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Peptides and peptidomimetics are strongly re-emerging as amenable candidates in the
development of therapeutic strategies against a plethora of pathologies. In particular,
these molecules are extremely suitable to treat diseases in which a major role is
played by protein–protein interactions (PPIs). Unlike small organic compounds, peptides
display both a high degree of specificity avoiding secondary off-targets effects and a
relatively low degree of toxicity. Further advantages are provided by the possibility to
easily conjugate peptides to functionalized nanoparticles, so improving their delivery
and cellular uptake. In many cases, such molecules need to assume a specific three-
dimensional conformation that resembles the bioactive one of the endogenous ligand.
To this end, chemical modifications are introduced in the polypeptide chain to constrain
it in a well-defined conformation, and to improve the drug-like properties. In this
context, a successful strategy for peptide/peptidomimetics design and optimization is
to combine different computational approaches ranging from structural bioinformatics
to atomistic simulations. Here, we review the computational tools for peptide design,
highlighting their main features and differences, and discuss selected protocols, among
the large number of methods available, used to assess and improve the stability of
the functional folding of the peptides. Finally, we introduce the simulation techniques
employed to predict the binding affinity of the designed peptides for their targets.

Keywords: peptides design, peptidomimetics, binding free-energy, protein–protein interaction, bioinformatics
tools

INTRODUCTION

Year by year the use of theoretical approaches to study structural and dynamical features of
macromolecules (Di Marino et al., 2014, 2015a; Orozco, 2014; D’Annessa et al., 2018, 2019a) is
constantly growing, thanks to the continuous improvement of methodologies and algorithms, as
well as of the high performance computing facilities. Theoretical methodologies are achieving
an increasing importance in many fields of science and have now gained a primary role in drug
design. Indeed, hundreds of examples exist in which the use of computational techniques was
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crucial to discover new molecules active against different diseases
(Sliwoski et al., 2014; D’Annessa et al., 2019b). In the modern
era, computer-aided drug design is successfully exploited not
only to develop small molecules but also to guide the more
challenging design of larger size compounds like peptides or
peptide-like molecules (i.e., peptoids or peptidomimetics), which
can retain the physicochemical features of bioactive proteins
or polypeptide chains. One such feature is the conformational
plasticity of peptides that allows them to interact with larger
and more shallow surfaces compared to the typically cryptic
binding pockets targeted by small molecules (Di Marino et al.,
2015b; Vercelli et al., 2015; Di Leva et al., 2018). Therefore,
peptides and peptidomimetics represent ideal candidates for
targeting protein–protein interactions (PPIs). Indeed, PPIs have
emerged as relevant drug targets since they are responsible for
numerous cellular processes (Wanner et al., 2011; Otvos and
Wade, 2014; Sun, 2016). Nonetheless, most PPIs were until
recently considered “undruggable” by small compounds due to
the involvement of large binding surfaces where the recognition
is ruled by both the physicochemical properties and the shape of
the interacting proteins (Bakail and Ochsenbein, 2016). Similar
to protein-(small)ligand interactions PPIs are stabilized by non-
covalent interactions, but with hydrophobic contacts, usually
responsible for recognition and packaging, playing a primary
role in stabilizing the complex (Tan et al., 2016). Moreover,
upon the formation of macromolecular complexes new pockets
can be formed at the interface between two or more proteins,
and in some cases their targeting, aimed at stabilizing, instead
of disrupting, the complex, can represent a clever therapeutic
strategy to treat different diseases. Also in this case, however,
small compounds are often not suitable for this purpose, while
peptide-like molecules are particularly favored (Henninot et al.,
2018; Lee et al., 2019). Furthermore, isolated peptides can
compensate for the absence of the whole protein, as in the
case of hormones, or can counteract the immune system in
autoimmune diseases (Lau and Dunn, 2018). Moreover, peptides
have peculiar characteristics that represent advantages in the
field of drug development with respect to small molecules. For
instance, they show a very low or null toxicity compared to
synthetic compounds, being typically degraded in non-toxic
metabolites, and are highly selective against a specific target, thus
making their use particularly favored (Smith et al., 2019). Finally,
many peptides can be easily conjugated either to nanoparticles
for targeted delivery (Valcourt et al., 2018; Kalmouni et al., 2019)
or to organic molecules working as biomarkers for diagnostic
purposes (Wang and Hu, 2019).

