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Abstract: Neurodegenerative diseases severely impact the life of millions of patients worldwide,
and their occurrence is more and more increasing proportionally to longer life expectancy. Electroen-
cephalography has become an important diagnostic tool for these diseases, due to its relatively simple
procedure, but it requires analyzing a large number of data, often carrying a small fraction of informa-
tive content. For this reason, machine learning tools have gained a considerable relevance as an aid
to classify potential signs of a specific disease, especially in its early stages, when treatments can be
more effective. In this work, long short-term memory-based neural networks with different numbers
of units were properly designed and trained after accurate data pre-processing, in order to perform a
multi-class detection. To this end, a custom dataset of EEG recordings from subjects affected by five
neurodegenerative diseases (Alzheimer’s disease, frontotemporal dementia, dementia with Lewy
bodies, progressive supranuclear palsy, and vascular dementia) was acquired. Experimental results
show that an accuracy up to 98% was achieved with data belonging to different classes of disease, up
to six including the control group, while not requiring particularly heavy computational resources.

Keywords: Alzheimer’s disease (AD); classification; deep learning; electroencephalography; EEG;
feature extraction; long short-term memory (LSTM); multi-class classification; neurodegenerative
diseases; recurrent neural network (RNN)

1. Introduction

The “World Population Prospects”, published by the United Nations, estimated that
the total world population aged 65 and over reached 761 million in 2020 and is expected
to double to almost 1.6 billion by 2050 (2022 Revision). Globally, the number of people
aged 80 and over is growing even faster than the number of people aged 65 and over and
will exceed the number of newborns (1 year of age or less) by the mid-2030s, reaching
265 million by then (2024 Revision) [1]. As a result, the impact on families and societies
caused by the number of aging people is becoming increasingly significant. In particular,
according to the World Health Organization, neurodegenerative age-related diseases, such
as Alzheimer’s disease (AD), which are often characterized by a progressive decline in
functional and cognitive abilities are increasing rapidly, becoming an alarming problem for
the health sector.

Alzheimer’s disease (AD) and other neurodegenerative conditions such as frontotem-
poral dementia (FTD), dementia with Lewy bodies (LBD), and progressive supranuclear
palsy (PSP), alongside non-degenerative conditions like vascular dementia (VAD), severely
impact various aspects of a patient’s life, including cognitive functions, memory, and basic
daily activities. These diseases affect millions of people, and their prevalence is expected to
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rise as life expectancy increases [2,3]. Diagnosing these diseases in their early stages, such
as mild cognitive impairment, is crucial for effective treatment [4].

The electroencephalogram (EEG) is a non-invasive test that records brain electrical
activity and has a wide field of applications in the medical area, one of which is the
detection of neurodegenerative diseases. Recently, the EEG has gained prominence as a
diagnostic tool due to its relative simplicity and non-invasiveness compared with more
complex procedures like histological sampling or magnetic resonance imaging [5–9]. The
EEG provides valuable, even if indirect, insights into a subject’s brain activity. However,
analyzing EEG data can be challenging due to the potential overlap of symptoms between
different pathologies or normal age-related changes, as well as the large number of data that
require careful examination for specific patterns. Consequently, research has increasingly
focused on applying machine learning algorithms to detect patterns in EEG signals, aiming
to assist clinicians in accurately classifying a subject’s condition within a predefined set
of diseases. A wide range of machine learning algorithms are used in the published
literature on EEG classification studies for dementia detection [10–12]. Well-established
methods such as support vector machines (SVMs), k-nearest neighbors (kNNs), logistic
regression, and random Forests remain relevant in the classification of AD and other
types of dementia [13–15]. However, deep learning methodologies have gained increasing
popularity in classifying EEG signals in AD and further dementia research [16–21].

Most of the works in the literature deal with binary classification to distinguish
between healthy subjects and those affected by Alzheimer’s, or to distinguish between
healthy subjects and the preliminary stage of dementia, called mild cognitive impairment
(MCI). Alvi et al. [22] proposed an LSTM framework for MCI detection from EEG signals,
and designed 20 different LSTM models and investigated them with a publicly available
MCI database, named the EEG MCI database [23], to find out the best one. The best model
achieved 96.41% accuracy. A similar approach was previously proposed in Siuly et al. [24]
to provide a robust biomarker for efficient detection of MCI patients using an extreme
learning machine (ELM) neural network, achieving 98.78% accuracy on the same dataset.
Previous attempts on the same dataset, such as the work by Yin et al. [25], achieved a 96.94%
accuracy using a 3D evolution method for feature selection and a SVM as the classifier.
However, this study involved a limited number of subjects (11 MCI and 11 healthy) and
was computationally expensive due to its extensive pre-processing steps dedicated to
the EEG signals denoising and features extraction. A machine learning method was also
applied in Farina et al. [26] through a logistic regression algorithm on a custom dataset
realized by collecting data related to resting state EEGs, structural MRIs (sMRIs), and rich
neuropsychological data from older adults (55+ years) with AD or amnestic MCI (aMCI),
as well as healthy controls (about 60 per group).

