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Abstract: Public-key cryptosystems built on quasi-cyclic (QC) low-density parity-check and moderate-density parity-check
codes are promising candidates for post-quantum cryptography, since they are characterised by compact keys and high
algorithmic efficiency. The main issue with this kind of system is represented by the fact that, since the decoding procedure is
probabilistic, it may leak information about the secret key. In this work, the authors study cryptanalysis procedures that aim at
recovering the secret key by exploiting this fact. They identify the phenomenon that is at the basis of these procedures and
show that the QC structure plays an important role in the success of these attacks. They use a graph analogy to study the
complexity of these attacks, and show that their feasibility strongly depends on the QC structure. They also devise an approach
to perform full cryptanalysis by combining an information set decoding algorithm with some partial knowledge about the
structure of the secret key.

1 Introduction
Shor's quantum algorithm [1] can solve, in polynomial time,
problems like the integer factorisation and the discrete logarithm,
upon which systems like Rivest–Shamir–Adleman and Diffie–
Hellman are built. Essentially, because of the upcoming advent of
quantum computers, the cryptosystems we are using nowadays will
not be secure in a not-so-distant future. For this reason, the
National Institute of Standards and Technology (NIST) has
initiated the process for the evaluation and subsequent
standardisation of post-quantum cryptosystems [2], with the aim of
finding valid alternatives to quantum-vulnerable though
widespread systems.

In this scenario, some candidates of significant interest are
those based on coding theory, which was introduced by the seminal
works of McEliece [3] and Niederreiter [4]. The security of these
schemes is based on the hardness of the so-called Syndrome
Decoding Problem (SDP), i.e. the problem of decoding a random
linear code, which has been proven to be NP-hard [5]. The best
SDP solvers are known as Information Set Decoding (ISD)
algorithms that, despite many improvements over time (see [6–8]),
still have exponential complexity, even when implemented on
quantum computers [9].

The main issue with the classic McEliece cryptosystem, which
is based on Goppa codes, is represented by the large size of its
public keys, which essentially correspond to some representation of
an error-correcting code. One way to address this issue consists of
replacing Goppa codes with structured codes, i.e. codes admitting a
compact representation through geometrical relations involving the
elements in the public key. A common choice is that of using
quasi-cyclic (QC) random or pseudo-random codes, without any
underlying algebraic structure.

In this paper, we focus on the case of QC low-density parity-
check (QC-LDPC) and QC moderate-density parity-check (QC-
MDPC) codes, i.e. codes represented by a parity-check matrix that
contains a small number of set entries. Such codes are on the basis
of two candidates [10, 11] that have been recently admitted to the
second round of NIST's competition [12]. Codes of this kind admit
a very wide random-like design, and the only known structural
attacks to them are those based on the use of ISD for recovering
rows of the secret key, which can be seen as low-weight codewords
in the dual of the public code. In order to counter these attacks, one
must guarantee that the weight of such codewords is not below
some security threshold. Such a feature can be obtained by means

of a proper transformation matrix, whose effect is that of increasing
the minimum distance of the dual code, or by slightly increasing
the density of the secret parity-check matrix. In the former case, the
secret code is commonly called a QC-LDPC code, while in the
latter case, we usually speak of a QC-MDPC code. We point out
that, in such a scenario, the QC structure has no consequence in the
feasibility of the attacks: ISD algorithms can benefit from a
polynomial speed-up [13], which however has no substantial
impact on the scheme security.

The main difference between QC-LDPC and QC-MDPC codes
with respect to algebraic codes is in the fact that they do not admit
efficient bounded-distance decoders. Indeed, all known decoding
techniques are probabilistic, in the sense that they might fail with
some probability, commonly denoted decryption failure rate
(DFR). Such a probabilistic nature of decoding has been shown to
leak some information about the secret key. The first-ever
published attack of this kind, which is due to Guo et al. [14],
exploits events of decoding failure to recover the secret key; after
that, the same attack procedure has been extended, in order to
consider different schemes and other kinds of information leakage
[15–19]. Essentially, all these attacks can be divided into two
common phases. In the first one, the adversary observes some
quantity that is typical of the decoding procedure, such as decoding
failures, the number of iterations, the power consumption, and so
on. Then, by means of a statistical test, the gathered data is used to
recover some characteristic of the secret key. In the second phase,
the obtained information is used to reconstruct the secret key, or an
equivalent version of it, which guarantees decoding of intercepted
ciphertexts. Because of this procedure, all attacks of this kind can
be generally denoted as statistical attacks. In particular, in [19] we
have shown that this statistical analysis can be performed on
whichever low-density parity-check (LDPC) or moderate-density
parity-check (MDPC) code, and does not depend on the QC
structure of the code. In other words, this fact means that the
information leakage which is exploited by such attacks is
something that intrinsically comes from the decoder, and is not due
to the structure of the code.

However, as we show in this paper, the code structure might
play an important role in the secret key reconstruction phase. We
consider the analogy of this problem with some graph theory
problems, and show that the solution of the matrix reconstruction
problem is facilitated when the code is QC. To the best of our
knowledge, this is the first case in which, for LDPC and MDPC
codes, a significant effect of the QC structure on security is
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observed. We then review currently known attack procedures and
describe them in the general paradigm of statistical attacks.

The remainder of the paper is organised as follows. In Section
2, we describe the notation we use in the paper and recall some
concepts about graph theory. In Section 3, we recall the
cryptosystems we are considering. In Section 4, we introduce a
general framework for statistical attacks, and describe it under a
graph perspective. We introduce the problem of the matrix
reconstruction by relating it to a graph problem, in which a
multigraph needs to be partitioned into proper cliques. In Section 5,
we show that, when QC codes are considered, this problem can
actually become significantly easier with respect to the general
case.

