Information Systems Frontiers
https://doi.org/10.1007/s10796-024-10471-4

®

Check for
updates

Analytic Processing in Data Lakes: A Semantic Query-Driven Discovery
Approach

Claudia Diamantini' @ - Domenico Potena'® - Emanuele Storti’

Accepted: 9 January 2024
© The Author(s) 2024

Abstract

Data integration and discovery are open issues in Data Lakes potentially storing hundreds of data sources. The present
paper addresses these issues targeting multidimensional data sources, that is sources containing atomic or derived measures
aggregated along a number of dimensions, typically derived from raw data for analytical and reporting purposes. Combining
semantic models of metadata with existing data-driven techniques, the paper proposes an approach for the discovery of
mappings between source metadata and concepts in a reference knowledge graph, enabling the definition of reasoning-based
techniques to discover, integrate, and rank data sources relevant to a given analytical query. The efficiency and effectiveness

of the approach is discussed by means of experiments on real-world scenarios.

Keywords Data lake - Query-driven discovery - Knowledge graph - Multidimensional data

1 Introduction

Data integration and data discovery are two traditional chal-
lenges in data management. Data integration refers to the
problem of providing users with a unified view of several het-
erogeneous related sources. A longstanding issue in Database
research, it has come back to the fore due to the explosion
of data generated by modern digital information systems and
the adoption of Data Lake architectures. Data discovery is
a more recently defined problem, mainly resulting from the
widespread interest in data analytics. When analysts have to
perform a data analysis activity, very often the first prob-
lem they are faced with is that of identifying which data
sources are potentially useful for their purpose. This typically
requires the understanding of the content of data sources, and
the search for sources whose content extends, complements
or integrates a data source at hand. For this reason, data inte-
gration and discovery are often seen as intertwined operations

B Emanuele Storti
e.storti @staff.univpm.it

Claudia Diamantini
c.diamantini @univpm.it

Domenico Potena
d.potena@univpm.it

Dipartimento di Ingegneria dell’ Informazione (DII),
Universita Politecnica delle Marche, Ancona, Italy

Published online: 14 February 2024

(Nargesian et al., 2019). To this end, metadata modeling is
considered of tantamount importance in Data Lakes to make
data actionable and avoid data swamps (see also Sawadogo
and Darmont 2021).

Recently, a paradigm called query-driven discovery has
been proposed to combine the two aspects of data integra-
tion and discovery (Miller, 2018). It is based on the idea to
find datasets that are “similar” to a query dataset, and that
can be integrated with it in some way (either by joins, unions
or aggregates). Existing approaches to query-driven discov-
ery only consider raw data. However, several available data
sources contain summary data, that is statistical measures
or indicators derived from raw data. Examples include open
data by public bodies', e.g., to monitor economic trends or
the effectiveness of governmental policies and initiatives like
a vaccination campaign. These kinds of data have specific
structures and rise specific issues that have not been taken
into account by the literature.

This work fits into the field of query-driven discovery,
introducing a number of novelties. First of all, we take into
account summary data, that typically have the structure of
multidimensional data cubes, with atomic or derived mea-
sures aggregated along a number of dimensions. Second,

Le, g., Eurostat (https://ec.europa.eu/eurostat), World Bank Open Data
(https://data.worldbank.org/), European Centre for Disease Preven-
tion and Control (https://www.ecdc.europa.eu/en/data/downloadable-
datasets).

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-024-10471-4&domain=pdf
https://orcid.org/0000-0001-8143-7615
https://orcid.org/0000-0002-7067-5463
http://orcid.org/0000-0001-5966-6921
https://ec.europa.eu/eurostat
https://data.worldbank.org/
https://www.ecdc.europa.eu/en/data/downloadable-datasets
https://www.ecdc.europa.eu/en/data/downloadable-datasets

Information Systems Frontiers

we extend the notion of target query, from that of a sin-
gle dataset, to general OLAP queries. Third, we integrate
data-driven approaches typically adopted to assess source
similarity with semantics. The approach builds on an ontol-
ogy of dimensions, measures (also called indicators in the
following) and their computation formulas, whose concepts
are used to enrich source metadata. More specifically, the
contributions of this work are multifold:

— we model data sources as a Semantic Data Lake, which
is composed by a knowledge layer, in turn defined by a
Knowledge Graph and its ontological schema, a metadata
graph model, and a set of mappings between the two;

— we define mechanisms for integration of data sources ,
which are based on mapping discovery between elements
of data sources and concepts in the Knowledge Graph. In
particular, for the identification of dimensions we exploit
LSH Ensemble for the efficient evaluation of set contain-
ment (Zhu et al., 2016). On the other hand, we rely on a
string-similarity for identification of measures. The final
integration then directly follows from the graph model
and the identified mappings;

— we introduce an algorithm to efficiently evaluate the
degree of joinability index, which is an estimate of the
cardinality of the join among a set of sources;

— we introduce a novel algorithm for query answering
specifically tailored to analytical processing. Reasoning
over the knowledge layer allows to exploit computation
formulas to identify a set of sources together with the
proper calculation rules collectively capable to provide
answer to a user query. For instance, let us suppose a
user is interested in analysing the measure Unemploy-
ment_rate, that is not available in any source. Given
that such a measure can be calculated as %,
a response can be obtained by combining sources pro-
viding the two measures Unemployed and Labour_force.
The degree of joinability index is then exploited to rank
the possible alternative ways to answer the query involv-
ing different sources;

— we provide thorough validation of the approach by
extensive experimentation to assess efficiency and effec-
tiveness in real-world scenarios.

A preliminary version of the approach has been presented
in Diamantini et al. (2022). With respect to that work, the
present paper better frames the contribution in the existing
literature, formalizes the algorithms for query answering and
joinability index evaluation, and provides extensive experi-
mentation.

The rest of the paper is structured as follows: Section 2 is
devoted to present related work dealing with metadata man-
agement, source integration and query answering in Semantic
Data Lakes. In Section 3 a case study is introduced that will

@ Springer

be used throughout the paper. Section 4 is aimed to present
the data model of our Semantic Data Lake, including the
metadata and the knowledge layers. The approach for source
integration is discussed in Section 5, while query answering
mechanisms are detailed in Section 6, along with an eval-
uation of the approach on the case study. Section 7 reports
on experiments aimed to assess efficiency and effectiveness
of the approach. Finally, Section 8 concludes the work and
draws future research lines.

2 Related Work

Data Lakes recently emerged as a flexible, scalable, and cost-
effective way for organizations to store and process large
volumes of data in various formats, making them a valuable
tool for modern data-driven businesses. On the other hand,
this technology can be challenging to implement due to issues
related to data quality, security, governance, integration, dis-
covery, and processing (Hai et al., 2021). Organizations need
to develop robust data management and governance policies,
implement appropriate security controls, and leverage data
management tools and technologies to mitigate these chal-
lenges (Nargesian et al., 2019; Giebler et al., 2019).

To this aim, semantic models and technologies can provide
avaluable support, given their capability to provide standard-
ized ways to represent and query data. As such, ontologies
and knowledge graphs have been fostered in the literature
as a promising solution to offer a comprehensive view over
the underlying data sources, modelling their relationships
and dependencies, and managing metadata. In the following,
we discuss solutions for metadata extraction and modeling,
source integration, discovery and exploration, focusing on
semantic-based approaches.

2.1 Metadata Extraction and Modeling

Extraction of metadata from sources with different formats
is a pre-requisite for Data Lake management. The Generic
and Extensible Metadata Management System (GEMMS) for
Data Lakes (Quix et al., 2016) is a framework that extracts
metadata from heterogeneous sources, and stores the meta-
data in an extensible metamodel.

For what concerns metadata modeling, logic-based appro-
aches such as Quix et al. (2016) allows the separation of
metadata containing information about the content, seman-
tics, and structure. DCMI Metadata Terms (Board, 2020)
is a set of metadata vocabularies and technical specifica-
tions maintained by the Dublin Core Metadata Initiative.
It includes generic metadata, represented as RDF proper-
ties, on dataset creation, access, data provenance, structure
and format. The Vocabulary of Interlinked Datasets (VoID)
(Alexander et al., 2011) is an RDF Schema vocabulary that

Information Systems Frontiers

provides terms and patterns for describing RDF datasets. It is
used as a bridge between the publishers and the users of RDF
data and focuses on general metadata, following the Dublin
Core model, access metadata and structural metadata. These
last represent the structure and the schema of datasets, mostly
used for supporting querying and data integration for a vari-
ety of scenarios (both in private or public sectors (Mouzakitis
et al., 2017)).

On the other hand, (hyper)graph-based approaches enable
a common view over multiple metadata, usually exploiting
Linked Data graphs (e.g., Diamantini et al. 2021; Dibowski
etal. 2020; Pomp et al. 2018; Diamantini et al. 2021b; Bagozi
et al. 2019; Chessa et al. 2022). In Diamantini et al. (2021)
authors propose a graph model to uniformly handle unstruc-
tured sources along with semi-structured and structured ones,
taking into account various types of technical, operational
and business metadata, also by exploiting lexical and string
similarities and links to semantic knowledge (e.g., from
DBpedia). Dibowski et al. (2020) discussed how to address
FAIR (Findability, Accessibility, Interoperability, and Re-
use) data management in a Data Lake at Bosch Automotive.
They showed the benefits provided to a Data Lake through the
support of ontologies and knowledge graphs which provide
cataloguing of data, tracking provenance, access control, and
semantic search. In particular, they built the DCPAC ontology
(Data Catalog, Provenance, and Access Control) for manag-
ing data in a comprehensive manner. Similarly, Pomp et al.
(2018) proposed the ESKAPE semantic data platform for
the semantic annotation of the ingested data in a knowledge
graph. The system is useful for collection, finding, under-
standing and accessing of large data sources with the goal
of ensuring their real-time availability. In a previous work of
Diamantini et al. (2021b), which is extended by the present
manuscript, we presented a semantic model for statistical
multidimensional data stored into a Data Lake. As a dis-
tinguished feature of the approach, the knowledge layer of
the Data Lake included the possibility to represent indica-
tors, their calculation formulas and analysis dimensions. It
was capable to support logic-based services to guarantee the
correct identification of indicators and their manipulation. A
similar model was adopted by Bagozi et al. (2019) to support
a Data Lake for personalized exploration.