Although the acquired dataset contained multiple classes, in this case a binary clas-
sification was also performed by comparing the three pairs of classes: AD vs. N, MCI vs.
N, and AD vs. MCI. In Ieracitano et al. [27], a dataset composed of 189 subjects (63 AD
patients, 63 MCI patients, and 63 normal subjects) was acquired and a multi-layer percep-
tron (MLP) network was chosen as the classifier. Also in this case, the classification was
principally applied to couple of classes (AD vs. N, AD vs. MCI; MCI vs. N), reducing to a
binary classification. Only the case AD vs. MCI vs. N was investigated for the multi-class
classification task. The proposed model achieved the highest accuracy of 96.95 ± 0.5% in
AD vs. N, 90.24 ± 0.7% in AD vs. MCI, 96.24 ± 0.5% in MCI vs. N, and 89.22 ± 0.67% in AD
vs. MCI vs. N classifications.

In a few other recent works, the two stages of the disease were examined (AD, MCI),
in relation to healthy subjects (N), thus realizing a multi-class classification task with three
classes. S. J. Ruiz-Gómez et al. [28] addressed a three-class classification problem by ana-
lyzing the performances of three methods, linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA) and an MLP artificial neural network, on a dataset composed
of 111 subjects (37 AD patients, 37 MCI patients, and 37 N subjects) in order to discrim-
inate AD, MCI, and N classes and develop a multi-class classifier. The overall accuracy
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of the models in the three-class classification task was 58.82% with LDA, 60.78% with
QDA, and 62.75% with MLP, achieving better performance in pairwise class comparisons.
Sharma et al. [29] analyzed eight EEG biomarkers (power spectral density, skewness, kur-
tosis, spectral skewness, spectral kurtosis, spectral crest factor, spectral entropy, fractal
dimension) from 44 subjects in four conditions: eye-open, eye-close, finger tapping test,
and continuous performance test. They achieved an accuracy for each event in the range
from 73.4% to 89.8% for three binary classes.

In the mentioned related works, attention is paid to the accuracy in the precision
of the classification without considering the number of parameters required by the net-
work and the consequent memory occupation. These two aspects are fundamental if the
network has to be implemented in a real-time, low-cost embedded system, but above all
if we want to decrease the inference time. This aspect regards the research of networks
with a reduced number of parameters, namely lightweight networks, still maintaining a
good accuracy. As already mentioned, Alvi et al. in [22] investigated 20 different LSTM
networks for MCI detection using the EEG MCI database, focusing on this aspect and
reporting the number of nodes for each implemented LSTM network. The authors found
the best model and tested for binary classification, in the configuration (1024, 512), that
corresponded to a number of parameters exceeding one million, according to the equation
Nparameters = 4 ∗ ((ninput + noutput) ∗ noutput + noutput), where ninput is the number of input
units and noutput is the number of output units (hidden units). This gives an estimation
of what is considered a lightweight LSTM network in the literature. For comparison, our
proposed network only requires about 5000 parameters. Searching for an LSTM lightweight
network with a reduced number of parameters and memory occupation is one of the aims
of the proposed method, together with maintaining a good accuracy both in binary and
multi-class classification.

In our previous work [17], binary classification was investigated to distinguish AD
subjects from healthy ones by using recurrent neural networks (RNNs), successfully re-
sulting in over 97% accuracy on the test data (a subset of the dataset used in this work
related to the two considered classes). Due to the nature of the EEG data, an RNN was
considered for its ability to handle temporal dependencies. The main advantage of RNNs is
their ability to model sequences of data, unlike traditional neural networks. This capability
allows each pattern in the sequence to be influenced by previous patterns, making RNNs
particularly effective for time-series data [30–33]. Specifically, an RNN with LSTM units
was chosen for its ability to handle both long-term and short-term dependencies, address-
ing many computational and stability issues that can occur in RNNs, particularly with long
sequences [34,35].