2 Notation
We use bold capital and small letters, respectively, to denote
matrices and vectors. Given a matrix A, we denote its entry in the
ith row and jth column as ai, j; given a vector a, its ith entry is
denoted as ai. The support of a vector a, which is denoted as ϕ(a),
corresponds to the set of indexes pointing at non-null entries in a.
The Hamming weight of a vector, which is denoted as wt(a),
corresponds to the number of its non-null entries, i.e. to the
cardinality of its support.

We define a circulant matrix as a square matrix such that each
row can be obtained from the first one by applying a shift of one
position. Obviously, all rows and columns in a circulant matrix A

have the same Hamming weight; then, with some abuse of
notation, we will refer to this value as the weight of A. In this
paper, we will exploit the well-known isomorphism between the
ring of p × p binary circulant matrices and the ring of polynomials
F 2[x]/(xp + 1), i.e.

A =

a0 a1⋯ ap − 1

ap − 1 a0⋯ ap − 2

⋮ ⋮ ⋱ ⋮

a1 a2⋯ a0

↔ A(x) = ∑
i = 0

p − 1

aix
i .

Based on this isomorphism, it can be easily shown that all
operations involving circulant matrices can be equivalently
described by considering the associated polynomials.

We define a graph G through a set of vertices V and a set of
edges E ∈ V

2. We consider only an undirected graph, i.e. graphs in
which an edge is defined just by its endpoints (and not by its
direction). In other words, the pairs (i, j) and ( j, i) are identical,
since they correspond to the same edge. If E contains multiple
pairs, then we say that G is a multigraph; otherwise, G is called a
simple graph.

Let i be a vertex in a graph G: we define its neighbourhood, and
denote it as NG(i), as the set of vertices that are connected to i, i.e.
vertices j for which there exists at least an edge (i, j) ∈ E. The
degree of a vertex i is denoted as deg(i) and corresponds to the
number of edges that are incident to i.

For a graph G, with vertices set V and edges set E, we say that
G′, defined by V′ and E′, is a subgraph of G, and we write G′ ⊆ G,
if V′ ⊆ V  and E′ ⊆ E. Given a set V

∗ ⊆ V , we define GV
∗ as the

subgraph induced by V∗, i.e. the graph whose vertices set is V∗ and
whose edges are those in G that connect only vertices in V∗. We
say that a subgraph containing w vertices is a w-clique if it is
complete, i.e. if each pair of its vertices is connected by (at least)
one edge.

Given two graphs Ga and Gb, with vertices Va, Vb and edges Ea,
Eb, we define G = Ga + Gb as the graph with vertices V = Va ∪ Vb

and edges E defined as

E = (i, j) ∈ V
2 (i, j) ∈ Ea or (i, j) ∈ Eb . (1)

Let i be a vertex in a graph G: then, G′ = G i is the graph with
vertices V′ = V i and whose edges E′ are those in G that do not
have i as an endpoint.

3 System description
In this section, we briefly recall the main principles of public-key
encryption schemes and key encapsulation mechanisms based on
QC codes with a sparse parity-check matrix. In particular, although
our focus is on QC-LDPC codes, we here describe a general
framework that encompasses both QC-LDPC [11, 20] and QC-
MDPC schemes [10, 21]. As we will see, the QC-MDPC case can
be considered as a particular case of the QC-LDPC one, obtainable
through a suitable choice of the transformation matrices.

3.1 Key generation

In the schemes, we consider in this paper, the secret (private) key
can be written as KS = H

~

, Q . In particular, we have

H
~

= H
~

0 H
~

1 ⋯ H
~

n0 − 1 , (2)

where each block H
~

i is a p × p circulant matrix, with weight equal
to some integer dv ≪ p. Usually, n0 is a small integer while, in
order to avoid folding attacks of the type in [22], p is chosen as a
prime. The masking matrix Q is an n × n matrix in QC form (i.e. it
is formed by n0 × n0 circulant blocks of size p), whose row and
column weights are constant and equal to m ≪ n. The weights of
the circulant blocks forming Q can be written in an n0 × n0 circulant
matrix M, such that its element in the ith row and the jth column
corresponds to the weight of Qi, j. A common choice [11] is that of
having M in circulant form; in such a case, we denote its first row
as m = m0, m1, …, mn0 − 1 , and clearly we have ∑i = 0

n0 − 1
mi = m.

In order to obtain the public key from the private key, we first
compute the matrix H as

H = H
~

Q = H0 H1 ⋯ Hn0 − 1 , (3)

where each block Hi is again circulant and has weight ≤ mdv ≪ p.
Then, H is the parity-check matrix of a QC code C, with length
n = n0p and dimension k = (n0 − 1)p, for which the generator
matrix in systematic form is obtained as

G = I(n0 − 1)p

Hn0 − 1
−1

H0
T

Hn0 − 1
−1

H1
T

⋮

Hn0 − 1
−1

Hn0 − 2
T

, (4)

where I(n0 − 1)p is the identity matrix of size (n0 − 1)p. The matrix G
is then used as the public key KP. We remark that, when a
systematic G is adopted as the secret key, a suitable conversion
must be used, in order to achieve indistinguishability under chosen-
ciphertext attack (CCA2) [23].

