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Analysis of the error correction capability of LDPC
and MDPC codes under parallel bit-flipping

decoding and application to cryptography
Paolo Santini, Member, IEEE, Massimo Battaglioni, Member, IEEE, Marco Baldi, Senior Member, IEEE, and

Franco Chiaraluce, Senior Member, IEEE

Abstract—Iterative decoders used for decoding low-density
parity-check (LDPC) and moderate-density parity-check
(MDPC) codes are not characterized by a deterministic decoding
radius and their error rate performance is usually assessed
through intensive Monte Carlo simulations. However, several
applications, like code-based cryptography, need guaranteed low
values of the error rate, which are infeasible to assess through
simulations, thus requiring the development of theoretical
models for the error rate of these codes. Some models of this
type already exist, but become computationally intractable for
parameters of practical interest. Other approaches approximate
the code ensemble behaviour through assumptions, which may
not hold true for a specific code. We propose a theoretical
analysis of the error correction capability of LDPC and MDPC
codes that allows deriving tight bounds on the error rate at
the output of parallel bit-flipping decoders. Special attention is
devoted to the case of codes with small girth. Single-iteration
decoding is investigated through a rigorous approach, which
does not require any assumption and results in a guaranteed
error correction capability for any single code. We show an
example of application of the new bound to the context of
code-based cryptography, where guaranteed error rates are
needed to achieve strong security levels.

Index Terms—Bit flipping decoder, code-base cryptography,
error correction capability, LDPC codes, MDPC codes.

I. INTRODUCTION

Contrary to bounded distance decoders, iterative decoders
commonly used for low-density parity-check (LDPC) and
moderate-density parity-check (MDPC) codes are not char-
acterized by a deterministic decoding radius. This implies
the existence of a residual error rate that is difficult to
model theoretically, and is hence usually assessed through
Monte Carlo simulations. Nevertheless, there are applications
in which extremely low error rates are required. One of these
cases is the area of code-based cryptography, where error rates
as low as 2−80 or less are required to avoid some types of
attacks [2]–[5]. Obviously, such low values of the error rate
are infeasible to assess through numerical simulations.

Therefore, an important research challenge is the develop-
ment of analytical tools able to foresee the number of errors
that an iterative decoder can correct. A vast body of literature
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exists on this subject [6]–[10], which permits to determine
lower and upper bounds on the guaranteed error correction
capability of the code. Many of these approaches use expander
graph based arguments [8], [9], whose application, however,
is known to be NP-hard [11] and can be used for a limited
number of cases and under specific constraints. Moreover, the
bounds these methods provide are often loose, particularly in
case of small girths. To overcome these limitations, recently,
in [12] and [1], a new approach has been proposed to evaluate
the guaranteed error correction capability of LDPC and MDPC
codes. In [12], in particular, a majority-logic decoder is consid-
ered and it is shown that its error correction capability depends
on the maximum number of superimpositions between any two
columns of the code parity-check matrix. This allows deriving
conditions under which a single iteration of this decoder
corrects all errors up to a given weight. These results are
extended in [1], where a more general decoder is considered
and tighter bounds are derived.

As a first contribution, this paper improves the analysis in
[1], by providing even tighter bounds. For such a purpose,
we focus attention on Gallager’s bit flipping (BF) decoder
[13], because of its high computational efficiency, due to
a relatively low algorithmic complexity. Low-complexity it-
erative decoders are important in many applications where
high throughputs have to be achieved. Starting from its basic
principle, several variants of Gallager’s BF algorithm have
been proposed. We focus on the so-called parallel BF. Roughly
speaking, the parallel BF algorithm operates as follows. At
each iteration, all parity checks are computed: all bits involved
in a number of unsatisfied parity-check equations overcoming
some suitably chosen threshold are flipped and the syndrome
is updated accordingly. The procedure is iterated, until a null
syndrome is obtained or a maximum number of iterations is
reached. Following a more general approach than [14], where
parallel BF is introduced, we consider a threshold that is not
fixed, but rather depends on some features of the code under
investigation.

In principle, other families of iterative decoding algorithms,
such as those relying on the sum-product algorithm (SPA) [15]
or on modified versions of the original BF algorithm [16],
[17], could achieve better error correction performance than
BF decoding. However, we focus on channel models without
soft information, where decoding algorithms working with
discrete values are a natural choice. Moreover, the parallel
BF algorithm is characterized by a very high algorithmic
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efficiency, which is an important requirement in code-based
cryptography [18], [19]. Such an area of application is experi-
encing an increasing interest by the scientific community due
to the standardization initiative of post-quantum cryptosystems
started in 2016 by the US National Institute of Standards
and Technology (NIST) [20]. In this context, state-of-the-art
schemes based on LDPC and MDPC codes such as LEDAcrypt
[21] and BIKE [22] employ decoders such as BF or some of
its variants. This is all the more evident by considering that in
these applications very large codes are usually required and the
adoption of more complex decoding algorithms would yield
unacceptable delays.

When LDPC or MDPC codes are used in code-based
cryptosystems, the structure of their parity-check matrix is
mainly dictated by security issues. This may yield unavoidable
short cycles in the Tanner graph describing the code. More
precisely, in these systems the sparse parity-check matrix
of an LDPC or MDPC code is used as a secret key and
it usually has quasi-cyclic (QC) structure. Starting from a
code ensemble, according to the chosen QC structure, the
parity-check matrix of the code is randomly picked from the
ensemble, thus often yielding a large number of cycles of
length 6 or even 4. Accurate evaluation of the guaranteed error
correction capability of codes with small girth has not been
extensively investigated in previous literature. This is another
relevant contribution of this paper.

We devote our attention to the first iteration of BF decoding.
For it, we provide an upper bound on the error rate of
LDPC and MDPC codes which does not rely on any specific
assumption. We note that some lower and upper bounds on
the error rate under BF decoding are also proposed in [23],
but their computation requires pre-processing of all possible
initial error patterns with weight up to a certain value; thus,
the approach becomes unfeasible as the error probability of the
channel decreases or error patterns with too large weight have
to be considered. The same remark holds for the approaches
proposed in [24]–[27], which allow estimating the error rate of
LDPC codes under BF decoding. Our approach instead is fully
analytical, and does not require any preliminary simulation or
assumption. To the best of our knowledge, this is the first time
such problem is faced in exact analytical terms.

The paper is organized as follows. In Section II we introduce
the notation used throughout the paper and recall some basic
notions of LDPC and MDPC codes. In Section III we discuss
the error correction capability of codes with small girth under
BF decoding. In Section IV we provide an upper bound on
the error rate of LDPC and MDPC codes under BF decoding.
In Section V we present the results of numerical simulations
and show an application of the derived bounds to code-based
cryptography. We draw some conclusions in Section VI.

II. NOTATION AND DEFINITIONS

We use capital letters to denote sets, adopting caligraphic
fonts for sets of vectors. The cardinality of a set A (or A)
is denoted as |A| (or |A|). Given a set A, we use a ← A to
express the fact that a is randomly extracted, with uniform
law, among all the elements of A, and the same notation is
used for sets of vectors.

