
18 July 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Complexity of statistical attacks on QC-LDPC code-based cryptosystems / Santini, Paolo; Baldi, Marco;
Chiaraluce, Franco. - In: IET INFORMATION SECURITY. - ISSN 1751-8709. - ELETTRONICO. - 14:3(2020), pp.
304-312. [10.1049/iet-ifs.2019.0420]

Original

Complexity of statistical attacks on QC-LDPC code-based cryptosystems

Publisher:

Published
DOI:10.1049/iet-ifs.2019.0420

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/271987 since: 2024-07-02T08:31:45Z

This is the peer reviewd version of the followng article:

note finali coverpage

IET Research Journals

Submission Template for IET Research Journal Papers

Complexity of statistical attacks on
QC-LDPC code-based cryptosystems

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Paolo Santini, Marco Baldi, Franco Chiaraluce
DII, Politechnic University of Marche, Via Brecce Bianche 12, Ancona, Italy
* E-mail: p.santini@pm.univpm.it, m.baldi@univpm.it, f.chiaraluce@univpm.it

Abstract: Public-key cryptosystems built on quasi-cyclic (QC) low-density parity-check (LDPC) and moderate-density parity-check
(MDPC) codes are promising candidates for post-quantum cryptography, since they are characterized by compact keys and high
algorithmic efficiency. The main issue with this kind of systems is represented by the fact that, since the decoding procedure is
probabilistic, it may leak information about the secret key. In this paper we study cryptanalysis procedures that aim at recovering
the secret key by exploiting this fact. We identify the phenomenon that is at the basis of these procedures, and show that the QC
structure plays an important role for the success of these attacks. We use a graph analogy to study the complexity of these attacks,
and show that their feasibility strongly depends on the QC structure. We also devise an approach to perform a full cryptanalysis
by combining an information set decoding algorithm with some partial knowledge about the structure of the secret key.

1 Introduction

Shor’s quantum algorithm [1] can solve, in polynomial time, prob-
lems like the integer factorization and the discrete logarithm,
upon which systems like Rivest-Shamir-Adleman (RSA) and Diffie-
Hellman are built. Essentially, because of the upcoming advent
of quantum computers, the cryptosystems we are using nowadays
will not be secure in a not-so-distant future. For this reason, the
National Institute of Standards and Technology (NIST) has initi-
ated the process for the evaluation and subsequent standardization
of post-quantum cryptosystems [2], with the aim of finding valid
alternatives to quantum-vulnerable though widespread systems.

In this scenario, some candidates of significant interest are those
based on coding theory, which were introduced by the seminal works
of McEliece [3] and Niederreiter [4]. The security of these schemes
is based on the hardness of the so-called Syndrome Decoding Prob-
lem (SDP), that is, the problem of decoding a random linear code,
which has been proven to be NP-hard [5]. The best SDP solvers are
known as Information Set Decoding (ISD) algorithms that, despite
many improvements over time (see [6–8]), still have exponential
complexity, even when implemented on quantum computers [9].

The main issue with the classic McEliece cryptosystem, which
is based on Goppa codes, is represented by the large size of its
public keys, which essentially correspond to some representation of
an error correcting code. One way to address this issue consists in
replacing Goppa codes with structured codes, i.e., codes admitting
a compact representation through geometrical relations involving
the elements in the public key. A common choice is that of using
quasi-cyclic (QC) random or pseudo-random codes, without any
underlying algebraic structure.

In this paper we focus on the case of quasi-cyclic low-density
parity-check (QC-LDPC) and quasi-cyclic moderate-density parity-
check (QC-MDPC) codes, i.e., codes represented by a parity-check
matrix that contains a small number of set entries. Such codes are at
the basis of two candidates [10, 11] that have been recently admitted
to the second round of NIST’s competition [12]. Codes of this kind
admit a very wide random-like design, and the only known structural
attacks to them are those based on the use of ISD for recovering rows
of the secret key, which can be seen as low-weight codewords in the
dual of the public code. In order to counter these attacks, one must
guarantee that the weight of such codewords is not below some secu-
rity threshold. Such a feature can be obtained by means of a proper
transformation matrix, whose effect is that of increasing the mini-
mum distance of the dual code, or by slightly increasing the density

of the secret parity-check matrix. In the former case the secret code
is commonly called a QC-LDPC code, while in the latter case we
usually speak of a QC-MDPC code. We point out that, in such a sce-
nario, the QC structure has no consequence in the feasibility of the
attacks: ISD algorithms can benefit of a polynomial speed-up [13],
which however has no substantial impact on the scheme security.

The main difference between QC-LDPC and QC-MDPC codes
with respect to algebraic codes is in the fact that they do not admit
efficient bounded-distance decoders. Indeed, all known decoding
techniques are probabilistic, in the sense that they might fail with
some probability, commonly denoted decryption failure rate (DFR).
Such a probabilistic nature of decoding has been shown to leak some
information about the secret key. The first ever published attack of
this kind, which is due to Guo et al. [14], exploits events of decoding
failure to recover the secret key; after that, the same attack proce-
dure has been extended, in order to consider different schemes and
other kinds of information leakage [15–19]. Essentially, all these
attacks can be divided into two common phases. In the first one, the
adversary observes some quantity that is typical of the decoding pro-
cedure, such as decoding failures, the number of iterations, the power
consumption, and so on. Then, by means of a statistical test, the gath-
ered data is used to recover some characteristic of the secret key. In
the second phase, the obtained information is used to reconstruct the
secret key, or an equivalent version of it, which guarantees decoding
of intercepted ciphertexts. Because of this procedure, all attacks of
this kind can be generally denoted as statistical attacks. In particular,
in [19] we have shown that this statistical analysis can be performed
on whichever low-density parity-check (LDPC) or moderate-density
parity-check (MDPC) code, and does not depend on the QC struc-
ture of the code. In other words, this fact means that the information
leakage which is exploited by such attacks is something that intrin-
sically comes from the decoder, and is not due to the structure of the
code.

However, as we show in this paper, the code structure might play
an important role in the secret key reconstruction phase. We consider
the analogy of this problem with some graph theory problems, and
show that the solution of the matrix reconstruction problem is facil-
itated when the code is QC. To the best of our knowledge, this is the
first case in which, for LDPC and MDPC codes, a significant effect
of the QC structure on security is observed. We then review currently
known attack procedures, and describe them in the general paradigm
of statistical attacks.

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 1

The remainder of the paper is organized as follows. In Section 2
we describe the notation we use in the paper and recall some con-
cepts about graph theory. In Section 3 we recall the cryptosystems
we are considering. In Section 4 we introduce a general framework
for statistical attacks, and describe it under a graph perspective. We
introduce the problem of the matrix reconstruction by relating it to
a graph problem, in which a multigraph needs to be partitioned into
proper cliques. In Section 5 we show that, when QC codes are con-
sidered, this problem can actually become significantly easier with
respect to the general case.

2 Notation

We use bold capital and small letters, respectively, to denote matrices
and vectors. Given a matrix A, we denote its entry in the i-th row
and j-th column as ai,j ; given a vector a, its i-th entry is denoted as
ai. The support of a vector a, which is denoted as φ(a), corresponds
to the set of indexes pointing at non null entries in a. The Hamming
weight of a vector, which is denoted as wt(a), corresponds to the
number of its non null entries, i.e., to the cardinality of its support.