3.2 Encryption

Let u be a k-bit information message to be encrypted, and let e be
an n-bit intentional error vector with weight t. The ciphertext c is
then obtained as

c = uG + e . (5)

3.3 Decryption

Decryption starts with the computation of the syndrome as

s = cQ
T
H
~ T

= eQ
T
H
~ T

= e′H
~ T

, (6)

which corresponds to the syndrome of the expanded error vector
e′ = eQ

T, computed through H
~ T. Then, a syndrome decoding

algorithm is applied to s, in order to recover e. A common choice
to decode s is the bit flipping (BF) decoder, firstly introduced in
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[24], or one of its variants. In the setting used in QC-LDPC code-
based systems, decoding can also be performed through a special
algorithm named Q-decoder [11], which is a modified version of
the classical BF decoder and exploits the fact that e′ is obtained as
the sum of rows from Q

T. The Q-decoding procedure will be
briefly described in the next section.

QC-MDPC code-based systems introduced in [21] can be seen
as a particular case of the QC-LDPC code-based scheme,
corresponding to Q = In0p. Encryption and decryption work in the
same way, and syndrome decoding is performed through BF on
H
~

= H. We point out that the classical BF decoder can be
considered as a particular case of the Q-decoder, corresponding to
Q = In0p.

3.4 Q-decoder

Let s be the input syndrome, and define

σ = s ∗ H, (7)

where * denotes the integer inner product. With some
straightforward computations, it can be shown that the ith entry of
σ corresponds to the number of unsatisfied parities in which the ith
bit participates. Thus, large values in σ are associated with
positions that are likely to be affected by errors. This criterion is
the one which is applied in a BF decoder, in order to estimate the
positions of errors. In the first iteration, s corresponds to the
syndrome of the received ciphertext, while in all the other
iterations it is obtained by subsequent updates on the initial one.

The novelty of the Q-decoder, with respect to the classical BF
decoder, is in the fact that it exploits the knowledge of the matrix Q
to improve the decoding performance, a detailed description of this
decoding procedure can be found in [11]. In the Q-decoder,
decisions about error positions are taken on the basis of some
correlation values that are computed as

ρ = s ∗ H
~

∗ Q = σ ∗ Q . (8)

As explained in [11, Section 2.5], from the performance standpoint,
the Q-decoder approximates a BF decoder working on H = H

~

Q.
However, by exploiting H

~

 and Q separately, the Q-decoder
achieves lower complexity than BF decoding working on H. The
aforementioned performance equivalence is motivated by the
following relation:

ρ = s ∗ H
~

∗ Q

= eQ
T
H
~ T

∗ H
~

∗ Q

= eH
T ∗ H

~

∗ Q

≃ eH
T ∗ H,

(9)

where the approximation H
~

∗ Q ≃ H
~

Q = H comes from the
sparsity of both H

~

 and Q. Thus, (9) shows how the decision metric

considered in the Q-decoder approximates that used in a BF
decoder working on H.

4 General statistical attacks
In this section, we describe statistical attacks against schemes in
which no masking matrix is used, such as the QC-MDPC McEliece
[21]. We first recall the approach introduced in [19], in which a
generic model for such attacks is introduced. We then provide an
interpretation of the type of information that can be recovered by
the opponent and, through a graph analogy, we describe a general
approach that allows for the recovery of the secret key. As our
analysis highlights, the problem of matrix reconstruction can be
related to a well-known hard problem in graph theory. In this
section, we do not consider any specific code structure, and leave
the analysis of QC codes in Section 5.

4.1 GSA attack

We remind here the attack proposed in [19], that we call the
General Statistical Attack (GSA). Such a procedure is, in principle,
applicable to any LDPC or MDPC code, regardless of its particular
structure.

Let KS and KP be a pair of private and public keys, respectively.
In a statistical attack, an adversary, who has the availability of KP,
first produces T ciphertexts c(i), for i = 1, 2, …, T . He then queries a
decryption oracle, which is modeled through an algorithm D
provided with the secret key KS. The oracle applies the decryption
algorithm on the received query, and replies with some quantity
that is characteristic of the decoding procedure. The type of reply
can be heterogeneous and depends on the particular scenario we
are modelling. For instance, it might consist of the decryption
outcome (i.e. success or failure), the required time for decoding,
the power consumption of some particular step, etc. (see [14, 15,
17–19, 25] for some concrete possibilities). The adversary first
collects all the oracle replies, and then performs a statistical
analysis on them, with the aim of guessing some information about
the secret key.

Essentially, the main idea behind statistical attacks is
represented by the fact that the decoding procedure is probabilistic
and depends on some relation existing between the error vector and
the secret key. Thus, when the error vector is known to the
opponent, the decoding procedure intrinsically leaks information
about the secret key. In particular, the GSA attack exploits the
relation between couple of columns in the secret key and the
expected value of the observed quantity.

The main attack procedure is shown in Algorithm 1 (see Fig. 1). 
The error vector used in the ith query is denoted as e(i), and the
corresponding oracle reply is y(i).

The output matrices A and B are used by the adversary to
compute the matrix D, whose entry in position (i, j) is
di, j = ai, j/bi, j. It is easy to see that, when T is sufficiently large, we
have

di, j ≃ E y ei = 1, ej = 1 , (10)

where E ⋅  denotes the expected value. In other words, the values
of di, j are estimates of the average value of the observed quantity,
conditioned to the fact that the error vector contains two fixed set
positions. What happens is that di, j tends to have different
distributions, on the basis of the number of common ones between
the ith and the jth columns. A heuristic justification of this
phenomenon is presented in [19]. Thus, by means of hypothesis
tests, the adversary can recover the number of intersections
between two columns in the secret key.