2.2 Data Source Integration

A variety of solutions have been proposed on the topic of data
source integration in a Data Lake, ranging from approaches
based on raw data (and related metadata) management to
semantic-enriched frameworks. By making the meaning of
the structural elements of the sources explicit, the latter are
intrinsically more suitable to address issues related to data
variety/heterogeneity and data quality. In Diamantini et al.
(2021) the network-based model to represent metadata is

used to drive a topic-view extraction which integrates related
sources, starting from a set of user defined topics. Knowledge
graphs are exploited in Farid et al. (2016) to drive integration,
relying on information extraction tools, e.g., Open Calais,
that may assist in linking metadata to uniform vocabular-
ies, while in Fernandez et al. (2018) a graph is built by a
semantic matcher, leveraging word embeddings to find links
among semantically related data sources. Only a few work
deal with end-to-end integration, e.g., Constance (Hai et al.,
2016) focuses on a holistic approach capable of addressing
a variety of structures, with the aim to discover, extract, and
summarize structural metadata from (semi)structured data
sources, and annotates (meta)data with semantic information
to avoid ambiguities.

Recent research effort focused on combining the OBDA
(Ontology Based Data Access) paradigm with Data Lakes,
leading to the so-called “Semantic Data Lake”. Here, the
development of semantic layers supports physical and logical
integration and uniform access to Data Lakes content (e.g.,
Mami et al. 2019). However, unlike our work, no mapping
discovery and catalogs of metadata are discussed. Similarly,
Beheshti et al. (2018) refer to the term “Knowledge Lake”,
and proposes the CoreKG Data Lake, a platform containing
contextualized data as a graph, that offers a number of ser-
vices for curation (enrichment, linking, annotation), indexing
and querying through the SPARQL language.

2.3 Data-Driven Discovery and Exploration

Closely related to integration, a recent novel paradigm
called query-driven discovery was proposed to address in
a combined way the issues of source integration and source
discovery (Miller, 2018), following the idea to find datasets
that are similar to a query dataset and that can be inte-
grated in some way (either by joins, unions or aggregates).
In this sense, a new class of data-driven queries is emerg-
ing, which consists of datasets and aims to retrieve, from a
large collection, related datasets. In a traditional database set-
ting, this problem is usually referred to as schema matching
(Rahm & Bernstein, 2001), a longstanding problem of iden-
tifying correspondences among database attributes, which is
still investigated through recent algorithmic approaches (e.g.,
Chen et al. 2018, Shraga et al. 2020). A common assump-
tion for most of this work is the existence of consistent and
complete metadata, which is not realistic for real-world Data
Lakes (Farid et al., 2016; Nargesian et al., 2019). Some work
investigated how to apply schema matching in the Data Lake
scenario for dataset discovery (Koutras et al., 2021), with
the purpose to offer insights on the strengths and weak-
nesses of existing techniques. Among the work assuming
reliable and complete metadata, some refer to clustering-
based approaches to match a set of schemas at the same time

@ Springer

Information Systems Frontiers

(Alshaikhdeeb & Ahmad, 2015). However, they focus only
on schema level and not on values.

An interesting type of query is the so-called join-
correlation query: given an input query table T and a dataset
collection, the goal is to retrieve tables that are joinable with
T. Our proposal can be seen as extending this notion to other
kinds of operations since, beside join, target tables can be
retrieved on the basis of any algebraic expression query defin-
ing the calculation of an indicator. Another related problem is
the correlated dataset search, where an additional challenge
arises: besides identifying possible joins, it is also necessary
to compute, or estimate, the joinability (or correlation). Most
approaches propose the Jaccard Index and the Jaccard Con-
tainment similarity as a measure of joinability. The former
is the cardinality of the intersection of the two sets divided
by the cardinality of their union, wherease the latter divides
the intersection by the cardinality of the first set, resulting
in an asymmetric measure, but less biased w.r.t. very large
datasets.

Algorithms such as JOSIE (Zhu et al., 2019) provide
an exact solution to this problem, although a typical solu-
tion to overcome scalability issues is to provide approximate
answers, e.g., Lazo (Fernandez et al., 2019), LSH Ensemble
(Zhu et al., 2016) or GB-KMYV (Yang et al., 2019), balancing
precision and recall.

Such techniques apply indexing structures and data
sketches (typically through hashing) to reduce the dimen-
sionality of the datasets and perform time-effective estima-
tion of the Jaccard index or the containment set. Among them,
Asymmetric MinWise Hashing (ALSH) (Shrivastava & Li,
2015) and LSH Ensemble are both techniques to estimate the
containment between a source and a set of tables. The latter
applies Locality Sensitivity Hashing to determine, given a
column of an input dataset, what columns in other datasets
are similar to it beyond a given threshold, and outperforms
the former in terms of quality results. On the other hand,
Lazo (Fernandez et al., 2019) overcomes some limitations
of LSH, in particular by directly estimating the containment
values through a cardinality-based approach, and reducing
the computational efforts in generating the data sketches.

Aurum Fernandez et al. (2018) exploit hypergraphs to find
similarity-based relationships and primary-foreign key can-
didates among tabular datasets. For each columns, it first
builds a profile by adding signatures based on information
extracted from values e.g., cardinality, data distribution, a
representation of data values (i.e., MinHash). Then, it indexes
the signatures through Locality-Sensitive Hashing (LSH): if
two column signatures are indexed into the same bucket, an
edge is created between the two column nodes, while the
similarity value is stored as the weight of the edge.

In Santos et al. (2022), given an input query table, authors
aim to find the top-k tables that are both joinable with it
and contain columns that are correlated with a column in the

@ Springer

query. The approach proposes a novel hashing scheme that
allows the construction of a sketch-based index to support
efficient correlated table search.

After the discovery has been performed (through join,
union or related-table search), tables can be integrated. Khati-
wada et al. (2022) propose ALITE, a scalable approach
for integration of tables which relaxes previous assump-
tions, such as that tables share common attribute names, are
complete and have acyclic join patterns. The approach first
assigns an integration ID to each column and then applies
natural full disjunction to integrate the tables.

With respect to the content-driven notion of query-driven
discovery previously proposed, our approach takes into
account both data and metadata (i.e., mappings to indica-
tors concept in the Knowledge Graph and their formulas)
as a support to reformulate the query and determine which
sources can be used to respond. This helps in reducing the
search space by identifying the most semantically relevant
data sources according to the discovery need. As a further
difference, user requests are expressed in ontological terms
as OLAP-like queries, specifying an indicators of interest and
the required dimensions of analysis, while in Miller (2018)
a query is expressed as a dataset. As such, we refer to LSH
Ensemble (Zhu et al., 2016) not as a means of comparing the
query against all possible sources in the Data Lake, but (1)
to efficiently support discovery, comparing the new source
with the dimensions defined in the Knowledge Graph, and
(2) once the possible solutions are identified, to estimate the
cardinality of their join. For this latter task, we also comple-
ment such an approach through the evaluation of a joinability
index, similar to Fernandez et al. (2019).

3 Case Study: Azure COVID-19 Data Lake

In this work, we take as example a set of COVID-19 related
datasets from the Microsoft Azure Covid-19 Data Lake
(Microsoft, 2023) and Our World in Data repository:

S1) Bing COVID-19 Data?, provides data for countries (in
some cases, also regions are included), updated daily
for years 2020-2021. The dataset includes three basic
measures, namely number of confirmed cases, number
of recovered cases and number of deaths, together with
the variation with respect to the previous day.

S2) COVID Tracking Project®, with data updated daily
for every US state for years 2020-2021. It includes
indicators such as: numbers on positive, negative and
recovered cases, number of deaths, number of hospital-

2 https://learn.microsoft.com/it-it/azure/open-datasets/dataset-bing-
covid-19

3 https://github.com/COVID19Tracking/covid-tracking-data

https://learn.microsoft.com/it-it/azure/open-datasets/dataset-bing-covid-19
https://learn.microsoft.com/it-it/azure/open-datasets/dataset-bing-covid-19
https://github.com/COVID19Tracking/covid-tracking-data

Information Systems Frontiers

ized people, current and cumulative number of people
in ICU (Intensive Care Unit), number of ventilated
patients, number of pending tests.

S3) European Centre for Disease Prevention and Control
(ECDC) Covid-19 Cases*, which includes public data
on COVID-19 cases worldwide from the European
Center for Disease Prevention and Control (ECDC),
reported per day and per country for year 2020. In par-
ticular, it includes measures on the number of cases and
number of deaths.

S4) Oxford COVID-19 Government Response Tracker
(OxCGRT) (Hale et al., 2020), which contains system-
atic information on measures against COVID-19 taken
by governments, for years 2020-2021,namely the con-
firmed number of cases and the confirmed number of
deaths.

S5) Our World in Data®, which contains data on the number
of people in hospitals and in ICU (as well as number
of people in hospitals and in ICU per 1 million people)
per day and country, for years 2020-2021.

In Table 1 we summarize relevant detail about the sources,
that are derived from the source metadata provided by the
publishers. As it can be seen from descriptions and Table 1,
sources in the Data Lake contain summary data aggregated
along certain, mainly temporal and geographical, perspec-
tives. According to the traditional nomenclature, we term
them measures and dimensions respectively. For what con-
cerns the latter, several of the reported dimensions involve
information on the day in which the measures were recorded,
e.g., updated (S1), date (S2, S4 and S5), date_rep (S3).
On the other hand, other dimensions refer to the location
of the measurement. In particular, continent_exp (S3) spec-
ifies the continent. As for the countries, dimensions coun-
try_region (S1), iso_country (S2), countries_and_territories
(S3), countryname (S4) and entity (S5) includes the name of
the country, while iso2 and iso3 (S1), state (S2), geo_id,
iso_country and country_and_territory_code (S3), coun-
try_code and ISO_country (S4), ISO_code (S5) represent the
ISO code for the country, namely an international standard
short form, which can be encoded in 2 or 3 letters (e.g., IT for
Italy, ES for Spain are 2-letter codes while ITA and ESP are
3-letter codes)®. Finally, regions within a country are rep-
resented by dimensions admin_region (S1) and state (S2),
while their ISO code counterparts are represented by dimen-
sions iso_subdivision (S1 and S2).

4 https://www.ecdc.europa.eu/en/covid- 19/data-collection

5 https://github.com/owid/covid- 19-data

6 Both formats are are part of the “ISO 3166-1 - Codes for the represen-
tation of names of countries and their subdivisions”, which is created
and maintained by the International Organization for Standardization

(IS0).