We define a circulant matrix as a square matrix such that each row
can be obtained from the first one by applying a shift of one position.
Obviously, all rows and columns in a circulant matrix A have the
same Hamming weight; then, with some abuse of notation, we will
refer to this value as weight of A. In this paper we will exploit the
well known isomorphism between the ring of p× p binary circulant
matrices and the ring of polynomials F2[x]/(xp + 1), that is

A =

a0 a1 · · · ap−1
ap−1 a0 · · · ap−2

...
...
. . .

...
a1 a2 · · · a0

↔ A(x) =

p−1∑
i=0

aix
i.

Based on this isomorphism, it can be easily shown that all opera-
tions involving circulant matrices can be equivalently described by
considering the associated polynomials.

We define a graph G through a set of vertices V and a set of edges
E ∈ V 2. We consider only undirected graph, i.e., graphs in which
an edge is defined just by its endpoints (and not by its direction).
In other words, the pairs (i, j) and (j, i) are identical, since they
correspond to the same edge. If E contains multiple pairs, then we
say that G is a multigraph; otherwise, G is called a simple graph.

Let i be a vertex in a graph G: we define its neighbourhood, and
denote it as NG(i), as the set of vertices that are connected to i,
i.e., vertices j for which there exists at least an edge (i, j) ∈ E. The
degree of a vertex i is denoted as deg(i) and corresponds to the
number of edges that are incident to i.

For a graph G, with vertices set V and edges set E, we say that
G′, defined by V ′ and E′, is a subgraph of G, and we write G′ ⊆ G,
if V ′ ⊆ V and E′ ⊆ E. Given a set V ∗ ⊆ V , we define GV ∗ as the
subgraph induced by V ∗, that is, the graph whose vertices set is V ∗

and whose edges are those in G that connect only vertices in V ∗.
We say that a subgraph containing w vertices is a w-clique if it is
complete, i.e., if each pair of its vertices is connected by (at least)
one edge.

Given two graphs Ga and Gb, with vertices Va, Vb and edges Ea,
Eb, we define G = Ga + Gb as the graph with vertices V = Va ∪ Vb
and edges E defined as

E =
{

(i, j) ∈ V 2
∣∣∣ (i, j) ∈ Ea or (i, j) ∈ Eb

}
. (1)

Let i be a vertex in a graph G: then, G′ = G \ i is the graph with
vertices V ′ = V \ i and whose edges E′ are those in G that do not
have i as endpoint.

3 System Description

In this section we briefly recall the main principles of public-key
encryption schemes and key encapsulation mechanisms based on

QC codes with a sparse parity-check matrix. In particular, although
our focus is on QC-LDPC codes, we here describe a general frame-
work which encompasses both QC-LDPC [11, 20] and QC-MDPC
schemes [21, 22]. As we will see, the QC-MDPC case can be con-
sidered as a particular case of the QC-LDPC one, obtainable through
a suitable choice of the transformation matrices.

3.1 Key generation

In the schemes we consider in this paper, the secret (private) key can
be written as KS = {H̃,Q}. In particular, we have

H̃ =
[
H̃0

∣∣∣H̃1

∣∣∣ · · · ∣∣∣H̃n0−1
]
, (2)

where each block H̃i is a p× p circulant matrix, with weight equal
to some integer dv � p. Usually, n0 is a small integer while, in
order to avoid folding attacks of the type in [23], p is chosen as a
prime. The masking matrix Q is an n× n matrix in QC form (i.e.,
it is formed by n0 × n0 circulant blocks of size p), whose row and
column weights are constant and equal to m� n. The weights of
the circulant blocks forming Q can be written in an n0 × n0 cir-
culant matrix M, such that its element in the i-th row and j-th
column corresponds to the weight of Qi,j . A common choice [11]
is that of having M in circulant form; in such a case, we denote
its first row as m = [m0,m1, · · · ,mn0−1], and clearly we have∑n0−1
i=0 mi = m.
In order to obtain the public key from the private key, we first

compute the matrix H as

H = H̃Q = [H0 |H1| · · · |Hn0−1] , (3)

where each block Hi is again circulant and has weight≤ mdv � p.
Then, H is the parity-check matrix of a QC code C, with length n =
n0p and dimension k = (n0 − 1)p, for which the generator matrix
in systematic form is obtained as

G =

I(n0−1)p

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
H−1n0−1H0

)T(
H−1n0−1H1

)T
...(

H−1n0−1Hn0−2
)T

, (4)

where I(n0−1)p is the identity matrix of size (n0 − 1)p. The matrix
G is then used as the public key KP . We remark that, when a sys-
tematic G is adopted as the secret key, a suitable conversion must be
used, in order to achieve indistinguishability under adaptive chosen
ciphertext attack (CCA2) [24].

3.2 Encryption

Let u be a k-bit information message to be encrypted, and let e be
an n-bit intentional error vector with weight t. The ciphertext c is
then obtained as

c = uG + e. (5)

3.3 Decryption

Decryption starts with the computation of the syndrome as

s = cQT H̃T = eQT H̃T = e′H̃T , (6)

which corresponds to the syndrome of the expanded error vector
e′ = eQT , computed through H̃T . Then, a syndrome decoding
algorithm is applied to s, in order to recover e. A common choice to
decode s is the bit flipping (BF) decoder, firstly introduced in [25], or
one of its variants. In the setting used in QC-LDPC code-based sys-
tems, decoding can also be performed through a special algorithm

IET Research Journals, pp. 1–9
2 c© The Institution of Engineering and Technology 2015

named Q-decoder [11], which is a modified version of the classical
BF decoder and exploits the fact that e′ is obtained as the sum of
rows from QT . The Q-decoding procedure will be briefly described
in the next section.

QC-MDPC code-based systems introduced in [21] can be seen
as a particular case of the QC-LDPC code-based scheme, corre-
sponding to Q = In0p. Encryption and decryption work in the same
way, and syndrome decoding is performed through BF on H̃ = H.
We point out that the classical BF decoder can be considered as a
particular case of the Q-decoder, corresponding to Q = In0p.

3.4 Q-decoder

Let s be the input syndrome, and define

σ = s ∗H, (7)

where ∗ denotes the integer inner product. With some straight-
forward computations, it can be shown that the i-th entry of σ
corresponds to the number of unsatisfied parity in which the i-th bit
participates. Thus, large values in σ are associated to positions that
are likely to be affected by errors. This criterion is the one which
is applied in a BF decoder, in order to estimate the positions of
errors. In the first iteration, s corresponds to the syndrome of the
received ciphertext, while in all the other iterations it is obtained by
subsequently updates on the initial one.