In this perspective, much effort was dedicated in the last
decades to develop theoretical approaches for the design of
therapeutic peptides/peptidomimetics, leading to a new branch of
drug development, known as computational peptidology (Zhou
et al., 2013). These strategies gave birth to a leading industry
producing nearly 20 new peptide-based clinical trials annually.
At the time this review was written, more than 400 peptide
drugs were under clinical development and over 60 already
approved for clinical use in the United States, Europe and
Japan (Lee et al., 2019). Several designed peptides have shown
great potential for the treatment of different types of cancers

(Marqus et al., 2017; Zanella et al., 2019). Although these peptides
have an extraordinary effectiveness in cancer cell cultures, they
still do not provide encouraging results in vivo (Marqus et al.,
2017). This because peptides may suffer from poor metabolic
stability and membrane permeability, rapid proteolysis and
unstable secondary structure (Zhang et al., 2018). With the aim to
overcome such limitations, many strategies have been developed
that rely on the application of chemical modifications such
as cyclization, N-methylation, stapling or the introduction of
amide bond bioisosters and non-natural amino acids. In addition,
peptidomimetics can represent a valid alternative to target
PPIs. Peptidomimetics are indeed organic molecules featuring
physicochemical and structural properties resembling those of
classical oligopeptides (Vagner et al., 2008; Zhang et al., 2018) but
generally endowed with improved pharmacokinetic profiles.

The possibility to rationally design peptide-based molecules
exploiting the structural characteristics of PPIs represents an
enormous advantage to achieve the desired effect on the
pathological process. The growing number of 3D structures
available from X-ray diffraction and NMR has augmented our
knowledge on protein–protein recognition and binding process,
providing unprecedented insight into the proteins’ structures in
the apo form states and in protein–protein and protein–peptide
complexes. This information is instrumental in the peptide
design process. In this perspective, combining bioinformatics
approaches with molecular simulations is a valuable strategy to
obtain good drug-candidate peptides. Moreover, the increased
accuracy in the calculation of binding free energy allows
further characterizing the energetics of the molecular binding
interaction, increasing the success rate of the design process
(Torrie and Valleau, 1977; Di Marino et al., 2014, 2015b; Kilburg
and Gallicchio, 2016). However, the field of peptides design and
PPIs prediction/refinement is really extensive and the number of
approaches developed for these purposes is constantly growing.
Here we provide a concise report of selected computational
protocols for peptides/peptidomimetic design, paying particular
attention to the most widely employed bioinformatics tools
and facilities and docking algorithms available to this end.
We also introduce the simulations techniques used to validate
protein–peptide complexes obtained by docking procedures
and to predict the binding affinity of the designed peptides
for their targets.

PEPTIDE DESIGN AND DOCKING

Since PPIs emerged as druggable targets much effort was
dedicated to develop algorithms and tools for peptides/
peptidomimetics design. However, this is far from being a
fully addressed issue and still poses many hurdles. Indeed,
notwithstanding the increasing structural information available,
the investigation of protein–peptide recognition is not an easy
task to handle and shows several layers of complexity. For a full
description of the process: (1) the three-dimensional structure
of the investigated protein–protein complex should be available,
in order to detect the protein region to use as a template
for the design of peptides; (2) in the case the complex is not

Frontiers in Molecular Biosciences | www.frontiersin.org 2 May 2020 | Volume 7 | Article 66

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00066 May 1, 2020 Time: 12:34 # 3

D’Annessa et al. Design of Peptides and Peptidomimetics

FIGURE 1 | Graphical scheme summarizing different methodologies for peptide design. The core ideas of the main bioinformatics tools available are divided in three
major categories: Ligand-based, Target-based and De novo. The references to the tools are reported at the bottom of the picture.

available, the protein surface that has to be recognized by the
PPI disruptor should be detected, or at least predicted, with high
accuracy; (3) the structure of the target protein in its apo and
holo states should be known, since the binding surface might
change undergoing structural rearrangement upon protein or
ligand binding; (4) since peptides are highly flexible entities,
their conformational flexibility, stability in solution and the
ability to achieve and maintain a well-defined active structure
should be considered; and (5) finally, a putative structure of the
designed peptide in complex with the target protein should be
generated, typically by docking, in order to provide a possible
mechanism of binding. However, achieving an accurate docking
of conformationally flexible peptides to a target protein is a
challenging task as discussed in the following sections.