The binary Galois field is denoted as F2. We use small bold
letters to denote vectors, and capital bold letters to denote
matrices. Given a matrix H, its entry at position (i, j) is
denoted as hi,j and its k-th column is denoted as hk. Given
a vector e, we refer to its j-th entry as ej . Given a set A,
we have e(A) = {ei s.t. i ∈ A}. The AND, OR and ex-OR
operations are denoted as ∧, ∨ and ⊕, respectively, while ∪
and ∩ denote the union and intersection between sets. The
Hamming weight and the support of any vector e are referred
to as wt (e) and S(e), respectively. The set of integers between
a and b, extremes included, is indicated as [a, b]. We denote
the set of all binary vectors of length n and Hamming weight
m as Bm.

A. LDPC and MDPC codes
A binary LDPC code is the null space of a binary parity-

check matrix H containing a small number of ones compared
to the total number of entries. Denoting the code block length
as n and the code dimension as k, H has r ≥ n − k rows
and n columns. The syndrome of a binary vector e is defined
as s = eH>, where > denotes transposition and the product
is performed over F2. Any codeword belonging to the code
defined by H has an all-zero syndrome. The i-th column and
j-th row of H have weight vi and wj , respectively. The code is
said to be (v, w)-regular if each column of H contains exactly
v ones and each row contains exactly w ones. The design rate
of a (v, w)-regular code is R = 1− v

w . Regular LDPC codes
are generally characterized by w = O(log n), whereas regular
MDPC codes have w = O(

√
n). These two families of codes

allow the same decoding principle, based on the sparsity of
their parity-check matrices.

Let us introduce two classes of QC codes that will be
considered throughout the paper (in particular, in Sections
IV-C and V). Codes in the first class are defined by parity-
check matrices in the following form

H =
[
H0 H1

]
, (1)

where each Hi, i ∈ {0, 1}, is a circulant matrix of size p and
row/column weight v. The resulting codes are (v, 2v)-regular,
have block length 2p and design rate R = 1

2 . Codes in the
second class, also named (fully connected) monomial codes
[28], are defined by parity-check matrices in the following
form

H =

 Ip(i0,0) . . . Ip(i0,w−1)
...

. . .
...

Ip(iv−1,0) . . . Ip(iv−1,w−1)

 , (2)

where Ip(i) is the identity matrix of size p whose columns
have been cyclically shifted downwards by i positions.

Definition 1 Given a matrix H ∈ Fr×n2 , the adjacency matrix
of H, denoted as Γ, is the n × n matrix whose element in
position (i, j) is such that

γi,j =

{
|S(hi) ∩ S(hj)| if i 6= j

0 if i = j
.

The adjacency matrix is commonly employed in graph
theory: given a multigraph with n nodes, the adjacency matrix
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can be defined as the n×n matrix whose element in position
(i, j) is equal to the number of edges connecting nodes i and
j. Obviously, starting from a parity-check matrix H, we can
construct a graph1 with n nodes, such that the i-th and the
j-th node are connected by |S(hi) ∩ S(hj)| edges.

B. Bit flipping decoding

Let us describe a general version of the parallel BF algo-
rithm, which performs a single iteration. Decoder inputs are a
syndrome s ∈ Fr2 and a vector of integers b = [b0, · · · , bn−1],
such that bi ∈ [1, vi], ∀i. For each i ∈ [0, n− 1], the number
of unsatisfied parity-check equations involving the i-th bit is
computed; we denote such number as σi. The decoder consid-
ers as “error affected” all bits for which σi ≥ bi and returns
as output a vector e′ with support S(e′) = {i s.t. σi ≥ bi}.
So, bi has the meaning of a decision threshold for the i-th
bit. Clearly, decoding is successful if e′ coincides with the
actual error vector. An important special case considered next
is that in which bi = b,∀i, which boils down to a majority-
logic decoder when b = b v2c+ 1. The decoding procedure we
consider is reported in Algorithm 1.

Algorithm 1 BFdecoder
Input: H ∈ Fr×n2 , s ∈ Fr2, imax ∈ N, b = [b0, . . . , bn−1],
bi ∈ [1, vi], ∀i
Output: e′ ∈ Fn2

1: e′ ← 0n
2: F ← ∅
3: for i← 0 to n− 1 do
4: σi ← 0
5: for l ∈ S(hi) do
6: σi ← σi + sl
7: end for
8: if σi ≥ bi then
9: F ← F ∪ i . Position i is estimated as

error affected
10: end if
11: end for
12: for i ∈ F do
13: e′i ← e′i ⊕ 1 . Error estimation update
14: end for
15: return {e′}

III. GUARANTEED ERROR CORRECTION CAPABILITY OF
BIT FLIPPING

Let us provide some preliminary definitions taken from [1],
with some adaptations.

Definition 2 Given H, let us consider the rows of H indexed
by S(hi) and put them into a matrix H(i). Following [1], we

1We remark that this graph, which is not bipartite, is different from the
Tanner graph [29] of the code.

define H(i) as the i-th partial parity-check matrix. The j-th
column of H(i) is denoted as h

(i)
j . We also define

δ(i)(H(i), z) = max
M, |M |=z, i 6∈M

wt

(⊕
j∈M

h
(i)
j

),
where M is a set containing the indexes of z columns of H(i),
except for the i-th. We call the maximum column intersection
of order z, and denote as δ(H, z), the quantity defined as

δ(H, z) = max
0≤i≤n−1

{
δ(i)(H(i), z)

}
.

When z = 1, we call δ(H, 1) the maximum column
intersection and, for simplicity, we denote it as δ; it is easy
to see that δ corresponds to the maximum number of set
positions in which two columns of H overlap. We remark that,
if the code has girth larger than 4, then the supports of any
two columns intersect in at most one position, thus we have
δ = 1. The above notions can be easily related to the entries
of the adjacency matrix. For instance, the weight of the j-
th column of the i-th partial parity-check matrix is equal to
the (i, j)-th element of the matrix Γ, γi,j , and the maximum
column intersection corresponds to the largest entry of Γ. For
a code with girth larger than 4, the entries of the adjacency
matrix belong to [0, 1].

Definition 3 Given H and the corresponding adjacency ma-
trix Γ, we denote as γ̃(i) the vector formed by the elements
of the i-th row of Γ, except for the i-th one. We define µ(i)(z)
as the sum of the z largest entries of γ̃(i). We then define the
maximum column union of order z, denoted as µ(H, z), the
quantity

µ(H, z) = max
0≤i≤n−1

{
µ(i)(z)

}
. (3)

A. Bounds on the error correction capability

The following theorem, from [12], shows that the error
correction capability of a code decoded with a majority-logic
decoder is related to the maximum column intersection.

Theorem 1 [12] Let us consider a code defined by a parity-
check matrix for which every column has weight at least v∗

and whose maximum column intersection is δ. Majority-logic
decoding on this matrix allows the correction of all error
vectors with weight t ≤ tM , where tM =

⌊
v∗

2δ

⌋
.