4.2 Adjacency matrix

In the previous section, we have described how an adversary can
learn the number of overlapping ones between pairs of columns in
H. These values can then be used to build an n × n matrix Λ,
whose entries are defined as

Fig. 1  Algorithm 1: GSA
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λi, j =
ϕ(hi) ∩ ϕ(hj) if i ≠ j

0 if i = j
, (11)

where hi denotes the ith column in H. The matrix Λ, already
introduced in [19], will be called the adjacency matrix of H; by
construction, Λ is clearly symmetric.

In particular, the matrix Λ can be associated to a multigraph G
with n vertices, labeled from 0 to n − 1, and whose edges are
defined by the entries of Λ, such that vertices i and j are connected
by λi, j distinct edges. We point out that, because of the choice
λi, i = 0, G does not contain loops. Let i be a vertex in G: then, its
degree is related to Λ through the following equation:

deg(i) = ∑
j = 0

n − 1

λi, j . (12)

In particular, the constructed multigraph G is associated to the
matrix H, as the following lemma states.
 

Lemma 1: Let Λ ∈ ℕn × n be the adjacency matrix of a matrix
H ∈ F 2

r × n, with rank r, and denote with G the associated
multigraph. Then, the following properties hold:

(i) if the ith row of H has weight wi and support ϕ, then G contains
a clique of size wi, whose vertices set corresponds to ϕ;
(ii) if the ith column of H has weight vi, then it is possible to find vi

distinct cliques which involve the vertex i.

 
Proof: We first prove thesis (i); let us suppose that the ith row

of H has weight wi, and denote its support as ϕ. Each pair of
indexes ( j, l) ∈ ϕ

2, with j ≠ l, identifies a pair of columns in H that
overlap in, at least, one position. Then, we have

λj, l ≥ 1, ∀( j, l) ∈ ϕ
2, j ≠ l .

Then, by the construction of the multigraph, we have

( j, l) ∈ E, ∀( j, l) ∈ ϕ
2, i ≠ j .

The above equation defines a clique of size equal to the cardinality
of ϕ, i.e. wi.

Proving thesis (ii) is now straightforward: since each row in H
is associated with a clique in G, we know that, if the ith column of
H has weight vi, this means that i participates in vi cliques. The
matrix H has rank r, thus, it cannot have two equal rows: then, all
the cliques involving i must have a different set of vertices. □

In particular, the following proposition arises as a
straightforward consequence of Lemma 1.
 

Proposition 1: Let Λ ∈ ℕn × n be the adjacency matrix of a
matrix H ∈ F 2

r × n, with rank r, and denote with G the associated
multigraph. Let wi and vj denote, respectively, the weights of the ith
row and the jth column of H. Then, G can be partitioned into r
cliques Zl such that

(i) Zl has size wl, for l = 0, …, r − 1, and the involved vertices
constitute the support of the lth row in H;
(ii) if (i, j) ∈ E, then there are λi, j cliques which contain both
vertices i and j;
(iii) the vertex j, for j = 0, 1, …, n − 1, is contained in vj cliques;
(iv) ∑i = 0

r − 1 Zi = G.

In particular, the adjacency matrix defines a class of
equivalence for matrices over F 2. Indeed, let H be a matrix of size
r × n, with adjacency matrix Λ, and define Adj{ ⋅ } as the operator
that, when applied on a matrix, returns its adjacency matrix. It is
easy to see that, for all permutation matrices Π ∈ F 2

r × r, we have
Adj{ΠH} = Adj{H}. Then, given an adjacency matrix Λ of a full
rank matrix H, the following result holds:

H
∗ ∈ F 2

r × n Adj H
∗ = Λ ≥ r!, (13)

since r! is equal to the number of distinct r × r permutations.
Obviously, the rows of H must be all different (otherwise, it is
rank(H) < r), so distinct permutations will lead to distinct matrices
(i.e. they have at least two positions in which the corresponding
rows are different).

A very common choice for the cryptosystems we are
considering is that of relying on (v, w)-regular codes, i.e. codes that
are described by a parity-check matrix that has constant column
weight v and constant row weight w. In such a case, all vertices in
G will have the same degree v(w − 1); we can then call G a regular
multigraph. For the sake of clarity, we show an example of such a
multigraph; we consider the following matrix:

H =

1 1 0 0 0 1

0 0 1 1 1 0

0 1 0 0 1 1

1 0 1 1 0 0

,

which corresponds to the parity-check matrix of a (2, 3)-regular
code. Its corresponding multigraph is shown in Fig. 2, where the
cliques partition defined in Proposition 1 is emphasised with
different colours. 

When considering regular codes, the problem of reconstructing
a matrix H from its adjacency matrix can be stated in a very natural
way. We formulate this problem in the following definition.
 

Definition 1: (Regular multigraph cliques partition problem):
Given G, the multigraph associated to the matrix Λ ∈ ℕn × n, which
is the adjacency matrix of a parity-check matrix describing a (v, w)-
regular code of length n and redundancy r, find a collection of r
cliques {Z0, …, Zr − 1} such that

(i) all cliques have dimension w;
(ii) every node participates in v cliques;
(iii) ∑i = 0

r − 1 Zi = G.