Further columns represent attributes and are not reported
in the table. In the following section we introduce the seman-
tic data model adopted to represent this kind of data.

4 Semantic Data Lake: Data Model

In this Section, we review the model for a Semantic Data
Lake that was presented in Diamantini et al. (2022), on top
of which the source integration, mapping discovery and query
answering mechanisms will be defined, as discussed in next
sections.

We define a Semantic Data Lake as a tuple SDL =
(8,G,K,m), where S = {S1,...,S,} is a set of data
sources, § = {Gy,...,G,} is the corresponding set of
metadata, IC is a Knowledge Graph and m € G x K is a
mapping function relating metadata to knowledge concepts.
Our approach is agnostic w.r.t. both the degree of struc-
turedness of the sources, ranging from structured datasets to
semi-structured (e.g., XML, JSON) documents, and the spe-
cific Data Lake architecture at hand, e.g., based on ponds vs.
zones (see also Giebler et al. 2019, Sawadogo and Darmont
2021). If the architecture is pond-based, in fact, the approach
is applied to datasets in a single stage, while in zone-based
Data Lakes the approach can be applied on any stage of the
platform, although it is best suited to the staged area for data
exploration/analysis. As a minimum requirement, we assume
a data ingestion process to wrap separate data sources and
load them into a data storage. The model for a Semantic Data
Lake is detailed in the following.

4.1 Knowledge Layer

The knowledge layer of the Semantic Data Lake comprises
the following components.

KPIOnto Tt is an OWL2-RL ontology’ aimed to provide the
terminology to model an indicator in terms of its details and
relations among them. The ontology also provides classes
and properties to fully represent multidimensional hierar-
chies for dimensions (e.g., level Province rolls up to Country
in the Geo dimension) and members. The main classes and
properties, including those aimed at the representation of a
formula in terms of operands and operator, are detailed below
and shown in Fig. 1:

— Indicator: the class of Performance Indicators.

— Dimension: the class includes the definition of dimen-
sions along which indicators are measured. It is aligned
to the class gb :MeasureProperty in the RDF Data
Cube Vocabulary (Consortium, 2014).

7 KPIOnto specifications are available at http://w3id.org/kpionto

@ Springer

https://www.ecdc.europa.eu/en/covid-19/data-collection
https://github.com/owid/covid-19-data
http://w3id.org/kpionto

Information Systems Frontiers

Table 1 Details of case study sources S1-S5

Source # Rows # Cols Measures Dimensions
S1 3051712 17 confirmed, confirmed_change, deaths, updated, country_region, admin_region, is02,
deaths_change, recovered, recovered_change is03, iso_subdivision
S2 22261 31 positive, negative, death, recovered, hospital- date, iso_country, state, iso_subdivision
ized_currently, in_icu_currently, in_icu_cumulative,
on_ventilator_currently, on_ventilator_cumulative,
pending
S3 61900 14 cases, deaths date_rep, continent_exp, coun-
tries_and_territories, iso_country, geo_id,
country_and_territory_code
S4 231192 38 confirmedcases, confirmeddeaths countryname, countrycode, date, ISO_country
S5 28661 8 daily_ICU_occupancy,daily_ICU_occupancy_per_mil- entity, ISO_code, date

lion, daily_hospital_occupancy, daily_hospital_oc-

cupancy_per_million

— Level: the class represents a specific level, which
is related to the corresponding dimension through the
property inDimension. A level is also linked to the
corresponding upper level through property rollup,
which enables to encode the hierarchical relations among
levels.

— Formula: itrepresents a mathematical expression spec-
ifying how to calculate the indicator. A formula is
defined as the application of an operator (property
hasFunction on some FormulaArguments. Each
argument has an ArgumentValue which may repre-
sent an other indicator, a constant or, in turn, another
formula).

Further object properties are defined to link an indicator to
a unit of measurement (instances of units are defined exter-
nally) and to an instance of BusinessObjective.

l kpi:ArgumentValue }(—{ kpi:FormulaArgument]

owl:unionOf kpi:hasArgumentvalue
kpi:hasArgument
kpi:Constant I kpi:Indicator |—> kpi:Formula
kpi:hasFormula
kpi-hasDsmension Kpi-hasFunctx
A \ 4
kpi:Dimension

kpi:inDimension

rdfs-isDefinedBy kpi:Level

kperollup

Fig.1 Main classes and properties in KPIOnto ontology

@ Springer

Knowledge Graphltisdefinedasatuple C=(Ky, K4, Kgq),
where Ky and K4 respectively represent nodes and edges,
while K¢ is a mapping function assigning labels to edges. It
provides a representation of the domain knowledge in terms
of definitions of indicators, dimension hierarchies and dimen-
sion members. Concepts are represented in RDF as Linked
Data according to the KPIOnto ontology, thus enabling stan-
dard graph access and query mechanism. Figure 2(a) shows
a fragment of the Knowledge Graph for the case study rep-
resenting dimensions 7ime and Geo with the corresponding
levels.

In the following, we refer to the notion of formula graph,

as a view over the Knowledge Graph which is focused
on the mathematical relations of indicators. In the formula
graph, a node represents either an indicator, a constant or
an operator. On the other hand, an edge connects an indica-
tor node to its corresponding operator for its formula, while
this last is connected to other indicator nodes (and/or con-
stants) which represent its operands. Please note that we
use this notion just to graphically represent the indicator
formulas more clearly, as the indicator and its components
are part of the Knowledge Graph. Figure 2(b) shows the
formula graph for the case study. The full list of mea-
sures defined in the Knowledge Graph for the case study
is as follows: ICU, ICU _on_Positives_Rate, Positive,
Cumulative_Positive, Negative, Deaths, Cumulative_
Deaths, Recovered, Cases.
Logic Programming rules A set of logic programming rules,
enacted by a logical reasoner (namely, XSB®), have been
developed to automatically provide algebraic services, capa-
ble of performing mathematical manipulation of formulas
(e.g., equation solving), which are exploited to infer all for-
mulas for a given indicator. This functionality is used to
support query answering (see Section 6).

8 http://xsb.sourceforge.net/

http://xsb.sourceforge.net/

Information Systems Frontiers

Fig.2 Case study: (a)

Continent

dimensions, levels and (b)
indicators with their formulas

\\G

0
| mom,enslo" Month <\<\°
Kp

Day

4.2 Metadata Layer

Different typologies of metadata can be related to a resource,
depending on how they are gathered. Oram (2015) introduces
a classification in three categories, namely business, oper-
ational and technical. Business metadata include business
rules (e.g., the upper and lower limit of a particular field,
integrity constraints). Operational metadata represent infor-
mation automatically generated during data processing (e.g.,
data quality, data provenance, executed jobs). Finally, tech-
nical metadata include information about data format and
schema. Other categorizations are possible and some over-
laps among them may exists (Diamantini et al., 2021), as also
shown in Fig. 3. For instance, since business metadata con-
tain all business rules that are mainly expressed in terms of
data fields, and since the data schema is included in the tech-
nical metadata, we can conclude that data fields represent the
perfect intersection between these two subsets. Analogously,
technical metadata contain the data type and length, the pos-
sibility that a field can be NULL or auto-incrementing, the
number of records, the data format and some dump informa-
tion. These last three things are in common with operational
metadata, which contain information like sources and target
location, and the file size as well. Finally, the intersection
between operational and business metadata represents infor-
mation about the dataset license, the hosting server and so
forth (e.g., see the DCMI Metadata Terms).

Hereby, we refer to the intersection of business and tech-
nical metadata, i.e., related to data fields, both domain
description and technical details. Since the representation of
metadata is highly source-dependent (e.g., the schema defi-
nition for a relational table), a uniform representation of data
sources in a metadata layer is required for the management
of a Data Lake.

Whatever the nature of the source, we refer to a graph
model in which the nodes are the elements of the source
schema, e.g., tables and attributes in relational databases,
complex/simple elements and their attributes in XML/JSON
documents. For each source Sk, metadata are represented as
a directed graph Gy = (Ng, Ak, Q), where Nj are nodes,
Ay are edges and Q; : Ay — Ay is a mapping function

kpi:rollup

N l
Time kpi:rollup Geo «—— Countty ¥ quntry 1SO3
o] e

kpi:rollup

Province

ICU_on_Positives_Rate

owl:sameAs

Country_ISO2

wwl:sameAs

Province_ISO

(b)

s.t. Qx(a) =1 € Ay is the label of the edge a € Ag. The
graph is built incrementally by a metadata management sys-
tem (Diamantini et al., 2021), starting from the definition of
anoden € Ni for each element of the schema of S;. An edge
(ny,ny) € Ay is defined to represent the structural relation
existing between the elements oy, oy, €.g., this corresponds
to the relations between a table and a column of a relational
database, or between a JSON complex object and a simple
object. Further details on this modeling approach are avail-
able in Diamantini et al. (2021).

4.3 Mapping Function

The data model is completed by defining the mapping func-
tion m € G x K, which links the metadata layer to the
knowledge layer. We consider three types of mapping, to
semantically enrich source elements representing indicators,
dimension levels, and their members, respectively.

Specifically, let G; € G be the metadata graph of the
source S;:

Operational

- Source location
- Target location
- File size

- Num of records
- Data format
- Dump info

- Data licence
- Hosting server
- Metadata terms

- Field description
- Business rules

- Data type
- Data length

- Fields (schema)

Business Technical

Fig.3 Metadata classification (Diamantini et al., 2021)

@ Springer

Information Systems Frontiers

Metadata Graph

/daily_ICU_

“_occupancy S~ ~ T T T T T T T T T T T~
/ < contains _— S
S5 - date —-1-----»{ Time.day
P 4 Geo.Country
‘C entity - > _ ,

Geo.Continent

<+ confirmed
contains

S1} — »(updated

“(country_region

Fig.4 A fragment of the graph for sources S1 and S5 of the case study

— if the node n,, € G; represents a measure, the pair <
R, ind > will be added to m, where ind € K represents
the indicator semantically equivalent to 7,,;

— if the node ny € G; represents a dimension, the pair
< ng,l > will be added to m, where [€ K represents
the dimension level semantically equivalent to ng.