Corollary 1 Let us consider a code with g > 4 defined by
a parity-check matrix for which every column has weight at
least v∗. Majority-logic decoding on this matrix allows the
correction of all error vectors with weight t ≤ tM , where
tM =

⌊
v∗

2

⌋
.

Proof: It is a straightforward consequence of the fact that,
if g > 4, the maximum column intersection is equal to 1.

As mentioned in the Introduction, these preliminary results
are generalized in [1], where it is shown that the guaranteed
error correction capability under BF decoding can actually be
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expressed by taking into account the interplay of more than
two columns, that is, assuming z > 1.

Theorem 2 [1] Let us consider a code defined by a parity-
check matrix H in which every column has weight at least v∗.
Let t be an integer such that

v∗ > δ(H, t) + δ(H, t− 1).

Then a BF decoder with variable decoding thresholds

bi ∈ [δ(H, t) + 1, vi − δ(H, t− 1)] , ∀i ∈ [0, n−1], vi ≥ v∗,

or fixed decoding threshold

b ∈ [δ(H, t) + 1, v∗ − δ(H, t− 1)] ,

corrects all the error vectors of weight t in one iteration.

If we denote by tM the largest integer t such that Theorem
2 is satisfied, and assume that δ(H, i) ≤ δ(H, j), 2 ∀i < j ≤
tM , then Theorem 2 allows correction of all the error vectors
with weight smaller than or equal to tM .

Let us now specialize Theorem 2 to (v, w)-regular codes
with girth g > 4. When g > 4, the weight of the columns of
any partial parity-check matrix is either 0 or 1. In particular,
any partial parity-check matrix contains one column with
weight v, (w−1)v columns with weight 1 and n−(w−1)v−1
all-zero columns. As any partial parity-check matrix has v
rows, it follows that

δ(H, z) = z ∀z ≤ v,

which is obtained by considering z different columns. Then,
according to Theorem 2, we have that

tM = max
t
{t s.t. v > t+ t− 1}

= max
t

{
t s.t. t ≤

⌊v
2

⌋}
=
⌊v

2

⌋
, (4)

with threshold b =
⌊
v
2

⌋
+ 1 if v is even (corresponding to a

majority-logic decoder), and b ∈ [
⌊
v
2

⌋
+ 1,

⌈
v
2

⌉
+ 1] if v is

odd. In other words, when g > 4, Theorem 1 and Theorem 2
express the same error correction capability, with Theorem 2
giving an additional choice on the decision threshold when v
is odd. When g = 4, instead, as proved in [1], the bound given
in Theorem 2 is never smaller than that given in Theorem 1,
which means that the new bound is tighter.

Theorem 2 guarantees correction of all error vectors up to a
given weight tM only if δ(H, t) is a non-decreasing function
for all t ≤ tM . This assumption is reasonable for sparse parity-
check matrices, but it may be not verified for any choice of H;
thus, we state the following Theorem 3, based on the adjacency
matrix Γ, which does not rely on any assumption. Theorem
3 provides an upper bound on the error correction capability
that is smaller than or equal to the one given by Theorem 2,
but larger than or equal to the one given by Theorem 1.

Theorem 3 Let us consider a code defined by a parity-check
matrix H in which every column has weight at least v∗. Let

2This condition may be satisfied or not, depending on the structure of H.

t be an integer smaller than or equal to tM , where tM is the
largest integer such that

v∗ > µ(H, tM ) + µ(H, tM − 1). (5)

Then a BF decoder with decoding thresholds

bi ∈ [µ(H, t) + 1, vi − µ(H, t− 1)] (6)

corrects all the error vectors of weight smaller than or equal
to t in one iteration.

Proof: Let σi denote the number of unsatisfied parity-
check equations in which the i-th bit participates, and vi
denote the weight of the i-th column in H. Let us denote
by e the error vector and assume that wt (e) = t; if ei = 1,
then we have

σ
(1)
i = vi − wt

 ⊕
j∈S(e)\i

h
(i)
j


≥ vi −

∑
j∈S(e)\i

γi,j ≥ vi − µ(H, t− 1). (7)

In the same way, when the i-th bit is error free, that is, ei = 0,
we have

σ
(0)
i = wt

 ⊕
j∈S(e)

h
(i)
j

 ≤ ∑
j∈S(e)

γi,j ≤ µ(H, t). (8)

Clearly, one iteration of BF decoding can correct any error
vector e of weight t if, ∀i, there exists a value of bi such that

min
e
{σ(1)

i } ≥ bi > max
e
{σ(0)

j }, ∀i ∈ S(e), ∀j 6∈ S(e). (9)

Inserting (7) and (8) into (9), we obtain

vi − µ(H, t− 1) ≥ bi > µ(H, t), (10)

which implies

v∗ − µ(H, t− 1) > µ(H, t). (11)

According to (10), any bi ∈ [µ(H, t) + 1, vi − µ(H, t− 1)]
guarantees that all bits such that ei = 0 are characterized by
values of σ(0)

i that never exceed bi and, thus, are not flipped;
oppositely, all bits such that ei = 1 are characterized by values
of σ(1)

i larger than or equal to bi, and thus are flipped.

B. Comparison with previous approaches
In [8], explicit formulas for bounds on the error correction

capability are presented, thus we use them as a benchmark
for our approach. We remark that our bounds are referred to
a single decoding iteration, whereas those in [8] are referred
to an unspecified number of decoding iterations. Despite this,
as shown in the following, for small values of g our bounds
are tighter than those in [8]. The latter are specified through
the following theorem.

Theorem 4 [8] For a code defined by a parity-check matrix
H with girth g in which every column has weight v, BF de-
coding with decoding threshold b =

⌊
v
2

⌋
+1 allows correction

of all error patterns of weight less than{
1
2 + v

4

∑k−1
i=0

(
v−2
2

)i
if g = 4k + 2,∑k−1

i=0

(
v−2
2

)i
if g = 4k.

(12)
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Table I
COMPARISON OF BOUNDS ON THE ERROR CORRECTION CAPABILITY OF

LDPC AND MDPC CODES FOR DIFFERENT VALUES OF THE GIRTH.

g Theorem 2 Eq. (12) Range of improvement
4 ≥ b v

2δ
c 0 ∀v

6 b v
2
c d v+2

4
e − 1 ∀v 6= 1, 3

8 b v
2
c d v

2
e − 1 ∀v > 2, v even

10 b v
2
c d v

2+4
8
e − 1 v = 2

For g = 4, g = 6 and g = 8, the bounds on the error correc-
tion capability computed according to (12) are 0, d v+2

4 e − 1
and d v2e − 1, respectively. So, for g = 4 (12) is useless. On
the contrary, the error correction capability given by Theorem
2 is not null on condition that δ(H, 0) + δ(H, 1) < v, that is,
being δ(H, 0) = 0 by definition, if δ < v. So, contrary to (12),
as long as H does not contain repeated columns, Theorem 2
guarantees a significant error correction capability, just after
one decoding iteration. Several examples are reported in [1],
where it is shown that even the values resulting from Theorem
3 (that, we remind, are more conservative than those from
Theorem 2) are often significantly larger than those obtained
from Theorem 1.