The novelty of the Q-decoder, with respect to the classical BF
decoder, is in the fact that it exploits the knowledge of the matrix Q
to improve the decoding performance; a detailed description of this
decoding procedure can be found in [11]. In the Q-decoder, deci-
sions about error positions are taken on the basis of some correlation
values that are computed as

ρ = s ∗ H̃ ∗Q = σ ∗Q. (8)

As explained in [11, Section 2.5], from the performance standpoint
the Q-decoder approximates a BF decoder working on H = H̃Q.
However, by exploiting H̃ and Q separately, the Q-decoder achieves
lower complexity than BF decoding working on H. The afore-
mentioned performance equivalence is motivated by the following
relation

ρ = s ∗ H̃ ∗Q =

= eQT H̃T ∗ H̃ ∗Q =

= eHT ∗ H̃ ∗Q ≈

≈ eHT ∗H, (9)

where the approximation H̃ ∗Q ≈ H̃Q = H comes from the spar-
sity of both H̃ and Q. Thus, (9) shows how the decision metric
considered in the Q-decoder approximates that used in a BF decoder
working on H.

4 General Statistical Attacks

In this section we describe statistical attacks against schemes in
which no masking matrix is used, such as the QC-MDPC McEliece
[21]. We first recall the approach introduced in [19], in which a
generic model for such attacks is introduced. We then provide an
interpretation of the type of information that can be recovered by
the opponent and, through a graph analogy, we describe a general
approach which allows for the recovery of the secret key. As our
analysis highlights, the problem of the matrix reconstruction can be
related to a well known hard problem in the graph theory. In this
section we do not consider any specific code structure, and leave the
analysis of QC codes in Section 5.

4.1 GSA attack

We remind here the attack proposed in [19], that we call General Sta-
tistical Attack (GSA). Such a procedure is, in principle, applicable
to any LDPC or MDPC code, regardless of its particular structure.

Let KS and KP be a pair of private and public keys, respec-
tively. In a statistical attack, an adversary, who has the availability of
KP , first produces T ciphertexts c(i), for i = 1, 2, · · · , T . He then
queries a decryption oracle, which is modeled through an algorithm
D provided with the secret key KS . The oracle applies the decryp-
tion algorithm on the received query, and replies with some quantity
that is characteristic of the decoding procedure. The type of reply
can be heterogeneous and depends on the particular scenario we are
modeling. For instance, it might consist of the decryption outcome
(i.e., success or failure), the required time for decoding, the power
consumption of some particular step, etc. (see [14, 15, 17–19, 26]
for some concrete possibilities). The adversary first collects all the
oracle replies, and then performs a statistical analysis on them, with
the aim of guessing some information about the secret key.

Essentially, the main idea behind statistical attacks is represented
by the fact that the decoding procedure is probabilistic and depends
on some relation existing between the error vector and the secret key.
Thus, when the error vector is known to the opponent, the decod-
ing procedure intrinsically leaks information about the secret key. In
particular, the GSA attack exploits the relation between couples of
columns in the secret key and the expected value of the observed
quantity.

Algorithm 1 GSA
Input: public key KP , number of queries N ∈ N
Output: estimates A,B ∈ Nn×n.

1: A,B← 0n×n . Initialization as null arrays
2: for i← 1 to T do
3: c(i) ← ciphertext obtained through the error vector e(i)

4: y(i) ← D(KS , c
(i)) . Oracle reply

5: φ← support of e(i)

6: for j ∈ φ do
7: for l ∈ φ \ j do
8: aj,l ← aj,l + y(i)

9: bj,l ← bj,l + 1
10: end for
11: end for
12: end for
13: return {A,B}

The main attack procedure is shown in Algorithm 1. The error
vector used in the i-th query is denoted as e(i), and the correspond-
ing oracle reply is y(i).

The output matrices A and B are used by the adversary to com-
pute the matrix D, whose entry in position (i, j) is di,j = ai,j/bi,j .
It is easy to see that, when T is sufficiently large, we have

di,j ≈ E
[
y
∣∣ei = 1, ej = 1

]
, (10)

where E [·] denotes the expected value. In other words, the values
of di,j are estimates of the average value of the observed quantity,
conditioned to the fact that the error vector contains two fixed set
positions. What happens is that di,j tend to have different distri-
butions, on the basis of the number of common ones between the
i-th and the and j-th columns. A heuristic justification of this phe-
nomenon is presented in [19]. Thus, by means of hypothesis tests,
the adversary can recover the number of intersections between two
columns in the secret key.

4.2 The adjacency matrix

In the previous section we have described how an adversary can
learn the number of overlapping ones between pairs of columns in

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 3

H. These values can then be used to build an n× nmatrix Λ, whose
entries are defined as

λi,j =

{∣∣φ(hi) ∩ φ(hj)
∣∣ if i 6= j

0 if i = j
, (11)

where hi denotes the i-th column in H. The matrix Λ, already
introduced in [19], will be called the adjacency matrix of H; by
construction, Λ is clearly symmetric.

In particular, the matrix Λ can be associated to a multigraph
G with n vertices, labeled from 0 to n− 1, and whose edges are
defined by the entries of Λ, such that vertices i and j are connected
by λi,j distinct edges. We point out that, because of the choice
λi,i = 0, G does not contain loops. Let i be a vertex in G: then,
its degree is related to Λ through the following equation

deg(i) =

n−1∑
j=0

λi,j . (12)

In particular, the constructed multigraph G is associated to the matrix
H, as the following Lemma states.

Lemma 1. Let Λ ∈ Nn×n be the adjacency matrix of a matrix H ∈
Fr×n2 , with rank r, and denote with G the associated multigraph.
Then, the following properties hold

i) if the i-th row of H has weightwi and support φ, then G contains
a clique of size wi, whose vertices set corresponds to φ;

ii) if the i-th column of H has weight vi, then it is possible to find
vi distinct cliques which involve the vertex i.

Proof: We first prove thesis i); let us suppose that the i-th row of
H has weight wi, and denote its support as φ. Each pair of indexes
(j, l) ∈ φ2, with j 6= l, identifies a pair of columns in H that overlap
in, at least, one position. Then, we have

λj,l ≥ 1, ∀(j, l) ∈ φ2, j 6= l.

Then, by construction of the multigraph, we have

(j, l) ∈ E, ∀(j, l) ∈ φ2, i 6= j.

The above equation defines a clique of size equal to the cardinality
of φ, that is wi.
Proving thesis ii) is now straightforward: since each row in H is
associated to a clique in G, we know that, if the i-th column of H has
weight vi, this means that i participates in vi cliques. The matrix H
has rank r, thus, it cannot have two equal rows: then, all the cliques
involving i must have different set of vertices. �

In particular, the following Proposition arises as a straightforward
consequence of Lemma 1.

Proposition 2. Let Λ ∈ Nn×n be the adjacency matrix of a matrix
H ∈ Fr×n2 , with rank r, and denote with G the associated multi-
graph. Let wi and vj denote, respectively, the weights of the i-th
row and the j-th column of H. Then, G can be partitioned into r
cliques Zl such that

i) Zl has size wl, for l = 0, · · · , r − 1, and the involved vertices
constitute the support of the l-th row in H;

ii) if (i, j) ∈ E, then there are λi,j cliques which contain both
vertices i and j;

iii) the vertex j, for j = 0, 1, · · · , n− 1, is contained in vj cliques;
iv)
∑r−1
i=0 Zi = G.

0

1

2

3

4

5

Fig. 1: Multigraph associated to the example Λ(H); the cliques
partition defined in Proposition 2.