In the subsequent work [16], the design and the performance analysis of this type of
network was extended to the multi-class case, taking into consideration four classes related
to neurodegenerative pathologies, specifically AD, FTD, and LBD, together with normal
subjects (N). In particular, an RNN was developed for the classification of neurodegenera-
tive diseases from EEG recordings belonging to a custom dataset. The RNN processes the
spectral representation of the data and utilizes LSTM layers at its core, following an artifact
removal step to enhance network performance, achieving a global accuracy of 75.3%.

In this paper, an enhanced version of the previous method to perform multi-class clas-
sification of various neurodegenerative diseases with similar EEG recording characteristics
using lightweight LSTMs is proposed. Several LSTMs were implemented and tested on
different numbers of classes, grouped according to their relevance from a medical point
of view:

• N, AD, FTD, LBD: to discriminate among the main degenerative dementias AD, FTD,
and LBD [36–38], collectively called DDs;

• N, AD, FTD, LBD, PSP: to discriminate PSP [39], in addition to the DDs;
• N, AD, FTD, LBD, VAD: to try and discriminate VAD [40], in addition to the DDs;
• N, DD, VAD: the three DD classes are fused together.
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• N, AD, FTD, LBD, PSP, VAD: this last test, that considered all the classes contained in
the dataset, was conducted to validate the flexibility of the implemented networks,
since it has no relevance from a medical point of view.

The second-last group compares the main degenerative dementias included in the
single-class DD to VAD, which has different clinical causes. Degenerative dementias are
caused by an unknown degenerative process, while vascular dementia is caused by a
cerebral arteriosclerosis, which can determine multiple cortical and/or subcortical infarcts,
strategic single infarcts, non-infarction white matter lesions, hemorrhages, and hypoperfu-
sion as possible causes of VAD. Traditionally in neurology, vascular dementia is considered
a “secondary dementia” (consequent to circulation problem), while the other forms of
dementia are usually named “primary dementias”, i.e., dementia caused by a still unknown
degenerative process.

As previously mentioned in a brief overview of the state of the art, these diseases
have been analyzed with several machine learning methods but always as a binary clas-
sification, and, to the best of our knowledge, only in a few cases by adding a third class.
Moreover, these works focus only on the accuracy performance without taking into account
the computational complexity of the developed models, that is, important parameters
to evaluate the deployability of the models in different devices, also with constrained
resources and low-cost, low-power consumption characteristics. The proposed method
outperforms the state-of-the-art results in terms of accuracy with a given number of classes,
but above all it addresses the classification problem with a number of classes greater than
three, still obtaining results superior or in line with the state of the art, maintaining a low
computational complexity.

The rest of the paper is organized as follows. Section 2 describes the proposed methods,
including the acquired dataset, the data pre-processing, and the design of the LSTM neural
networks. Experimental results are presented in Section 3 and discussed in Section 4.
Finally, some conclusions are drawn in Section 5.

2. Methodology

This work aims to obtain a compact and lightweight neural network for the classifi-
cation of the signals, so after the canonical filtering, standardization, and windowing of
the input sequences, these are converted into their spectral representation. The resulting
set of features with which the neural network is trained no longer depends on time, but is
expressed as a linear combination of a suitable ordered basis. It has already been demon-
strated in our previous works, in [15] through a preliminary study using machine learning
methods and in [17] using a first approach with deep-learning methods, that this change of
representation often brings better results, while allowing a simplified network to still reach
high accuracy.

To transform the input signals, the discrete Karhunen–Loève transform (DKLT) is
used. This is a well-known technique [17,41] that is able to separate the temporal evolution
of a signal from its statistical variations, resulting in an optimal representation. It is akin to
a frequency-domain transform, where instead of pure sinusoids the basis is selected to best
represent the given set of signals with the minimum number of free parameters.

Because of this, the number of features obtained through the DKLT can be truncated,
using only its most significant values. This is called principal component analysis (PCA),
and it simultaneously attains the reduction of the complexity of the data and the disposal of
the less informative components that can worsen the classification, as are often associated
with measurement noise. Such denoising effect can effectively replace other common
pre-processing steps with the same purpose, like band-pass filtering.

In the following subsections, each step, starting with details on the data acquisition,
will be discussed. Moreover, Figure 1 shows the full pipeline of the proposed method.
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Classification Results

LSTM Architecture:
Training & Testing

Input

Notch filtering

Standardization

Data windowing

Data augmentation

Spectral rapresentation
(DKLT)

Figure 1. Full pipeline of proposed method.