For g = 6, we have δ = 1 and the error correction capability
given by Theorem 2 coincides with that given by Theorem 3,
resulting in tM = b v2c ≥ d

v+2
4 e − 1. Notice that the previous

inequality, which compares the error correction capability
given in Theorem 3 (left hand side) and that resulting from
(12) (right hand side), holds with the equality sign only for
v ∈ {1, 3}. To be more explicit, the gap between the correction
capability foreseen by Theorem 2 and that obtained through
(12) becomes higher and higher for increasing v, which is
a significant issue in view of the application to code-based
cryptography, where v may assume relatively large values.

Finally, for g = 8, Theorem 2 and Theorem 3 result in b v2c,
whereas (12) results in d v2e− 1. So, since b v2c−

(
d v2e − 1

)
=

1 − v mod 2, the bounds are the same for odd values of v,
whereas the bound we provide in Theorem 2 and Theorem 3
is larger by 1 than that given in (12) for even values of v.

The comparison between the bounds we propose and those
in [8] is summarized in Table I, where by “range of improve-
ment” we mean the values of v for which our bound is strictly
tighter than that in [8]. The case of g = 10 has been also
included in the table, for which the advantage of our approach
is limited to the case of v = 2. The advantage disappears
for g > 10. So, based on the above considerations, we can
conclude that the major impact of the present analysis and,
similarly, of the analyses in [1], [12], occurs for codes with
g = 4 and g = 6.

IV. ANALYSIS OF THE DECODING FAILURE PROBABILITY
FOR THE FIRST ITERATION OF BF DECODING

In this section we derive a conservative bound for the
decoding failure probability, denoted as Pf ,3 of the first and
only iteration of a BF decoder, with decoding thresholds

3Notice that the decoding failure probability coincides with the expected
value of the frame error rate (FER).

[b0, b1, · · · , bn−1], applied on a syndrome s = eH>, where
e ← Bt. Having a fixed number of errors (t) is a scenario
of interest in code-based cryptography, in which encryption
is performed by intentionally corrupting a codeword with a
constant number of errors. Nevertheless, once having charac-
terized the decoder performance for a given number of errors,
it is possible to extend such a characterization to channel
models (like the binary symmetric channel (BSC)) in which
the statistics of the number of errors is known. In fact, a BSC
with crossover probability ρ can be straightforwardly studied
by considering that the probability that the channel introduces
exactly t errors is equal to Pr{wt(e) = t} =

(
n
t

)
ρt(1−ρ)n−t.

So, denoting the error vector after the first iteration as e′, the
decoding failure probability over the BSC can be computed as

Pf =

n∑
l=0

Pr {e′ 6= e | wt(e) = l}Pr {wt(e) = l}, (13)

where Pr {e′ 6= e | wt(e) = l} can be upper bounded through
an explicit analytical method. Pr {wt(e) = l}, instead, defines
the adopted channel model. In this paper, we only study the
case in which {

Pr {wt(e) = l} = 1, l = t,

Pr {wt(e) = l} = 0, ∀l 6= t,

that models the application to code-based cryptography (where
a fixed number t of intentional errors is used for encryption).
In this case, (13) reduces to

Pf = Pr {e′ 6= e | wt(e) = t} (14)

that, therefore, will be considered in the following. Notice,
however, that our analysis can be extended to other channel
models by changing the definition of Pr {wt(e) = l}.

For i ∈ [0, n − 1], we define fi as the binary variable
obtained through the following rule

fi =

{
0 if [(σi < bi) ∧ (ei = 0)] ∨ [(σi ≥ bi) ∧ (ei = 1)],

1 if [(σi ≥ bi) ∧ (ei = 0)] ∨ [(σi < bi) ∧ (ei = 1)].
(15)

In other words, when fi = 0, the decoder takes a right decision
on the i-th bit, i.e., it flips a bit affected by an error or it does
not flip an error-free bit. Conversely, when fi = 1, the decoder
takes a wrong decision on the i-th bit; a wrong decision can
either be the flip of an error-free bit or the missing flip of a bit
affected by an error. The error patterns that cause a decoding
error in the i-th position, that is, those for which fi = 1, are
defined by the so-called error sets, which we introduce below.

Definition 4 Let H ∈ Fr×n2 be the parity-check matrix of
a code with block length n. We consider the first and only
iteration of a BF decoder as in Algorithm 1, with decoding
thresholds [b0, · · · , bn−1]. Let fi be the binary variable defined
as in (15), for i ∈ [0, n − 1]. Then, for z ∈ {0, 1}, we define
the error set for the i-th bit as follows

Ezi,t,bi = {e ∈ Bt s.t. fi = 1| ei = z} .

As we show in the following section, the cardinality of each
error set represents a fundamental quantity for assessing the
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error correction capability of a BF decoder as in Algorithm 1.
Notice that the cardinality computation for each error set is
strictly related to a subset sum problem, which in our case can
be defined as follows: for a generic set, determine the number
of subsets with given size, having the property that the sum of
their entries exceeds some target value. The precise subset sum
problem variant that we consider in this paper is formalized
in the following definition.

Definition 5 Let a ∈ Nl be a length-l vector. For m ≤ l, let
Pl,m = {p0, · · · , pm−1} be a size-m set of distinct integers
in [0, l − 1] such that p0 < p1 < · · · pm−1. Let Pl,m be
the ensemble containing all such sets; clearly, |Pl,m| =

(
l
m

)
.

Given α ∈ N, compute
∣∣N a

m,α

∣∣, where

N a
m,α =

{
Pl,m ∈ Pl,m s.t.

m−1∑
i=0

api > α

}
.

A. Decoding failure probability analysis based on error sets

Let us introduce a property of the error sets that will then
be used to derive the main result reported in Theorem 5.

Lemma 1 Let H ∈ Fr×n2 be a parity-check matrix, and let
Ezi,t,bi , for z ∈ {0, 1}, be the error set for the i-th bit. We
denote with γ̃(i) the vector formed by the entries of the i-th
row of the adjacency matrix Γ, defined in Section II, except
for the i-th one. Then, we have∣∣E1i,t,bi∣∣ ≤ ∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ , (16)∣∣E0i,t,bi∣∣ ≤ ∣∣∣N γ̃(i)

t,bi−1

∣∣∣ . (17)

Proof: We focus on the i-th bit, characterized by a certain
value of σi and flipping threshold bi, and derive the conditions
upon which the decoder takes a wrong decision (i.e., fi = 1).
We first consider the case of ei = 1: a wrong decision is taken
if the decoder does not flip the bit, i.e., if σi < bi. From (7),
we know that the value of σi is not lower than the difference
between the weight of the i-th column (that is, vi) and the
sum of the values γi,j indexed by S(e), except the i-th index
(that is,

∑
j∈S(e)\i γi,j). If such a difference is not lower than

bi, then σi ≥ bi and the decoder flips the i-th bit. On the other
hand, if vi −

∑
j∈S(e)\i γi,j < bi, σi might be lower than bi

and the decoder might not flip the i-th bit. Hence, a necessary
(but not sufficient) condition to have a wrong decision on the
i-th bit is ∑

j∈S(e)\i

γi,j > vi − bi. (18)