In particular, the adjacency matrix defines a class of equivalence
for matrices over F2. Indeed, let H be a matrix of size r × n, with
adjacency matrix Λ, and define Adj{·} as the operator that, when
applied on a matrix, returns its adjacency matrix. It is easy to see
that, for all permutation matrices Π ∈ Fr×r2 , we have Adj{ΠH} =
Adj{H}. Then, given an adjacency matrix Λ of a full rank matrix
H, the following result holds∣∣∣{H∗ ∈ Fr×n2

∣∣∣ Adj
{
H∗
}

= Λ
}∣∣∣ ≥ r!, (13)

since r! is equal to the number of distinct r × r permutations.
Obviously, the rows of H must be all different (otherwise, it is
rank(H) < r), so distinct permutations will lead to distinct matri-
ces (i.e., they have at least two positions in which the corresponding
rows are different).

A very common choice for the cryptosystems we are consider-
ing is that of relying on (v, w)-regular codes, i.e., codes that are
described by a parity-check matrix that has constant column weight
v and constant row weightw. In such case, all vertices in G will have
the same degree v(w − 1); we can then call G a regular multigraph.
For the sake of clarity, we show an example of such a multigraph;
we consider the following matrix

H =

1 1 0 0 0 1
0 0 1 1 1 0
0 1 0 0 1 1
1 0 1 1 0 0

 ,
which corresponds to the parity-check matrix of a (2, 3)-regular
code. Its corresponding multigraph is shown in Figure 1, where the
cliques partition defined in Theorem 2 is emphasized with different
colors.

When considering regular codes, the problem of reconstructing a
matrix H from its adjacency matrix can be stated in a very natural
way. We formulate this problem in the following definition.

Problem 3 (Regular multigraph cliques partition problem).
Given G, the multigraph associated to the matrix Λ ∈ Nn×n, which
is the adjacency matrix of a parity-check matrix describing a (v, w)-
regular code of length n and redundancy r, find a collection of r
cliques {Z0, · · · ,Zr−1} such that

i) all cliques have dimension w;
ii) every node participates in v cliques;

iii)
∑r−1
i=0 Zi = G.

In other words, the above problem corresponds to finding a par-
tition of G into r cliques of constant size w. All the cliques must
be such that each node is contained in exactly v cliques, and each
edge in G is covered by at least one clique. This problem essentially
corresponds to a variant of the edge clique cover problem, which is

IET Research Journals, pp. 1–9
4 c© The Institution of Engineering and Technology 2015

known to be NP-hard [27, 28]. In particular, Gramm et al. in [27]
propose an algorithm that finds a solution to the edge clique cover
problem and whose complexity can be parameterized by the number
of searched cliques: if z is the number of searched cliques, then the
algorithm runs in O(2z) time. We can note that, in the cases we are
interested in, we have z = r. No algorithm with better performances
is currently known; furthermore, Cygan et al. prove in [28] that the
approach due to Gramm et al. is essentially optimal.

As mentioned, the problem we are studying is a variant of the edge
clique cover problem, since we are requiring that all cliques have the
same size and, additionally, that each edge is contained in the same
number of cliques. In any case, the well studied hardness of this
problem suggests that, even for the variant we are considering, the
complexity of an algorithm finding a solution cannot be significantly
lower than that of the algorithm proposed by Gramm et al..

5 Reconstructing QC codes

In this section we explain why the problem of the matrix recon-
struction, stated in Definition 3, becomes significantly easier in the
case of a QC matrix H. Indeed, because of the QC structure, finding
one of its rows is enough to obtain a full description of the matrix.
We show how, in such a case, the matrix reconstruction problem is
reduced into that of determining a clique of proper size in a simple
graph. We point out that the work in this section is inspired by that of
[14]; however, we here analyze the problem under a graph perspec-
tive, and provide an algorithm for the matrix reconstruction which
achieves a lower complexity than that of [14]. We first consider the
problem of determining a single row of the parity-check matrix H
of a regular code, and then revise the GJS attack and its complex-
ity [14]. We justify our claims with both theoretical motivations and
results of numerical simulations.

5.1 Finding cliques in simple graphs

The sparsity of a simple graph can be defined with respect to the
number of its edges: in general terms, a graph can be defined sparse
when such a number is significantly smaller than its allowed maxi-
mum value. Many definitions of sparsity are present in the literature,
together with examples on how to use such definitions to param-
eterize the complexity of some graph algorithms; for instance, we
might mention the concepts of arboricity [29], degeneracy [30, 31]
and community-degeneracy [32]. However, in this section we do not
consider specific algorithms and describe an approach that, even if
designed in a naive fashion, already runs in a complexity which is
sufficiently low for the cases we are interested in.

Let H be the parity-check matrix of a (v, w) - regular code, with
adjacency matrix Λ. We first consider the following result.

Lemma 4. Let H be the parity-check matrix of a (v, w)-regular
code, with adjacency matrix Λ. Let φ be the support of the first row
of Λ, i.e., the set containing all values i for which λ0,i > 0. Then,
the following propositions hold

i) there are v rows in H whose support corresponds to a subset of
φ of cardinality w − 1;

ii) let a ∈ φ: then, there is (at least) a row in H whose support
contains both 0 and a.

Proof: We consider the j-th row of H, which we denote as hj , and
suppose that hj,0 = 1; since the code is regular, there are exactly v
rows with this property. For each element a in the support of hj , we
have hj,a = 1; since we also have hj,0 = 1, this means that columns
0 and a overlap in (at least) one position, and thus λ0,a > 0. In other
words, all set positions in hj , apart from 0, are associated to set
positions in the first row of Λ. Since we have v rows that contain 0
in their support, this means that their support must be subsets of φ;
this reasoning proves thesis i).

In particular, for each a ∈ φ, there must be a row whose support
contains both 0 and a, otherwise it is λ0,a = 0. Then, because of
thesis i), the support of this row is subsets of φ. �

In particular, starting from H, we can construct a simple graph,
which contains all information about the support of (at least) one row
of H. To this end, we consider Algorithm 2, which takes as input the
adjacency matrix Λ and returns a simple graph G, which contains all
vertices i for which λ0,i > 0 and λ0,a0 > 0, with a0 = min{φ}.
The edges in G are defined by elements in Λ: two vertices i and j
are connected if and only if λi,j > 0. Thus, it is easy to see that there
must necessarily be a clique in G having sizew − 2 and such that the
interested vertices, together with 0 and a0, constitute the support of
a row in H.

Algorithm 2 GraphConstruction
Input: adjacency matrix Λ ∈ Nn
Output: graph G.