In Fig. 4 we report an example of the mappings between
two sources of the case study and the Knowledge Graph.
On the left, fragments of the metadata graphs for sources S1
and S5 are shown, where the edges represent structural rela-
tions between sources and their attributes. On the right, we
report a fragment of the Knowledge Graph representing two
dimensional hierarchies (nodes with white background) and
a formula for the indicator ICU_on_Positives_Rate. Dotted
edges, linking nodes of Metadata and Knowledge Graphs,
represent the mappings of dimension levels, while dashed
edges link attributes to semantically equivalent measures.

5 Integration and Mapping Discovery

This section is aimed to discuss (a) how to identify, given a
new data source, dimensions and measures, and (b) how to
properly map them to the Knowledge Graph. In the following,
we refer to data domain as a set of values from a data source
entry. If the data source is a relation table, a domain can be
seen as the projection of one attribute. Conversely, if the data
source is a JSON collection, a domain is the set of values

@ Springer

kpi:inDimension

kpi:inDimensijol

Knowledge Graph

@.,
-Positives_Rate

» Time

Geo.Province

extracted from all the included documents according to a
given path (e.g., using JSONPath expressions). As a result, a
data source corresponds to a set of domains.

5.1 Identification of Dimensions.

In order to identify whether a given domain from a data
source (e.g., the attribute countryname in S4) and a dimen-
sional level (e.g., Geo.Country) represent the same concept,
a matching step is required. One of the most widely adopted
index for comparing sets is the Jaccard similarity coefficient,
aimed at measuring the similarity between finite sets as the
ratio between their intersection and their union. When sets
are skewed, i.e., have very different cardinality, this index is
however biased against the largest one. In such contexts an
asymmetric variant can be used, namely the set containment,
that is independent on the dimension of the second set.

Definition 1 (Set Containment) Given two sets X,Y, the set
containment is given by ¢(X, Y) = %

Given that the cardinality of a domain (without duplicates)
is typically much lower than that of a dimensional level,
this index is better suited than Jaccard to evaluate whether a
domain has intersection with a given level®. For this reason,
we rely on set containment in our work. As an example,
let us consider a domain A = {Rome, Berlin, Paris}

9 Under this assumption, the set containment is equivalent to the overlap

- . IS . |XNY|
(or Szymkiewicz-Simpson) coefficient, i.e., Tin X7

Information Systems Frontiers

and a dimensional level Geo.City including 100 cities in
Europe. In this case, c(A, Geo.City) = %, meaning that
the domain perfectly matches the dimensional level, while
Jaccard(A, Geo.City) = %. We formalize the problem
of mapping a domain of a data source to a dimensional level
as a reformulation of the domain search problem (Zhu et
al., 2016), which belongs to the class of R-nearest neigh-
bor search problems. We first give the definition of relevant
dimensional level for a given domain as follows.

Definition 2 (Relevant dimensional levels for a domain)
Given a set of dimensional levels £, a domain D, and a
threshold ¢ € [0, 1], the set of relevant dimensional levels
from Lis{X :c(D,X) >t, X € L}.

The number of relevant dimensional level for a domain
may be greater than one, although in practice we are inter-
ested in the level with the greatest threshold ¢, i.e., the
most relevant dimensional level. As an example, the most
relevant dimensional level for domain country_region in
data source S1 is Geo.Country, while for iso_subdivision is
Geo.Province_ISO.

Comparing a given domain to a dimensional level involves
a linear time complexity in the size of the sets. Given the tar-
get scenario, which may include data sources with hundred
of thousands or even millions of tuples, the computation
of the index may often be not scalable in many practical
cases. An improvement discussed in the literature as for
the Jaccard index consists in its estimation using MinHash
computation (Broder, 1997), which involves performing the
comparison on their MinHash signatures instead of on the
original sets. Given a hash function 4, a domain can be
mapped to a corresponding set of integer hash values of
the same length. For a domain X, let /,,;,(X) be the mini-
mum hash value. Given two sets X, Y, the probability of their
minimum hash values being equal is the Jaccard index, i.e.,
P(hpin(X) == hpin(Y)) = J(X, Y). Since the compari-
son can only be true or false, this estimator has a too high
variance for a useful estimation of the Jaccard similarity.
However, an unbiased estimate can be obtained by consider-
ing a number of hashing functions and averaging results: this
is done by counting the number of equivalences in the cor-
responding minimum hash values and dividing by the total
number of hash values for a set.

If data sources have high dimensionality, however, pair-
wise comparison is still highly time consuming. In our
scenario, for a source with N domains and M dimensional
levels the time complexity is in O (N * M). For such a rea-
son, in practice MinHash is used with a data structure capable
of significantly reducing the running time, named Locality
Sensitivity Hashing (or LSH) (Indyk & Motwani, 1998), a
sub-linear approximate algorithm.

While such an approach is targeted to the Jaccard index, an
evolution of LSH, namely LSH Ensemble (Zhu et al., 2016),

is a technique capable to efficiently estimate the set contain-
ment. In particular, it provides an approximate solution to
the domain containment search problem, aimed to match a
given set d against n other sets, and producing as output the
list of those sets that maximally contain d. It is character-
ized by efficient indexing (almost constant with the domain
cardinality) and efficient search (constant with respect to the
cardinality of the query domain and sub-linear with respect
to the number of sets used for the comparison). To these
aims, LSH Ensemble partitions domains into disjoint parti-
tions based on the domain cardinality. Then, a MinHash LSH
index is defined for each partition. In this way, LSH Ensem-
ble provides an optimal partitioning function that maximizes
the overall pruning power of the index. As a result, the tech-
nique proved to be suitable for comparing up to hundreds of
millions of sets, even with highly skewed distribution of their
cardinality.

In our approach, we rely on LSH Ensemble to obtain the
dimensional levels with which a given domain of a source is
estimated to have a containment score above a certain thresh-
old.

Definition 3 (LSH Ensemble) Given a domain D from a data
source S, given a set of dimensional levels £, and a threshold
t €[0,1], LSH_Ensemble(D, L, t) is a function returning
the set of relevant dimensional levels for D.

5.2 Identification of Measures

In terms of dataset attributes, measures are particular domains
which are purely quantitative. As such, unlike dimensional
levels, a measure belongs to a certain data type but is not
constrained to a finite number of possible values. For this
reason, solutions for evaluating domain similarity through
containment such as LSH Ensemble cannot be applied.

In this work, we rely on a string-similarity approach,
namely LCS (Longest Common Subsequence) in the com-
parison of the attribute names of a data source with the list of
measure names in the Knowledge Graph. For each domain,
the measure names that have the highest value of LCS, i.e.,
that are most similar, are returned. This is useful to pro-
pose only a subset of the measures defined in the Knowledge
Graph to the Data Lake Manager. To make an example, for S2
the measure in_icu_currently is mapped to the Knowledge
Graph measure /CU, which is the closest syntactically.

We’d like to note that however a manual revision is
ultimately required, as the recognition can be affected by
homonyms and unclear or ambiguous wording of the domain
names. For instance, for S3 the measure cases gets mapped
to the Knowledge Graph measure Cases, but its meaning is
different: indeed, by reviewing the publisher metadata, it is
clear that instead it actually accounts for the number of pos-
itive cases. As such, it needs to be mapped to the measure

@ Springer

Information Systems Frontiers

Positive. More advanced approaches could be considered for
this step, including some based on dictionary, semantic simi-
larity (e.g., Diamantini et al. 2021) or frequency distribution
and will be discussed in future work.

5.3 Representation of Mappings

Given a domain of a data source and the most relevant dimen-
sional level with respect to a given threshold (see Definition
3), the domain is mapped to the corresponding level in the
Knowledge Graph.

Definition 4 (Set of mappings) Let C be the Knowledge
Graph, G, be a metadata graph for a source S, D < Sk
be a domain, L € £ be the most relevant dimensional level
for D, the mapping between D and L is defined as a tuple
m=(np,ng,c(D, L)), where np € Gy and n; € I are
nodes representing the domain D and the level L respec-
tively, and the estimated value for set containment c¢(D, L)
is used to weigh the mapping. The set of mappings Mg,
includes all mappings for dimensions in S.

Similarly, given adomain and arelated identified measure,
amapping between the corresponding nodes is created. In the
following, we represent by Dims C L the set of dimensional
levels available in a source S and by Inds C 7 the set of mea-
sures available in S, where 7 is the set of indicators defined
in KC.

6 Query Answering

The mappings defined between the metadata graphs and the
Knowledge Graph are exploited to support query answering
in the Data Lake context. This requires to determine what
data sources are needed and how to combine them for a given
request, following a query-driven discovery approach where
however the query is not represented as a dataset but as a gen-
eral multidimensional query. A user query Q is expressed as
atuple Q = (ind,{L1, ..., Ly,}), where ind is an indica-
tor (i.e., measure) and {L, ..., L,} is a set of levels, each
belonging to a different dimension.

Definition 5 (Compatible dimensional schema) Given a data
source S, given a query Q = (ind,{Ly,...,L,}), the
dimensional schema of S is compatible with Q iif Dimg
={Ly,..., Ly}

In this definition the source is constrained to contain
exactly the same levels of the query. This assumption has
been made to keep the paper simpler, and does not limit the
generality of the approach. As a matter of fact, we can relax
the definition to include sources with more dimensions than
in the query. In this case, rollup relations can be exploited fol-

@ Springer

lowing the approach in Diamantini et al. (2018) to provide
data at the correct aggregation level.

A data source can respond a query Q if its dimensional
schema is compatible with Q and if it provides the requested
indicator. On the other hand, taking advantage of the reason-
ing mechanisms defined on the Knowledge Graph, a formula
is searched for calculating i nd from other indicators that are
all available in other sources of the Data Lake, provided that
such sources have a dimensional schema compatible with Q.

In the current framework, the derivation of a formula
for an indicator relies on the reasoning services introduced
in Section 4. In order to search a formula for ind, the
logical reasoner browses the graph of indicators’ formu-
las in /C, returning all possible rewriting f (indy, ..., ind,;,)
of ind, where ind; € K,i = 1,..., m. Considering the
example in Fig. 2(b), possible rewritings for the indicator
Positive are: Positive = Cases — Deaths — Recovered
and Positive = ICU_On_IfOCXgl,vm_ng. A detailed discus-
sion of the working mechanism for the services is available
in Diamantini et al. (2021a).