2.1. EEG Data Acquisition

A dataset comprising EEG recordings of five different neurodegenerative diseases (AD,
FTD, LBD, PSP, VAD) was created by the Neurological Clinic, Department of Experimental
and Clinical Medicine, at the Università Politecnica delle Marche. The dataset was obtained
from subjects as part of a routine medical diagnosis in a hospital setting; the data were
collected according to the Declaration of Helsinki, informed consent had been obtained
at the time of original data collection, and all recorded data were adequately anonymized
prior to being employed in this study.

Table 1 shows a summary of the consistency of the dataset, expressed in terms of
total duration of the recordings for the six classes considered, specifically five different
neurodegenerative diseases (AD, FTD, LBD, PSP, VAD), and the healthy condition (referred
to as class N) used as the control group. In total, over 35 h of recordings were used in
this study. The demographic distribution of the subjects (age, sex, education, and illness
duration) was selected to be as similar as possible across the different groups.

Table 1. Dataset Consistency.

Class Subjects Duration (s)

Normal (N) 15 17,932
Alzheimer’s disease (AD) 20 28,586
Frontotemporal dementia (FTD) 16 21,722
Dementia with Lewy bodies (LBD) 17 22,835
Progressive supranuclear palsy (PSP) 10 10,942
Vascular dementia (VAD) 19 25,404

Total 97 127,421

The data were collected using a Galileo BE Plus PRO Portable, Light version, which is
capable of 37 total connections, consisting of 22 unipolar and 8 bipolar AC/DC inputs. The
electrodes were applied in the standard 10–20 configuration (the numbers being distances
between adjacent electrodes, expressed as a percentage of the total available space on the
subject’s skull, across the two directions). The EEG recordings were all sampled at 128 Hz,
using between 21 and 23 tracks according to the clinical needs of the specific case. All
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signals from a given subject were acquired synchronously, but recordings from different
subjects had naturally occurring different durations.

It is interesting to analyze the power spectral density (PSD) of the EEG signals
(Figure 2). The PSD is computed with the Welch method [42], splitting the signal into
overlapping segments and computing the squared magnitude of the discrete Fourier trans-
form for each part. The final value of the PSD is computed from the average of the obtained
values. It can be seen that there is a strong noise component at 50 Hz (electrical grid). As
described in the following sections, we remove such components through a notch filter.
Moreover, as already explained, the DKLT has the effect of removing the remaining noise
components, leaving only the most significant components of the signal.

Figure 2. PSD of some of the EEG signals in the dataset (N, AD, FTD, LBD classes).

Apart from the obvious interference caused by the electrical grid, EEG signals are
prone to several noise sources, especially in clinical settings. To estimate the specific level
of noise in the dataset, we used the RELAX framework v2.0.0 [43,44], an extension to the
well-known EEGLAB toolkit (v2024.2) for Matlab R2024b, specially oriented to EEG signals.
By running an automated cleaning with the RELAX tool on a sample of the subjects’ data,
the results show a signal-to-noise ratio ranging from 5 to 20 dB approximately. As stated,
and because the cleaning methods are dependent on the specific setup used for acquisition,
we chose to use the DKLT to isolate the principal components of the signal and hopefully
remove, among others, the main noise sources.

2.2. Data Pre-Processing
2.2.1. Data Preparation

Some pre-processing of the EEG data was required, due to the heterogeneity of the
different track sets among different subjects and unavoidable variations in the signal
acquisition conditions.

First, as not all subjects had the same track set being recorded, a subset of signals,
common to all the subjects, was isolated. It consists of 16 tracks: Fp1, Fp2, F7, F3, F4, F8, T3,
C3, C4, T4, T5, P3, P4, T6, O1, O2.
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Then, the data were shaped in purely numerical matrices of size n × 16, with n being
the number of time points and 16 the number of selected (common) EEG tracks. Such data
can be seen as time-based series of 16-dimensional points associated to each test.

2.2.2. Filtering

A notch filter at 50 Hz was preliminarily applied to all the signals to remove a signifi-
cant component produced by noise from the power line.

2.2.3. Standardization

Since different signals, both in the same subject and among different patients, have
significant variations in their magnitude, due to sensitivity to physical variations of the
testing setup, statistical standardization was used to normalize each signal. Standardization
consists in scaling a signal to obtain a final mean and standard deviation of 0 and 1,
respectively, through the formula:

y[n] =
x[n]− µ

σ
(1)

where µ and σ are the mean and standard deviation, respectively, of the original signal.