1: V,E ← ∅ . Initialized as empty sets
2: φ← support of the first row of Λ
3: lφ ← |φ|
4: a0 ← φ[0] . First element of φ
5: for i← 2 to lφ do
6: if λa0,i > 0 then
7: V ← V ∪ i . Enlarge the set of vertices
8: end if
9: end for

10: for i← 1 to lφ − 2 do
11: ai ← φ[i] . i-th element of φ
12: for j ← i+ 1 to lφ − 1 do
13: aj ← φ[j] . j-th element of φ
14: if λai,aj > 0 then
15: E ← E ∪ (ai, aj) . Enlarge the set of edges
16: end if
17: end for
18: end for
19: G ← graph with vertices set V and edges set E
20: return {G}

Then, the problem of recovering a row of H is reduced to that of
finding a clique of size w − 2 in the simple graph G; as we show
in the following, this task can be easily accomplished through a
greedy search in the graph. To this end, we can consider Algorithm
3. Essentially, the algorithm tests all possible paths in the graph, by
applying a recursive pruning (i.e., extraction of subgraphs), until a
complete subgraph with the desired number of vertices is found. At
each call, the algorithm starts from a set of candidates Z and a graph
G; then, it selects a vertex a (line 3) and computes the subgraph
GV (a) induced by its neighbor vertices. At each new call, the candi-
dates set is enriched with the tested vertex a; the recursive calls go
on until a graph with the desired number of vertices is obtained. In
Then, depending on the number of vertices in GV (a) , the algorithm
may perform another call the so obtained subgraph, the algorithm
may perform another call, or check induced by the neighbor ver-
tices. In the first call to the algorithm, we set Z = ∅, u = w − 2,
while G corresponds to the output of Algorithm 2. We remark the
fact that, essentially, this algorithm is developed in the same fashion
of that given in [14]. However, as we show in the following sections,
its time complexity is improved and, more importantly, it allows for
finding cliques in whichever case, regardless of the code structure.

We point out that some specific algorithms for clique finding in
sparse graphs may also be used (for instance, see [31, 32]). It is likely
that the use of some specific algorithm will result in improved algo-
rithmic performances; however, even the naive approach is enough
to obtain sufficiently low complexities.

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 5

Algorithm 3 RecPruning
Input: graph G, clique size u, candidate vertices Z
Output: cliques of size u in G

1: V ← vertices set of G
2: for i← 1 to |V |+ |Z| − u do
3: a← V [i]

4: V (a) ← N(a) . Neighborhood of vertex a
5: GV (a) ← subgraph induced by V (a)

6: if
∣∣∣V (a)

∣∣∣ == u− |Z| − 1 then
7: if GV (a) is complete then
8: output {Z ∪ a ∪ V (a)} . GV (a) is a clique
9: end if

10: else if
∣∣∣V (a)

∣∣∣ > u− |Z| − 1 then

11: Z(a) ← Z ∪ a
12: RecPruning(GV (a) , u, Z(a))
13: end if
14: end for

5.2 Complexity analysis

In this section we provide a complexity estimate of Algorithm 3, by
considering the average number of paths that are tested during the
search. First of all, we consider the probability that the support of
two columns in H share some common elements. This probability,
which estimates the density of Λ (i.e., the ratio between the number
of set entries and n2), can be obtained by modeling the columns as
random vectors of length r and weight v. This way, we obtain such
probability as

ρ = 1−
(r−v
v

)(r
v

) . (14)

We now need to consider the number of vertices in G which is pro-
vided as output of Algorithm 2. This graph contains all vertices that
are connected to both 0 and a0, with a0 = min{φ}. In other words,
this means that G contains all vertices corresponding to columns in
H that possess common ones with columns h0 and ha0 . Thus, we
might estimate the number of vertices in G as

nG = nρ2. (15)

It can be verified that, for the parameters we are interested in in this
paper, we always have ρ < 1

2 : thus, the number of vertices in G is
significantly smaller than n. Additionally, each two vertices in G will
be connected by an edge with probability approximately equal to ρ:
then, the graph G is somehow sparse, and we can thus expect the
execution of Algorithm 3 to be quite fast.

We can now evaluate the complexity of running Algorithm 3. We
assume that all vertices in G behave as random and independent
objects and that each pair of vertices is connected by an edge with
probability ρ. At each call, the algorithm prunes the graph, by cut-
ting edges and vertices and returning a subgraph. In particular, in the
first call the average number of saved vertices can be estimated as
nGρ. In the second call, we can again consider the input graph as
a random graph, with edge probability ρ: thus, the number of ver-
tices in the output graph can be obtained as nGρ

2. In general, in
the j-th call, we approximately will have nGα

j edges. Remember
that, at each recursive call, the algorithm adds a vertex to the current
candidate set Z. Thus, at the recursive j-th call, the set Z contains
exactly j vertices; the algorithm will stop pruning if the number of
vertices in the produced graph is≤ u− j. Thus, the average number
of recursive calls can be denoted as jmax, and can be estimated as

jmax = min
j

{
nGρ

j ≤ u− j
}
. (16)

The number of paths that are tested by the algorithm can then be esti-
mated by considering all possible combinations of such subgraphs.

We consider this number asas the complexity of Algorithm 3, and
denote it as CG ; we have

CG = O

jmax∏
j=1

nGρ
j

 =

(
njmaxG ρ

jmax(jmax+1)
2

)
. (17)

5.3 GJS attack

We are now ready to revise the attack procedure due to Guo et al.
[14]. This attack, which is specific to the case of QC codes described
by parity-check matrices in the form (2), is based on the concept of
distance spectrum, defined in the following.

Definition 5 (Distance spectrum). Let a be a vector of length p
and support φ. For a pair of elements (b0, b1) ∈ φ2, with b0 6= b1,
we define the corresponding cyclic distance as

d = min{±(b0 − b1) mod p}.

The distance spectrum is defined as the set ∆(a) containing all such
distances. We say that a distance d has multiplicity µ(a)d if there are
µ
(a)
d distinct non ordered couples of elements of φ at distance d.

Since the distance spectrum is invariant to cyclic shifts, all the
rows of a circulant matrix share the same distance spectrum; thus, we
can define the distance spectrum of a circulant matrix as the distance
spectrum of any of its rows (the first one for the sake of convenience).

It is easy to see that the distance spectrum and the adjacency
matrix are actually related. Indeed, let A be a p× p circulant matrix
over F2, and denote with ∆(A) its distance spectrum and with Λ
its adjacency matrix. With some straightforward computations [19],
it can be shown that Λ is circulant as well and, if d ∈∆(A) with
multiplicity µ(A)

d , then

λ0,d = λ0,p−d = µ
(A)
d . (18)

As we describe in the following, for a matrix like that in Equation
(2), the knowledge of a single circulant block in H is enough to
reconstruct the whole matrix from the public key.

In particular, when performing a statistical attack, the adversary
can directly focus on the distance spectrum, since it can be recov-
ered by exploiting the QC structure; this can be done by statistical
tests on the output of Algorithm 4. Indeed, the vectors a and b
can be used by the opponent to guess the multiplicity of each dis-
tance in the spectrum of Hn0−1. The ratios ad

bd
follow different

and distinguishable distributions, with mean values depending on
the multiplicity of d. This way, the analysis of the values adbd allows
the opponent to recover ∆ (Hn0−1). Once the distance spectrum
has been obtained, it can be used to reconstruct the first row of the
matrix Λ = Adj{Hn0−1}. Then, applying Algorithms 2 and 3 will
return candidates for one of the rows in Hn0−1. The found solu-
tion can then be considered as the first row of a circulant H∗n0−1 =
ΠHn0−1, with Π being an unknown circulant permutation.

