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Abstract— In this study, a minimal setup for the ankle
joint kinematics estimation is proposed relying only on
proximal information of the lower-limb, i.e. thigh muscles
activity and joint kinematics. To this purpose, myoelec-
tric activity of Rectus Femoris (RF), Biceps Femoris (BF),
and Vastus Medialis (VM) were recorded by surface elec-
tromyography (sEMG) from six healthy subjects during
unconstrained walking task. For each subject, the angular
kinematics of hip and ankle joints were synchronously
recorded with sEMG signal for a total of 288 gait cycles.
Two feature sets were extracted from sEMG signals, i.e.
time domain (TD) and wavelet (WT) and compared to have
a compromise between the reliability and computational
capacity, they were used for feeding three regression
models, i.e. Artificial Neural Networks, Random Forest,
and Least Squares - Support Vector Machine (LS-SVM).
BF together with LS-SVM provided the best ankle angle esti-
mation in both TD and WT domains (RMSE < 5.6 deg). The
inclusion of Hip joint trajectory significantly enhanced the
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regression performances of the model (RMSE < 4.5 deg).
Results showed the feasibility of estimating the ankle tra-
jectory using only proximal and limited information from the
lower limb which would maximize a potential transfemoral
amputee user’s comfortability while facing the challenge of
having a small amount of information thus requiring robust
data-driven models. These findings represent a significant
step towards the development of a minimal setup useful for
the control design of ankle active prosthetics and rehabili-
tative solutions.

Index Terms— Surface electromyography, ankle joint, hip
joint, least squares-support vector machine regression,
kinematics estimation.

I. INTRODUCTION

THE number of lower limb amputations alongside the
reasons of amputations are variable around the world.

Traumatic injuries are the leading cause of amputations in
low and middle income countries while diabetes and periph-
eral vascular disease are more common in high income
countries [1], [2]. Falls, roads accidents, and conflicts are
the main reasons of traumatic injuries [2]. Unilateral lower
limbs amputations are the most prevalent amputation level
where the lower extremity roughly constitute around 90%
of the new amputations [1], [3], [4], [5]. Transfemoral (TF)
amputees form around 39% of the lower limbs amputations
[4]. Therefore, literature highlights a persistent need to develop
control strategies for lower limbs prosthesis that has to be
adaptive with respect to the human intent of motion in order
to restore the natural function of the amputees’ lost leg [3], [6],
[7]. To do this, possible solutions can be suggested by what
was observed in exoskeletons control, where the information
extracted from sensors placed on the lower limb was injected
into the high-level control structures to provide modulated
walking assistance to spinal cord injury or stroke patients
[7], [8], [9], [10]. Such information can be extracted from
signals as surface electromyography (sEMG) or mechanical
sensors, that have been extensively used in the development
of Human Machine Interfaces (HMI) [11], [12]. However, in a
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real-world scenario, the sEMG is the most preferred signal
to decode intended motion parameters such as locomotion
pattern, joints angles, and torques, since sEMG precedes the
development of the actual motion [13], [14], [15], [16], [17].
On the other hand, mechanical information appears as a result
of the movement [18], [19]. Thus, even if systems based on
mechanical information could provide accurate predictions,
they might introduce a delay in the control of the prosthesis or
exoskeleton, making the motion pattern unnatural [20], [21].

Two main kinds of strategies can be recognized in the
literature to predict the intended motion. The first one involves
the use of physical-based approaches as in [14], [22], [23],
and [24]. Such strategy shows very challenging issues since
it requires a description of complex physical relationships,
even when few muscles or joints are considered in the control
problem [14], [20]. The second strategy involves the use of
data-driven modalities [15], [16], [25], [26], [27] that are
advantageous since they allow to map the input signals into
target variable, without the need for describing the complex
relationship between the physical variables of interest [14].
The latter in turn is divided into two main subdivisions, i.e.
classification and regression strategies. The former involves the
prediction of a finite number of possible locomotion modes,
eventually resulting in a not smooth movement patterns gener-
ation since a discrete decision-making system is adopted [13],
[28], [29], [30]. Although classification based approaches
showed the aforementioned issues, they demonstrated to be
reliable in locomotion mode recognition so that they were
largely employed in the practical context [3], [18]. However,
while regression-based strategies were less exploited, they rep-
resent a viable solution in this field with respect to locomotion
mode recognition since their final aim is the direct decoding
of the input physiological signals into a continuous series of
values of the target parameter [25], [26], [31], [32], [33],
[34], [35], thus allowing smooth natural movement patterns,
also without the computational burden required to tune phys-
ical based models [11]. For all these reasons, in this study,
the problem of lower limb joint kinematics estimation was
faced following the regression approach, completely driven
by data.

