q: deployable CHP technologies W : representative weeks in the planning horizon
QPV ⊆ Q: installable PV systems
QHP ⊆ Q: deployable HP engines

Parameters
Common

ckt : cost per kWh of energy vector k at time t

ekq : round-trip efficiency of storage technology q accumulating energy vector k
ϕhk
q : conversion efficiency from energy vector h to k of technology q

δq: efficiency degradation of technology q

bkqt: estimated base production in kWh of energy vector k of technology q at hour t
Uk

q : maximum rated power in kW of energy vector k of technology q

Ck
q : rated capacity in kWh of storage technology q accumulating energy vector k

lq: lifetime of technology q
r: discount rate at present value

My Mw

dkt : aggr. demand in kWh of energy vector k in
year t dkt : demand in kWh of energy vector k at hour t

bkqt: aggr. base production in kWh of energy vec-
tor k of technology q in year t ρq: hourly capacity loss of storage technology q

Uk
q : aggr. maximum rated power in kWh of tech-

nology q producing energy vector k Lk
q : lower partialisation limit of power in kWh of

Ck
q : aggr. rated capacity in kWh of storage tech-

nology q accumulating energy vector k technology q producing energy vector k

vqt: investment cost in technology q at year t nw: number of weeks clustered in representative
week w

mqt: maintenance cost of technology q in year t
Ty: number of years in the planning horizon
Hy: number of hours in a year
d̂
k

t : estimated peak of unmet demand in kWh of
energy vector k at year t
θ: sensitivity of constraint (C.23)
d̃
k

t : estimated peak in kWh of requested energy
vector k at year t
γ: sensitivity of parameter d̃kt

Variables
Common

fk
t ∈ R+: flow of energy vector k purchased at time t

skqt ∈ R+: energy vector k accumulated in storage of type q at time t

pkqt ∈ R+: energy vector k produced by technologies q at time t

rkhqt ∈ R+: energy vector k required for producing energy h by technologies q at time t

My Mw

zqt ∈ N0: number of devices q operating in year t zqt ∈ {0, 1}: number of devices q operating at
hour t

xqt ∈ N0: number of devices q installed at year t
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Table C.8.: Performance characteristics and cost coefficients of conversion technologies.

Common
Efficiency
degradation
per year

1%

Partialisation
limit of power 30%

Conversion
technolo-
gies

Rated
power [kW ]

Conversion
efficiency Lifetime [y] Investment

cost [€/kW ] Maintenance cost factor

CHP
110 39% el (49%

th) 10
900

2%
220 43% el (47%

th) 600

575 42% el (44%
th) 321

HP
160 2.80

15
124

1%270 2.88 127
380 2.80 119

AC
131

80% 15 174 1%152
316

EC
70 2.74

15
121

1%120 2.71 124
150 3.00 125

GB
120 88%

20 90 1.5%200 88%
1000 91%

FC
300

50% el 10 Table C.9 Table C.9600
900

EL
660

71% 10 Table C.9 Table C.91320
1980

Storage
technolo-
gies

Rated
capacity
[kWh]

Round-trip
efficiency Lifetime [y]

Investment
cost
[€/kWh]

Maintenance cost factor

HTES/CTES
500

75% 15 40 2%1500
2500

EES
500

90% 10 Table C.9 1%1500
2500

SH
1000

99% 18 30 2.3%2000
3000

188



C.2. Dynamic modelling

Table C.9.: Dynamic costs of storage technology EES, PEM conversion technologies FC
and EL for the 30-year planning horizon.