Then, according to (4), the public key can be written as G =
[I|P], with

P =

P0
P1

...
Pn0−2

 =

(
H−1n0−1H0

)T(
H−1n0−1H1

)T
...(

H−1n0−1Hn0−2
)T

. (19)

The opponent can then compute the products:

H∗n0−1P
T
i = ΠHi = H∗i , (20)

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015

Algorithm 4 GJS distance spectrum recover
Input number of queries N ∈ N
Output estimates a,b ∈ Nb

p
2 c

1: a← zero initialized vector of length
⌊p
2

⌋
2: b← zero initialized vector of length

⌊p
2

⌋
3: for i← 1 to N do
4: c(i) ← ciphertext encrypted with the error vector e(i)

5: y(i) ← D
(
KS , c

(i)
)

. Oracle reply

6: e
(i)
n0−1 ← last length-p block of e(i),

7: ∆(e
(i)
n0−1)← distance spectrum of e

(i)
n0−1

8: for
{
d ∈∆

(
e
(i)
n0−1

)}
do

9: bd ← bd + 1
10: ad ← ad + y(i)

11: end for
12: end for
13: return {a,b}

in order to obtain a matrix H∗ =
[
H∗0,H

∗
1, · · · ,H∗n0−1

]
= ΠH.

This matrix can be used to efficiently decode the intercepted cipher-
texts, since

cH∗T = eHTΠT = sTΠT = s∗T . (21)

Applying a decoding algorithm on s∗T , with parity-check matrix
H∗, will return e as output. The corresponding plaintext can then be
easily recovered by considering the first k positions of c + e.

While the GJS attack has been specifically proposed for
QC-MDPC cryptosystems, i.e., schemes where no masking matrix
is used, it can also be used to attack the case of a QC-LDPC scheme
relying on a Q-decoding procedure. In fact, as explained in section
3.4, the Q-decoder working onH̃ and Q approximates a BF decoder
working in H: in such a case, the masking matrix has no impact,
when considering the GJS attack feasibility. In such a case, the
recovered distance spectrum is that of Hn0−1 (see eq. (3)), that is

Hn0−1 =

n0−1∑
i=0

H̃iQi,n0−1. (22)

In order to justify this claim, we show the results of numerical simu-
lations on a code with parameters n0 = 2, p = 4801, dv = 9, m =
5. The corresponding estimates ad

bd
, obtained through Algorithm 4,

are shown in Fig. 2. As we can see from the figure, the distances tend
to group into distinct bands, depending on the associated multiplicity
in the spectrum.

0 500 1000 1500 2000 2500

0.094

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

0.103

Fig. 2: Distribution of the opponent’s estimates for a QC-LDPC
code-based system instance with n0 = 2, p = 4801, dv = 9,
[m0,m1] = [2, 3], t = 95, decoded through the Q-decoder. The
estimates ad/bd correspond to the output of Algorithm 4.

5.4 GJS complexity

In this section we evaluate the complexity of performing a complete
GJS procedure. First of all, we denote as Cdist the number of oper-
ations that the opponent must perform, for each decryption query, in
order to compute the distance spectrum of e(i) and update the esti-
mates a and b. The p-bit block e

(i)
n0−1 can have weight between

0 and t; let us suppose that its weight is tp, which occurs with
probability

ptp =

(p
tp

)(n−p
t−tp

)(n
t

) . (23)

We can assume that in en0−1 there are no distances with multiplicity
≥ 2 (this is reasonable when e is sparse). The average number of
distances in en0−1 can thus be estimated as

∑t
tp=0 ptp

(tp
2

)
, which

also gives the number of operations needed to obtain the spectrum
of en0−1. Each of these distances is associated to two additional
operations: the update of b, which is performed for each decryption
query, and the update of a, which is performed only in the case of a
decryption failure. Thus, if we denote as ε the DFR of the system and
as Cenc the complexities of the encryption procedure, respectively,
the average complexity of each decryption query can be estimated
as:

Cq = Cenc + (2 + ε)

t∑
tp=0

ptp

(
tp
2

)
. (24)

Thus, the complexity of running Algorithm 4 can be obtained as:

CN ≈ N · Cq = N ·

Cenc + Cdec + (2 + ε)

t∑
tp=0

ptp

(
tp
2

) .
(25)

Once the distance spectrum has been obtained, the adversary can
proceed in the reconstruction of the block Hn0−1. The complexity
of such a procedure can be estimated by means of Equation (17), by
considering Hn0−1 as the parity-check matrix of a regular pseudo-
code (i.e., with redundancy equal to the code length), with v = w =
mdv . The total complexity of the attack, measured in terms of work
factor, can then be obtained as

WFGJS = CN + CG . (26)

In particular, for parameters of practical interest [11, 21], the val-
ues of CN are always significantly below the security level. We
now consider the values of CN : the minimum values of N which
allow for the full spectrum reconstruction are complex to estimate.
In any case, all numerical simulations reported in the literature have
shown how such a goal can be achieved with values of N that are
significantly below the security level. In the end, when consider-
ing statistical attacks based on decryption failure, it seems safe to
assume that, when the DFR is non negligible, the corresponding val-
ues of N are � 2SL, where SL denotes the security level of the
scheme, expressed in bits. When dealing with other kind of statistical
attacks (like timing attacks), it would be surprising if the complex-
ity values CN are above the security level. Again, the results of all
numerical simulations are coherent with this claim.

6 The effect of the masking matrix

In this section we take into account attacks tailored at schemes in
which Q 6= In0p is used and the decoding procedure tries to correct
the expanded error vector e′ = eQ through the parity-check matrix
H̃. With this choice, the GJS attack cannot be performed anymore.
In order to justify this fact, let us consider the generic expression of
a block of H̃, say the first one:

H0 =

n0−1∑
j=0

Qj,0H̃j =

n0−1∑
j=0

Aj , (27)

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 7

with Aj = Qj,0Hj . Each Aj(x) can be seen as a sum of cyclically
shifted versions of Hj (resp. Qj,0) placed at positions depending
on the support of the first row of Qj,0 (resp. Hj). Since all these
matrices are sparse, the expected number of cancellations occurring
in such a sum is small. This means that, with high probability, dis-
tances in Qj,0 or Hj are present also in Aj . Since the BF decoder
performance depends on distances in both H̃ and Q, the opponent
can correctly identify these distances by analyzing Bob’s reactions.
However, the spectrum of H0(x) also contains a new set of inter-
block distances, i.e., distances formed by one entry of Ai and one
entry of Aj , with i 6= j. These distances cannot be revealed by
the opponent, because they do not affect the decoding performance
when a BF decoder working on the private code is used.

For this reason, in such a case we must consider attacks that are
specific to this situation. In the remaining portion of this section, we
revise the attacks procedures described in [15] and [16].

6.1 FHS+ attack

More recently, a reaction attack specifically tailored to QC-LDPC
code-based systems has been proposed in [15]: this attack, dif-
ferently from the GJS one, takes into account the effect of the
matrix Q on the decoding procedure. We refer to this attack as the
FHS+ attack. The collection phase in the FHS+ attack is performed
through Algorithm 5. We point out that the algorithm we propose is
a slightly different (and improved) version of the attack in [15].