In other words, the above problem corresponds to finding a
partition of G into r cliques of constant size w. All the cliques must
be such that each node is contained in exactly v cliques, and each
edge in G is covered by at least one clique. This problem
essentially corresponds to a variant of the edge clique cover
problem, which is known to be NP-hard [26, 27]. In particular,
Gramm et al. in [26] propose an algorithm that finds a solution to
the edge clique cover problem and whose complexity can be
parameterised by the number of searched cliques: if z is the number

Fig. 2  Multigraph associated with the example Λ(H); the cliques partition
defined in Proposition 1
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of searched cliques, then the algorithm runs in O(2z) time. We can
note that in the cases we are interested in, we have z = r. No
algorithm with better performances is currently known;
furthermore, Cygan et al. prove in [27] that the approach due to
Gramm et al. is essentially optimal.

As mentioned, the problem we are studying is a variant of the
edge clique cover problem, since we require that all cliques have
the same size and, additionally, that each edge is contained in the
same number of cliques. In any case, the well-studied hardness of
this problem suggests that even for the variant we are considering,
the complexity of an algorithm finding a solution cannot be
significantly lower than that of the algorithm proposed by Gramm
et al.

5 Reconstructing QC codes
In this section, we explain why the problem of the matrix
reconstruction, stated in Definition 1, becomes significantly easier
in the case of a QC matrix H. Indeed, because of the QC structure,
finding one of its rows is enough to obtain a full description of the
matrix. We show how, in such a case, the matrix reconstruction
problem is reduced into that of determining a clique of the proper
size in a simple graph. We point out that the work in this section is
inspired by that of [14]; however, we here analyse the problem
under a graph perspective, and provide an algorithm for the matrix
reconstruction, which achieves a lower complexity than that of
[14]. We first consider the problem of determining a single row of
the parity-check matrix H of regular code, and then revise the GJS

attack and its complexity [14]. We justify our claims with both
theoretical motivations and results of numerical simulations.

5.1 Finding cliques in simple graphs

The sparsity of a simple graph can be defined with respect to the
number of its edges: in general terms, a graph can be defined
sparse when such a number is significantly smaller than its allowed
maximum value. Many definitions of sparsity are present in the
literature, together with examples on how to use such definitions to
parameterise the complexity of some graph algorithms; for instance
we might mention the concepts of arboricity [28], degeneracy [29,
30] and community-degeneracy [31]. However, in this section we
do not consider specific algorithms and describe an approach that,
even if designed in a naive fashion, already runs in a complexity
that is sufficiently low for the cases we are interested in.

Let H be the parity-check matrix of a (v, w)-regular code, with
an adjacency matrix Λ. We first consider the following result.
 

Lemma 2: Let H be the parity-check matrix of a (v, w)-regular
code, with an adjacency matrix Λ. Let ϕ be the support of the first
row of Λ, i.e. the set containing all values i for which λ0, i > 0.
Then, the following propositions hold:

(i) there are v rows in H whose support corresponds to a subset of
ϕ of cardinality w − 1;
(ii) let a ∈ ϕ: then, there is (at least) a row in H whose support
contains both 0 and a.

 
Proof: We consider the jth row of H, which we denote as hj,

and suppose that hj, 0 = 1; since the code is regular, there are
exactly v rows with this property. For each element a in the support
of hj, we have hj, a = 1; since we also have hj, 0 = 1, this means that
columns 0 and a overlap in (at least) one position, and thus
λ0, a > 0. In other words, all set positions in hj, apart from 0, are
associated to set positions in the first row of Λ. Since we have v
rows that contain 0 in their support, this means that their support
must be subsets of ϕ; this reasoning proves thesis (i).

In particular, for each a ∈ ϕ, there must be a row whose support
contains both 0 and a, otherwise, it is λ0, a = 0. Then, because of
thesis (i), the support of this row is subsets of ϕ. □

In particular, starting from H, we can construct a simple graph,
which contains all information about the support of (at least) one
row of H. To this end, we consider Algorithm 2 (see Fig. 3), which
takes as input the adjacency matrix Λ and returns a simple graph
G, which contains all vertices i for which λ0, i > 0 and λ0, a0

> 0,
with a0 = min {ϕ}. The edges in G are defined by elements in Λ:
two vertices i and j are connected if and only if λi, j > 0. Thus, it is
easy to see that there must necessarily be a clique in G having the
size w − 2 and such that the interested vertices, together with 0 and
a0, constitute the support of a row in H.

Then, the problem of recovering a row of H is reduced to that
of finding a clique of size w − 2 in the simple graph G; as we show
in the following, this task can be easily accomplished through a
greedy search in the graph. To this end, we can consider Algorithm
3 (see Fig. 4). Essentially, the algorithm tests all possible paths in
the graph, by applying a recursive pruning (i.e. extraction of
subgraphs), until a complete subgraph with the desired number of
vertices is found. At each call, the algorithm starts from a set of
candidates Z and a graph G; then, it selects a vertex a (line 3) and
computes the subgraph GV

(a) induced by its neighbour vertices. At
each new call, the candidates set is enriched with the tested vertex
a; the recursive calls go on until a graph with the desired number of
vertices is obtained. In the first call to the algorithm, we set Z = ∅,
u = w − 2, while G corresponds to the output of Algorithm 2
(Fig. 3). We remark that, essentially, this algorithm is developed in
the same fashion of that given in [14]. However, as we show in the
following sections, its time complexity is improved and, more
importantly, it allows for finding cliques in whichever case,
regardless of the code structure.