Majority of the studies have employed the sEMG or
mechanical based information in a separate fashion [11],
[12], [15], [21], [28], [32], [36]. However, since sEMG and
mechanical signals have their own contributions and bar-
riers, possible solutions involved the fusion of sEMG and
kinematic/kinetic information to support the natural sEMG
predictive characteristic through the stability given by the
mechanical information [3], [20]. In this context, different
studies exploited the concept of fusing different sources of
information to identify the lower limbs’ locomotion modes
as, for instance, level walking, stair ascent or descent [18],
[30], [37], [38]. In [18] lower limbs locomotion modes for TF
amputees were identified by feeding support vector machine
(SVM) classifier with the myoelectric activity of up to eight
residual thigh muscles and one 6 degrees of freedom (DOF)
load cell, fixed on a prosthesis. Spanias et al. [37] faced
the same problem by using sEMG data from eight probes,
with twenty mechanical sensor channels, whereas in [38],

an enhanced accuracy was obtained by fusing nine sEMG
electrodes with thirteen inertial measurement units (IMU)
from the leg prosthesis. Zhang and Huang [30] used eight
sEMG channels information from the thigh muscles with
one 6-DOF load cell fixed on a prosthetic pylon and two
IMUs, fixed within the prosthetic socket for the purpose of
task transition prediction of TF amputees. They also investi-
gated the possibility of reducing the setup complexity while
maintaining the desired performances and proposed a final
reduced setup of four sEMG channels, one load cell and
one IMU [30].

On the other hand, neuromuscular–mechanical fusion was
less investigated under regression perspective. For instance,
Gupta et al. [20] investigated the effect of adding knee
trajectory to sEMG signals of the shank muscles, to estimate
the ankle joint angle. They reported significant improvements
made by the inclusion of mechanical information to the
regression models. Although the proposed method provided
promising results, it is not applicable for TF amputees since
it is not possible to record the shank muscles sEMG or knee
joint angle for them [7] and [39].

From the aforementioned studies, two different issues
emerge as the main limitation in lower limb joint kinematics
estimation for prosthetic control. Firstly, the high perfor-
mances of the classification or regression models, achieved
in the previous studies, were obtained at the expense of a
large number of sensors placed over the human body. This
eventually results in cumbersome setups that hamper the
practical applicability of the proposed solutions in a daily
usage scenario. This represents a well-acknowledged problem
and in this view some efforts have been yet devoted for
dealing with this issue, for instance, Keleş and Yucesoy [36]
investigated the possibility of boosting the data-driven model
performances for ankle joint angle estimation by fusing sEMG
from non-functionally and functionally related muscles, con-
cluding that it is possible to estimate the ankle angle trajectory
using a combination of two thigh muscles and one shank
muscle. Although a reduced sEMG setup was used, myoelec-
tric information from the shank was still to be included [36],
making the proposed solution not applicable for TF amputees.
This limitation can be recognized also in other studies, that
included IMU sensors placed on the shank for ankle joint
angle estimation [12], [20], [27]. Hence, despite they may
sound promising solutions for volitional lower limb joint angle
estimation, they are not directly applicable for TF amputees.
Hence, the estimation of ankle joint kinematics from the upper
part of the lower limb represents the second main issue that
deserves to be addressed in this field. In this context, it’s
also important to highlight the clinical value of a reliable
ankle angle estimation approach if achieved, since this angular
position can be used as a position control modality for active-
ankle prostheses [40], particularly beneficial for individuals
with limited influence over the ankle joint [41], such as an
artificial ankle joint in TF amputees. An ankle position control
approach, as highlighted in literature, plays a vital role in
ensuring proper heel-strike during walking and facilitating
foot clearance in the swing phase, emphasizing its crucial
functional role in human locomotion aid [42].
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Therefore, the purpose of the study was to estimate the
flexion-extension ankle angle by relying only on information
from proximal sources that can be available also in the case of
a TF amputation. Thus, the first hypothesis was that a minimal
sEMG setup, involving exclusively thigh muscles, can provide
a reliable estimation of ankle angular kinematics. Moreover,
the second hypothesis was that the introduction of kinematic
information that accounts for the upper trunk segment e.g.
hip joint angle trajectory can improve the reliability of the
ankle regression model. For this reason, it was investigated
the effects of combining hip joint angle trajectory with thigh
muscles information in data-driven models, tested over long
series of strides. In the context of finding a compromise
between the simple approach and high performance, the
performances of two features sets extracted from the sEMG
data were compared. Feature sets are time domain features
set (TD) [43], widely adopted in literature, and the Wavelet
features set (WT) which has shown high performances in
classification purposes [29], [44], [45], [46], [47] and most
recently also investigated for regression of joint angles [16].
Machine learning algorithms implemented in this study are
Least Squares - Support Vector Machine (LS-SVM) [15], [25],
Random Forest (RNF) [48], and Artificial Neural Networks
(ANN) [36].

