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Higher order interface conditions for
piezoelectric spherical hollow composites:
asymptotic approach and transfer matrix

homogenization method

M. Serpilli, R. Rizzoni, S. Dumont, F. Lebon

September 15, 2021

Abstract

The paper describes the mechanical behavior of composites made of piezoelectric
spheres in perfect or imperfect contact. The imperfect contact is achieved by interpos-
ing piezolectric thin adhesive layers between the spheres. First, using asymptotic anal-
ysis, transmission conditions of imperfect interface equivalent to the behavior of piezo-
electric adhesive layers are obtained at order 0 and 1. These transmission conditions
are calculated for "hard" adhesives, i.e. adhesive materials whose electromechanical
constants do not rescale with their thickness. Next, under the assumption of spherical
symmetry, the transmission conditions are condensed to a general law of imperfect
contact, able to simultaneously describe different contact regimes: piezoeletric hard
(order 0 and 1) and soft (or spring-type, order 0 and 1) interface conditions, the per-
fect continuity conditions, and the piezoelectric rigid (Gurtin-Murdoch or membrane-
type) conditions. Lastly, following Bufler’s approach, the homogenization problem
of a spherical hollow piezoelectric assembly is solved, extending the classical transfer
matrix method to take into account the presence of thin adhesive layers described
using the proposed transmission conditions of imperfect contact. A simple numerical
example is provided, illustrating the correctness and effectiveness of the homogeniza-
tion approach in describing the electromechanical behavior of spherical piezolectric
assemblies.
Keywords. Asymptotic analysis; transfer matrix method; interfaces; piezo-
electric composites; thin layers.

1 Introduction
Piezoelectric materials have been extensively employed in the design of smart
structures, active control, sensors and actuators, thanks to their ability to ex-
change electrical inputs to mechanical deformation, and, conversely, to trans-
form a mechanical action into an electric potential. They can be used in small
members for electromechanical devices as well as structural components in disks,
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cylindrical and spherical shells in several engineering applications such as en-
ergy harvesting [1], hydroacoustics [2], health monitoring [3], and transducers
[4]. Moreover, in order to control the distribution of the main physical quanti-
ties, piezoelectric structures can be made of several layers, which can be suitably
stacked or glued together forming a laminated composite with desired effective
electromechanical properties [5]. For this particular structures, it is impor-
tant to develop an exact solution relating the applied loads to displacement,
stresses and electric potential. A vast literature on radial spherical piezoelectric
transducers has been reported. Many researches analyzed the electromechani-
cal behavior of piezoelectric hollow spheres, developing analytical solutions for
stress and electric potential fields, e.g. [6, 7, 8], taking into account pyroelectric
effects and thermal gradients [9, 10, 11]. The electromechanical analysis have
also been extended to functionally graded materials [12], coated sensors [13] and
sandwich assemblies [14].

Concerning the theoretical analysis of bonded joints, the thin interphase
layer between to adjacent media can be treated as a two-dimensional surface,
called the imperfect interface, on which appropriate transmission conditions are
defined. Various interface models have been developed throughout the years by
means of classical variational tools and more refined mathematical techniques
(asymptotic analysis), spanning from uncoupled phenomena, such as thermal
conduction [15, 16, 17] and elasticity [18, 19, 20, 21, 22, 23], to multifield and
multiphysics theories [24, 25], such as continua with microstructure [26, 27],
coupled thermoelasticity [28] and piezoelectricity [29, 30] .

The present paper aims at providing a general form of the interface law for
piezoelectric spherical hollow composites by means of an asymptotic analysis.
The piezoelectric assembly is constituted by the inner and outer adherents,
connected together by an intermediate radial bonded joint, whose thickness
depends on a small parameter ε. The material coefficients of the piezoelectric
constituents are assumed independent of ε. This allows to characterize the so-
called hard interface model. Following the asymptotic approaches developed in
[24, 31], it is possible to compute the interface law at order 0, corresponding to
classical continuity conditions, and the order 1 transmission conditions, defining
a non trivial interface model. The above conditions have been specialized in the
case of spherical radial symmetry. Combining the results at order 0 and order 1,
a general interface model has been obtained, which comprises in itself the soft
(spring-type), hard and rigid (Gurtin-Murdoch or membrane-type) interface
laws, as shown in [24].

Various homogenization procedures for layered media have been developed
throughout the years, based on the determination of the composite effective
constitutive coefficients. In the present paper, the transfer matrix method by
Bufler [32, 33] is taken into consideration. A similar homogenization technique
for the derivation of an effective average model of periodic media has been
developed by Molotkov in [34], with applications to the propagation of seismic
and acoustic waves. The aforementioned homogenization methods are basically
equivalent, since they rely on a particular formulation of the governing equations
as a first-order linear system in terms of the state vector Fourier’s transform
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(containing displacements and stresses). Even though the system solution is
expressed with two different representations, namely, with an exponential matrix
in [32], and through the successive approximation method in [34], the final
results can be considered analogous. Besides, Molotkov provided a multiphysic
and multifield generalization of the homogenization method, applied to Biot’s
poroelastic layered continua (see [35]).

In this work, a generalization of the transfer matrix method [32, 33] is
proposed for piezoelectric hollow spherical composites. Moreover, the afore-
mentioned general interface laws have been implemented within the homog-
enization procedure, allowing to define equivalent elastic material parameters.
Lastly, a numerical example has been developed considering a simple three-layer
piezoelectric composite, subjected to an assigned electric potential on the inner
boundary. The exact solution of the three-layer configuration is compared with
the closed-form solution of a two-layer composite, in which the intermediate
adhesive has been replaced by the general interface conditions. Besides, a third
comparison has been made taking into account the single-layer homogenized
solution obtained through the transfer matrix method.