2.2.4. Data Windowing

Input data from different subjects consist of a limited number of records with varying
length. In order to obtain a substantial number of fixed-size segments to use as inputs to
the PCA, and thus providing a statistically significant set of data, input signals are split
into windows of fixed size w along the time axis. Windows also overlap by o samples, so
that the n-th data window contains samples in the range [ (w − o) n , (w − o) n + w − 1 ]
of the original data.

Data windowing is also commonly performed in neural networks and other machine
learning frameworks [17,31,45], with w and o being essential hyper-parameters to be
established. Section 3 describes the values that were used.

Data windows from different tests are finally merged, so that the final dataset has the
size N × w × 16, where N is the total number of data windows.

2.2.5. Data Augmentation

When the number of data inputs used to train the neural network are not equally
distributed among all the different classes, a bias towards a specific category may result.
The standard solution to this issue is data augmentation, i.e., generating more data for
classes with the least amount of occurrences from what is already available.

In this work, the oversampling algorithm was used, where data from classes with a
lower number of inputs are duplicated to increase the size of those classes. Moreover, to
avoid perfectly identical sequences, some noise with a Gaussian distribution was added to
the new data. Section 3 reports the chosen magnitude of the added noise.

In addition to a more balanced statistical distribution, the benefit of this kind of data
oversampling is a larger number of data, provided that the dataset is limited in size. Adding
some random noise to the duplicated data allows for a bigger variety in the input samples,
useful for proper training of the neural network.

2.3. Spectral Representation

As mentioned, an essential step of this algorithm is converting the original data into a
spectral representation using the DKLT. To this end, with X being a generic data matrix,
where each row represents a sample, a standard method consists in using the singular
value decomposition (SVD), such that

X = USVT (2)
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where S is a diagonal matrix of singular values, and U, V contain the singular vectors.
Using that, a new matrix can be defined, namely

K = XV (3)

which expresses X as a set of features, in terms of the base represented by V, since X can be
recovered as X = KVT .

Then the principal component analysis (PCA) is performed. Only the most significant
singular values are retained. (2) is usually constructed so that singular vectors are in
decreasing order of magnitude so that the p most significant ones are associated to the
first p columns of V. In this way, K can have fewer columns than X, with only the most
representative components of the signals being retained, leading to lesser complexity.

In the case of the present work, a complication arises from the input data having more
than two dimensions: the size is N × w × 16 due to windowing (Section 2.2.4). In order
to apply (2) and (3), the data are reduced to a bidimensional matrix, X, of size (16N)× w,
and then the compressed matrix, K (which is (16N)× p), is reverted back to its original
three-dimensional shape as follows:

RN×w×16 → RN×16×w → R(16N)×w ∋ X

X DKLT−−−→ K

K ∈ R(16N)×p → RN×16×p → RN×p×16

(4)

where p is the number of components retained after the DKLT (p < w). The choice of the
intermediate steps responds to the need of obtaining a conveniently sized matrix for the
SVD, such that the resulting vector base is a statistically significant representation of a
portion of any EEG trace.

2.4. Design of LSTM

The RNN used in this work consists of the layers listed in Table 2. The specific sizes
shown refer to a truncation to p = 50 components of the signal features, resulting in each
input (data window) having a size of 50 × 16.

Table 2. Details of RNN architecture (P = output size of LSTM 1 layer; Q = number of classes).

Layer Input Size Output Size Parameters

LSTM 1 (–, 50, 16) (–, 50, P) 4 (P2 + 17 P)
Dropout (–, 50, P) (–, 50, P) 0
LSTM 2 (–, 50, P) (–, 8) 4 (8 P + 72)
Dropout (–, 8) (–, 8) 0
Dense (–, 8) (–, Q) 9 Q

The core of the network is represented by two cascaded LSTM layers, having different
numbers of neurons present in the two layers but with same “tanh” activation function
for all the input layers. Each LSTM layer is followed by a dropout layer with 20% rate,
randomly discarding part of the input in order to reduce overfitting. Overfitting is a
common problem when training a DNN, occurring when the network adapts too closely
to the training data, resulting in poor predictions on different test data. An effective
solution, beyond tuning all the network hyperparameters, is using dropout, which involves
discarding different parts of the data at each training epoch to prevent the network from
fitting too closely to the same data. Dropout is applied both within the internal components
of the LSTMs and by the dedicated layers.