II. MATERIALS AND METHODS

A. Data Acquisition
An a priori power analysis performed using G*Power

software [49] has shown that six subjects with 4 record-
ing sessions would be sufficient to ensure 90% power to
detect (p < 0.05) a difference in estimated ankle angle
using myoelectric data and the latter fused with mechanical
data of hip kinematics. Therefore, six non-disabled subjects,
4 females and 2 males, with an age range of 14-50 years, have
participated in the experiment. All volunteers were healthy,
without any muskuloskeletal, neurological or any other kind
of known disease, thus not belonging to vulnerable groups The
experimental protocol required that each subject walk back and
forth through a 5 m-long path, for a total of 72 gait cycles for
each acquisition trial. Each subject performed 4 trials. The
experiments were conducted at the Movement Analysis Labo-
ratory of UniversitÃ Politecnica delle Marche (Ancona, Italy),
following the Helsinki declaration principles. The equipment
used are all commercially available that satisfies technical
safety and conformity requirements for clinical applications
and involves exclusively non-invasive probes. All the subjects
have given their consent to perform the experimental procedure
after they have been sufficiently informed about the study
goals and methods. All subjects were given enough resting
time after each trial and they did not report any stress or
muscular fatigue. An alphanumeric code was assigned to each
subject and data were stored in an internal repository without
any sort of connection to ensure anonymity and confidentiality.

During walking, three sEMG electrodes (FREEE EMG,
BTS Bioengineering) were attached to the thigh muscles
of the right leg of each subject, following the SENIAM
guidelines [50]. The sEMG signals were sampled at 1000 Hz

and recorded from Rectus Femoris (RF), Biceps Femoris (BF),
and Vastus Medialis (VM). Retroreflective markers were posi-
tioned following a full body kinematic protocol [51], which
can produce reliable kinematic quantities in the sagittal plane
utilizing a minimal number of markers. Their trajectories were
captured using 8 infrared cameras system (SMART-DX6000,
BTS Bioengineering), recorded at 250 Hz. To avoid inter-
examiner variability, the same expert personnel placed the
sEMG electrodes and retroreflective markers on each subject.