2 Asymptotic analysis in terms of spherical co-
ordinates

2.1 The governing equations of the problem
Let us consider an orthonormal spherical basis per, eθ, eϕq, denoting the three
curvilinear coordinates of a point of the body. The equilibrium equations for
a deformable body and the electrostatics charge equation (in the absence of
volume forces and free charge density) in spherical coordinates are respectively
defined as follows (see [7, 9]) :

σrr,r `
1

r sinϕσrθ,θ `
1
rσrϕ,ϕ `

1
r p2σrr ´ σθθ ´ σϕϕ ` σrϕ cotϕq “ 0,

σrϕ,r `
1

r sinϕσθϕ,θ `
1
rσϕϕ,ϕ `

1
r p3σrϕ ` pσϕϕ ´ σθθq cotϕq “ 0,

σrθ,r `
1

r sinϕσθθ,θ `
1
rσθϕ,ϕ `

1
r p3σrθ ` 2σθϕ cotϕq “ 0,

Dr,r `
1
rDϕ,ϕ `

1
r sinϕDθ,θ `

2
rDr `

2 cotϕ
r Dϕ “ 0,

(1)

where σ “ pσijq and D “ pDiq, i, j “ r, θ, ϕ, represent, respectively, the spheri-
cal components of the Cauchy stress tensor and electric displacement field. The
constitutive law for a spherically transversely isotropic piezoelectric material
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takes the following form:

σrr “ c11εrr ` c12εθθ ` c12εϕϕ ´ e11Er,

σθθ “ c12εrr ` c22εθθ ` c23εϕϕ ´ e12Er,

σϕϕ “ c12εrr ` c23εθθ ` c22εϕϕ ´ e12Er,

σrϕ “ 2c44εrϕ ´ e15Eϕ,

σrθ “ 2c44εrθ ´ e15Eθ,

σθϕ “ pc22 ´ c23qεθϕ,

Dr “ e11εrr ` e12εθθ ` e12εϕϕ ` β11Er,

Dϕ “ 2e15εrϕ ` β22Eϕ,

Dθ “ 2e15εrθ ` β22Eθ,

(2)

where cij eij and βij denote the elastic, piezoelectric and electric conductivity
coefficients and ε “ pεijq and E “ pEiq represent, respectively, the spherical
components of the linearized strain tensor and electric field, which can be ex-
pressed in the terms of the spherical coordinates through the following relations:

εrr “ ur,r,

εϕϕ “
1
ruϕ,ϕ `

1
rur,

εθθ “
1

r sinϕuθ,θ `
cotϕ
r uϕ `

1
rur,

εrϕ “
1
rur,ϕ ` uϕ,r ´

1
ruϕ,

εϕθ “
1

r sinϕuϕ,θ `
1
ruθ,ϕ ´

cotϕ
r uθ,

εrθ “
1

r sinϕur,θ ` uθ,r ´
1
ruθ,

Er “ ´φ,r,
Eϕ “ ´

1
rφ,ϕ,

Eθ “ ´
1

r sinϕφ,θ,

(3)

with ur, uϕ, uθ, the radial, azimuthal and circumferential components of the
displacement field along the basis per, eθ, eϕq, and φ, the electric potential.

2.2 The interface conditions for a radial bonded joint
The spherical piezoelectric hollow assembly is constituted by the inner and outer
adherents Ωε` and Ωε´, connected by a intermediate adhesive layer Bε.The gluing
between the two adherents is assumed along the radial direction. The thickness
of the adhesive is supposed to be constant and equal to ε. The bonded joint lies
in the interval pr0´ ε{2, r0` ε{2q. To apply the asymptotic expansions method,
a change of variables is needed, in order to rewrite the governing equations
of a fixed domain (independent of ε), see Figure 1. The change of variable is
introduced along the radial direction:

pr̂, θ̂, ϕ̂q :“ π̂pr, θ, ϕq “ pr0 `
r´r0
ε , θ, ϕq, in Bε,

pr̄, θ̄, ϕ̄q :“ π̄pr, θ, ϕq “ pr, θ, ϕq ˘
`

ε
2 ¯

1
2

˘

er, in Ωε˘.
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In the sequel, R :“ r0 `
r´r0
ε . The rescaled domains will be noted with

B and Ω˘. Moreover, only if necessary, ĝ and ḡ will denote, respectively, the
restrictions of function g to B and Ω˘.

Figure 1: Initial (a), rescaled (b) and limit (c) configurations of the spherical
composite

The change of variables implies that

BR “
1

ε
Br, and

1

r
“

1

r0 ` εpR´ r0q
“

1

r0
´
R´ r0

r2
0

ε` opεq.

The constitutive coefficients of the adherents and adhesive are assumed to be
independent of ε. Since the rescaled problem on a fixed domain present a poly-
nomial structure with respect to the small parameter ε, we can look for the
solution of the problem as a series of powers of ε, as follows:

σε “ σ0 ` εσ1 ` ε2σ2 ` ...,

uε “ u0 ` εu1 ` ε2u2 ` ...,

Dε “ D0 ` εD1 ` ε2D2 ` ...,

φε “ φ0 ` εφ1 ` ε2φ2 ` ...

(4)

By applying the change of variables to the governing equations (1) and by
substituting the asymptotic expansions (4), one has:

1
εσ

0
rr,R ` σ

1
rr,R `

1
r0 sinϕσ

0
rθ,θ `

1
r0
σ0
rϕ,ϕ `

1
r0

`

2σ0
rr ´ σ

0
θθ ´ σ

0
ϕϕ ` σ

0
rϕ cotϕ

˘

` ... “ 0,
1
εσ

0
rϕ,R ` σ

1
rϕ,R `

1
r0 sinϕσ

0
θϕ,θ `

1
r0
σ0
ϕϕ,ϕ `

1
r0

`

3σ0
rϕ ` pσ

0
ϕϕ ´ σ

0
θθq cotϕ

˘

` ... “ 0,

1
εσ

0
rθ,R ` σ

1
rθ,R `

1
r0 sinϕσ

0
θθ,θ `

1
r0
σ0
θϕ,ϕ `

1
r0

´

3σ0
rθ ` 2σ0

θϕ cotϕ
¯

` ... “ 0,

1
εD

0
r,R `D

1
r,R `

1
r0
D0
ϕ,ϕ `

1
r0 sinϕD

0
θ,θ `

2
r0
D0
r `

2 cotϕ
r0

D0
ϕ ` ... “ 0.