The last component of the network is a fully connected (dense) layer with a linear
activation in combination with a sparse categorical cross-entropy loss (set with the option
“from_logits = True”), performing the final classification of the input sample. The linear
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activation leaves the raw scores unchanged and relies on the loss function to induce
the correct behavior during training, returning as output a logits tensor. In TensorFlow,
logits are the raw, unnormalized predictions output by a neural network’s final layer
before any activation function is applied. These logits are essentially the scores for each
class or category, indicating the model’s confidence in its predictions. Logits are essential
intermediates in the classification process, providing numeric representations of the model’s
confidence in each class. These raw scores enable further processing to derive meaningful
predictions and are crucial for tasks like multi-class classification, where the model must
distinguish between multiple categories. Following the computation of logits, then the loss
function takes a vector of ground truth values and a vector of logits and returns a scalar
loss for each example, encoding the logits tensor into a probability distribution. This loss is
equal to the negative log probability of the true class, and thus the loss is zero if the model
is sure of the correct class. Particularly, the sparse categorical cross-entropy loss function
serves as the objective function to be minimized during the training process to optimize
the output, and it is represented as:

J(W) = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)] (5)

where W is the set of network parameters (like node weights), N is the number of input
samples, and yi and ŷi are the true and predicted outputs, respectively. The Adam optimizer
with a learning rate of 0.001 and the accuracy metrics are used for all the models that are
tested.

3. Experimental Results

Several experiments were performed, with different combinations of diseases, accord-
ing to their relevance from a medical point of view, as described in Section 1:

• N, AD, FTD, LBD;
this test tries to discriminate among the main degenerative dementias (AD, FTD, LBD),
collectively called DDs;

• N, AD, FTD, LBD, PSP;
this is to try and discriminate PSP in addition to the DDs;

• N, AD, FTD, LBD, VAD;
this is to try and discriminate VAD in addition to the DDs;

• N, DD, VAD;
where the three DD classes are fused together;

• N, AD, FTD, LBD, PSP, VAD;
this is the last test that comprises all the classes.

For every group of classes, several LSTM models were designed, each composed of a
first LSTM layer with different output sizes to evaluate their effect on the final accuracy,
and a second LSTM layer with a fixed size of 8 units.

The parameters chosen for the experiments are the following:

• Window size: 256 samples (2 s) with 50% overlap. Optimal values were established in
a previous work using the same data ([17]).

• DKLT principal components retained: 50. Experimentally chosen based on relative
magnitude of the most significant singular values in DKLT decomposition (Section 2.3).

• Training epochs: 100.
• Data augmentation: oversampling, with added Gaussian noise with 3% standard

deviation relative to signal (Section 2.2.5). This value was experimentally chosen
among a set of different values; experiments showed that a noise in the 3–10% range
improved the final results.

• Data split: dataset randomly split into training and testing sets, in a 75%/25% ratio.
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All the experiments were conducted using TensorFlow and Keras (v. 2.15) to train and
test the models.

Table 3 summarizes the effectiveness of all prototypes. In particular, Table 3 reports the
performance of the different implemented LSTM models, grouped by number of classes, in
terms of model complexity and testing accuracy, specifying the number of input frames
(data windows) used for the training set and the testing set.

Table 3. Experimental results for the different LSTM models.

Model # Classes Training Size Testing Size LSTM Size N. Parameters Testing
Accuracy (%)

1

N, AD, FTD, LBD 85,698 28,566

(8, 8) 1380 90.7
2 (16, 8) 2948 96.4
3 (24, 8) 5028 98.0
4 (32, 8) 7620 98.6
5 (40, 8) 10,724 98.7

6

N, AD, FTD, LBD, PSP 107,122 35,708

(8, 8) 1389 88.0
7 (16, 8) 2957 95.4
8 (24, 8) 5037 97.6
9 (32, 8) 7629 98.6
10 (40, 8) 10,733 98.8

11

N, AD, FTD, LBD, VAD 107,122 35,708

(8, 8) 1389 84.2
12 (16, 8) 2957 93.0
13 (24, 8) 5037 96.7
14 (32, 8) 7629 97.7
15 (40, 8) 10,733 97.9

16

N, DD, VAD 164,452 54,818

(8, 8) 1371 91.7
17 (16, 8) 2939 96.7
18 (24, 8) 5019 98.0
19 (32, 8) 7611 98.9
20 (40, 8) 10,715 99.2