Algorithm 5 FHS+ distance spectrum recover
Input number of queries N ∈ N
Output estimates a,b,u,v ∈ Nb

p
2 c

1: a← zero initialized vector of length
⌊p
2

⌋
2: b← zero initialized vector of length

⌊p
2

⌋
3: u← zero initialized vector of length

⌊p
2

⌋
4: v← zero initialized vector of length

⌊p
2

⌋
5: for i← 1 to N do
6: c(i) ← ciphertext encrypted with the error vector e(i)

7: for j ← 0 to n0 − 1 do
8: ∆

(
e
(i)
j

)
← distance spectrum of e

(i)
j

9: end for
10: ∆

(
e(i)
)

=
⋃n0−1
j=0 ∆

(
e
(i)
j

)
11: for

{
d ∈∆

(
e(i)
)}

do
12: bd ← bd + 1
13: ad ← ad + y(i)

14: end for
15: for d ∈∆

(
e
(i)
n0−1

)
do

16: vd ← vd + 1
17: ud ← ud + y(i)

18: end for
19: end for

As in the GJS attack, the estimates ad
bd

are then used by the
opponent to guess the distances appearing in the blocks of H̃. In
particular, every block e

(i)
j gets multiplied by all the blocks H̃j , so

the analysis based on ad
bd

reveals ∆(H̃) =
⋃n0−1
j=0 ∆(H̃j). In the

same way, the estimates ud
vd

are used to guess the distances appear-
ing in the blocks belonging to the last block row of QT . Indeed,
the block e

(i)
n0−1 gets multiplied by all the blocks QT

j,n0−1. Since
a circulant matrix and its transpose share the same distance spec-
trum, the opponent is indeed guessing distances in the first block
column of Q. In other words, the analysis based on ud

vd
reveals

∆(Q) =
⋃n0−1
j=0 ∆(Qj,n0−1).

In such a case, the adversary is then provided with an informa-
tion that can be considered as the superimposition of the adjacency
matrices of different circulant blocks. In other words, let us first con-
sider ∆(H̃); by means of Equation (18), the opponent can construct

a p× p adjacency matrix Λ, which is in QC form and whose first
row is such that

λ0,d = λ0,p−d iff d ∈∆(H̃). (28)

Then, this matrix can be used as input of Algorithm 2, in order to
obtain the graph G in which cliques of size dv − 2 represent rows
of the circulant blocks in H̃. The same procedure can be applied on
∆(Q), in order to recover rows of the circulant blocks in the first
column layer of Q. Again, it is easy to see that, for all the corre-
sponding clique sizes, Algorithm 3 runs with very low complexity.
Then, in the attack complexity, we can neglect the complexity of the
cliques search.

The complexity of this attack , which has been extensively studied
in [33], can then be estimated as

WFFHS+ ≥ 22n0−n(1)−n(2) n0!

n(1)!
pn0 log2(p), (29)

where n(1) and n(2) correspond to the number of values in the first
row of M that are equal to 1 and 2, respectively.

6.2 FHZ attack

The FHZ attack has been proposed in [16], and is another attack
procedure specifically tailored to QC-LDPC code-based systems.
The attack starts from the assumption that the number of decryption
queries to the oracle is properly bounded, such that the opponent
cannot recover the spectrum of H̃ (this is the design criterion fol-
lowed by the authors of LEDApkc [34]). However, it may happen
that such a bounded amount of ciphertexts is enough for recover-
ing the spectrum of Q: in such a case, the opponent might succeed
in reconstructing a shifted version of H, with the help of ISD. The
distance spectrum recovery procedure for this attack is described in
Algorithm 6.

Algorithm 6 FHZ distance spectrum recovery
Input number of queries N ∈ N
Output estimates a(0), · · · ,a(n0−1) ∈ Nb

p
2 c,

Output b(0), · · · ,b(n0−1) ∈ Nb
p
2 c

1: for j ← 0 to n0 − 1 do
2: a(j) ← zero initialized vector of length

⌊p
2

⌋
3: b(j) ← zero initialized vector of length

⌊p
2

⌋
4: end for
5: for i← 0 to M do
6: c(i) ← ciphertext encrypted with the error vector e(i)

7: for j ← 0 to n0 − 1 do
8: ∆

(
e
(i)
j

)
← distance spectrum of e

(i)
j

9: for d ∈∆
(
e
(i)
j

)
do

10: b
(j)
d ← bd + 1

11: a
(j)
d ← ad + y(i)

12: end for
13: end for
14: end for

The estimates a
(i)
d

b
(i)
d

are then used to guess distances in⋃n0−1
j=0 ∆

(
Qj,i

)
; again, as for the FHS+ attack, finding the corre-

sponding cliques in the graph can be done with very low complexity.
The found cliques are then be used to build sets of candidates for

QT ; in particular, the number of candidates equals

NQ = 2n
2
0−n0n

(2)−n0n
(1)

 z∏
i=0
m̂i≥2

ji!

n0

, (30)

IET Research Journals, pp. 1–9
8 c© The Institution of Engineering and Technology 2015

with n(2) and n(1) being the number of entries of the first row of
WQ that are equal to 2 and 1, respectively. The adversary can then
use the so obtained candidates to compute matrices G′ = GQT ,
where G corresponds to the public key. It can be easily shown that
G′ is a generator matrix of the secret code. Thus, an opponent can
apply an ISD algorithm to search for vectors with weight n0dv ,
denoted as v̄(x) in polynomial notation, such that G(x)v̄T (x) = 0.
In particular, some considerations on G′ can be made, in order to
ease the application of ISD; details on this procedure can be found
in [33]. As for the FHS+ attack, unless the DFR of the system is
significantly low, we can neglect the complexity of Algorithm 6, and
estimate the complexity of the FHZ attack as:

WFFHZ = NQ ·NG · CISD (n0p, p, n0dv) , (31)

where

NG =
(
pn0
)n0−1 = pn

2
0−n0 . (32)

7 Conclusions

We have reviewed currently known statistical attacks against
QC-LDPC and QC-MDPC code-based cryptosystems, and intro-
duced a general framework able to encompass them all. In their
general form, these attacks are characterized by two phases. The first
phase is the collection phase, and is relateively simple to model for
a given cryptosystem. The second phase is the matrix reconstruction
phase, and is more difficult to model analytically. We have exploited
a graph theory approach to model such a phase. This has allowed
us to derive closed form formulas for the overall complexity of these
attacks, which are useful for the design of QC-LDPC and QC-MDPC
code-based cryptosystems.

8 References
1 Shor, P.W.: ‘Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer’, SIAM J Comput, 1997, 26, (5), pp. 1484–1509
2 National Institute of Standards and Technology. ‘Post-quantum crypto project’.