(5)
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The same procedure is considered for the strain tensor and electric field com-
ponents (3). Thus,

εεrr “
1
εu

0
r,R ` u

1
r,R ` ...,

εεϕϕ “
1
r0
u0
ϕ,ϕ `

1
r0
u0
r ` ...,

εεθθ “
1

r0 sinϕu
0
θ,θ `

cotϕ
r0

u0
ϕ `

1
ru

0
r ` ...,

εεrϕ “
1
εu

0
ϕ,R ` u

1
ϕ,R `

1
r0
u0
r,ϕ ´

1
r0
u0
ϕ ` ...,

εεϕθ “
1

r0 sinϕu
0
ϕ,θ `

1
r0
u0
θ,ϕ ´

cotϕ
r0

u0
θ ` ...,

εεrθ “
1
εu

0
θ,R ` u

1
θ,R `

1
r0 sinϕu

0
r,θ ´

1
r0
u0
θ ` ...,

Eεr “ ´
1
εφ

0
,R ´ φ

1
,R ` ...,

Eεϕ “ ´
1
r0
φ0
,ϕ ` ...,

Eεθ “ ´
1

r0 sinϕφ
0
,θ ` ...

By injecting the above rescaled strains and electric field into the constitutive
relations (2), we obtain:

σ0
rr ` ... “

1
ε

`

c11u
0
r,R ` e11φ

0
,R

˘

`

!

c12

´

1
r0 sinϕu

0
θ,θ `

cotϕ
r0

u0
ϕ `

1
ru

0
r

¯

`

` c12

´

1
r0
u0
ϕ,ϕ `

1
r0
u0
r

¯

` c11u
1
r,R ``e11φ

1
,R

)

` ...,

σ0
θθ ` ... “

1
ε

`

c12u
0
r,R ` e12φ

0
,R

˘

`

!

c22

´

1
r0 sinϕu

0
θ,θ `

cotϕ
r0

u0
ϕ `

1
ru

0
r

¯

`

` c23

´

1
r0
u0
ϕ,ϕ `

1
r0
u0
r

¯

` c12u
1
r,R ` e12φ

1
,R

)

` ...,

σ0
ϕϕ ` ... “

1
ε

`

c12u
0
r,R ` e12φ

0
,R

˘

`

!

c23

´

1
r0 sinϕu

0
θ,θ `

cotϕ
r0

u0
ϕ `

1
ru

0
r

¯

`

` c22

´

1
r0
u0
ϕ,ϕ `

1
r0
u0
r

¯

` c12u
1
r,R ` e12φ

1
,R

)

` ...,

σ0
rϕ ` ... “

1
ε 2c44u

0
ϕ,R ` 2c44

´

u1
ϕ,R `

1
r0
u0
r,ϕ ´

1
r0
u0
ϕ

¯

` e15
r0
φ0
,ϕ ` ...,

σ0
rθ ` ... “

1
ε 2c44u

0
θ,R ` 2c44

´

u1
θ,R `

1
r0 sinϕu

0
r,θ ´

1
r0
u0
θ

¯

` e15
r0 sinϕφ

0
,θ ` ...,

σ0
θϕ ` ... “ pc22 ´ c23q

´

1
r0 sinϕu

0
ϕ,θ `

1
r0
u0
θ,ϕ ´

cotϕ
r0

u0
θ

¯

` ...,

D0
r ` ... “

1
ε

`

e11u
0
r,R ´ β11φ

0
,R

˘

`

!

e12

´

1
r0 sinϕu

0
θ,θ `

cotϕ
r0

u0
ϕ `

1
ru

0
r

¯

`

` e12

´

1
r0
u0
ϕ,ϕ `

1
r0
u0
r

¯

` e11u
1
r,R ´ β11φ

1
,R

)

` ...,

D0
ϕ ` ... “

1
ε 2e15u

0
ϕ,R ` 2e15

´

u1
ϕ,R `

1
r0
u0
r,ϕ ´

1
r0
u0
ϕ

¯

´
β22

r0
φ0
,ϕ ` ...,

D0
θ ` ... “

1
ε 2e15u

0
θ,R ` 2e15

´

u1
θ,R `

1
r0 sinϕu

0
r,θ ´

1
r0
u0
θ

¯

´
β22

r0 sinϕφ
0
,θ ` ... .

(6)
The interface conditions at order 0 and order 1 can be characterized by

identifying the terms with identical power of ε. Focusing on the terms occurring
in ε´1 in eq. (5), we get:

σ0
rr,R “ 0, σ0

rϕ,R “ 0, σ0
rθ,R “ 0, D0

r,R “ 0,
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which imply that σ0
rr, σ0

rϕ, σ0
rθ and D0

r are constant with respect to the radial
coordinate R. Due to the continuity of the radial traction vector and electric
displacement at the interface between adherents and adhesive, their jumps, eval-
uated at R “ ˘ 1

2 , vanish, i.e. rσ
0
rrs “ 0, rσ0

rϕs “ 0, rσ0
rθs “ 0 and rD0

r s “ 0,
where r.s denotes the jump functions. Moreover, xσ0

rry “ σ0
rr, xσ0

rϕy “ σ0
rϕ,

xσ0
rθy “ σ0

rθ and xD0
ry “ D0

r , with x.y denotes the mean value.
Considering relations (6)1,7,4,5 at order ´1, one has:

c11u
0
r,R ` e11φ

0
,R “ 0, e11u

0
r,R ´ β11φ

0
,R “ 0, u0

ϕ,R “ 0, u0
θ,R “ 0.

The solution of the above linear system implies that the displacement field, u0
r,

u0
ϕ, u0

θ, and the electric potential φ0, at order 0, are constant along the radial
direction. By virtue of the continuity conditions at the interface level between
the inner and outer spheres and the adhesive layer, the following jumps ru0

rs “ 0,
ru0
ϕs “ 0, ru0

θs “ 0 and rφ0s “ 0 are equal to zero. As customary, xu0
ry “ u0

r,
xu0
ϕy “ u0

ϕ, xu0
θy “ u0

θ and xφ0y “ φ0.
In view of the above, the interface transmission conditions at order 0 shows

a perfect interface model, equivalent to the classical continuity conditions:

rσ0
rrs “ 0, rσ0

rϕs “ 0, rσ0
rθs “ 0, rD0

r s “ 0,
“

u0
r

‰

“ 0, ru0
ϕs “ 0, ru0

θs “ 0, rφ0s “ 0.