B. Signal Processing and Feature Extraction
Raw markers data were filtered using a Butterworth 4th

order, zero-phase, low pass filter, with a cutoff frequency
equal to 9 Hz based on the residual analysis method [52].
Gait epochs were segmented using the vertical component
of the right heel marker trajectory. Then, the sagittal plane
flexion-extension angle of the hip and ankle joints were
reconstructed for each segmented gait epoch, based on retrore-
flective marker information, following [51]. The sEMG signals
from the RF, BF, and VM muscles were segmented in synchro-
nization with the gait epoch data and then were filtered using
a Butterworth 2nd order bandpass filter of 10 Hz and 400 Hz
cutoff frequencies, respectively. Features were extracted from
the sEMG data: TD features include mean absolute value
(MAV), root mean square (RMS), and waveform length (WL)
[43], [53], [54]. The WT features were energy, variance,
standard deviation, waveform length, and entropy [16]. Each
of the above-mentioned features was extracted by the outputs
of an octave-band filters bank at 5 levels [44], [45], [46],
[47] thus having a total of 30 features of each channel of
sEMG. Both feature sets were extracted using a window size of
200 ms and sliding increment of 40 ms to have an update rate
of 25 Hz [55], [56]. The reason behind selecting these 2 feature
sets is to compare the performance of the WT feature set that
results in a higher dimensional representation of the myoelec-
tric information at the cost of being more computationally
expensive [47], with respect to the light-weight TD feature set
that is fast and reliable for real-time applications [43].

Then, kinematic angles of ankle end hip data were down-
sampled by a factor of 10 to achieve the same update rate
of 25 Hz that ensures synchronization with the sEMG-based
feature sets. It is worth noticing that this dowsampling factor
still guaranteed a proper reconstruction of gait kinematics [52].
The hip angle joint was normalized using Z-score normaliza-
tion since it’s less sensitive to outliers in data distribution [57],
[58]. Thus, the normalization of the hip angle was done as in
Eq. (1):

θn =
θ − µ

σ
(1)

where θn is the normalized hip joint angle, θ is the hip joint
angle, µ is the mean of the hip joint angle data from the
training sets and σ is its standard deviation. Training and
testing hip joint angle data were normalized using the mean
and standard deviation calculated from the training set.

The performance of both feature sets were evaluated in a
first experiment to assess which was the most reliable for
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the purpose of this study. A flowchart of the experimental
procedure is reported in Fig. 1.

C. Learning Algorithms
Since the relationship between sEMG features and ankle

joint angle is nonlinear, one of the possible solutions is to
translate it into a linear regression problem by mapping the
input feature space into a higher dimensional space [15], [25],
[59]. To this aim, the LS-SVM with a Radial Basis Function
(RBF) kernel was employed. The RBF is mathematically
expressed as:

K (X i , X j ) = exp

∣∣∣∣X i − X j
∣∣∣∣2

2σ 2 (2)

where (X i , X j ) are any input feature vectors and (σ 2) is
the kernel parameter which was tuned together with the
regularization parameter (γ ) of the model in each training
trial through Coupled Simulated Annealing (CSA), followed
by simplex fine-tuning step and using robust cross-validation
score function as an optimization performance measure [60],
[61].

In this paper, a single-layer Artificial Neural Network
(ANN) with 100 neurons was also applied to compare
the results yielded from this shallow model with the other
higher-complexity models implemented.

Moreover, random regression trees vectors are used to
construct a RNF model through bootstrap re-sampling, such
that each random vector (θk) is independent and has the
same distribution and the tree-structured regression models
are h(x, θk), k = 1, 2, . . . p, where x is the input. The
predicted value represents the averaged value of h(x, θk) of
each tree [48], [62].

D. Regression Experiments
Given the experimental protocol (Section II-A), a 4-fold

cross-validation method was implemented: each fold consists
of 72 gait cycles thus having a very long series of strides
of normal walking for a total of 288 strides for each patient,
unlike most of the other previous studies which involved few
numbers of strides [20], [25], [36], [63], using a treadmill [25],
[63], or performing movements while sitting [25], [48], [64].
The selected validation scheme avoids to expose the models to
over-fitting and it guarantees to test the models over a reliable
amount of unseen data.

A first regression experiment was carried out to assess
which features set between TD and WT provides the best
performances among the learning architectures described in
section II-C. Hence, for each subject and for each thigh
muscle, the models were trained and tested using TD and
WT feature sets separately. Furthermore, the contribution of
each muscle was also assessed to investigate the existence of
minimal and reliable setup configuration.