Fig. 3  Algorithm 2: GraphConstruction
 

Fig. 4  Algorithm 3: RecPruning
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We point out that some specific algorithms for clique finding in
sparse graphs may also be used (for instance see [30, 31]). It is
likely that the use of some specific algorithm will result in
improved algorithmic performances; however, even the naive
approach is enough to obtain sufficiently low complexities.

5.2 Complexity analysis

In this section, we provide a complexity estimate of Algorithm 3
(Fig. 4), by considering the average number of paths that are tested
during the search. First of all, we consider the probability that the
support of two columns in H share some common elements. This
probability, which estimates the density of Λ (i.e. the ratio between
the number of set entries and n2), can be obtained by modelling the
columns as random vectors of length r and weight v. This way, we
obtain such probability as

ρ = 1 −

r − v

v

r

v

. (14)

We now need to consider the number of vertices in G which is
provided as the output of Algorithm 2 (Fig. 3). This graph contains
all vertices that are connected to both 0 and a0, with a0 = min {ϕ}.
In other words, this means that G contains all vertices
corresponding to columns in H that possess common ones with
columns h0 and ha0

. Thus, we might estimate the number of vertices
in G as

nG = nρ
2 . (15)

It can be verified that, for the parameters we are interested in this
paper, we always have ρ < 1/2: thus, the number of vertices in G
is significantly smaller than n. Additionally, each two vertices in G
will be connected by an edge with probability approximately equal
to ρ: then, the graph G is somehow sparse, and we can thus expect
the execution of Algorithm 3 (Fig. 4) to be quite fast.

We can now evaluate the complexity of running Algorithm 3
(Fig. 4). We assume that all vertices in G behave as random and
independent objects and that each pair of vertices is connected by
an edge with probability ρ. At each call, the algorithm prunes the
graph, by cutting edges and vertices and returning a subgraph. In
particular, in the first call the average number of saved vertices can
be estimated as nGρ. In the second call, we can again consider the
input graph as a random graph, with edge probability ρ: thus, the
number of vertices in the output graph can be obtained as nGρ

2. In
general, in the jth call, we approximately will have nGα j edges.
Remember that, at each recursive call, the algorithm adds a vertex
to the current candidate set Z. Thus, at the recursive jth call, the set
Z contains exactly j vertices; the algorithm will stop pruning if the

number of vertices in the produced graph is ≤ u − j. Thus, the
average number of recursive calls can be denoted as jmax, and can
be estimated as

jmax = min
j

nGρ j ≤ u − j . (16)

The number of paths that is tested by the algorithm can then be
estimated by considering all possible combinations of such
subgraphs. We consider this number as the complexity of
Algorithm 3 (Fig. 4), and denote it as CG; we have

CG = O ∏
j = 1

jmax

nGρ j = nG
jmaxρ

jmax jmax + 1

2 . (17)

5.3 GJS attack

We are now ready to revise the attack procedure due to Guo et al.
[14]. This attack, which is specific to the case of QC codes
described by parity-check matrices in the form (2), is based on the
concept of distance spectrum, defined in the following.
 

Definition 2: Distance spectrum: Let a be a vector of length p
and support ϕ. For a pair of elements (b0, b1) ∈ ϕ

2, with b0 ≠ b1, we
define the corresponding cyclic distance as

d = min { ± (b0 − b1) mod p} .

The distance spectrum is defined as the set Δ(a) containing all such
distances. We say that a distance d has multiplicity μd

(a) if there are
μd

(a) distinct non-ordered couples of elements of ϕ at a distance d.
Since the distance spectrum is invariant to cyclic shifts, all the

rows of a circulant matrix share the same distance spectrum; thus,
we can define the distance spectrum of a circulant matrix as the
distance spectrum of any of its rows (the first one for the sake of
convenience).

It is easy to see that the distance spectrum and the adjacency
matrix are actually related. Indeed, let A be a p × p circulant
matrix over F 2, and denote with Δ(A) its distance spectrum and
with Λ its adjacency matrix. With some straightforward
computations [19], it can be shown that Λ is circulant as well and,
if d ∈ Δ(A) with multiplicity μd

(A), then

λ0, d = λ0, p − d = μd
(A) . (18)

As we describe in the following, for a matrix like that in (2), the
knowledge of a single circulant block in H is enough to reconstruct
the whole matrix from the public key.

In particular, when performing a statistical attack, the adversary
can directly focus on the distance spectrum, since it can be
recovered by exploiting the QC structure; this can be done by
statistical tests on the output of Algorithm 4 (Fig. 5). Indeed, the
vectors a and b can be used by the opponent to guess the
multiplicity of each distance in the spectrum of Hn0 − 1. The ratios
ad /bd follow different and distinguishable distributions, with mean
values depending on the multiplicity of d. This way, the analysis of
the values ad /bd allows the opponent to recover Δ Hn0 − 1 . Once the
distance spectrum has been obtained, it can be used to reconstruct
the first row of the matrix Λ = Adj{Hn0 − 1}. Then, applying
Algorithms 2 and 3 (Figs. 3 and 4) will return candidates for one of
the rows in Hn0 − 1. The found solution can then be considered as the
first row of a circulant Hn0 − 1

∗ = ΠHn0 − 1, with Π being an unknown
circulant permutation.