Let us consider equations (6)1,7,4,5 at order 0 and isolate the terms related
to the displacements and electric potential at order 1:

c11u
1
r,R ` e11φ

1
,R “ σ0

rr ´ c12pε
0
ϕϕ ` ε

0
θθq,

e11u
1
r,R ´ β11φ

1
,R “ D0

r ´ e12pε
0
ϕϕ ` ε

0
θθq,

u1
ϕ,R “ σ0

rϕ ´ ε
0
rϕ ´

e15
2c44

1
r0
φ0
,ϕ,

u1
θ,R “ σ0

rθ ´ ε
0
rθ ´

e15
2c44

1
r0 sinϕφ

0
,θ,

(7)

with ε0
ϕϕ :“ 1

r0
u0
ϕ,ϕ `

1
r0
u0
r, ε0

θθ :“ 1
r0 sinϕu

0
θ,θ `

cotϕ
r0

u0
ϕ `

1
ru

0
r, ε0

rϕ :“ 1
r0
u0
r,ϕ ´

1
r0
u0
ϕ and ε0

rθ :“ 1
r0 sinϕu

0
r,θ ´

1
r0
u0
θ, depending only on the terms at order 0.

After an integration along the radial coordinate R “ r0 ˘
1
2 , the solution of the

previous linear system allows to characterize the jump of the displacement field
and electric potential at order 1, as follows:

ru1
rs “

1
c11β11`e211

 

β11σ
0
rr ` e11D

0
r ` pβ11c12 ` e11e12qpε

0
ϕϕ ` ε

0
θθq

(

,

rφ1s “ 1
c11β11`e211

 

e11σ
0
rr ´ c11D

0
r ´ pc12e11 ´ c11e12qpε

0
ϕϕ ` ε

0
θθq

(

,

ru1
ϕs “ σ0

rϕ ´ ε
0
rϕ ´

e15
2c44

1
r0
φ0
,ϕ,

“

u1
θ

‰

“ σ0
rθ ´ ε

0
rθ ´

e15
2c44

1
r0 sinϕφ

0
,θ.

(8)

Moreover, the obtained values of u1
r,R, u

1
ϕ,R, u

1
θ,R and φ1

,R can be helpful to
derive explicit expressions of σ0

ϕϕ, σ0
θθ, σ

0
θϕ, D

0
ϕ and D0

θ as functions of the
zeroth order terms.
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The equilibrium and electrostatic charge equations at order 0 give:

σ1
rr,R “ ´

1
r0 sinϕσ

0
rθ,θ ´

1
r0
σ0
rϕ,ϕ ´

1
r0

`

2σ0
rr ´ σ

0
θθ ´ σ

0
ϕϕ ` σ

0
rϕ cotϕ

˘

,

σ1
rϕ,R “ ´

1
r0 sinϕσ

0
θϕ,θ ´

1
r0
σ0
ϕϕ,ϕ ´

1
r0

`

3σ0
rϕ ` pσ

0
ϕϕ ´ σ

0
θθq cotϕ

˘

,

σ1
rθ,R “ ´

1
r0 sinϕσ

0
θθ,θ ´

1
r0
σ0
θϕ,ϕ ´

1
r0

´

3σ0
rθ ` 2σ0

θϕ cotϕ
¯

,

D1
r,R “ ´

1
r0
D0
ϕ,ϕ ´

1
r0 sinϕD

0
θ,θ ´

2
r0
D0
r ´

2 cotϕ
r0

D0
ϕ.

By integrating the previous equations along the radial direction and by apply-
ing the continuity conditions of the radial traction vector and radial electric
displacement, one can formulate the final interface conditions at order 1:

rσ1
rrs “ ´

1
r0 sinϕσ

0
rθ,θ ´

1
r0
σ0
rϕ,ϕ´

´ 1
r0

!

2
´

1´ 2pβ11c12`e11e12q
c11β11`e211

¯

σ0
rr ´

2pc12e11´c11e12q
c11β11`e211

D0
r´

´

´

c22 ` c23 `
2c12pβ11c12`e11e12q´2e12pc12e11´c11e12q

c11β11`e211

¯

pε0
ϕϕ ` ε

0
θθq

)

,

rσ1
rϕs “ ´

1
r0 sinϕ pc22 ´ c23qε

0
θϕ,θ ´

1
r0

 

3σ0
rϕ ` pc23 ´ c22qpε

0
ϕϕ ` ε

0
θθq cotϕ

(

´

´ 1
r0

!

β11c12`e11e12
c11β11`e211

σ0
rr,ϕ `

c12e11´c11e12
c11β11`e211

D0
r,ϕ`

`

´

c22 `
c12pβ11c12`e11e12q´e12pc12e11´c11e12q

c11β11`e211

¯

ε0
θθ,ϕ`

`

´

c23 `
c12pβ11c12`e11e12q´e12pc12e11´c11e12q

c11β11`e211

¯

ε0
ϕϕ,ϕ

)

,

rσ1
rθs “ ´

1
r0
pc22 ´ c23qε

0
θϕ,ϕ ´

1
r0

!

3σ0
rϕ ` 2pc22 ´ c23qε

0
θϕ cotϕ

)

´

´ 1
r0 sinϕ

!

β11c12`e11e12
c11β11`e211

σ0
rr,θ `

c12e11´c11e12
c11β11`e211

D0
r,θ`

`

´

c23 `
c12pβ11c12`e11e12q´e12pc12e11´c11e12q

c11β11`e211

¯

ε0
θθ,θ`

`

´

c22 `
c12pβ11c12`e11e12q´e12pc12e11´c11e12q

c11β11`e211

¯

ε0
ϕϕ,θ

)

,

rD1
r s “ ´

2D0
r

r0
´ 1

r0

!

2e15σ
0
rϕ,ϕ ´

1
r0

e215`β22c44
c44

φ0
,ϕϕ

)

´

´ 1
r0

!

2e15σ
0
rθ,θ ´

1
r0 sinϕ

e215`β22c44
c44

φ0
,θθ

)

´

´
cotϕ
r0

!

2e15σ
0
rϕ ´

1
r0

e215`β22c44
c44

φ0
,ϕ

)

.