In the second experiment, the hip angle trajectory was added
to sEMG data to overcome any potential underestimation
due to using a single not functionally related muscle to the
ankle joint. Hence, a minimal hybrid combination between
the information from the thigh muscle and a single kinematic

variable was assessed by training and testing the learning
algorithms. Such models were then compared with those in
which kinematic and sEMG data were used separately. The
selection of the hip joint angle to be fused with the muscle
EMG information was based on the fact that the lower limb
joints angles in the sagittal plane are tightly coupled so their
relationships can be described by regular loops constrained
close to a plane of angular covariation [65], [66], [67].
Therefore, since the hip angle is the only joint angular position
variable that is possible to be acquired from the lower limbs in
the case of transfemoral amputees, it was included in the input
to the data-driven models to evaluate its capability to capture
the above-described kinematic relationship without using the
knee joint trajectory as an input [20], [21] which does not
exist for the latter individuals.

To assess the validity of the minimal sEMG setup, i.e.
BF fused with hip trajectory, and to verify the improvement
made by the fusion of kinematics with muscle activity, a third
regression experiment was carried out. The sEMG features
were extracted from the three thigh muscles configurations
(3M) and compared with models fed by the same features
fused with the hip joint trajectory to investigate the balance of
results accuracy and setup complexity when compared to the
simpler above-mentioned configurations.

E. Performance Evaluation and Statistical Analysis
The evaluation of the performance of each of the learning

models, setup configurations, and features set in each trial is
mainly done using 2 parameters which are Root Mean Square
Error (RMSE) and Coefficient of Determination (R2) of the
estimated target ankle joint angle that are calculated as the
following:

RMSE =

√
1
n

∑
i

(θi − θ̂i )2 (3)

R2
= 1 −

∑
i (θi − θ̂i )

2∑
i (θi − θ)2

(4)

where n is the number of tested samples, θi is the actual ankle
angle value and θ̂i is the estimated ankle angle value.

Further analysis is done using the quantile-quantile (q-q)
plot to check if the estimated and actual ankle joint trajectory
follow the same distribution thus testing its heteroskedastic-
ity [36]. Also, a plot of the average gait cycle with shaded
standard deviation (SD) around for both actual and estimated
values is provided to visualize the goodness of fit of the long
series of strides in a single figure.

Statistical comparisons were performed by paired t-test
(normally distributed data) and Mann-Whitney U-test (not
normally distributed data). The significance level was set
at 5%. Bonferroni correction for multiple comparisons was
applied to handle type I error rates. Cohen’s D effect size (d)
was also calculated to quantify the significance.

III. RESULTS

A. TD and WT Feature Sets
Table I shows that the RMSE values of the target ankle

trajectory estimated from either one of each muscle sEMG
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Fig. 1. Methodological procedure for estimating the ankle joint angle. First, ankle joint trajectory was estimated using either time-domain features
or wavelet features only. The feature set which showed the best estimation performances has been fused with the hip joint angle for possible
improvements. Dashed lines denote data used only in training.

TABLE I
AVERAGE RMSE VALUES (±SD) OF THE ANKLE JOINT ANGLE AMONG ALL THE SUBJECTS ESTIMATED USINGEITHER TD OR WT FEATURE SETS

OF THE EMG SIGNAL OF EACH ONE OF THE THIGH MUSCLES (BF, RF, AND VM) USING ALL THE SELECTED MACHINE LEARNINGALGORITHMS

(ANN, LS-SVM, AND RNF)

feature sets are close to each other and lie between 5.5 deg
and 6.5 deg except for that of the NN model using WT feature
set has roughly exceeded 7 deg. Therefore, TD feature set was
chosen to proceed the study with.

B. Thigh Muscles
Table I illustrates that the estimation from BF muscle out-

performed the use of either one of the other two thigh muscles.
In fact, RMSE values for the BF muscle always lie below
6 deg, unlike the other two muscles, whose RMSE was always
higher. Confirmation about the goodness of the results can be
appreciated in Fig. 2(a) where a graphical comparison between
the estimated and actual target ankle angle are viewed for a
representative subject.