To date numerous bioinformatics tools for peptides design
are available. These can be basically classified as ligand-based
and target-based (Figure 1), even if in most of the cases the
two approaches are combined. Ligand-based approaches can
be further distinguished into sequence-based, conformation-
based and property-based, with this last possibility still being
the least explored.

Sequence-based approaches rely on the identification of
conserved functional motifs, usually detected through multi-
sequences alignment. These sequences are then modified to
obtain a ranking of different candidates potentially able to

interact with a specific target protein usually blocking an
interaction with another protein partner. This is the case of the
PeptideMine webserver (Shameer et al., 2010).

Substantially different are the conformation-based approaches
that are aimed at building peptides structures and conformational
ensembles further refined by investigation of structure-activity
relationships. Example is PEP-FOLD that exploits a Hidden
Markov Model to derive a structural alphabet to design stretches
of “letters” that are assembled into 3D structures then refined by
Monte-Carlo calculations (Thévenet et al., 2012).

Target-based strategies include knowledge-based and de novo
design approaches. Knowledge-based methods use information
from protein complexes, peptides and protein fragments (Vanhee
et al., 2011). For instance, PiPred analyses protein complexes
to find anchor residues and use them to find the best peptides
matching the target surface from databases of fragments (Oliva
and Fernandez-Fuentes, 2015). PepComposer explores a pool of
protein surfaces and delivers a set of backbone scaffolds that is
able to target them. A following Monte Carlo simulation refines
the conformation of the newly designed peptides shown in the
final peptide-protein complex (Obarska-Kosinska et al., 2016).
Similarly, PepCrawler and its cognate PinaColada analyze protein
complexes and derive candidate peptides that are subsequently
randomly mutated in order to increase their affinity for the target.
As final result, the newly designed peptides are ranked according
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to the predicted binding affinity (Donsky and Wolfson, 2011;
Zaidman and Wolfson, 2016).

De novo approaches endeavor to obtain peptides without any
a priori structural knowledge. The pepsec tool, included in the
Rosetta suite (Raman et al., 2009), provides peptide sequences
and structures that are simultaneously optimized. The process is
similar to the “anchor and grow” docking algorithms in as much
an anchor residue of the peptide is positioned on the protein
surface and the chain is assembled starting from that point
(King and Bradley, 2010). A significant advance was achieved
with the implementation in Rosetta of a rotamers library that
allows generating peptoid foldamers for the design of compounds
with defined 3D structures thanks to the introduction of non-
natural amino acids (Renfrew et al., 2014). Another example of
de novo approaches is the VitAl algorithm, which identifies the
binding site via a Coarse Grained Gaussian Network model and
generates the peptides by sequentially docking pairs of residues
and determining the binding energies (Besray Unal et al., 2010).

The described methodologies, especially ligand-based
strategies, can be supported by stand-alone protein–peptide
docking programs, in order to identify or refine the binding
poses of the designed peptides. Notably, these software can be
also used to predict the interaction mode of known biologically
active peptides with their target, thus guiding the design of novel
PPI inhibitors. Nonetheless, protein–peptide docking programs
can suffer from some inaccuracies, especially in the solvation
and in the conformational sampling of the ligand backbone
(Zhou et al., 2013). In the last decade, however, significant
progress has been made to address these issues, achieving a
satisfactory quality of predictions both by knowledge-based
approaches among which HADDOCK and GalaxyPepDock
represent some of the most accurate software (Trellet et al., 2013;
Lee et al., 2015; Van Zundert et al., 2016), and ab initio programs,
including the newest version of the Glide SP algorithm (Glide
SP-peptide) and HPEPDOCK, which exploits a hierarchical
algorithm to manage peptide flexibility through an ensemble of
conformations generated (Antes, 2010; Tubert-Brohman et al.,
2013; Li et al., 2014; Ben-Shimon and Niv, 2015; Kurcinski
et al., 2015; Schindler et al., 2015; Alam et al., 2017; Zhou et al.,
2018). In HADDOCK, experimental information on the targeted
PPIs is exploited to drive the docking through the inclusion of
interaction restraints during the calculations. The HADDOCK
procedure for flexible protein–peptide docking is a multi-step
process that combines different solvent models, conformational
search and selection, and induced fit algorithms in a highly
efficient protocol. The GalaxyPepDock protocol consists of
a combination of similarity-based docking and energy-based
optimization methods. Given a target protein and a peptide,
the server performs a scan of experimentally determined PPIs
structures database, in order to identify a proper PPI template.
Subsequently, GalaxyPepDock builds a number of protein–
peptide complexes that are further refined by energy-based
methods to find the best structure interface. Conversely, Glide
SP-peptide, pepATTRACT or Rosetta FLexPepDock perform
without any a priori experimental information. In particular,
Glide SP-peptide relies on a grid-based docking protocol, which
takes advantage of advanced sampling algorithms during the