(9)
Equations (8) and (9) represent the higher order interface laws for a piezoelectric
spherical composite. These conditions provide the simultaneous jumps of the
displacement field, electric potential, stress field and electric displacement at
order 1 depending on the values of the same physical quantities at order 0.
These order 0 terms are known since they have been determined in the previous
problem and they appear in the formulation as source terms. The interface
conditions at order 1 can be interpreted as the two-dimensional piezoeletric
equilibrium problem defined on the plane of the interface.
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2.3 The interface conditions for a radial bonded joint:
spherical symmetry

In the case of a spherically symmetric problem, radially polarized, radially
transversely isotropic hollow spherical composite, the radial displacement field
and electric potential depend only on the radial coordinate, i.e., uεr “ uεrprq,
φε “ φεprq, while both the circumferential and azimuthal displacements vanish,
i.e. uεϕ “ uεθ “ 0. By virtue of the symmetry assumptions, the equilibrium
and electrostatic problems simplify since the only non null stresses and electric
displacements are σεrr “ σεrrprq and Dε

r “ Dε
rprq. Interface conditions at order

0 maintain the same form:

ru0
rs “ 0, rφ0s “ 0, rσ0

rrs “ 0, rD0
r s “ 0, (10)

while the interface conditions at order 1 reduces to:

ru1
rs “

1
c11β11`e211

!

β11σ
0
rr ` e11D

0
r ´ 2pβ11c12 ` e11e12q

u0
r

r0

)

,

rφ1s “ 1
c11β11`e211

!

e11σ
0
rr ´ c11D

0
r ` 2pc12e11 ´ c11e12q

u0
r

r0

)

,

rσ1
rrs “

2
r0

!´

β11c12`e11e12
c11β11`e211

´ 1
¯

σ0
rr `

c12e11´c11e12
c11β11`e211

D0
r`

`

´

c22 ` c23 ´
2c12pβ11c12`e11e12q`2e12pc12e11´c11e12q

c11β11`e211

¯

u0
r

r0

)

,

rD1
r s “ ´

2
r0
D0
r .

(11)

The above transmission conditions represent a piezoelectric generalization of
the interface law, obtained in [31], in the case of an elastic spherical laminated
composite.

In [24], it has been shown that it is possible to obtain a condensed form of
transmission conditions (10)-(11), summarizing both the orders 0 and 1, and
defining an implicit general piezoelectric interface law. To this end, by denoting
by ũεr :“ u0

r ` εu1
r, σ̃εrr :“ σ0

rr ` εσ1
rr, D̃ε

r :“ D0
r ` εD1

r and φ̃ε :“ φ0 ` εφ1,
suitable approximations of uεr, σεrr, Dε

r, and φε respectively, one can obtain an
equivalent implicit form of the transmission conditions:

xσ̃εrry “ ĉε11
rũεrs
ε ` êε11

rφ̃εs
ε ` 2ĉε12

rũεrs
r0

xD̃ε
ry “ êε11

rũεrs
ε ´ β̂ε11

rφ̃εs
ε ` 2êε12

rũεrs
r0

rσ̃εrrs “ 2pĉε12 ´ ĉ
ε
11q

rũεrs
r0
` 2pêε12 ´ ê

ε
11q

rφ̃εs
r0
` 2pĉε22 ´ ĉ

ε
23 ´ 2ĉε12q

εxũεry

r20
,

rD̃ε
rs “ ´2êε11

rũεrs
r0
` 2β̂ε11

rφ̃εs
r0
´ 4êε12

εxũεry

r20
.

(12)

With arguments similar to those used in [24], where a flat adhesive was consid-
ered, it can be shown that the above relations comprise three different contact
regimes at various orders (order 0 and 1), namely the piezoeletric soft (or spring-
type) interface conditions, the perfect continuity conditions, and the piezoelec-
tric rigid (Gurtin-Murdoch or membrane-type) conditions, and are expected to
provide a better approximation of the behavior of the thin curved interphase.
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3 Transfer matrix method
In this section, a spherical hollow assembly model, consisting of N different,
radially polarized, transversely isotropic thin layers, is studied using the transfer
matrix method. The transfer matrix method is a classical approach [32, 33].
Here, we first review its application to a piezoeletric hollow sphere, then we
generalize the technique to an arbitrarly laminated piezoeletric hollow sphere
and, finally, we extend the obtained results to the case of imperfect contact
between the layers, with a general interface law comprising the order 0 and
order 1 transmission conditions obtained in Section 2.2.

3.1 The piezoeletric hollow sphere
The basic equilibrium and electrostatic charge equations in the case of spherical
symmetric loading read (see [7]):

σrr,r `
2
r pσrr ` σθθq “ 0,

Dr,r `
2
rDr “ 0,

(13)

while the constitutive equations for radially polarized and transversely isotropic
piezoelectric material are:

σrr “ c11ur,r ` 2c12
ur
r ` e11φ,r,

σθθ “ c12ur,r ` pc22 ` c23q
ur
r ` e12φ,r,

Dr “ e11ur,r ` 2e12
ur
r ´ β11φ,r.

(14)

Following the approach by [33], it is possible to express the governing equations,
combined with the constitutive laws, as follows:

a,rprq “ Aprqaprq (15)

with

Aprq :“

»

—

—

—

–

A11

r
A12

r2
A13

r 0

A21
A22

r A23 0

0 0 A33

r 0

A41
A42

r A43 0

fi

ffi

ffi

ffi

fl

, aprq :“

»

—

—

–

σrrprq
urprq
Drprq
φprq

fi

ffi

ffi

fl

, (16)

and

A11 :“ 2
´

β11c12`e11e12
c11β11`e211

´ 1
¯

, A13 :“ 2pc12e11´c11e12q
c11β11`e211

,

A12 :“ 2
´

c22 ` c23 ´
2c12pβ11c12`e11e12q`2e12pc12e11´c11e12q

c11β11`e211

¯

,

A21 :“ β11

c11β11`e211
, A22 :“ ´ 2pβ11c12`e11e12q

c11β11`e211
, A23 :“ e11

c11β11`e211
,

A33 :“ ´2, A41 :“ e11
c11β11`e211

, A42 :“ 2pc11e12´e11c12q
c11β11`e211

, A43 :“ ´ c11
c11β11`e211

,

(17)
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with the compatibility condition A11 ` A22 “ ´2. Matrix Aprq is called the
fundamental matrix and aprq the state vector. In the sequel, we recall the
general solution of the equilibrium and electrostatic problems for a piezoelectric
hollow sphere, free of volume forces and charge density, developed in [7] and
adapted for the purposes of the present work:

σrrprq “ a11F1r
α1´1 ` a12F2r

α2´1 ` a13F3
1
r2 ,

urprq “ F1r
α1 ` F2r

α2 ` F3a23
1
r ,

Drprq “ F3
1
r2 ,

φprq “ a41F1r
α1 ` a42F2r

α2 ` a43F3
1
r ` F4,

(18)

where α1{2 :“ 1
2 p´1˘

?
1` 8βq, 2β “ A12A21 ` p1`A22qA22, and

a11 :“ α1´A22

A21
, a12 :“ α2´A22

A21
, a13 :“ ´a23p1`A22q`A23

A21

a23 :“ 1
2β pA23p2`A11q ´A21A13q ,

a41 :“ 1
α1
pA41a11 `A42q, a42 :“ 1

α2
pA41a12 `A42q,

a43 :“ ´pA43 `A41a13 `A42a23q.