Then, according to (4), the public key can be written as
G = [I P], with

Fig. 5  Algorithm 4: GJS distance spectrum recover
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P =

P0

P1

⋮

Pn0 − 2

=

Hn0 − 1
−1

H0
T

Hn0 − 1
−1

H1
T

⋮

Hn0 − 1
−1

Hn0 − 2
T

. (19)

The opponent can then compute the products

Hn0 − 1
∗

Pi
T = ΠHi = Hi

∗, (20)

in order to obtain a matrix H
∗ = H0

∗, H1
∗, …, Hn0 − 1

∗ = ΠH. This
matrix can be used to efficiently decode the intercepted ciphertexts,
since

cH
∗ T = eH

T
Π

T = sT
Π

T = s ∗ T . (21)

Applying a decoding algorithm on s ∗ T, with parity-check matrix
H

∗, will return e as output. The corresponding plaintext can then be
easily recovered by considering the first k positions of c + e.

While the GJS attack has been specifically proposed for QC-
MDPC cryptosystems, i.e. schemes where no masking matrix is
used, it can also be used to attack the case of a QC-LDPC scheme
relying on a Q-decoding procedure. In fact, as explained in Section
3.4, the Q-decoder working on H

~

 and Q approximates a BF
decoder working in H: in such a case, the masking matrix has no
impact, when considering the GJS attack feasibility. In such a case,
the recovered distance spectrum is that of Hn0 − 1 (see (3)), i.e.

Hn0 − 1 = ∑
i = 0

n0 − 1

H
~

iQi, n0 − 1 . (22)

In order to justify this claim, we show the results of numerical
simulations on code with parameters n0 = 2, p = 4801, dv = 9,
m = 5. The corresponding estimates ad /bd, obtained through
Algorithm 4 (Fig. 5), are shown in Fig. 6. As we can see from the
figure, the distances tend to group into distinct bands, depending
on the associated multiplicity in the spectrum.

5.4 GJS complexity

In this section, we evaluate the complexity of performing a
complete GJS procedure. First of all, we denote as Cdist the number
of operations that the opponent must perform, for each decryption
query, in order to compute the distance spectrum of e(i) and update
the estimates a and b. The p-bit block en0 − 1

(i)  can have a weight
between 0 and t; let us suppose that its weight is tp, which occurs
with probability

ptp
=

p

tp

n − p

t − tp

n

t

. (23)

We can assume that in en0 − 1 there are no distances with multiplicity
≥ 2 (which is reasonable when e is sparse). The average number of

distances in en0 − 1 can thus be estimated as ∑tp = 0
t

ptp

tp

2
, which also

gives the number of operations needed to obtain the spectrum of
en0 − 1. Each of these distances is associated with two additional
operations: the update of b, which is performed for each decryption
query, and the update of a, which is performed only in the case of a
decryption failure. Thus, if we denote as ϵ the DFR of the system
and as Cenc the complexities of the encryption procedure,
respectively, the average complexity of each decryption query can
be estimated as

Cq = Cenc + (2 + ϵ) ∑
tp = 0

t

ptp

tp

2
. (24)

Thus, the complexity of running Algorithm 4 (Fig. 5) can be
obtained as

CN ≃ N ⋅ Cq = N ⋅ Cenc + (2 + ϵ) ∑
tp = 0

t

ptp

tp

2
. (25)

Once the distance spectrum has been obtained, the adversary can
proceed in the reconstruction of the block Hn0 − 1. The complexity
of such a procedure can be estimated by means of (17), by
considering Hn0 − 1 as the parity-check matrix of a regular pseudo-
code (i.e. with redundancy equal to the code length), with
v = w = mdv. The total complexity of the attack, measured in terms
of a work factor, can then be obtained as

WFGJS = CN + CG . (26)

In particular, for parameters of practical interest [11, 21], the values
of CN are always significantly below the security level. We now
consider the values of CN: the minimum values of N which allow
for the full spectrum reconstruction are complex to estimate. In any
case, all numerical simulations reported in the literature have
shown how such a goal can be achieved with values of N that are
significantly below the security level. In the end, when considering
statistical attacks based on decryption failure, it seems safe to
assume that, when the DFR is non-negligible, the corresponding
values of N are ≪ 2SL, where SL denotes the security level of the
scheme, expressed in bits. When dealing with other kinds of
statistical attacks (like timing attacks), it would be surprising if the
complexity values CN are above the security level. Again, the
results of all numerical simulations are coherent with this claim.

6 Effect of the masking matrix
In this section, we take into account attacks tailored at schemes in
which Q ≠ In0p is used and the decoding procedure tries to correct
the expanded error vector e′ = eQ through the parity-check matrix
H
~

. With this choice, the GJS attack cannot be performed anymore.
In order to justify this fact, let us consider the generic expression of
a block of H, say the first one

H0 = ∑
j = 0

n0 − 1

Qj, 0H
~

j = ∑
j = 0

n0 − 1

Aj . (27)

Each Aj can be seen as a sum of cyclically shifted versions of H
~

j

(resp. Qj, 0) placed at positions depending on the support of the first
row of Qj, 0 (resp. H

~
j). Since all these matrices are sparse, the

expected number of cancellations occurring in such a sum is small.
This means that, with high probability, distances in Qj, 0 or H

~
j are

Fig. 6  Distribution of the opponent's estimates for a QC-LDPC code-
based system instance with n0 = 2, p = 4801, dv = 9, [m0, m1] = [2, 3],
t = 95, decoded through the Q-decoder. The estimates ad /bd correspond to
the output of Algorithm 4 (Fig. 5)
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present also in Aj. Since the BF decoder performance depends on
distances in both H

~

 and Q, the opponent can correctly identify
these distances by analysing Bob's reactions. However, the
spectrum of H0 also contains a new set of inter-block distances, i.e.
distances formed by one entry of Ai and one entry of Aj, with i ≠ j.
These distances cannot be revealed by the opponent, because they
do not affect the decoding performance when a BF decoder
working on the private code is used.