Definition 6 (Existence of a solution) Given a query Q =
(ind,{L1 ..., Ly,}) and aset S of data sources, Q has a solu-
tioniif: either (1)3S, € Ssuchthatind € Inds, A Dimg, =
{L1,...,Ly},or(2)Jaformula f(indy,...,ind,) forind
such that Vind; (3S; € S suchthatind; € Inds; A Dimg, =
{Li,...,Lp}).

It is worth noting that multiple formulas may exist to cal-
culate an indicator and also for each formula there may be
multiple sets of sources that have the necessary measures.
Clearly, the different solutions must be compared to assess
the quality of the query result. To this end, it is necessary to
join the sources considered in each solution. This is highly
inefficient in the context of a Data Lake. Therefore, in Algo-
rithm 1 we propose an efficient algorithm to estimate the
quality of the query result, in terms of its cardinality. The out-
come of the algorithm is then used to choose which sources
will be joined to compute the query result.

The algorithm takes as input a query Q = (ind, {L1, ...,
L,}) and returns the list of possible solutions, in terms of the
formula to be applied and sources to be considered, enriched
with the estimated cardinality of the result.

As first step (line 2) the find_rewriting(ind,{L1, ..., L,})
function is executed, which returns all formulas f (ind, ...,
indy,,) for ind that can be derived from /C, such that each
component measure ind;,i = 1,...,m is provided by a
data source with a dimensional schema compatible with Q
(Definition 6(2)). In case ind is already available in one
source, the function will return the identity function (Def-
inition 6(1)). For each formula, the find_rewriting returns
also the set {®q,..., D,,}, where &; C S is the set of
sources that can provide the component ind;. In other terms,

Information Systems Frontiers

®; includes the (alternative) data sources from which ind;
can be retrieved.

For each pair (f(indy,...,indy), {®1,..., ®n}) (line
4), the cartesian product of all the sets ®; is computed
in order to list all combinations of data sources that can
be used to calculate the formula, where a combination is
a tuple (Si,...,Sy,) (line 6). The estimation of the car-
dinality of the query result is obtained by means of the
function compute_joinability (line 9), which computes the
degree of joinability. Such an index, discussed below, mea-
sures the likelihood to produce a result out of a join among
a set of domains. Specifically, given the set of sources
{S1,..., S} with S* being the one with lowest cardinal-
ity, compute_joinability returns the portion of elements of
S* that will be considered in computing the join with the
other sources. Since the set {Ly, ..., L,} defines a unique
identifier for each S;, multiplying the degree of joinability
by |S*| yields the estimation of the cardinality of the join.
In case the indicator is already available in a source, the car-
dinality of the query result is equal to the cardinality of the
source (line 7).

Algorithm 1 Find solutions.

1: function FINDSOLUTION({ind, {L1, ..., L,}))

2: ®=find_rewriting(ind{Ly, ..., L,})

3: p=40

4: for each (f(indy,...,ind,),{P1,..., Py}) € © do

5: v =0

6: for each (Sy,...,S,) € x/, ®; do

7: if m = 1 then ¥ = |S)|

8: else

9: W <« compute_joinability((S1, ..., Sm), {L1, ..., Ln})
~min;=q,...m ||

10: end if

11: p < (f(indy,...,indy), (S1, ..., Sm), ¥)

12: end for

13: end for

14: return p
15: end function

In the following, we discuss the degree of joinability index
and the procedure for its computation. Sources are joinable if
they have the same values for domains that are mapped to the
same dimensional levels. To check this condition, the corre-
sponding domains should be compared in order to determine
how many values are shared between the sources through
set containment. However, a full comparison is not practi-
cal in a Data Lake scenario. For this reason, we resort to
the LSH Ensemble to provide an estimated evaluation of the
joinability of m data sources. Typical use of LSH Ensemble
is based on a single join attribute at a time (similarity between
sets), while in our case the match needs to be performed on
sets of dimensional levels. Hence, we apply a combination
function (e.g., a concatenation of strings) to the domains that
represent the dimensional levels, in order to map them into

a single domain before applying the hashing function. To
give an example, if the query requires levels Geo.Country
and Time.Day, the hash will be calculated on the concate-
nation of domains country_region + updated for source S1
(a possible value is “Italy 2020-11-30”). In the following
of the work, we refer to the hashing of the concatenation of
dimensional domains as combined MinHash. The generation
of such hashes can be performed off-line after the mapping
discovery phase has been done.

The procedure for computing the degree of joinability
is summarized in Algorithm 2. As a first step (line 2), the
threshold is set to the maximum value. Then, after identifying
the source S* with lowest cardinality (line 3), the function
LSH_Ensemble is called to obtain the set of sources with
which S* is estimated to have a containment score above
the given threshold (see Definition 3). If there is at least one
source for which this does not hold, then the degree of join-
ability is less than t and the threshold is decreased by a given
step (line 7).

It is noteworthy that Algorithm 2 returns an overestimate
of the degree of joinability of m sources. To give an example,
if S ={a,b,c}, $2 ={a,b,x, y}and S3 = {b, c, x, y}, the
compute_joinability returns % but the cardinality of the join
is 1, so the degree of joinability should be % of Si.

To get a more accurate result MinHash could be directly
used to estimate the set containment, and then to perform the
join among the m sources. Clearly this solution lengthens
the computation time, so for the scenario of this work we
consider the approximation proposed in Algorithm 2.

Algorithm 2 Computing degree of joinability.

1: function COMPUTE_JOINABILITY({S1, ..., Sm), {L1, ..., Ln})
2: t=1

3: Search §* € {S1,..., Su}s.t. |S*| = minj=1 | S|

4: flag = True

5: while flag do

6: A = LSH_Ensemble(S*,{S1,...,Su}\ S* 1)

7. if [Al < (m—1)thent =1 — 14

8: else flag = False

9: end if
10: end while
11: return t
12: end function

In the following, we report an example of the appli-
cation of the algorithms on the case study. The result
of the mapping discovery is shown in Table 2, where
mapped levels and measures are reported for each source.
Let us assume the user is interested in analysing measures
ICU_on_Positives_Rate and Positive at Geo.Country and
Time.Day levels. As for the first measure, the find_rewriting
returns (Positive, {{S1}, {S3}}). In this case, no join is
needed as the measure is directly available from multiple
sources. Therefore, the degree of joinability is equal to 1.

@ Springer

Information Systems Frontiers

Table 2 The set of Knowledge

Graph levels and measures Source K levels K measures
xz;(:h Zource domains are S1 Time.Day, Geo.Country Positive, Recovered, Deaths
ped o S2 Time.Day, Geo.Province ICU, Positive, Negative, Recovered, Deaths
S3 Time.Day, Geo.Country Positive, Deaths
S4 Time.Day, Geo.Country Cumulative_Positive, Cumulative_Deaths
S5 Time.Day, Geo.Country ICU

As for the second measure, the function returns (%,
{{S5}, {S1, §3}}). Combination of sources are produced and
two alternative solutions are available by combining S5 with
either S1 or S3. They are checked for joinability as follows,

considering that the cardinality of S5 is 28661:

— (S5, S1): the degree of joinability between S5 and S1
is 0.78. Hence, the estimated join cardinality is 0.78 *
28661 = 22355 with a query time equal to 3.109s;

— (85, S3): the degree of joinability between S5 and S3
is 0.31. Hence, the estimated join cardinality is 0.31 *
28661 = 8884, with a query time equal to 3.283s.

As a result, the solution (S5,S1) is preferred over (S5,S3).
This is motivated by the fact that S5 and S1 include data for
both the years 2020 and 2021, while S3 includes data only for
the year 2020. Therefore, the degree of joinability of S3 with
S5 is lower than that of S1, as the former shares a smaller
subset of data with the latter.

7 Experiments

A set of experiments have been carried out to evaluate the
approach. In particular, they have been designed to investi-
gate the following features:

(E1.1) the efficiency of the mapping discovery. The exper-
iment is devoted to asses the cost of plugging a new
source. To this end, we calculate the time needed
for the mapping discovery for dimensions, investi-
gating how this is affected by the size of the source
and its noise, i.e., the amount of values that cannot
be mapped to Knowledge Graph concepts;

(E1.2) the effectiveness of mapping discovery, in terms of
ratio of source domains that are correctly mapped
to the corresponding dimensions, evaluating the
impact of dataset size and noise;

(E2.1) the efficiency of the degree of joinability calcu-
lation, in terms of running time. The experiment
is performed on couples of datasets of differ-
ent sizes (cardinality and domains in the dimen-
sional schema), and aims to compare the efficiency

@ Springer

w.r.t. performing an extensive join between the
sources;

(E2.2) the accuracy of the degree of joinability, with the
purpose to estimate the capability of the index to
estimate the cardinality of the join between two
sources. The quality of the degree of joinability as an
estimator of the join is measured through the Mean
Absolute Percentage Error (MAPE) of the estimated
cardinality.

Details and results for each experiment are discussed in
the forthcoming subsections. All tests have been carried out
on a virtual machine running on the departmental cluster,
with the following configuration: QEMU Virtual CPU ver-
sion 1.5.3 - 2.26 GHz (8 processors), 32 GB RAM, 64-bit
Windows 10 Pro. Tests have been written in Python 3, mak-
ing use of specific 3rd-party libraries, including datasketch
1.5.7 (Zhu and Markovtsev, 2017) for the implementation of
MinHash and LSH Ensemble, Pandas 1.3.3 for manipulation
of data structures, Numpy for statistical functions and rdflib
for management of RDF graphs.

7.1 Knowledge Graph Generation

As apreliminary step, a synthetic Knowledge Graph has been
generated in order to provide the dimensional hierarchies for
all experiments. The graph was automatically generated by
setting its size as follows:

number of dimensions: 10

— number of levels per dimension: 5

initial number of members in the first level: 10
drill-down factor: 10

In total, the graph includes 50 levels (5 levels * 10 dimen-
sions), arranged in a hierarchy for each dimension. Given
a dimension, each member of a level is connected to 10
members of the corresponding lower level. As such, a level
at depth i of the hierarchy includes 10’ members, for a
total of Z?:l 10° members for each dimension, with a
total of 555550 members for the whole knowledge base.
The resulting graph is comparable in size with real-world
multidimensional models, which in practical usages include

Information Systems Frontiers

4-12 dimensions on average (Pedersen, 2009). The graph is
implemented as an RDF graph, where each concept (i.e.,
a dimension, a level and a member) is represented as a
node, whereas edges represent relations among them (e.g.,
the membership between a member and a level, or a level and
a dimension, the hierarchical relation between a level and its
upper level, and between a member and its corresponding
upper-level member). Combined MinHashes for all dimen-
sional levels have been pre-generated and stored, in order to
speed up the mapping discovery as previously discussed.