C. Fusing the EMG Muscles Information With the Hip
Kinematic Trajectory

Fig. 3 shows that the RMSE value in the case of the fused
input is reduced to nearly about 4.5 deg and below using
the three previously mentioned machine learning models.
In passing, such RMSE values are lower than those obtained
by using only hip angle or BF features.

Then, the RMSE is further reduced into a value of less than
4.0 deg when using the BF, RF, and VM muscles fused with
the hip ankle trajectory as input for regression. However, using
the same three thigh muscles without adding the hip joint angle
led to RMSE well above 4.0 deg (Fig. 4). Improvement made

by introducing the hip trajectory in the models on the ankle
angle estimation performance are evident also in Fig. 2(b) and
Fig. 2(c).

The value of adding hip joint kinematics is further con-
firmed by the R2 value, that resulted above 0.6 only when the
hip kinematics was considered together with the thigh muscles
activity as demonstrated in Fig. 5.

Regarding the different models performances, a comparison
between the three machine learning models (ANN, LS-SVM,
and RNF) was done for every tested combination of signals.
Outcomes reported in Table I, Fig. 3, and Fig. 4 showed a
slightly lower RMSE for the LS-SVM with respect to the
other models for all of the tested combinations, despite the
differences resulted comparable.

IV. DISCUSSION

This paper aims to investigate minimal setup configura-
tions to estimate the flexion-extension ankle joint trajectory
in non-constrained gait conditions in a view of possible
applicability for transfemoral amputees. Thus, only infor-
mation from sources all located above the knee joint was
employed, i.e. from body structures not directly involved in
the flexion-extension of the ankle [3].

The RMSE values obtained using both feature sets (Table I)
were nearly at the same level for each thigh muscle, regardless
of the regression algorithm. The results reported in the study
suggested that in a minimal sEMG setup configuration, only
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Fig. 2. Actual (blue line) and estimated (orange line) ankle joint trajectories obtained by using only BF features (panel 2(a)), BF features fused
with hip joint angle (panel 2(b)), and features from all thigh muscles fused with the hip joint angle (panel 2(c)). In all cases, the LS-SVM regression
model was used.

Fig. 3. The average RMSE of the regression with its standard deviation
(SD) obtained in the three different conditions as described in Sec. II-D
is shown. Asterisks indicate the significance levels as follows: * for (p <
0.05), ** for (p < 0.01), *** for (p < 0.001), and **** for (p < 0.0001).

Fig. 4. RMSE of the regression models fed with EMG features from the
three thigh muscles (BF, RF, and VM), and with the inclusion of hip joint
trajectory.

a few time descriptors of muscle activity are enough for
estimating ankle angle kinematics. It deserves to be noticed
that TD features give also computational advantages with
respect to more demanding feature extraction procedures, such
as those used in time-frequency representation, that provide

Fig. 5. Averaged R2 values obtained in testing among subjects for
different input combinations by using the LS-SVM model.

also a large feature space [44]. This finding does not intersect
with previous results as in [16] where it was concluded that
regression of TD features outperforms that of WT.

Among the thigh muscles, the BF appeared to be the most
informative for the ankle angle estimation since it resulted in
significantly lower RMSE (Table I). This is supported also
by considering the average Pearson correlation coefficient
(r) between the ankle joint angle trajectory and the WL of
the three thigh muscles, which resulted in 0.16, 0.09, and
0.33 for VM, RF, and BF respectively, with p < 0.01 in each
case. Therefore, BF showed the highest correlation with the
ankle angle among the examined thigh muscles, highlighting a
more phasic behavior with respect to the ankle plantar- dorsi-
flexion, even if it is not functionally involved to the ankle
kinematics. In passing, the better performances of the BF, with
respect to RF and VM, for ankle angle estimation are also
highlighted by the R2, whose BF value resulted the highest
among the thigh muscles (Fig. 5). Despite a biomechanical
interpretation was beyond the scope of the present work, the
role of BF as a predictor of ankle joint kinematics, can be
linked to its role as biarticular muscle, that regulates knee
flexion and indirectly acts on the ankle thus enhancing a
refined regulation of many locomotion functions [68]. Further,
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Fig. 6. Panel 6(a) represents the q-q plot of the error residuals for LS-
SVM with BF fused with the hip trajectory for a representative subject.
Panel 6(b) represents the estimated and real ankle trajectories averaged
over the long series of strides. Standard deviations were reported as
shadowed areas for both cases.

in a view of practical applicability it deserves to be noted that
in TF patients the BF still shows muscular activity that shares
common patterns with that of healthy subjects [69], making it
a viable zone for recording myoelectric activity after targeted
muscle reinnervation [70], [71].