The previous coefficients are analogous to those obtained in [7], see Appendix
A. F1, F2, F3 and F4 represent the integration constants, that can be found
applying a proper set of mechanical and electrical boundary conditions. The
solution can be rewritten in matrix form:

»

—

—

–

σrrprq
urprq
Drprq
φprq

fi

ffi

ffi

fl

“

»

—

—

—

–

a11r
α1´1 a12r

α2´1 a13
r2 0

rα1 rα2 a23
r 0

0 0 1
r2 0

a41r
α1 a42r

α2 a43
r 1

fi

ffi

ffi

ffi

fl

»

—

—

–

F1

F2

F3

F4

fi

ffi

ffi

fl

In compact form, aprq “ BprqF. Having in mind the transfer-matrix method, we
replace the integration constants F1, F2, F3 and F4 by the initial state variables
σrrpr0q, urpr0q, Drpr0q and φpr0q, i.e. apr0q. As customary, the integration
constants vector can be obtained through F “ B´1pr0qapr0q and, thus,

aprq “ Tprqapr0q, (19)

where Tprq :“ BprqB´1pr0q is the field-transfer matrix from radius r0 to radius
r, which has the following expression

Tprq :“
1

a11 ´ a12

»

—

—

–

T11prq T12prq T13prq 0
T21prq T22prq T23prq 0

0 0 T33prq 0
T41prq T42prq T43prq 1

fi

ffi

ffi

fl

,
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with

T11prq :“ a11

´

r
r0

¯α1´1

´ a12

´

r
r0

¯α2´1

,

T12prq :“ ´a11a12
r0

"

´

r
r0

¯α1´1

´

´

r
r0

¯α2´1
*

,

T13prq :“ pa11´a12qa13
´

r
r0

¯2 ` a11pa12a23 ´ a13q

´

r
r0

¯α1´1

` a12pa13 ´ a11a23q

´

r
r0

¯α2´1

,

T21prq :“ r0

!´

r
r0

¯α1

´

´

r
r0

¯α2
)

,

T22prq :“ a11

´

r
r0

¯α2

´ a12

´

r
r0

¯α1

,

T23prq :“ pa11´a12qa23r0
´

r
r0

¯2 ` r0pa12a23 ´ a13q

´

r
r0

¯α1

` r0pa13 ´ a11a23q

´

r
r0

¯α2

,

T41prq :“ a42

´

1´
´

r
r0

¯α2
¯

´ a41

´

1´
´

r
r0

¯α1
¯

,

T42prq :“ a12a41

´

1´
´

r
r0

¯α1
¯

´ a11a42

´

1´
´

r
r0

¯α2
¯

,

T43prq :“ pa11´a12qa43r0
r
r0

` r0a41pa12a23 ´ a13q

´

r
r0

¯α1

` r0a42pa13 ´ a11a23q

´

r
r0

¯α2

`

`r0 pa13pa41a42q ` a43pa12 ´ a11q ` a23pa11a42 ´ a12a41qq .

Note that the field-transfer matrix Tprq and the fundamental matrix Aprq are
related to each other according to the relation: Apr0q= T,rprq|r“r0 .

3.2 The laminated piezoelectric hollow sphere
Let us consider a laminated piezoelectric hollow sphere, constituted by N lay-
ers. Each layer pkq is characterized by the corresponding material parameters,
marked by the index k, and the radii rk´1 and rk, and thickness hk :“ rk´rk´1.
A dimensionless coordinate ρ for the layer pkq is defined according to

ρ “
r ´ rk´1

rk´1
, rk´1 ď r ď rk, ρk “

hk
rk´1

,
r

rk´1
“ 1` ρ.

The transfer equation (19), with r0 “ rk´1, can be rewritten as follows:

apkqpρq “ Tpkqpρqapkqp0q,

where Tpkqpρq is the transfer matrix of layer pkq. The states at both boundaries
of layer pkq are connected by

apkqpρkq “ Tpkqpρkqa
pkqp0q,

and, by means of the continuity conditions, apkqp0q “ apk´1qpρk´1q :“ ak´1,
k “ 1, ..., N ´ 1, one has:

ak “ Tkak´1, (20)
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where Tk :“ Tpkqpρkq represents the layer-transfer matrix of layer pkq from
radius rk´1 to rk. Applying (20) N - times for the layered hollow sphere made
of layers in perfect contact, we get

aN “ Sa0, S :“ TNTN´1...T1.

Here S denote the system-transfer matrix from radius r0 to radius rN , because
it connects the state vectors at the boundaries of the laminated hollow sphere.
Knowing the initial state vector a0 on the internal boundary, it is possible to
find the state vector in each layer.

Let us suppose that hk “ λkh, where h :“
řN
k“1 hk is the total thickness

of the laminated hollow sphere and 0 ă λk ă 1 is a thickness ratio, satisfying
řN
k“1 λk “ 1. The assumption of small thickness of each layer hk with respect

to r0, so that hk ! r0, implies that

ρk “
hk
rk´1

“
λkh

r0 ` h
řk´1
i“1 λi

“
λkh

r0
` oph2q,

and, hence, the layer-transfer matrix Tk admits the following representation:

Tk “ I´ hλkMk ` oph
2q,

where the elements of matrix Mk coincides with the elements of matrix ´Apr0q

(cf. (16)), corresponding to k-th layer. As a consequence, the system-transfer
matrix S presents an analogous asymptotic development:

S “ I´ hM` oph2q, (21)

where M :“
řN
k“1 λkMk.

3.3 The laminated piezoelectric hollow sphere with im-
perfect interface conditions

In the previous section, the problem of a laminated piezoelectric hollow sphere
with perfect contact has been analyzed. In order to extend these results to a
laminated sphere with imperfect contact between the layers, ad hoc transmission
conditions must be considered at the spherical surface between adjacent layers
(see [31]).