7.2 Mapping Discovery (E1.1, E1.2)

The tests described in this subsection are devoted to assess the
efficiency and effectiveness of the mapping discovery phase.
The datasets used for these tests have been synthetically gen-
erated from the Knowledge Graph, by setting a number of
parameters:

— the cardinality: from 103 to 107;

— the number of domains: from 10 to 50;

— the percentage of domains that are dimensions was set
to 20% according to the ratio found in empirical studies
already cited (Pedersen, 2009);

— the percentage of noise on domains, i.e., the percentage of
values in the domains that cannot be aligned to members
of the corresponding dimension. This value ranges from
0% to 90%.

Given a value of cardinality, a number of domains and a
percentage of noise, the procedure for the generation of a
dataset follows these steps: (1) for the 20% of domains which
are to be mapped to a dimension, a dimension is randomly
picked (with no repetition) from the Knowledge Graph, and
one of its levels is randomly selected. (2) In order to generate
the values of the domain, a number of members equal to the
cardinality value are extracted from the level and randomly
sorted. (3) A percentage of values equal to the noise are then
replaced with random integers. Conversely, for the 80% of
domains that are not to be mapped to a dimension, values are
generated as random integers.

For what concerns the configuration of LSH Ensemble,
its parameters were initialized by using the following values:
128 permutations, 32 parts, with a threshold of 0.8.

The analysis for E1.1 has been performed by focusing
on different aspects. Execution Time by Dataset Size The
execution time was measured by varying the dataset sizes (in
terms of cardinality and number of domains), with no noisy
data. Here, the running time for each step of the mapping
discovery has been recorded, namely:

— time for hashing, i.e., for the generation of the MinHash
for each domain,;

— time for querying, which involves the execution of LSH
Ensemble and the identification of the potential mapping;

— time for computation of combined MinHashes for the
dimensional schema: as discussed in Section 6, the
domains of the dimensional schema are combined together
(e.g., through concatenation) in order to apply LSH
Ensemble, which compares pairs of sets.

Furthermore, the overall running time has been recorded.
For any combination of cardinality and number of domains,
10 datasets have been generated and the corresponding
results have been averaged. This helped in reducing the bias
in the random choice of the dimensions and levels that are
included in the datasets. Results are reported in Table 3. Fig-
ure 5(a) summarizes a comparison of the overall running
time for mapping discovery, for datasets with an increasing
cardinality and number of domains. As it is clearly shown,
the overall running time linearly depends on the cardinality
and number of domains. In particular, small datasets (i.e.,
up to cardinality 10.000) require less than 3 seconds for a
complete mapping, while medium-sized datasets (up to car-
dinality 100.000) reach 30 seconds and larger datasets takes
more than 30 seconds.

The specific contribution to running time of each step of
the mapping discovery process is shown in Fig. 5(b): the
largest contribution to the overall running time is due to the
hashing phase, while querying and profiling take a few sec-
onds even for larger datasets.

In order to provide a more detailed analysis on the hash-
ing time, we also report in Fig. 5(c) the average running
time distinguishing between type of domains: dimensions
and attributes. As expected, the running time for attributes
is longer, as it requires a comparison against all dimensional
levels. Running times have been averaged over 10 execu-
tions, in order to reduce the bias in the random choice of the
dimensional domains.

Execution Time by Noise and Cardinality The impact of noise
in the execution time has been investigated for datasets with
an increasing cardinality. Since the process is iterative, as
the datasets are analysed one domain at a time, the number
of domains has been set to a constant of 30, with 6 dimen-
sions. Results, reported in Fig. 5(d), clearly show that, given
a dataset with a given cardinality, the execution time for the
overall mapping discovery process is almost constant (only
slightly decreasing for increasing values of percentage of
noise).

Effectiveness by Noise and Cardinality Results for effec-
tiveness (E1.2) are shown in Fig. 6, in terms of percentage
of dimensions that have been correctly identified over the
total number of dimensions, for datasets of different sizes
and percentage of noise in domains. For larger datasets,
i.e., with cardinality 1 million and 10 millions, the pres-

@ Springer

Information Systems Frontiers

Table 3 Execution time by dataset size (values are averaged over 10 repetitions)

Cardinality #domains Hashing (s) Querying (s) Combined (s) Overall (s)
avg std avg std avg std avg std
1003 10 0,037 40,01 <0,001 +<0,001 0,012 40,004 0,118 40,027
20 0,071 40,012 <0,001 +<0,000 0,013 +0,002 0,221 40,022
30 0,099 40,026 <0,001 40,001 0,016 +0,004 0,303 40,074
40 0,118 + 0,012 <0,001 40,001 0,018 40,002 0,367 40,029
50 0,142 40,014 <0,001 40,001 0,02 +0,002 0,445 40,042
1004 10 0,38 40,065 <0,001 40,001 0,11 40,032 0,703 40,213
20 0,789 +0,149 <0,001 +<0,001 0,13 +0,013 1,259 40,164
30 1,122 40,168 0,001 40,001 0,146 +0,019 1,755 40,176
40 1,566 40,139 <0,001 40,001 0,162 40,014 2,392 40,17
50 1,884 40,197 0,001 40,001 0,172 40,015 2,861 40,29
10°5 10 4,419 +1,322 <0,001 40,001 1,179 40,471 6,981 42,367
20 6,771 40,773 0,001 40,001 1,329 40,1 10,35 +1,045
30 9,882 40,688 <0,001 +<0,001 1,405 40,095 15,47 +1,724
40 13,03 +1,763 0,001 +<0,001 1,585 40,095 19,63 +2,84
50 15,73 +1.,8 <0,001 +<0,001 1,738 40,183 23,35 +3,06
10M6 10 34,57 +6,021 <0,001 +<0,001 8,256 +5,16 51,02 +7,46
20 71,69 +11,67 <0,001 +<0,001 13,15 +1,693 100,1 +12,57
30 92,58 +8,565 <0,001 40,001 14,41 +0,687 129,7 +10,37
40 129 +11,82 <0,001 +<0,001 16,64 +1,151 176,7 +13,69
50 159,6 +14,95 0,001 40,001 17,72 +1,241 215,5 +16,55
1007 10 344,7 +51,6 <0,001 +<0,001 44,19 +41,3 461,6 +55,23
20 675,3 +119,9 <0,001 +<0,001 126 +3.915 947.9 +123,7
30 1015 +110,8 <0,001 +<0,001 145 +8,343 1381 +117,5
40 1211 +103,5 <0,001 +<0,001 156,3 46,836 1653 497,03
50 1552 +149 <0,001 +<0,001 172,4 +7,662 2076 +153,3

Experiments that completes in less than 5 seconds on average are highlighted in green, while those that completes in more than 5 minutes on average

are in red

ence of noisy data does not significantly affect the capability
to recognize domains. On the other hand, for small to
medium-sized dataset, i.e., from cardinality 1.000 to 100.000,
the effectiveness appears to be more affected by the pres-
ence of noise. In general, the capability of the algorithm
to detect the corresponding dimension increases with the
dataset size. Even in the case of completely clean data
(i.e., noise=0%), some dimensions may not be recognized
for small datasets, i.e., when a dimension only have 1.000
values. In this case, dimensions are identified with a prob-
ability less than 60%, whereas it increases up to 100%
for datasets with cardinality 1 million or more. This is a
well-known behaviour of LSH Ensemble when dealing with
a query domain that is much smaller than the considered
domains.

7.3 Degree of Joinability Index (E2.1, E2.2)

This subsection is aimed to discuss the tests evaluating the
efficiency and effectiveness of the degree of joinability index
calculation. To this purpose, the tests present a comparison
between the execution of a complete join and the evalua-
tion of the joinability index for pairs of datasets. Given that

@ Springer

the focus is on a pair of datasets, we report the procedure
followed for their generation and comparison:

— the first dataset (S1) of the pair is generated, with cardi-
nality ranging from 10° to 107 and domains ranging from
20 to 50;

— the second dataset (S2) of the pair is generated from S1,
by randomly picking a number of items ranging from 103
to the whole set of items (e.g., for a dataset S1 with car-
dinality 10 we generate 4 pairs: (10°, 10%), (106, 10%),
(10°, 10°), (10°, 10%));

— apercentage of 20% of items in S2 has been altered ran-
domly, in order to reduce the items that can be joined
together.

By this approach, we generate a number of pairs (S1,S2).
Each test involves the computation of the full join between
the two dataset of a pair and the estimation of the join through
the degree of joinability.

Execution Time of Join vs. Estimated Joinability The execu-
tion time was measured for all pairs of datasets (S1,S2), with
a number of repetitions of 10. Values have been averaged

Information Systems Frontiers

Fig.5 Efficiency of mapping
discovery. (a) total mapping 103
time (log) by dataset cardinality
(log) for different number of
domains (20% of which are
dimensions), no noise; (b) detail
of running time for different
steps of the mapping process, by
cardinality, with domains=30,
no noise (averaged over 10
repetitions); (c) average hashing
time detailed for dimension and

—#— 10 domains
—8— 20 domains
—#— 30 domains
—o— 40 domains
50 domains

(s)

10?