To deal with the possible instability of sEMG signals [3],
it was hypothesized that including the kinematic information
of the upper part of the lower limb can be beneficial for
the ankle angle estimation. Such hypothesis was successfully
verified: the addition of the hip joint trajectory to the BF
myoelectric activity significantly improved the regression per-
formance with respect to using either BF (p < 0.001, d =

1.4832) or hip kinematics alone (p < 0.0001, d = 3.3204)
(Fig. 3 and Fig. 5). The value of including hip kinematics
information is confirmed also by the outcomes obtained when
additional thigh muscles were considered. Indeed, also in the
latter case, the hip angular trajectory enhanced the ankle angle
estimation, by lowering the RMSE below 4.0 deg (Fig. 4).
However, it is important to note that, although the 3M+Hip

configuration provided the lowest RMSE (Fig. 3 and Fig. 4),
it resulted not statistically different (p > 0.05) with respect
to the BF+Hip configuration, further supporting that BF and
hip angular displacement together may represent a reliable
minimal setup for predicting ankle joint angular displace-
ment. On one hand, this mirrors previous findings about the
improvement of joint angle estimation from myoelectric data
by including kinematic information [20], [30], [37], [38]. More
importantly, the present outcomes point out that a significant
ankle angle estimation enhancement can be obtained also by
considering the kinematics of a proximal joint and functionally
poorly related with respect to the ankle, such as the hip. This
strengthens the possible application of the proposed framework
for estimating ankle plantar-dorsi-flexion in individuals who
underwent transfemoral amputation, since both myoelectric
(BF) and kinematic (Hip) information is still available in this
kind of patients. The latter recording configuration represents
also a minimal setup that would be attractive in light of an
application in real scenarios, being unobtrusive and marginally
cumbersome for the patients.

In comparison with other studies that proposed strategies
to estimate the ankle angle using data acquired from the
upper and lower leg, Mendez et al. [34] yielded during gait
an RMSE of 7.39±2.91 deg using ultrasound approach and
Zhang et al. [72] achieved an RMSE of 4.22±1.35 deg using
sEMG in 20 gait cycles per subject. Furthermore, a deep
learning approach using 8 sEMG electrodes yielded RMSE of
3.55±0.23 deg by Lu et al. [16]. In [36] Keleş and Yucesoy
found that an RMSE of 2.25±0.34 deg can be achieved
using 2 sEMG electrodes from the thigh and one from the
shank for a few numbers of gait cycles. Although these
studies used directly related and redundant input, the RMSE
of 3.64±1.16 deg (Fig. 4) obtained in this study is comparable
to their results with the favor of leveraging the predictive
myoelectric activity and robust mechanical signals acquired
from exclusively above the knee and validated on prolonged
sessions using solely machine learning algorithms.

The finding that only a reduced amount of information from
the upper part of the lower limb is needed for achieving
a reliable ankle kinematics estimation is supported also by
considering the average R2 metric obtained in testing (Fig. 5).
LS-SVM model, trained with muscles individually, showed
significantly lower values with respect to BF+Hip configura-
tion (p < 0.0001, d = 2.2769) for RF and (p < 0.0001, d =

2.3369) for VM, indicating that the variance of the testing
data is captured in a proper manner when the kinematics
is introduced in the model. Furthermore, the R2 of the 3M
and 3M+Hip configurations showed no significantly different
values (p > 0.05, d = 0.1446) and (p > 0.05, d = 0.6943)
respectively when compared with the BF+Hip recording
setup, indicating once more that the latter can represent a
viable minimal configuration for ankle kinematics estimation.