21

N, AD, FTD, LBD, PSP, VAD 128,547 42,849

(8, 8) 1398 79.0
22 (16, 8) 2966 92.0
23 (24, 8) 5046 95.4
24 (32, 8) 7638 97.0
25 (40, 8) 10,742 98.0

With the increase in the number of classes to recognize, obtaining good results required
increasing the size of the LSTM layers, namely from (8, 8) to (40, 8). It can be noted that
there is still an increase in accuracy as the number of nodes in the input layer increases,
even in cases with a small number of classes. In these latter cases, though, the accuracy
improvement is less significant (e.g., for the group N, AD, FTD, LBD, the accuracy only
rises from 98.6% to 98.7% for a number of nodes varying from 32 to 40).

In general, increasing the number of nodes in the first layers leads to a boost in
precision but at the same time to an increase in the number of network parameters and
consequently in the computational complexity. Taking into account that the number of
parameters impacts the computational effort of the platform that will have to perform the
classification and therefore the inference times, a good compromise seems to be the model
composed of a first layer of 24 nodes, which manages, in all combinations of classes, to
maintain a good accuracy (above 95%) with a reduced computational cost compared with
subsequent models (about 5000 parameters).

As a matter of computational cost, it can be seen that the number of parameters is
several orders of magnitude less than [22], which was examined in Section 1 as a related
work, while the accuracy is still very high.
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For the LSTM configuration (24, 8) considered as the best case based on the previous
considerations, the resulting confusion matrices are reported in detail in Figures 3–7, whereas
Tables 4–8 report the performance in terms of sensitivity, precision, and F1-score.

As a further test, for the fully comprehensive case with all the classes, a k-fold valida-
tion was performed: input data are randomly mixed like in the previous tests, but five tests
are performed, using each time a number of the data as validation and the rest as training.
Results are reported in Table 9, together with the average of the tests.
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Figure 3. Confusion matrix for model #3 of Table 3.

Table 4. Classifier performance for model #3 of Table 3.

Class Sensitivity (%) Precision (%) F1-Score (%)

N 98.0 97.8 97.9
AD 97.6 98.3 98.0
FTD 97.9 98.0 97.9
LBD 98.5 98.0 98.2

N AD FTD LBD PSP
Predicted label
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 la
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l

0.96 0.01 0.01 0.01 0
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Figure 4. Confusion matrix for model #8 of Table 3.
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Table 5. Classifier performance for model #8 of Table 3.

Class Sensitivity (%) Precision (%) F1-Score (%)

N 96.1 98.2 97.1
AD 97.4 97.0 97.2
FTD 97.4 97.3 97.4
LBD 98.3 96.9 97.6
PSP 99.0 98.9 98.9

N AD FTD LBD VAD
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0.2

0.4

0.6
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Figure 5. Confusion matrix for model #13 of Table 3.

Table 6. Classifier performance for model #13 of Table 3.

Class Sensitivity (%) Precision (%) F1-Score (%)

N 97.5 95.5 96.5
AD 95.8 97.1 96.5
FTD 97.4 96.9 97.1
LBD 97.3 97.5 97.4
VAD 95.5 96.4 95.9

N DD VAD
Predicted label

N
DD

VA
D
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ue

 la
be

l

0.99 0.01 0

0.01 0.97 0.01

0 0.02 0.98

0.0
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0.8

Figure 6. Confusion matrix for model #18 of Table 3.
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Table 7. Classifier performance for model #18 of Table 3.

Class Sensitivity (%) Precision (%) F1-Score (%)

N 98.9 98.3 98.6
DD 97.5 97.3 97.4

VAD 97.5 98.3 97.9

N AD FTD LBD PSP VAD
Predicted label

N
AD
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D
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l

0.95 0.01 0.02 0 0 0.02

0.01 0.94 0.01 0.01 0 0.02

0.01 0.01 0.96 0.01 0 0.01

0.01 0.01 0.01 0.95 0 0.03

0.01 0.01 0 0 0.97 0

0.02 0.01 0.01 0.01 0 0.95
0.0

0.2

0.4

0.6

0.8

Figure 7. Confusion matrix for model #23 of Table 3.

Table 8. Classifier performance for model #23 of Table 3.

Class Sensitivity (%) Precision (%) F1-Score (%)

N 95.2 93.9 94.6
AD 94.5 95.3 94.9
FTD 95.6 94.7 95.1
LBD 94.5 97.6 96.0
PSP 97.4 98.5 98.0
VAD 95.0 92.5 93.8

Table 9. k-fold validation (k = 5) for model #23 of Table 3.