EES FC EL

Years Investment
cost [€/kWh]

Investment
cost [€/kWh]

Maintenance
cost factor

Investment
cost [€/kWh]

Maintenance
cost factor

rate [%/y]
-3.97

rate [%/y]
-2.21

rate [%/y]
-11.12 (-6.05)

rate [%/y]
12.84

2021 284 1309 3.91 1155 6.21
2022 267 1257 3.83 1027 7.00
2023 248 1207 3.74 913 7.90
2024 231 1159 3.66 811 8.92
2025 212 1113 3.58 721 10.06
2026 204 1069 3.50 641 11.35
2027 197 1027 3.42 570 12.81
2028 189 986 3.35 506 14.45
2029 182 947 3.27 450 16.31
2030 174 909 3.20 400 18.40
2031 172 873 3.20 376 18.40
2032 169 838 3.20 353 18.40
2033 168 805 3.20 332 18.40
2034 166 773 3.20 312 18.40
2035 163 742 3.20 293 18.40
2036 161 713 3.20 275 18.40
2037 159 684 3.20 258 18.40
2038 157 657 3.20 243 18.40
2039 154 631 3.20 228 18.40
2040 153 606 3.20 214 18.40
2041 150 582 3.20 201 18.40
2042 148 559 3.20 200 18.40
2043 146 537 3.20 200 18.40
2044 144 515 3.20 200 18.40
2045 141 495 3.20 200 18.40
2046 139 475 3.20 200 18.40
2047 137 456 3.20 200 18.40
2048 135 438 3.20 200 18.40
2049 132 421 3.20 200 18.40
2050 131 404 3.20 200 18.40
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Bi-level case studies

D.1. Hydrogen Wind Turbine

For the study discussed in section 5.1 the i) modelling parameters of the electrolysis
system, and the ones used for the assessment of the levelised cost of hydrogen (Tbl.
D.1-D.2), are reported.

D.2. Energy Storage Systems comparison

The modelling parameters adopted, for the study related to 5.2, for both technical
and economic perspectives, are reported in Tbl. D.3-D.4.
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Table D.1.: Modelling assumptions for the electrolysis system
Description Value
Alkaline electrolysis

Electrolyte concentration 30% w.t. KOH
Electrolyte max. temperature 80 ◦C
Electrolyte pressure 7 bar
Average current density 400 mA/cm2

Max. temperature increase in the stack 1 ◦C
Min. power load in the stack 15%

Reverse osmosis [208]
Specific power demand 4 kWh/m3 water

Cooling tower [209]
Min. water temperature 30 ◦C
Max. water temperature 40 ◦C
Specific power demand 0.6 kJ/kg
Water losses 2%

Gas-liquid separator
Equilibrium temperature 40 ◦C

Pumps
Isentropic efficiency 70%
Equilibrium temperature 95%

Multi-stage compressor
Number of stages 2
Pressure ratio 3.16
Isentropic efficiency 75%
Mechanical efficiency 95%

Air intercooler
Temperature increase of air 10 ◦C
Pressure drop in heat exchanger 800 Pa
Isentropic efficiency 70%
Mechanical efficiency 95%

Table D.2.: Parameters of the LCOH modelling
Battery

CAPEX 1 160 EUR/kW
CAPEX 2 142 EUR/kWh
OPEX 0.54 EUR/kW/year
Lifetime 10 years

Electrolysis system
H2 rate 0.02 kgH2 /kWh
CAPEX 1000 EUR/kW
OPEX 2 %/CAPEX/year
Lifetime 10 years
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Table D.3.: Main characteristics of the ESSs
Value Unit ref.

BESS
Round-trip efficiency 91 % [187]
Self-discharge ratio 0.007 %/hour [188]
Minimum SOC 20 % [187]

Hydrogen
Electrolyser efficiency 71 % [187]
Fuel cell efficiency 50 % [187]

Table D.4.: Cost parameters of the study
Costs Value Unit of measure ref.
BESS investment cost 285 €/kWh [187] [210]
BESS O&M annual costs 2.2 % [187] [210]
BESS lifetime 12 years [187] [210]
Electrolyser investment cost 1’295 €/kW [187] [210]
Electrolyser O&M annual cost 3.5 % [187] [210]
Electrolyser lifetime 15 years [187] [210]
Hydrogen storage tank cost 30 €/kWh [211] [210]
Hydrogen storage tank O&M cost 2.3 % [211] [210]
Hydrogen storage tank lifetime 30 years [211] [210]
Fuel cell investment cost 1’684 €/kW [187] [210]
Fuel cell O&M annual cost 2 % [187] [210]
Fuel cell lifetime 14 years [187] [210]
Interest rate (all systems) 2 % [187] [210]
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