However, for both BF+Hip and 3M+Hip configurations, the
R2 resulted well above 0.60 and 0.70 respectively, pointing out
that LS-SVM regression model resulted able to account for the
majority of the variance within the testing data, supporting
once more the applicability of the proposed solution in an
actual scenario.
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The consistency between the estimated and real ankle tra-
jectories when using the BF+Hip setup is also supported by
considering that the testing estimation residuals resulted to
be gaussian (Fig. 6(a)), thus indicating that the estimated and
real ankle trajectory have the same distribution. In addition,
the data-driven models were also able to mirror the actual
evolution of the ankle plantar-dorsi-flexion in terms of pat-
tern variability for prolonged testing trials, showing that real
and estimated trajectories follow similar temporal patterns,
in terms of both average trajectory and its variance (Fig. 6(b)).
The value of present outcomes is also strengthened by con-
sidering that in this study the testing phase was performed on
over 70 gait cycles, whereas in many similar studies fewer
strides were considered [20], [25], [36]. This experimental
point was specifically designed in order to resemble closely a
real usage application, where the continuous estimation of joint
angles during walking has to maintain performance stability
for prolonged walking sessions [20], [25], [36].

The attention provided to the practical usability of the
proposed minimal setup (BF+Hip) can be recognized also
in the fact that this work focused on natural, unconstrained
gait to have similar to real-world variability conditions which
represents a significant difference with respect to many previ-
ous studies, where the proposed lower limb angular estimation
solutions were tested in more controlled contexts, such as
constrained speed [11] or treadmill walking [73], that nat-
urally leads to constrained muscle activation profiles [74].
On the other hand, recent works in literature highlighted
the importance of different ambulation modes i.e. ramps,
or stairs in prosthetic control [16], [73], indicating that future
studies should be devoted to the generalization of the proposed
minimal setup machine-learning framework for different gait
modalities. A possible approach could be done by training
on a range of movements and assessing the model’s capa-
bility to generalize to a new locomotion mode that was
not included within the training data, that represents a still
poorly investigated field for the advancements of the prosthetic
control. Other future research can also be devoted to the
generalization of the proposed solution to multiple users to
develop a multi-user architecture for myoelectric control of
joint kinematics.

This paper has some limitations that deserve to be briefly
discussed. Firstly, experimental evaluations have been devel-
oped on intact individuals who may have different myoelectric
characteristics with respect to that of non-intact subjects.
Hence, findings of this study should be further tested on
impaired patients in order to confirm their suitability for
controlling lower limb assistive devices. In addition, hip angu-
lar kinematics has been attained by using an optoelectronic
system, that would be not directly applicable in daily living
scenarios. Thus, this requires further investigation about the
validity of the proposed methodology when hip kinematics
is recorded by means of inertial sensors, that do not require
instrumented environments [75], [76], [77]. Lastly, due to the
complex relationship between the myoelectric activity and the
kinematics variables, recent works [11], [16] have used deep
learning models to boost the estimation performance but at the
expense of higher computational load. However, their results

are still comparable to the results of the machine-learning
approaches adopted in this paper. Additionally, a final point
that deserves to be mentioned regards the comparison of data
driven models with physical based ones, that represents a
promising research avenue, since in recent studies data-driven
approaches were directly compared with biomechanical mod-
els, showing consistent performances also over consecutive
days [78].

V. CONCLUSION

In this work, a minimal recording setup was proposed for the
estimation of ankle kinematics during walking. In particular,
it has been shown that a single sEMG probe located on
a functionally unrelated muscle, such as the BF, provided
good results in terms of flexion-extension reconstruction. The
latter was further enhanced by the inclusion of the hip joint
angular trajectory. Thus, results of this study can be seen
as a first step toward the development of practical solutions
for driving prosthetic and rehabilitative devices for the ankle
joint, representing a potentially valuable solution for those
individuals who underwent TF amputation, since the required
information would be still available in this kind of patients.
Practical applicability was also emphasized by the stability of
the estimation obtained in testing, where more than 70 con-
secutive strides were considered, mirroring a free walking
scenario in an actual environment.
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