Because of the above reasoning, E1i,t,bi is a subset of the error
vectors satisfying (18). The set S(e)\ i in (18) corresponds to
a subset of [0, i−1]∪[i+1, n−1], of size t−1; furthermore, the
values γi,j that are possibly selected by S(e)\ i are entries of
γ̃(i) = [γi,0, · · · , γi,i−1, γi,i+1, · · · , γi,n−1], which has length
n − 1. Let Pn−1,t−1 be a subset of [0, n − 1] such that the
sum of the entries in γ̃(i) indexed by Pn−1,t−1 is larger than
vi − bi. According to Definition 4, the number of such sets
corresponds to the cardinality of N γ̃(i)

t−1,vi−bi . Furthermore, to

each one of these subsets, we can associate an error vector
satisfying (18), with support

{j ∈ Pn−1,t−1 |j < i} ∪ i ∪ {j + 1 ∈ Pn−1,t−1 |j ≥ i} .

Thus, we obtain

∣∣E1i,t,bi∣∣ ≤
∣∣∣∣∣∣
e ∈ Bt s.t. (ei = 1) ∧

∑
j∈S(e)\i

γi,j > vi − bi


∣∣∣∣∣∣

=
∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ .
Similarly, for the case of ei = 0, we can derive from (8)
that a necessary but not sufficient condition for fi = 1 is
bi ≤ σi ≤

∑
j∈S(e) γi,j . Then, with an analogous reasoning,

we obtain

∣∣E0i,t,bi∣∣ ≤
∣∣∣∣∣∣
e ∈ Bt s.t. (ei = 0) ∧

∑
j∈S(e)

γi,j > bi − 1


∣∣∣∣∣∣

=
∣∣∣N γ̃(i)

t,bi−1

∣∣∣ .
Based on these relationships, we can now prove the follow-

ing main theorem.

Theorem 5 Let H ∈ Fr×n2 be a parity-check matrix. Let e ∈
Bt, and s = eH> be the corresponding syndrome. We consider
a single BF iteration applied on s, with decoding threshold for
the i-th bit denoted as bi. Let γ̃(i) denote the vector formed
by the elements in the i-th row of Γ, except for the i-th one.
The probability that the decoder fails to decode, starting from
s, is upper bounded as follows

Pf ≤ min

1;

∑n−1
i=0

(
|N γ̃(i)

t−1,vi−bi |+ |N
γ̃(i)

t,bi−1|
)

(
n
t

)
 . (19)

Proof: Let us start from an arbitrary position i ∈ [0, n−1].
Let Ei,t,bi be the set of error vectors of weight t such that,
when the decoding threshold for the i-th bit is bi, the decoder
decision results in fi = 1 (i.e., the decoder flips the bit if
ei = 0 or does not flip the bit if ei = 1). Clearly Ei,t,bi =
E0i,t,bi∪E

1
i,t,bi

. Moreover, the sets E1i,t,bi and E0i,t,bi are disjoint,
since the vectors in e ∈ E1i,t,bi are such that ei = 1 and those
in E0i,t,bi are such that ei = 0. Taking into account (16) and
(17), we obtain

|Ei,t,bi | =
∣∣E0i,t,bi∣∣+∣∣E1i,t,bi∣∣ ≤ ∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣+∣∣∣N γ̃(i)

t,bi−1

∣∣∣ . (20)

For all values j ∈ [0, n − 1] such that Ej,t,bj contains e, we
have fj = 1, i.e., a wrong decoder decision is taken on the
j-th bit. Then, the probability that decoding fails can be upper
bounded by means of the following chain of inequalities

Pf =

∣∣∣⋃n−1i=0 Ei,t,bi
∣∣∣

|Bt|
≤
∑n−1
i=0 |Ei,t,bi |
|Bt|

≤

∑n−1
i=0

(∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣+
∣∣∣N γ̃(i)

t,bi

∣∣∣)
|Bt|

.

(21)



7

The thesis of the theorem is finally proved by considering that
|Bt| =

(
n
t

)
and that, by definition, Pf ≤ 1 (while the bound

in (21) is not guaranteed to be smaller than or equal to 1).
In order to compute the bound given in Theorem 5, we

need to solve instances of the subset sum problem according
to Definition 5. Clearly, the naive approach of testing all
possible subsets of vectors γ̃(i) is computationally unfeasible.
Fortunately, in our case of interest, the problem can be eased
by considering that, due to the sparsity of the parity-check
matrix, γ̃(i) is likely to contain a large number of very
small entries (the majority of which being actually null). This
peculiarity of sparsity makes the problem efficiently solvable;
a low complexity approach to perform this computation is
described in Appendix A.

We remark that the expression of Pf derived above is
coherent with the results given in Section III-A and, in
particular, in Theorem 3. Indeed, the following corollary holds.

Corollary 2 Let us suppose that t ≤ tM , where tM is the
largest integer such that (5) holds. If the decoding threshold
is chosen as follows

bi ∈ [µ(H, t) + 1, vi − µ(H, t− 1)] , ∀i, (22)

then
∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ =
∣∣∣N γ̃(i)

t,bi

∣∣∣ = 0, ∀i and, consequently,
Pf = 0.

Proof: By definition,∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ =

∣∣∣∣∣
{
Pn,t−1 ∈ Pn,t−1 s.t.

t−2∑
i=0

γ̃(i)
pi > vi − bi

}∣∣∣∣∣
=

∣∣∣∣∣
{
Pn,t−1 ∈ Pn,t−1 s.t. bi > vi −

t−2∑
i=0

γ̃(i)
pi

}∣∣∣∣∣ .
However, it follows from the definition of µ(H, t − 1) and
from (22) that

bi ≤ vi − µ(H, t− 1) ≤ vi −
t−2∑
i=0

γ̃(i)
pi

for any choice of the indexes pi and, thus,
∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ = 0.
Similarly, we have∣∣∣N γ̃(i)

t,bi−1

∣∣∣ =

∣∣∣∣∣
{
Pn,t ∈ Pn,t s.t.

t−1∑
i=0

γ̃(i)
pi > bi − 1

}∣∣∣∣∣
=

∣∣∣∣∣
{
Pn,t−1 ∈ Pn,t−1 s.t. bi <

t−1∑
i=0

γ̃(i)
pi + 1

}∣∣∣∣∣ .
It also follows from (22) that

bi ≥ µ(H, t) + 1 ≥
t−1∑
i=0

γ̃(i)
pi + 1

for any choice of the indexes pi, and thus
∣∣∣N γ̃(i)

t,bi−1

∣∣∣ = 0.
Finally, the fact that Pf = 0 is a straightforward consequence
of (19).