10t

Avg Running time

100

attribute domains, with
domains=30, no noise (averaged
over 10 repetitions); (d) running (a)
time by percentage of noise, for

103 104 10°

Cardinality

different cardinalities, with
domains=30. Average values
over 10 repetitions

Domains=30
60 || —+— Dimension
—B— Attribute

(s)

'S
(==l

Avg Running time

OB =

103 10* 10°
Cardinality

(c)

and reported in Fig. 7. The average running time is shown
for pairs having as a first source a dataset with cardinality
10% (subfigures on top) and 107 (subfigures on bottom). The
trend proves that the running time for the computation of the
degree of joinability is almost constant over cardinality and

1 L] L] [] [] [] ‘lﬁa
» 0.80 |
o
2
n —
o
g L
g 06'1 T]
el
_é Dimensions=6 \
S 04| |—%— card. 103 L
i —8— card. 104
—#— card. 10°
0.2 - B
—e— card. 106
card. 107
0 1 I ! I I
10 30 50 70 90

% Noise

Fig. 6 Effectiveness of mapping discovery by noise rate, for datasets
with an increasing cardinality and 6 dimensions. Average values over
10 repetitions

Y 1,500 [F T T T R AL
| Domains=30
E| tot. mapping
1 —e— hashing
; = —w— combined
2 1,000 |-| =B~ querying
2
é :%0 500 |- -
e 0 —
108 107 103 104 10° 108 107
Cardinality
(b)
T
10% =
B TS+ o0 |
B]
E lo! | Domains=30 E
é F | —— card. 103]
0 —8— card. 10* H—M 1
< 100 —#— card. 10° El
—e— card. 10° E
card. 107 7
= 10-1 1 I I L 4
109 107 10 30 50 70 90
% Noise
(d)

dimensions of the second source. This makes the approach
particularly suitable in cases of join between large datasets
(in terms of cardinality and domains) where computing the
index can reduce the execution time by more than 65%.

Effectiveness of Joinability Index A further experiment has
been performed to evaluate how much the degree of joinabil-
ity index can be used to effectively estimate the cardinality of
the join between two datasets. To this end, the absolute differ-
ence between the cardinalities of the join and the estimated
cardinality through the index is taken into account, and then
divided by the cardinality of the join. Values are averaged
over 10 repetitions. This corresponds to the Mean Absolute
Percentage Error (MAPE), which is calculated as follows:
MAPE = ;Y lerdUomrcadestiml Results, that
are reported in Fig. 8, show that the error decreases with the
dataset size. In particular, LSH Ensemble is demonstrated to
produce better estimates with pairs of datasets of similar size.
For instance, when the cardinality of the two datasets is 10°
vs. 10° or 106, the MAPE reaches values below 20% that are
in line with the typical performances of LSH Ensemble as
documented in Zhu et al. (2016).

We would like to note that better performances can be
obtained by increasing the number of parts and hashing func-
tions in the configuration of LSH Ensemble, which increases
both running times and memory usage as a consequence. Par-

@ Springer

Information Systems Frontiers

Fig'7 Executiontimeofjoin 10 T T T T T T T T 10 T T T T T T T T
(a) and (c) and computation of Join Join. Index
.« . .y — 6 —106
degree of joinability (b) and (d) g | [FLrows=10" | g | [SLrows=10" |
for datasets with cardinality 10° - = ig (iomafns - 38 goma?ns
. —— domains —— omains
and 107 and number of domains o) o .
from 20 t0 50 (the 20% of which £ 6| | o a0 gt | & 6o omamns |
) : o B 50 domains = 50 domains
are dimensions). Average values E 2
over 10 repetitions E g
= = 4 -
s ~=
5 g
< < & T
R = Ié7
—_— = w ¥
0 Ll Ll Ll 0 Ll Lol Ll
103 104 10° 106 103 10* 10° 106
Cardinality of S2 Cardinality of S2
(a) (b)
100 ——rrrrry —— ——— e 100 ———rrrm —— e e
Join Join. Index
S1 rows=10" S1 rows=107
80 || =g~ 20 domains B 80 || =g~ 20 domains B
@ —#— 30 domains @ —#— 30 domains
& —&— 40 domains & —8— 40 domains
=1 =i
2 60 50 domains 1 2 60 50 domains n
& @
E | Z L i
= s 40
B a°
< T <
20 % T — 20 - —
::\ -
0 Ll Ll Ll Ll 0 .. m
108 104 10° 106 107 10% 10* 10° 106 107
Cardinality of S2 Cardinality of S2
(c) (d)

allel and distributed solutions for computations, e.g., Hadoop
instance with multiple nodes, can be used to keep under con-
trol these two parameters.

8 Conclusion

This paper has introduced a knowledge-based approach for
analytic query-driven discovery in a Data Lake, which is
characterized by the formal representation of indicators’ for-

mulas and efficient mechanisms for source integration and
mapping discovery. Starting from a query, which is expressed
ontologically as a measure of interest and a set of dimensions
relevant for the analysis at hand, the framework determines
the set of sources that are capable of collectively responding,
by exploiting math-aware reasoning on indicator formu-
las. The results of the experimental evaluation demonstrate
the validity of the approach in significantly reducing the
time needed to evaluate the joinability of different analyt-
ical sources, at the same time keeping a reasonable accuracy

Fig.8 Mean Absolute 100 ImEEE T mmRRA 100 T T T
Percentage Error between the o & S1 rows=10° S
. . - =) .
cardinality of the join and the 5 80 —&— 20 domains = "
- . . o [~ H | = -
estimated cardinality though the = 30 domains £
.. .. = —e— 40 domains m
degree of joinability, for) 50 domains e
reference datasets of cardinality £ 60 4 £ 60f .
106 and 107, and number of S 8
. o 5}
domains from 20 to 50 (20% of ﬂ; 10 ~
. . . < I~ — 8 40 |- -
which are dlmenswr'ls.). Average ! ! S1 rows—107
values over 10 repetitions z 2 —B— 20 domains
<: 2 | '_«7 i 20 |-| —#— 30 domains N
g —a g —e— 40 domains = |
= = 50 domains
0 Ll Ll Ll Lol Lol Lol Lol
10® 10* 10° 10 103 10* 10° 106 107

Cardinality of S2

(a)

@ Springer

Cardinality of S2

(b)

Information Systems Frontiers

especially with very large datasets. The approach extends
standard query-driven discovery, e.g., Zhu et al. (2016),
which requires, for a given query, a number of set con-
tainment evaluations increasing linearly with the domains
in the Data Lake. A peculiarity of our solution is indeed
that it enables to reduce such a number to only the relevant
sources by performing a preliminary evaluation based on for-
mula rewriting. In general, by considering M measures and
N sources, the approach requires a number of evaluations
equal to %, on average. If indicators are not available at
the requested dimensional schema, decomposing indicators
in components requires a further number of evaluations. By
considering an average number s of dependencies per indi-
cator and a number [/ of hierarchical levels in the formula
graph, the overall number of components to check for an
indicator can analytically be estimated as (1 + Zi:l si)%,
e.g., for M=200, N=10000, s=3, 1=2, corresponding to aver-
age formula graphs for real-world frameworks of indicators,
the number of evaluations amounts to 650.

Future work will be focused to test the approach on real
case studies and to extend it towards interesting research
directions. First, besides the join among sources, we are
planning to extend the approach by supporting union of alter-
native solutions to a query. In several cases, indeed, a query
may return multiple valid solutions which may be merged
(integrated vertically): this would be especially useful in
order to complement their content. This however requires
several issues to be investigated and managed, among which
the following ones:

— the need to take into account, besides the schema, also
data contained in domains. This can be achieved by rely-
ing on approaches such as Table Union Search (Miller,
2018), which is an efficient although purely data-driven
technique exploiting the full search space, or by profil-
ing the domain content and developing mechanisms for
comparison of source profiles, capable to evaluate com-
plementarity and overlapping among different sources.

— Partial overlapping between alternative solutions requires
to address possible inconsistencies on the overlapping
part, e.g., related to different values for measures.

As a further extension, through the notion of data profile
several quality measures can be devised, based on the evalu-
ation of how much the content of a source can be aligned to
the Knowledge Graph. Quality measures such as complete-
ness, coverage or consistency can be used for documentation
of data sources and ETL/ELT processes, and to enrich the
response to a query, by providing users with more insights
on a result set. Finally, dynamic calculation of indicators can
be envisaged for a variety of analytical tasks, including inter-
active data exploration or navigation in a Data Lake (Zhu et
al., 2017).

Acknowledgements Not applicable.

Author Contributions Claudia Diamantini: Methodology, Formal Anal-
ysis, Investigation, Writing - original draft, Writing - review & editing.
Domenico Potena: Methodology, Formal Analysis, Investigation, Writ-
ing - original draft, Writing - review & editing. Emanuele Storti:
Conceptualization, Methodology, Formal Analysis, Investigation, Writ-
ing - original draft, Writing - review & editing, Software.

Funding Open access funding provided by Universitd Politecnica delle
Marche within the CRUI-CARE Agreement. The authors received no
financial support for the research, authorship, and/or publication of this
article.

Availability of data and material The code used during this study and
for the generation of datasets is available at the following link: https://
github.com/KDMG/Datalakes_material

Declarations

Competing interests The authors have no competing interests to
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Alexander, K., Cyganiak, R., Hausenblas, M., & Zhao, J. (2011).
Describing linked datasets with the void vocabulary

Alshaikhdeeb, B., & Ahmad, K. (2015). Integrating correlation cluster-
ing and agglomerative hierarchical clustering for holistic schema
matching. Journal of Computer Science, 11(3), 484.

Bagozi, A., Bianchini, D., Antonellis, V. D., Garda, M., & Melchiori,
M., etal. (2019). Personalised exploration graphs on semantic data
lakes. In H. Panetto (Ed.), On the Move to Meaningful Internet
Systems: OTM 2019 Conferences (pp. 22—39). Cham: Springer
International Publishing.

Beheshti, A., Benatallah, B., Nouri, R., & Tabebordbar, A. (2018).
Corekg: a knowledge lake service. Proceedings of the VLDB
Endowment, 11(12), 1942—-1945.

DCMI Usage Board (2020). DCMI Metadata Terms. https://www.
dublincore.org/specifications/dublin-core/dcmi-terms/

Broder, A.Z. (1997). On the resemblance and containment of
documents. In: Proceedings. Compression and Complexity of
Sequences 1997 (Cat. No. 97TB100171), pp. 21-29. IEEE .

Chen, C., Golshan, B., Halevy, A. Y., Tan, W. C., & Doan, A. (2018).
Biggorilla: An open-source ecosystem for data preparation and
integration. IEEE Data Eng. Bull., 41(2), 10-22.

Chessa, A., Fenu, G., Motta, E., Osborne, F., Reforgiato Recupero,
D.A.G., Salatino, A., & Secchi, L., et al. (2022). Enriching data

@ Springer

https://github.com/KDMG/DataLakes_material
https://github.com/KDMG/DataLakes_material
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

Information Systems Frontiers

lakes with knowledge graphs. In: CEUR Workshop Proceedings,
vol. 3184, pp. 123-131

Diamantini, C., Potena, D., & Storti, E. (2022). A knowledge-based
approach to support analytic query answering in semantic data
lakes. In: Advances in Databases and Information Systems: 26th
European Conference, ADBIS 2022, Turin, Italy, September 5-8,
2022, Proceedings, pp. 179-192. Springer.