Assume that the thickness of each interface layer εk “ ξkh, with ξk ! 1,
k “ 1, ..., N ´ 1. In order to apply the Bufler’s approach, it is necessary to
define an interface transfer matrix between radii rk :“ r´k and rk ` εk :“ r`k .
Substituting the explicit forms of the jump r.s and mean value x.y into (12), the
interface conditions can be rewritten as follows, with self-explanatory notation:

a`k “ K̂ka
´
k , a´k :“ apkqpρkq, a

´
k :“ apkq pρk ` εk{rk´1q ,

where a`k and a´k represent the state vectors at the top and bottom interfaces,
respectively, and

K̂k :“ I´ hξkN̂k ` oph
2q.
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It can be shown that the coefficients of matrix Nk surprisingly coincides with
the elements of ´Apr0q (cf. (16)), in which the interface material parameters
are considered. Now, thanks to the presence of the imperfect interface, the
system-transfer matrix system S̃ (cf. (21)) modifies in order to incorporate the
matrices K̂k:

S̃ “ TNK̂N´1TN´1...K̂1T1 “ I´ hL` oph2q,

where L :“
řN
k“1 λkMk`

řN´1
`“1 ξ`N̂`. Following Bufler [33], the system matrix

for the hollow sphere with homogenized properties is calculated as

a,r “ lim
hÑ0

S̃´ I

h
a0 “ ´La0,

and, thus, choosing r “ r0,

a,rprq “ xAprqyaprq, xAprqy :“

»

—

—

—

—

–

xA11y

r
xA12y

r2
xA13y

r 0

xA21y
xA22y

r xA23y 0

0 0 xA33y

r 0

xA41y
xA42y

r xA43y 0

fi

ffi

ffi

ffi

ffi

fl

, (22)

where xAprqy denotes the fundamental matrix of the homogenized laminated
piezoelectric hollow sphere, such that xApr0qy “ ´L. Indeed, by comparing (22)
with (15) for a piezoelectric homogeneous hollow sphere, we notice that the gov-
erning equations are analogous but with different coefficients. The coefficients
of the fundamental matrix xAprqy for a laminated hollow sphere, comprising
also the presence of the general imperfect interface law, reduce to the sum of
xAprqy coefficients for each adherent and interface layer, taking into account
their thickness ratios, namely λk and ξ`, respectively. Indeed, one has

xAijy :“
N
ÿ

k“1

λkA
pkq
ij `

N´1
ÿ

`“1

ξ`Â
p`q
ij ,

where Apkqij and Âp`qij represent, respectively, coefficients (16) relative to the k-th
layer and the `-th interface layer. It is worth-mentioning that the use of the
general imperfect contact laws, described in (12), corresponds to the actual in-
sertion of a thin spherical interphase layer between adjacent adherents. Hence,
the problem of an arbitrarily laminated piezoeletric hollow sphere is equivalent
to the problem of an homogenized one.

Remark. The case of a periodic laminated piezoelectric hollow sphere, made
of a layer group of n generally different basic layers, can be easily obtained by
choosing hk “ λkh

n and εk “ ξkh
n . In this case, the fundamental matrix satisfies

xApr0qy “ ´nL.
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As an example let us consider the simple case of a spherical composite, made
of two adherents and an intermediate interface layer. Thus, the system matrix
S̃ “ T`K̂T´, with T˘, the transfer matrices of the top and bottom spheres,
and K̂, the interface transfer matrix. The adherents thickness ratios are chosen
as λ`k “ λ´k “

1
2 , while the adhesive thickness ratio is ξ. Note that comparing

the present results with the fundamental matrices of a transversely isotropic
homogeneous elastic sphere (cf. [33], eqns. (17)-(19)), one obtains the equivalent
elastic material parameters E

1´ν ,
1
ν1 and ν1

E1 of the homogenized piezoelectric
spherical composite, where E, E1, ν and ν1 “ ν E

1

E denote, respectively, the radial
and tangential stiffness moduli, and the major and minor Poisson’s coefficients.
These material parameters depend on the piezoelectric moduli, defined in the
constitutive equation (14), and can be thought as equivalent elastic engineering
constants for the composite. The result is

E
1´ν “

1
2xA12y “

1
2

∆`

c`11β
`
11`pe

`
11q

2
` 1

2
∆´

c´11β
´
11`pe

´
11q

2
` ξ ∆̂

ĉ11β̂11`ê211
,

ν1

E1 “ ´
xA22y

xA12y
“ 1

2
β`11c

`
12`e

`
11e

`
12

∆` ` 1
2
β´11c

´
12`e

´
11e

´
12

∆´ ` ξ β̂11ĉ12`ê11ê12
∆̂

,

1
E1 “

xA22y
2

xA12y
` xA21y “

1
2pc`11β

`
11`pe

`
11q

2q

´

pβ`11c
`
12`e

`
11e

`
12q

2

∆` ` β`11

¯

`

` 1
2pc´11β

´
11`pe

´
11q

2q

´

β´11c
´
12`e

´
11e

´
12

∆´ ` β´11

¯

`
ξ

ĉ11β̂11`ê211

´

β̂11ĉ12`ê11ê12
∆̂

` β̂11

¯

.

(23)
with ∆ :“ pc22`c23qpc11β11`e

2
11q´2c12pβ11c12`e11e12q`2e12pc12e11´c11e12q.

4 A simple numerical example
Let us consider a three-layer hollow piezoelectric sphere with inner radius r0 “

10 cm, see Figure 2. The internal and external layers are 0.5 cm thick, while

Figure 2: Geometry of the three-layers hollow piezoelectric composite sphere

the thickness of the intermediate adhesive layer depends on a small parameter
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ε, such that ε ! 0.5 cm. Let us denote with r´1 “ 10.5 cm, r`1 “ 10.5 ` ε cm
and r2 “ 11` ε cm, the values of the radii referred to inner and outer interfaces
between the adherents and adhesive, and the outer radius, respectively. The
total thickness h of the layered sphere is equal to r2 ´ r0 “ 1 ` ε cm. The
adherents are constituted by (Pb)(CoW)TiO3, while the adhesive is made of
PZT-5, whose mechanical properties are shown in Table 1.