In the particular case of regular codes, which implies to
have equal decoding threshold values, noted as b, assuming v
is odd and b =

⌈
v
2

⌉
, the bound on Pf provided by Theorem

5 can be rewritten as

Pf ≤ min

1;

∑n−1
i=0

∣∣∣N γ(i)

t, v−1
2

∣∣∣(
n
t

)
 . (23)

The proof is reported in Appendix B. Equation (23) can be
used for any regular code with g ≥ 4. For regular codes with
g ≥ 6, however, (23) can be further elaborated as discussed
next.

B. Regular codes with girth larger than 4

When g ≥ 6, we have

γi,j ∈ {0, 1}, ∀i, j. (24)

In particular, for (v, w)-regular codes, each row and each
column of Γ contain exactly v(w − 1) non-zero entries. The
following lemma holds.

Lemma 2 Let a ∈ Fl2 be a vector of length l and weight m;
then, we have

∣∣N a
x,α

∣∣ = θ(l, x,m, α), with

θ(l, x,m, α) =

{
0 if α ≥ m or x ≤ α∑min{m,x}
j=α+1

(
m
j

)(
l−m
x−j
)

otherwise
.

(25)

The following Theorem 6 specializes Theorem 5 to the case
of a regular code with girth larger than 4, and reformulates (23)
for such a case.

Theorem 6 Let H ∈ Fr×n2 be the parity-check matrix of a
(v, w)-regular code with girth g ≥ 6. Let e ∈ Bt, and s =
eH>. We consider a single iteration of BF decoding applied
to s, with a unique decoding threshold b. If v is odd and
b =

⌈
v
2

⌉
, we havePf = 0 if t ≤ v−1

2

Pf ≤ min

{
1;

nθ(n,t,v(w−1), v−1
2 )

(nt)

}
otherwise

, (26)

where, using (25),

θ
(
n, t, v(w − 1),

v − 1

2

)
(27)

=

min{v(w−1),t}∑
j= v+1

2

(
v(w − 1)

j

)(
n− v(w − 1)

t− j

)
. (28)

Proof: The proof is quite similar to that of Theorem 5
and its specialization to the case of regular codes (reported in
Appendix B), by taking into account Lemma 2.
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C. A special class of QC codes

In this section we consider QC codes with parity-check
matrix as in (1), which are interesting for cryptographic
applications, as will be discussed in Section V. By considering
the QC nature of these codes, described by parity-check
matrices made of circulant blocks, the bounds introduced in
the previous sections can be further specialized. It can be easily
verified that, for these codes, the matrix Γ is QC as well; this
property can be exploited to further speed-up the computation
of the error sets required to calculate the bounds.

The following well-known result holds.

Lemma 3 Any circulant matrix with weight larger than 2 has
girth g ≤ 6.

Proof: The proof is omitted for brevity. See [30, Lemma
4.2].

It follows from Lemma 3 that a parity-check matrix as in
(1) cannot have girth larger than 6. In this case, the matrix Γ
can be written as

Γ =

[
Γ0,0 Γ0,1

Γ1,0 Γ1,1

]
, (29)

where each Γi,j is a p×p matrix; in particular, Γ is symmetric,
and this means that Γ0,0 and Γ1,1 are symmetric as well,
while Γ>0,1 = Γ1,0. Moreover, each block Γi,j is circulant.
In particular, let γ(i) be the i-th row of Γ; then, all rows γ(j)

such that bi/pc = bj/pc are identical up to a quasi-cyclic
shift; this means that∣∣Ezi,t,b∣∣ =

∣∣Ezj,t,b∣∣ , ∀b, t, ∀i, j s.t. bi/pc = bj/pc , (30)

with z ∈ {0, 1}. Then, from Theorem 5 we obtain

Pf ≤ min

{
1; p
Ntot(
n
t

) } , (31)

with

Ntot =
∣∣∣N γ̃(0)

t−1,v−b

∣∣∣+
∣∣∣N γ̃(0)

t,b−1

∣∣∣+
∣∣∣N γ̃(p)

t−1,v−b

∣∣∣+
∣∣∣N γ̃(p)

t,b−1

∣∣∣ .
V. APPLICATION TO CRYPTOGRAPHY

In this section we assess the accuracy of our bound through
numerical simulations. Then, we make some considerations on
the connections of the proposed bound with the security levels
of code-based cryptosystems.

A. Numerical simulations

There is a recent trend in post-quantum cryptography re-
garding the use of quasi-cyclic low-density parity-check (QC-
LDPC) and quasi-cyclic moderate-density parity-check (QC-
MDPC) codes [18], [19], [31] defined in Section II-A, since
they enable the design of McEliece cryptosystem variants
with very small public keys. We remark that, in code-based
cryptography, a decoding failure yields a decryption failure;
thus, the FER coincides with the so-called decryption failure
rate (DFR).

Let us first consider some codes defined by parity-check ma-
trices as in (1). In order to show the tightness of the provided

bounds, let us consider different choices of code parameters.
First, we analyze some specifically designed codes, whose
column weight is chosen in such a way as to approach or reach
the expected guaranteed error correction capability through
Monte Carlo simulations. Then, we also consider codes that
have actually been proposed for cryptographic applications,
whose column weight must be sufficiently large to withstand
key recovery attacks [19, Section 5.2].

In order to assess the behaviour of schemes with similar
parameters and different girth, let us consider a first code,
C0, with length n = 19 702, design rate R = 1

2 , p = 9 851,
v = 25, g = 4 and a second code, C1, with n = 17 558,
design rate R = 1

2 , p = 8 779, v = 13 and girth g = 6. A
compact representation of their parity-check matrix is available
in [32, Appendix C]. We assess the DFR achieved by a single-
iteration BF decoder with different threshold values through
Monte Carlo simulations; for each value of t, the DFR has
been estimated through the observation of 100 wrong decoding
instances. The comparison of the simulation results with our
bounds is shown in Figs. 1a and 1b, respectively. From the
figures we observe that for both codes the bound becomes
tighter and tighter for decreasing values of t.

Let us now consider a (45, 90)-regular code, C2, with block
length n = 9 602, circulant block size p = 4 801, design
rate R = 1

2 and girth g = 4. These parameters are suitable
for cryptographic applications [19]. A compact representation
of its parity-check matrices is available in [32, Appendix C].
Also in this case, the error rate performance is compared to
the bound, considering different thresholds. The results are
shown in Fig. 1c. We notice that the bound becomes tighter
and tighter for decreasing values of t.

In order to assess the effect of the parity-check matrix
column weight, let us consider three (v, 2v)-regular codes,
C3, C4 and C5, defined by parity-check matrices as in (1),
with the same block length, n = 23 434, circulant block size
p = 11 717, and design rate R = 1

2 , but different values of
the column weight: v = 9, v = 15 and v = 47 for C3, C4
and C5, respectively. A compact representation of their parity-
check matrices is available in [32, Appendix C]. The decoding
threshold is chosen as b = b v2c+ 1. The simulation results are
shown in Fig. 1d. Also in these cases, the bound becomes
tighter and tighter for decreasing values of t. We also remark
that the bound is tight for both LDPC and MDPC codes; in
fact, C3 and C4 are LDPC codes, whereas C5 is an MDPC
code.