For this reason, in such a case, we must consider attacks that are
specific to this situation. In the remaining portion of this section,
we revise the attack procedures described in [15, 16].

6.1 FHS+ attack

More recently, a reaction attack specifically tailored to QC-LDPC
code-based systems has been proposed in [15]: this attack,
differently from the GJS one, takes into account the effect of the
matrix Q on the decoding procedure. We refer to this attack as the
FHS+ attack. The collection phase in the FHS+ attack is performed
through Algorithm 5 (see Fig. 7). We point out that the algorithm
we propose is a slightly different (and improved) version of the
attack in [15].

As in the GJS attack, the estimates ad /bd are then used by the
opponent to guess the distances appearing in the blocks of H

~

. In

particular, every block ej
(i) gets multiplied by all the blocks H

~

j, so
the analysis based on ad /bd reveals Δ(H

~

) = ⋃ j = 0

n0 − 1
Δ(H

~

j). In the
same way, the estimates ud /vd are used to guess the distances
appearing in the blocks belonging to the last block row of Q

T.
Indeed, the block en0 − 1

(i)  gets multiplied by all the blocks Qj, n0 − 1
T .

Since a circulant matrix and its transpose share the same distance
spectrum, the opponent is indeed guessing distances in the first
block column of Q. In other words, the analysis based on ud /vd

reveals Δ(Q) = ⋃ j = 0

n0 − 1
Δ(Qj, n0 − 1).

In such a case, the adversary is then provided with information
that can be considered as the superimposition of the adjacency
matrices of different circulant blocks. In other words, let us first
consider Δ(H

~

); by means of (18), the opponent can construct a
p × p adjacency matrix Λ, which is in QC form and whose first
row is such that

λ0, d = λ0, p − d iff d ∈ Δ(H
~

) . (28)

Then, this matrix can be used as input of Algorithm 2 (Fig. 3), in
order to obtain the graph G in which cliques of size dv − 2

represent rows of the circulant blocks in H
~

. The same procedure
can be applied on Δ(Q), in order to recover rows of the circulant
blocks in the first column layer of Q. Again, it is easy to see that,
for all the corresponding clique sizes, Algorithm 3 (Fig. 4) runs
with very low complexity. Then, in the attack complexity, we can
neglect the complexity of the cliques search.

The complexity of this attack, which has been extensively
studied in [32], can then be estimated as

WFFHS+ ≥ 22n0 − n(1) − n(2) n0!

n
(1)!

p
n0log2(p), (29)

where n(1) and n(2) correspond to the number of values in the first
row of M that are equal to 1 and 2, respectively.

6.2 FHZ attack

The FHZ attack has been proposed in [16], and is another attack
procedure specifically tailored to QC-LDPC code-based systems.
The attack starts from the assumption that the number of
decryption queries to the oracle is properly bounded, such that the
opponent cannot recover the spectrum of H

~

 (i.e. the design
criterion followed by the authors of LEDApkc [33]). However, it
may happen that such a bounded amount of ciphertexts is enough
for recovering the spectrum of Q: in such a case, the opponent
might succeed in reconstructing a shifted version of H, with the
help of ISD. The distance spectrum recovery procedure for this
attack is described in Algorithm 6 (Fig. 8). 

The estimates ad
(i)/bd

(i) are then used to guess distances in
⋃ j = 0

n0 − 1
Δ Qj, i ; again, as for the FHS+ attack, finding the

corresponding cliques in the graph can be done with very low
complexity.

The found cliques are then used to build sets of candidates for
Q

T; in particular, the number of candidates equals

NQ = 2n0
2 − n0n(2) − n0n(1)

∏
i = 0

m̂i ≥ 2

z

ji!

n0

, (30)

with n(2) and n(1) being the number of entries of the first row of M
that are equal to 2 and 1, respectively, and [m^

0, m^
1, ⋯, being the

distinct values in the first row of M. The adversary can then use the
so obtained candidates to compute matrices G′ = GQ

T, where G

corresponds to the public key. It can be easily shown that G′ is a
generator matrix of the secret code. Thus, an opponent can apply
an ISD algorithm to search for vectors with weight n0dv, denoted as

Fig. 7  Algorithm 5: FHS + distance spectrum recovery
 

Fig. 8  Algorithm 6: FHZ distance spectrum recovery
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v̄(x) in polynomial notation, such that G(x)v̄T(x) = 0. In particular,
some considerations on G′ can be made in order to ease the
application of ISD; details on this procedure can be found in [32].
As for the FHS+ attack, unless the DFR of the system is
significantly low, we can neglect the complexity of Algorithm 6
(Fig. 8), and estimate the complexity of the FHZ attack as

WFFHZ = NQ ⋅ NG ⋅ CISD n0p, p, n0dv , (31)

where

NG = p
n0

n0 − 1

= pn0
2 − n0 . (32)

7 Conclusions
We have reviewed currently known statistical attacks against QC-
LDPC and QC-MDPC code-based cryptosystems and introduced a
general framework able to encompass them all. In their general
form, these attacks are characterised by two phases. The first phase
is the collection phase, and is relatively simple to model for a given
cryptosystem. The second phase is the matrix reconstruction phase,
and is more difficult to model analytically. We have exploited a
graph theory approach to model such a phase. This has allowed us
to derive closed-form formulas for the overall complexity of these
attacks, which are useful for the design of QC-LDPC and QC-
MDPC code-based cryptosystems.
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