Moduli (Pb)(CoW)TiO3 PZT-5
c11, GPa 128 111
c12, GPa 32.3 32.2
c22, GPa 150 120
c23, GPa 37.1 75.2
e11, C/m

2 8.5 15.78
e12, C/m

2 1.61 -5.35
β11{ε0, 209 1700

Table 1: Piezoelectric material properties for (Pb)(CoW)TiO3 and PZT-5

The piezoelectric hollow composite sphere is subjected to an electric poten-
tial V0 “ 10 V, applied on the inner surface, while the electric potential is set
equal to zero on the outer boundary, so that φpr0q “ V0 and φpr2q “ 0. Free
mechanical boundary conditions on both internal and external surfaces are im-
posed, meaning that σrpr0q “ 0 and σrpr2q “ 0. In this case the sphere behaves
as an actuator. Following the ideas proposed in [25], the numerical results for
the variables are provided using the dimensionless units. For an applied electric
potential V0, we set:

pUr,Φq “
E0

V0
pur, φ{E0q , pΣr,Drq “

hE0

C00V0
pσr, E0Drq ,

where, for numerical convenience, E0 “ 109 Vm´1 and C00 “ 1 GPa.
Let us consider the closed-form solution (18) for each of the three layers.

By applying the aforementioned set of boundary conditions and continuity con-
ditions at the interface between adherents and adhesive, the twelve unknown
integration constants can be easily found. Hence, the analytical solution for a
three-phases hollow piezoelectric sphere is completely determined in terms of
Ur, Σr, Φ and Dr.

The exact solution is compared with the closed-form solution, analogously
obtained for a two-phases hollow composite sphere, in which the intermediate
layer is replaced by the generalized interface conditions (12) (see Section 2.3).

First, the influence of the relative thickness of the intermediate layer ε{h is
investigated in order to evaluate the accuracy of the asymptotic modeling. In
particular, the quality of the solution is evaluated considering the L2-relative
error }sε´smodel}

}sε} , where sε denotes the reference solution computed using the
three-phases problem, while smodel indicates the solution of the interface model.
The convergence of the general interface model towards the three-phases one
with respect to the thickness ratio ε{h is presented in Figure 3.
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Figure 3: Convergence diagram with respect to the relative thickness ε{h

From the plot, it can be observed that, by reducing the thickness of the
adhesive, the relative error has a drastic reduction and so, the proposed gen-
eral interface model provides an acceptable solution and it is able to correctly
approximate the exact solution sε. For instance, when the relative thickness is
0.01, the relative error is closed to 1.147% and 2.146%, concerning the displace-
ment and radial stress, respectively. The error significantly reduces to 0.0039%
and 0.0064%, concerning the electric potential and radial electric displacement,
respectively. Table 2 reports the relative error values for vanishing relative
thickness.

ε{h Ur error(%) Σr error(%) Φ error(%) Dr error(%)
0.1 11.9278 22.7947 0.0442 0.0729
0.01 1.1471 2.1461 0.0039 0.0064
0.001 0.1142 1.0673 0.0004 0.0006

Table 2: L2-relative errors values

Figures 4 and 5 show the trends of the electric potential, electric displace-
ment, radial stress and radial displacement along the radial coordinate, for a
fixed ε{h “ 0.01. The diagrams report the comparison among three closed-form
solutions relative to the following configurations: i) the three-layers composite
sphere; ii) the two-layers composite sphere with the general interface law; iii)
the single-layer sphere with homogenized coefficients, obtained by means of the
transfer matrix method (see Section 3.3).

The diagrams confirm a very good agreement between the exact three-layers
solution (red continuous curves) and the two-layers solution with interface con-
ditions (blue dashed curves) in terms of electric potential, electric displacement
and radial displacement. Concerning the radial stress, the overall trend is well-
approximated, even though the jump at the interface is slightly overestimated
by the two-layers + interface model. As expected, the homogenized solution,
obtained through Bufler’s approach, manages to capture the global electrome-
chanical behavior on the average. However, it appears to give moderately inac-
curate estimates, concerning the electric and radial displacements values.

The transfer matrix method allows the evaluation of the equivalent radial and
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Figure 4: Electric potential and electric displacement vs radius, ε{h “ 0.01 ε{h

tangential Young’s moduli and Poisson’s coefficients for the spherical composite
from equations (23). Indeed, for this particular case, one has: E “ 1.4052ˆ1011

N/m2, E1 “ 1.4871ˆ 1011 N/m2, ν “ 0.1933 and ν1 “ 0.2047.

5 Concluding remarks
A general imperfect interface model for piezoelectric hollow spherical compos-
ites has been proposed. The approach is based on the asymptotic expansions
method, characterizing the order 0 and order 1 interface laws. Following [24],
a general transmission law, comprising soft, hard and rigid interface conditions
at the various order, has been derived. A generalization of the transfer matrix
method [33] has been proposed for piezoelectric hollow spherical composites.
In order to assess the validity of the previous asymptotic and homogenization
procedures, the analytical solution of a piezoelectric hollow sphere subjected to
an applied electric potential has been developed, taking also into account the
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Figure 5: Radial stress and displacement vs radius, ε{h “ 0.01

aforementioned general interface laws. The convergence results showed that, by
reducing the thickness of the adhesive, the relative error has a drastic reduction.
Moreover, the numerical result reported a very good agreement between the ex-
act three-layers solution and the two-layers solution with interface conditions in
terms of electric potential, electric displacement and radial displacement.

Appendix A
The coefficients of the equilibrium and electrostatic problem solution for a piezo-
electric hollow sphere are equivalent to those obtained in [7] and take the fol-
lowing expressions:

19



γ :“ c11 `
e211
β11

β :“ 1
γ

´

c22 ` c23 ´ c12 `
e12
β11
p2e12 ´ e11q

¯

a11 :“ c11α1 ` 2c12 ` α1e11

´

e11
β11
` 2

α1

e12
β11

¯

,

a12 :“ c11α2 ` 2c12 ` α2e11

´

e11
β11
` 2

α2

e12
β11

¯

,

a13 :“ p2c12 ´ c11q
e12
βγβ11

´ e11

´

e12pe11´2e12q
βγβ2

11
` 1

β11

¯

,

a23 :“ e12
β11βγ

,

a41 :“ e11
β11
` 2

α1

e12
β11

,

a42 :“ e11
β11
` 2

α2

e12
β11

,

a43 :“ e12pe11´2e12q
βγβ2

11
` 1

β11
.
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