In order to assess the effect of the block length, let us fix the
parity-check matrix row and column weight and consider three
(25, 50)-regular codes, C6, C7 and C8, defined by parity-check
matrices as in (1), with block length n = 9 946, n = 13 766
and n = 29 734, respectively. A compact representation of
their parity-check matrices is available in [32, Appendix C].
Also in this case, the threshold is b = b v2c+ 1. A comparison
of their DFR with the proposed bound is shown in Fig. 1e.
In all these cases, the bound becomes tighter and tighter for
decreasing values of t, as in the previously considered cases.

Finally, let us consider a different family of codes, that
is, monomial codes defined in Section II-A. It is shown
in [33] that, for a proper choice of the shifts and of the
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Comparison of the DFR resulting from Monte Carlo simulations with our bound for: (a) a (25, 50)-regular code with block length n = 19 702,
R = 1

2
, p = 9851, v = 25, g = 4, and different threshold values; (b) a (13, 26)-regular code with block length n = 17 558, R = 1

2
, p = 8779, v = 13,

g = 6, and different threshold values; (c) a (45, 90)-regular code with block length n = 9602, R = 1
2

, p = 4801, g = 4, and different threshold values;
(d) for (v, 2v)-regular codes with block length n = 23 434, R = 1

2
, p = 11 717, v ∈ {9, 15, 47}, g = 4, and b = b v

2
c+1; (e) (25, 50)-regular codes with

block length n ∈ {9 946, 13 766, 29 734}, R = 1
2

, p = n
2

, g = 4, and b = 13; (f) monomial codes described by the parameters in Table II.

code parameters, monomial codes can be used in code-based
cryptosystems. Thus, we consider QC-LDPC codes of this
type designed through the technique suggested in [33, Section
IV-C] with some modifications, in such a way as to obtain
codes with variable rate and row/column weight. These codes
have girth 6 and design rate R = 1− v

w , and we assess their
error rate performance considering different threshold values.

In particular, let us consider three parameter sets, described
in Table II, and for each parameter set, i.e., for each code
ensemble, we randomly generate three monomial codes and
compare their error rate performance with the bound given by
(26). Results are shown in Fig. 1f. We observe that there is
no appreciable difference between the performance of codes
in the same ensemble. We also observe that the bound is tight
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Table II
PARAMETERS OF THE CONSIDERED MONOMIAL CODES.

Parameter Set n r v w p g Design rate
# 1 4 171 1 455 15 43 97 6 0.65
# 2 8 517 5 177 31 51 167 6 0.39
# 3 3 937 2 921 23 31 127 6 0.26

for monomial codes as well.

B. Design of codes with given DFR

When codes with parity-check matrix as in (1) are used in
code-based cryptosystems that support key reuse, the required
values of Pf are much smaller than those reported in the
figures of Section V-A, and are impossible to assess through
Monte Carlo simulations. In particular, in order to avoid
key recovery attacks based on decryption failures, such as
those in [34], [5], also called reaction attacks, a cryptosystem
designed for a 2λ security level (expressed as number of binary
operations) must have DFR < 2−λ [35] with values of λ not
smaller than 80. A negligible decoding failure probability is
also required to achieve the desirable security condition known
as indistinguishability under adaptive chosen ciphertext attack
(IND-CCA) [35]. This makes the derived bounds particularly
useful in this case. In fact, by assuming the QC code structure
in (1), we can use (31) to design code parameters able to
achieve the desired small values of Pf without requiring any
simulation. To show an example, let us consider the case of a
security level of 280 binary operations, for which QC-MDPC
codes with v ≥ 45 and t ≥ 84 are needed [19]. The
matrices proposed in [19] have p = 4 801, which however
leads to a decoding failure probability too large to resist
reaction attacks and to achieve IND-CCA. A decoding failure
probability lower than 2−80 is instead required for such a
purpose. Indeed, the bound given in (31) allows achieving such
a requirement through a classic rejection sampling approach:
for each randomly generated parity-check matrix in the form
(1), the bound (31) is computed and the matrix discarded if
such a value is above the target Pf . The procedure is repeated
until a matrix with the desired property is obtained. In order to
verify the feasibility of such an approach, we consider different
parameter sets and, for each set, we generate 1 000 parity-
check matrices at random and compute the bound on Pf given
by (31). The choice of b is optimized by choosing its value
for which the bound takes its minimum.

The results of this experiment are reported in Table III.
We notice that, for all tested parameter sets, a significant
percentage of matrices satisfies the constraint Pf < 2−80. This
fact guarantees that the time required to generate a valid matrix
is limited. In other words, it is not difficult to find a matrix
for which we can be sure that the desired security level is
reached. We point out that, despite the codes obtained through
the above approach have significantly larger block length than
those originally proposed, they still lead to public key sizes
that are smaller than those of other competing cryptosystems,
while achieving IND-CCA. For instance, considering binary
Goppa codes as in the original McEliece cryptosystem, the
public key size equals 460 647 bits [36] for 80 bits security,

while the parameters we have found lead to a reduction in
the public key size by a factor ranging between 1.64 and
3.57. Additionally, the parameter sets we propose represent
a concrete worst case estimate of the key size increase which
is needed in order to ensure IND-CCA.

Indeed, we obviously expect that if more than one decoding
iteration is performed, the minimum value of p which is
necessary to fulfill Pf < 2−80 decreases, thus further reducing
the key size and allowing more significant improvements with
respect to other cryptosystems. However, extending the bound
to the case of multiple iterations goes beyond the scope of this
paper and is left for future works.

Table III
NUMBER OF SELECTED KEYS FOR DIFFERENT PARAMETER SETS.

p v Keys achieving Pf < 2−80

279 991 45 158 out of 1 000
194 989 65 990 out of 1 000
160 499 75 792 out of 1 000
149 993 85 971 out of 1 000
138 389 95 847 out of 1 000
130 043 105 226 out of 1 000

VI. CONCLUSION

We have studied the error correction capability of LDPC
and MDPC codes under BF iterative decoding, with the aim
of finding theoretical models for its characterization that do
not require assumptions or to resort to computation-intensive
simulations. Under the simplifying setting of a single-iteration
BF decoder, we have shown that a per-code upper bound on
the error rate can indeed be found. Such a bound provides
an important tool in those contexts where very small error
rates have to be guaranteed for each specific code. One of
these scenarios is that of code-based cryptography, and we
have shown how our bound can be successfully applied to
such a context, allowing the design of cryptosystems based
on QC-LDPC and QC-MDPC codes able to achieve strong
security notions while keeping the size of the public keys
smaller than that of classic systems employing algebraic codes
and bounded-distance decoders.

APPENDIX A

In this appendix we describe an efficient way to compute
the cardinality of the sets introduced in Definition 5. To this
end, we first formalize the problem and then describe a method
that, for the cases we are interested in, significantly improves
upon the naive exhaustive search approach.

Problem 1 Let a ∈ Nl be a length-l vector of non negative
integers, and let B ⊆ [0, l − 1] be a set of size m ≤ l. Given
α ∈ N, α > 0, compute

NB =

∣∣∣∣∣
{
B ⊆ [0, l − 1], |B| = m s.t.