Test Accuracy (%)

1 94.3
2 95.4
3 96.2
4 95.1
5 95.1

average 95.2

4. Discussion

To show the generalizability of the proposed method, its results were compared with
other more traditional methods, and its performance was also evaluated on a publicly
available dataset.

Regarding the comparison with more traditional statistical machine learning algo-
rithms, the same data comprising all the six classes were tested with the k-nearest neighbors
(kNNs) and decision tree (DT) algorithms. The input data matrices were reduced to
bidimensional shapes through the same method used for the DKLT (Section 2.3).

Table 10 shows the results, which exhibit a much lower accuracy. As expected, lin-
ear statistical methods such as kNNs and DTs are not capable of solving such complex
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problems [46]. An accurate analysis of the effect of the classical machine learning methods
applied to a subset of this dataset, both in terms of number of subjects and classes (N
vs. AD), was conducted in [15], showing that only after a careful choice of the number of
features, and only in few cases, the accuracy exceeded 80%, remaining around 40% in the
majority of the tests conducted.

Table 10. Results of statistical machine learning algorithms applied to the six-class full dataset.

Algorithm Accuracy (%)

k-nearest neighbors 43.9
decision tree 42.0

Finally, the performance of the developed model was evaluated on a public dataset
used in the literature. Most of the datasets proposed in the literature contain two classes
related to healthy subjects and those affected by a form of dementia (for example AD
or MCI), to then perform a binary classification [23,47]. Some authors propose datasets
with three classes [48,49], to then combine them two by two and then perform a binary
classification.

To compare the flexibility of the proposed network on public datasets present in the
literature, we used one of these three-class datasets and performed the same procedure,
that is, combining the three classes into two groups. Specifically, we selected the dataset
proposed by Miltiadous et al. [49,50], where two class groupings were carried out: N vs.
AD and N vs. FTD. Binary classifications were performed using the Leave-One-Subject-
Out (LOSO) validation method. In this approach, the feature matrices of one subject are
excluded to eventually be used as the test set, while the remaining subjects constitute the
training set. This process is repeated for each subject, and the final performance results are
computed as the average for all subjects.

The Miltiadous dataset contains the EEG resting state-closed eyes recordings from
88 subjects in total: 36 of them were diagnosed with AD, 23 were diagnosed with FTD, and
29 were used as control subjects. Recordings were acquired using 19 scalp electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) and two reference
electrodes, placed according to the 10-20 international system and with a sampling rate of
500 Hz.

Table 11 shows the results obtained using the proposed LSTM network on the dataset
mentioned above, following the same procedure, that is, binary classification using LOSO
validation. For comparison, in [50], accuracies of 83.3% and 75.0% were achieved for the N,
AD and N, FTD cases respectively, but by using a much more complicated network structure.

Table 11. Results of binary classification from Miltiadous dataset, using LOSO validation.

Classes Subjects Avg. Accuracy (%)

N, AD 65 64.0
N, FTD 52 67.1

5. Conclusions

This work proposes lightweight LSTM neural networks for the classification of neu-
rodegenerative diseases from EEG recordings. Specifically, the basic architecture is an
RNN using LSTM layers as its core, which operates on the spectral representation of the
data, pre-processed with filtering and data augmentation steps in order to improve the
network performance.

Several experiments were performed, with different combinations of neurodegenera-
tive diseases, according to their relevance from a medical point of view, in order to find the
best models for each combination of classes. Experimental results show that a relatively
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simple LSTM can be used to effectively classify groups of data belonging to different classes
of disease, up to six classes including the control group.

In this latter case, a simple network configured as (24, 8) LSTM units was deemed
to be the best configuration, reaching an average 95.2% accuracy while only needing
5046 parameters. To the best of our knowledge, this is an excellent result considering that
state-of-the-art published techniques need millions of parameters in a (1,024,512) network
configuration to perform a binary (N, MCI) classification [22]. Moreover, considering all
the six classes, the accuracy obtained with the proposed method overcomes that achieved
by state-of-the-art machine learning methods.

The network topology and the number of parameters do not demand a high computa-
tional complexity at inference time, so that the network can be implemented on systems
with limited hardware and energy resources. This, in turn, may suggest further devel-
opments investigating different kinds of hardware systems, perhaps customized to the
particular working environment. Future works will focus on embedding the proposed
network architecture in wearable devices for assistive diagnosis.
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