(, 2016. Available from: http://csrc.nist.gov/groups/ST/
post-quantum-crypto/

3 McEliece, R.J.: ‘A public-key cryptosystem based on algebraic coding theory’,
DSN Progress Report, 1978, pp. 114–116

4 Niederreiter, H.: ‘Knapsack-type cryptosystems and algebraic coding theory’,
Probl Contr and Inf Theory, 1986, 15, pp. 159–166

5 Berlekamp, E., McEliece, R., van Tilborg, H.: ‘On the inherent intractability of
certain coding problems’, IEEE Trans Inf Theory, 1978, 24, (3), pp. 384–386

6 Prange, E.: ‘The use of information sets in decoding cyclic codes’, IRE Trans Inf
Theory, 1962, 8, (5), pp. 5–9

7 Stern, J. ‘A method for finding codewords of small weight’. In: Cohen, G., Wolf-
mann, J., editors. Coding Theory and Applications. vol. 388 of LNCS. (Springer
Verlag, 1989. pp. 106–113

8 Becker, A., Joux, A., May, A., Meurer, A. ‘Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding’. In: Pointcheval, D.,
Johansson, T., editors. Advances in Cryptology - EUROCRYPT 2012. vol. 7237 of
LNCS. (Springer Verlag, 2012. pp. 520–536

9 Bernstein, D.J. ‘Grover vs. McEliece’. In: Sendrier, N., editor. PQCrypto. vol.
6061 of Lecture Notes in Computer Science. (Springer, 2010. pp. 73–80

10 Aragon, N., Barreto, P.S.L.M., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., et al.. ‘BIKE: Bit Flipping Key Encapsulation’. (, 2017. NIST Post-Quantum
Cryptography Project: First Round Candidate Algorithms. Available from: http:
//bikesuite.org/

11 Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P. ‘LEDAkem: A post-
quantum key encapsulation mechanism based on QC-LDPC codes’. In: Lange, T.,
Steinwandt, R., editors. Post-Quantum Cryptography. vol. 10786 of LNCS. (Cham:
Springer International Publishing, 2018. pp. 3–24

12 Alagic, G., Alperin.Sheriff, J., Apon, D., Cooper, D., Dang, Q., Miller, C., et al.
‘Status report on the first round of the NIST post-quantum cryptography standard-
ization process’. (National Institute of Standards and Technology, 2019. NISTIR
8240

13 Sendrier, N. ‘Decoding one out of many’. In: Yang, B.Y., editor. Post-Quantum
Cryptography. vol. 7071 of LNCS. (Springer Verlag, 2011. pp. 51–67

14 Guo, Q., Johansson, T., Stankovski, P. ‘A key recovery attack on MDPC with CCA
security using decoding errors’. In: Cheon, J.H., Takagi, T., editors. ASIACRYPT
2016. vol. 10031 of LNCS. (Springer Berlin Heidelberg, 2016. pp. 789–815

15 Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q., Johansson, T. ‘A reac-
tion attack on the QC-LDPC McEliece cryptosystem’. In: Lange, T., Takagi,
T., editors. Post-Quantum Cryptography: 8th International Workshop, PQCrypto
2017. (Utrecht, The Netherlands: Springer, 2017. pp. 51–68

16 Fabšič, T., Hromada, V., Zajac, P.. ‘A reaction attack on ledapkc’. (, 2018.
https://eprint.iacr.org/2018/140. Cryptology ePrint Archive,
Report 2018/140

17 Eaton, E., Lequesne, M., Parent, A., Sendrier, N. ‘QC-MDPC: A timing attack
and a CCA2 KEM’. In: Post-Quantum Cryptography - 9th International Confer-
ence, PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings.
(, 2018. pp. 47–76

18 Nilsson, A., Johansson, T., Stankovski, P.: ‘Error amplification in code-based
cryptography’, IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018, 2019, (1), pp. 238–258

19 Santini, P., Battaglioni, M., Chiaraluce, F., Baldi, M.. ‘Analysis of reaction and
timing attacks against cryptosystems based on sparse parity-check codes’. (, 2019.
Available from: https://arxiv.org/abs/1904.12215

20 Baldi, M., Bodrato, M., Chiaraluce, F. ‘A new analysis of the McEliece cryptosys-
tem based on QC-LDPC codes’. In: Security and Cryptography for Networks. vol.
5229 of LNCS. (Springer Verlag, 2008. pp. 246–262

21 Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M. ‘MDPC-McEliece:
New McEliece variants from moderate density parity-check codes’. In: 2013
IEEE International Symposium on Information Theory. (Istambul, Turkey, 2013.
pp. 2069–2073

22 Aragon, N., Barreto, P.S.L.M., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
et al.. ‘BIKE: Bit flipping key encapsulation’. (, 2017. Available from: http:
//bikesuite.org/files/BIKE.pdf

23 Shooshtari, M.K., Ahmadian.Attari, M., Johansson, T., Aref, M.R.: ‘Cryptanalysis
of McEliece cryptosystem variants based on quasi-cyclic low-density parity check
codes’, IET Information Security, 2016, 10, (4), pp. 194–202

24 Kobara, K., Imai, H. ‘Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC’. In: Kim, K., editor. Public Key Cryptography.
PKC 2001. vol. 1992 of LNCS. (Berlin, Heidelberg: Springer, 2001. pp. 19–35

25 Gallager, R.G.: ‘Low-Density Parity-Check Codes’. (M.I.T. Press, 1963)
26 Fabšič, T., Gallo, O., Hromada, V.: ‘Simple power analysis attack on the QC-LDPC

McEliece cryptosystem’, Tatra Mountains Math Pub, 2016, 67, (1), pp. 85–92
27 Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: ‘Data reduction and exact algo-

rithms for clique cover’, J Exp Algorithmics, 2009, 13, pp. 2:2.2–2:2.15. Available
from: http://doi.acm.org/10.1145/1412228.1412236

28 Cygan, M., Pilipczuk, M., Pilipczuk, M.: ‘Known algorithms for edge clique cover
are probably optimal’, SIAM Journal on Computing, 2016, 45, pp. 67–83

29 Chiba, N., Nishizeki, T.: ‘Arboricity and subgraph listing algorithms’, SIAM J
Comput, 1985, 14, pp. 210–223

30 Lick, D.R., White, A.T.: ‘k-degenerate graphs’, Canadian Journal of Mathematics,
1970, 22, (5), pp. 1082âĂŞ1096

31 Eppstein, D., Löffler, M., Strash, D. ‘Listing all maximal cliques in sparse graphs in
near-optimal time’. In: Cheong, O., Chwa, K.Y., Park, K., editors. Algorithms and
Computation. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. pp. 403–414

32 Buchanan, A., Walteros, J.L., Butenko, S., Pardalos, P.M.: ‘Solving maximum
clique in sparse graphs: anO(nm+ n2d/4) algorithm for d-degenerate graphs’,
Optimization Letters, 2014, 8, (5), pp. 1611–1617

33 Santini, P., Baldi, M., Chiaraluce, F. ‘Assessing and countering reaction attacks
against post-quantum public-key cryptosystems based on qc-ldpc codes’. In:
Camenisch, J., Papadimitratos, P., editors. Cryptology and Network Security.
(Cham: Springer International Publishing, 2018. pp. 323–343

34 Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.. ‘LEDApkc: Low
dEnsity coDe-bAsed public key cryptosystem’. (, 2017. NIST Post-Quantum Cryp-
tography Project: First Round Candidate Algorithms. Available from: https:
//www.ledacrypt.org/

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 9

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://bikesuite.org/
http://bikesuite.org/
https://eprint.iacr.org/2018/140
https://arxiv.org/abs/1904.12215
http://bikesuite.org/files/BIKE.pdf
http://bikesuite.org/files/BIKE.pdf
http://doi.acm.org/10.1145/1412228.1412236
https://www.ledacrypt.org/
https://www.ledacrypt.org/