∑
i∈B

ai > α

}∣∣∣∣∣ .
Clearly, an exhaustive search requires to generate all subsets
of size m: thus, the corresponding complexity will be equal
to
(
l
m

)
. As we show with combinatorial arguments, a simple
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algorithm can be devised, with a complexity that may be
significantly lower. In particular, we obtain the number of sets
that are complementary to those defined in Problem 1, that is,

N̄B =

∣∣∣∣∣
{
B ⊆ [0, l − 1], |B| = m s.t.

∑
i∈B

ai ≤ α

}∣∣∣∣∣ ,
from which the value of NB can be obtained as

NB =

(
l

m

)
− N̄B . (32)

For a set B, we denote with a(B) the vector formed by the
entries of a that are indexed by B; we define N̄

(j)
B as the

number of subsets B for which the corresponding sub-vector
a(B) contains m elements, j of which are distinct, whose sum
is smaller than or equal to α. We have

N̄B =

m∑
j=1

N̄
(j)
B . (33)

The values of N̄ (j)
B can be easily obtained, as we show next.

First of all, let ω be the number of distinct values in
a, with Y = {y0, y1, · · · , yω−1} being the set of such
values in ascending order. In the same way, we define λu =
|{i s.t. ai = yu}|. As we show below, the computation of N̄B
depends only on these quantities.

Let YB be the set of distinct values that are contained in
a(B). When j = 1, we easily have

N̄
(1)
B =

∑
0≤i≤ω−1 : yi≤b αmc

(
λi
m

)
, (34)

where, as usual,
(
λi
m

)
= 0 if m > λi.

When j > 1, some further considerations must be taken
into account. For a set B, let yi0 , yi1 , · · · , yij−1 be the distinct
values assumed by the entries of a(B), and denote the corre-
sponding multiplicities as m0,m1, · · · ,mj−1. If B ∈ N̄

(j)
B ,

we must have
j−1∑
u=0

muyiu ≤ α. (35)

We clearly have m =
∑j−1
u=0mu, from which we obtain m0 =

m−
∑j−1
u=1mu; then, (35) can be rewritten as

myi0 +

j−1∑
u=1

mu(yiu − yi0) ≤ α. (36)

It is obvious that

myi0 +

j−1∑
u=1

mu(yiu − yi0) ≥ myi0 +

j−1∑
u=1

(yiu − yi0). (37)

The above condition can be turned into the following criterion:
a set B associated to the values yi0 , yi1 , · · · , yij−1

of a(B),
whose sum is smaller than or equal to α, exists if and only if

j−1∑
u=1

(yiu − yi0) ≤ α−myi0 . (38)

Let us now fix an index q ∈ [1, j − 2], and suppose
that we are looking at all sets B such that a(B) con-
tains the values yi0 , · · · , yiq−1

with respective multiplicities
m1,m2, · · · ,mq−1. Then, imposing the constraint and sum-
ming over all subsets, we obtain

α ≥ myi0 + s1 +mq(yiq − yi0) + s2

≥ myi0 + s1 +mq(yiq − yi0) +

j−1∑
z=q+1

(yiz − yi0).

where s1 =
∑q−1
u=1mu(yiu−yi0) and s2 =

∑j−1
z=q+1mz(yiz−

yi0). Then, the maximum value for mq , denoted as m(max)
q , is

obtained as the minimum between λq and⌊
α−myi0 −

∑q−1
u=1mu(yiu − yi0)−

∑j−1
z=q+1(yiz − yi0)

yiq − yi0

⌋
.

(39)
Finally, N̄ (j)

B can be computed as

N̄
(j)
B =

ω−j∑
i0=0

ω−j+1∑
i1=i0+1

· · ·
ω−1∑

ij−1=ij−2+1

d(i0, · · · , ij−1), (40)

where

d(i0, · · · , ij−1)

=

0 if
∑j−1
u=1 (yiu − yi0) > α−myi0∑m

(max)
1

m1=1 · · ·
∑m

(max)
j−1

mj−1=1

( λi0
m−

∑j−1
i=1 mi

)∏j−1
u=1

(
λiu
mu

)
else

.

(41)

We point out that when a contains a small number of distinct
elements (i.e., ω � l) this approach becomes significantly
faster than the exhaustive search on all subsets. Indeed, first
of all we clearly have N̄

(j)
B = 0 when j > ω; moreover,

the number of configurations tested by using (41) is surely
smaller than mj−1. Then, for a specific value of j, the
computation of N̄ (j)

B requires to test no more than mj−1(ω
j

)
configurations. Thus, we can roughly upper bound the total
number of configurations that are considered as

ω∑
j=1

mj−1
(
ω

j

)
≤

ω∑
j=1

mj−1
(
ωe

j

)j
≤ ωmω−1eω, (42)

where e is the basis of the natural logarithmic. It can be
verified that, when m,w � l, the above upper bound is
significantly smaller than

(
l
m

)
.

APPENDIX B

In this appendix we consider the case of regular codes, for
which the decoding threshold values can be assumed constant
and equal to b, and we demonstrate that when v is odd and
b =

⌈
v
2

⌉
, the bound (19) can be reformulated as in (23).

Let H be the parity-check matrix of a (v, w)-regular code
with block length n and odd v. Let us denote as γ(i) the
i-th row of the adjacency matrix Γ. Moreover, let e ∈ Bt,
and s = eH>. We consider a single iteration of BF decoding
applied to s, with a unique decoding threshold

⌈
v
2

⌉
.
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In order to determine a bound for Pf in these conditions,
we can basically repeat the steps in the proof of Theorem 5.
In this case, however, (20) can be specialized as follows∣∣∣Ei,t,d v2 e∣∣∣ =

∣∣∣E1
i,t−1,v−d v2 e ∪ E

0
i,t,d v2 e−1

∣∣∣
=
∣∣∣E1i,t−1, v−1

2

∪ E0
i,t, v−1

2

∣∣∣
≤
∣∣∣N γ̃(i)

t−1, v−1
2

∣∣∣+
∣∣∣N γ̃(i)

t, v−1
2

∣∣∣ , (43)

where we have exploited the fact that, since v is odd, we have⌈
v
2

⌉
= v+1

2 . Now, if we consider γ(i) and a set S ∈ N γ(i)

t, v−1
2

,
we have only two possibilities:

1) If i ∈ S, since γi,i = 0, we have
∑
j∈S\i γi,j >

v−1
2 ,

from which {S \ i} ∈ N γ̃(i)

t−1, v−1
2

.

2) If i 6∈ S, we have
∑
j∈S γi,j >

v−1
2 , from which S ∈

N γ̃(i)

t, v−1
2

.

Then, we can state∣∣∣N γ̃(i)

t−1, v−1
2

∣∣∣+
∣∣∣N γ̃(i)

t, v−1
2

∣∣∣ =
∣∣∣N γ(i)

t, v−1
2

∣∣∣ . (44)

By replacing this equality in (19), the simpler (23) is eventu-
ally obtained.
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