Diamantini, C., Lo Giudice, P., Potena, D., Storti, E., & Ursino, D.
(2021). An approach to extracting topic-guided views from the
sources of a data lake. Information Systems Frontiers, 23, 243—
262.

Diamantini, C., Potena, D., & Storti, E. (2018). Multidimensional query
reformulation with measure decomposition. Information Systems,
78,23-39

Diamantini, C., Potena, D., & Storti, E. (2021). Analytics for citizens:
A linked open data model for statistical data exploration. Concur-
rency and Computation: Practice and Experience, 33(8), e4186.

Diamantini, C., Potena, D., & Storti, E. (2021). A semantic data lake
model for analytic query-driven discovery. iiWAS2021The 23rd
International Conference on Information Integration and Web
Intelligence (pp. 183—-186). New York, NY, USA: Association for
Computing Machinery.

Dibowski, H., Schmid, S., Svetashova, Y., Henson, C., & Tran, T.
(2020). Using semantic technologies to manage a data lake: Data
catalog, provenance and access control. In: SSWS@ ISWC, pp.
65-80. Athen.

Farid, M., Roatis, A., Ilyas, 1., Hoffmann, H., & Chu, X. (2016).
CLAMS: bringing quality to Data Lakes. In: Proc of the Interna-
tional Conference on Management of Data (SIGMOD/PODS’16),
pp. 2089-2092. San Francisco, CA, USA . ACM

Fernandez, R.C., Abedjan, Z., Koko, F., Yuan, G., Madden, S., & Stone-
braker, M. (2018). Aurum: A data discovery system. In: 2018 IEEE
34th International Conference on Data Engineering (ICDE), pp.
1001-1012. IEEE.

Fernandez, R.C., Mansour, E., Qahtan, A.A., Elmagarmid, A., Ilyas,
I., Madden, S., Ouzzani, M., Stonebraker, M., & Tang, N. (2018).
Seeping semantics: Linking datasets using word embeddings for
data discovery. In: 2018 IEEE 34th International Conference on
Data Engineering (ICDE), pp. 989-1000. IEEE.

Fernandez, R.C., Min, J., Nava, D., & Madden, S. (2019). Lazo:
A cardinality-based method for coupled estimation of jaccard
similarity and containment. In: 2019 IEEE 35th International Con-
ference on Data Engineering (ICDE), pp. 1190-1201. IEEE.

Giebler, C., Groger, C., Hoos, E., Schwarz, H., & Mitschang, B. (2019).
Leveraging the data lake: Current state and challenges. In C.
Ordonez, 1. Song, G. Anderst-Kotsis, A. M. Tjoa, & I. Khalil
(Eds.), Big Data Analytics and Knowledge Discovery (pp. 179—
188). Cham: Springer International Publishing.

Hai, R., Geisler, S., & Quix, C. (2016). Constance: An intelligent data
lake system. In: Proc of the International Conference on Manage-
ment of Data (SIGMOD 2016), pp. 2097-2100. San Francisco,
CA, USA . ACM.

Hai, R., Quix, C., & Jarke, M. (2021). Data lake concept and systems:
a survey. arXiv preprint arXiv:2106.09592

Hale, T., Webster, S., Petherick, A., Phillips, T., & Kira, B. (2020).
Oxford covid-19 government response tracker. Blavatnik School
of Government: Tech. rep.

Indyk, P, Motwani, R. (1998). Approximate nearest neighbors: towards
removing the curse of dimensionality. In: Proceedings of the thir-
tieth annual ACM symposium on Theory of computing, pp. 604—
613.

Khatiwada, A., Shraga, R., Gatterbauer, W., & Miller, R. J. (2022).
Integrating data lake tables. Proc. VLDB Endow, 16(4), 932—
945.

Koutras, C., Siachamis, G., lonescu, A., Psarakis, K., Brons, J., Fragk-
oulis, M., Lofi, C., Bonifati, A., & Katsifodimos, A. (2021).

@ Springer

Valentine: Evaluating matching techniques for dataset discovery.
In: 2021 IEEE 37th International Conference on Data Engineering
(ICDE), pp. 468-479. IEEE.

Mami, M.N., Graux, D., Scerri, S., Jabeen, H., Auer, S., Lehmann, J.
(2019). Uniform access to multiform data lakes using semantic
technologies. In: Proceedings of the 21st International Confer-
ence on Information Integration and Web-based Applications &
Services, pp. 313-322

Microsoft Covid Data Lake (2023) Covid-19 data lake. https://docs.
microsoft.com/en-us/azure/open-datasets/dataset-covid- 19-
data-lake. Accessed: 23-02-2022

Miller, R. J. (2018). Open data integration. Proc VLDB Endow, 11(12),
2130-2139.

Mouzakitis, S., Papaspyros, D., Petychakis, M., Koussouris, S.,
Zafeiropoulos, A., Fotopoulou, E., Farid, L., Orlandi, F., Attard, J.,
& Psarras, J. (2017). Challenges and opportunities in renovating
public sector information by enabling linked data and analytics.
Information Systems Frontiers, 19, 321-336.

Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., & Arocena, P. C. (2019).
Data lake management: challenges and opportunities. Proceedings
of the VLDB Endowment, 12(12), 1986-1989.

Oram, A. (2015). Managing the Data Lake. Sebastopol, CA, USA:
O’Reilly.

Pedersen, T.B. (2009) Multidimensional Modeling, pp. 1777-1784.
Springer US, Boston, MA.

Pomp, A., Paulus, A., Kirmse, A., Kraus, V., & Meisen, T. (2018).
Applying semantics to reduce the time to analytics within complex
heterogeneous infrastructures. Technologies, 6(3), 86.

Quix, C., Hai, R., Vatov, I. (2016). Gemms: A generic and extensible
metadata management system for data lakes. In: CAiSE forum, vol.
129.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to auto-
matic schema matching. The VLDB Journal, 10, 334-350.

Santos, A., Bessa, A., Musco, C., & Freire, J. (2022). A sketch-based
index for correlated dataset search. In: 2022 IEEE 38th Interna-
tional Conference on Data Engineering (ICDE), pp. 2928-2941.
IEEE.

Sawadogo, P., & Darmont, J. (2021). On data lake architectures and
metadata management. Journal of Intelligent Information Systems,
56(1), 97-120.

Shraga, R., Gal, A., & Roitman, H. (2020). Adnev: Cross-domain
schema matching using deep similarity matrix adjustment and
evaluation. Proceedings of the VLDB Endowment, 13(9), 1401-
1415.

Shrivastava, A., & Li, P. (2015). Asymmetric minwise hashing for
indexing binary inner products and set containment. In: Proceed-
ings of the 24th international conference on world wide web, pp.
981-991.

World Wide Web Consortium (2014). The rdf data cube vocabulary.
World Wide Web Consortium: Tech. rep.

Yang, Y., Zhang, Y., Zhang, W., & Huang, Z. (2019). Gb-kmv: An aug-
mented kmv sketch for approximate containment similarity search.
In: 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pp. 458-469. IEEE.

Zhu, E., Deng, D., Nargesian, F., & Miller, R.J. (2019). Josie: Overlap
set similarity search for finding joinable tables in data lakes. In:
Proceedings of the 2019 International Conference on Management
of Data, pp. 847-864

Zhu, E., Markovtsev, V. (2017). ekzhu/datasketch: First stable release.
https://doi.org/10.5281/zenodo.290602

Zhu, E., Nargesian, F., Pu, K. Q., & Miller, R. J. (2016). Lsh ensemble:
Internet-scale domain search. Proc. VLDB Endow., 9(12), 1185—
1196.

Zhu, E., Pu, K. Q., Nargesian, F., & Miller, R. J. (2017). Interactive
navigation of open data linkages. Proc. VLDB Endow., 10(12),
1837-1840.

http://arxiv.org/abs/2106.09592
https://docs.microsoft.com/en-us/azure/open-datasets/dataset-covid-19-data-lake
https://docs.microsoft.com/en-us/azure/open-datasets/dataset-covid-19-data-lake
https://docs.microsoft.com/en-us/azure/open-datasets/dataset-covid-19-data-lake
https://doi.org/10.5281/zenodo.290602

Information Systems Frontiers

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Claudia Diamantini Ph.D. (member IEEE, senior member ACM) is
Full Professor at Dipartimento di Ingegneria dell’Informazione, Uni-
versita Politecnica delle Marche, where she also holds the role of Vice
Dean of the Faculty of Engineering. Her research interests include
data mining and knowledge discovery, process modelling and mining,
data semantics and knowledge graphs. On these topics she has worked
within national and international projects, and authored more than 170
publications.

Domenico Potena received the Ph.D. in Information Systems Engi-
neering from Universita Politecnica delle Marche, Italy, in 2004. At
present, he is an associate professor at Dipartimento di Ingegneria
dell’Informazione, Universita Politecnica delle Marche. His research
interests include process mining, knowledge discovery in databases,
data mining, data warehousing, information systems and service ori-
ented architectures.

Emanuele Storti received the Ph.D. degree in Computer Engi-
neering from Universita Politecnica delle Marche in 2012 and cur-
rently works as an assistant professor at Dipartimento di Ingegneria
dell’Informazione. His research interests include knowledge graphs,
semantic technologies, knowledge management, and data integration.

@ Springer

	Analytic Processing in Data Lakes: A Semantic Query-Driven Discovery Approach
	Abstract
	1 Introduction
	2 Related Work
	2.1 Metadata Extraction and Modeling
	2.2 Data Source Integration
	2.3 Data-Driven Discovery and Exploration

	3 Case Study: Azure COVID-19 Data Lake
	4 Semantic Data Lake: Data Model
	4.1 Knowledge Layer
	4.2 Metadata Layer
	4.3 Mapping Function

	5 Integration and Mapping Discovery
	5.1 Identification of Dimensions.
	5.2 Identification of Measures
	5.3 Representation of Mappings

	6 Query Answering
	7 Experiments
	7.1 Knowledge Graph Generation
	7.2 Mapping Discovery (E1.1, E1.2)
	7.3 Degree of Joinability Index (E2.1, E2.2)

	8 Conclusion
	Acknowledgements
	References