search phase. The obtained poses can be further refined by
post-processing calculations with physics-based implicit solvent
MM-GBSA methods, rescored and ranked by a custom scoring
function. PepATTRACT combines a coarse-grained ab initio
docking followed by an atomistic refinement protocol. In
particular, a fully blind procedure is followed, where the server
examines the whole protein surface to find a putative binding site
and simultaneously predicts the bound peptide conformation.
Finally, FlexPepDock, which is implemented in the Rosetta suite,
is able to provide high-resolution protein–peptide complexes
starting from a generation of coarse-grained models. These
starting coarse-grained models are refined by performing
Monte-Carlo Minimization restricting the peptide’s degrees of
freedom and allowing the flexibility of the receptor’s binding
site side chains.

CONFORMATIONAL PEPTIDE
PREDICTION

As reported above, bioinformatics tools show a good degree
of accuracy in predicting peptides conformational plasticity,
mainly through internal search algorithms that iteratively build
different peptide backbone conformations, each one assigned
with a specific binding score. However, severe approximations
still reside in the docking sampling. For instance, many
docking software treat the peptide backbone as rigid during
the calculations making the a priori knowledge of its bioactive
conformation necessary. In simplest cases, when the ligand
assumes a unique, or at least a prevalent conformation in water,
this can be straightforwardly computed based on experimental
techniques such as proton NMR experiments. This strategy can
be, for instance, applied to small cyclic peptides featuring a
restricted backbone conformational space. However, in many
cases peptides can assume several energetically equivalent states
characterized by a rugged conformational free energy landscape.
In such cases, it is advisable to support the peptide design with a
reliable energy estimation of the different conformations assumed
by the new peptide. To this end, atomistic simulations represent
a valid tool. In particular, a number of efficient conformational
searching methods have been developed or specifically adapted
for this purpose. These include simulated annealing (Kirkpatrick
et al., 1983; Wilson and Cui, 1990), distance geometry (Donné-
Op Den Kelder, 1989), random search Monte Carlo (MC) (Chang
et al., 1989; Weinberg and Wolfe, 1994), eigenvector-following
(Cerjan and Miller, 1981; Simons et al., 1983), basin-hopping
global optimization (Wales and Doye, 1997), discrete path
sampling (Wales, 2002, 2004) and molecular dynamics (MD)
based algorithms. Extensive reviews are available in literature
on the application of simulated annealing (Bernardi et al., 2015)
and distance geometry (Mucherino et al., 2013) to study peptides
conformational sampling. For this reason, here we will mainly
focus on the other approaches.

Among stochastic or random search approaches is the Monte
Carlo Multiple Minimum (MCMM) method, commonly known
as torsional sampling (Saunders et al., 1990), in which the peptide
torsional bonds are randomly rotated through iterative Monte
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Carlo simulations, each followed by energy minimization, in
order to identify local minima in the conformational potential
energy surface (PES).

An interesting example of eigenvector-following method is
the low mode conformational search (LMCS) (Kolossváry and
Guida, 1996), in which local minima in the PES are found
through movements along the “low energy eigenvectors” that
are identified through a preliminary normal mode analysis, and
following energy minimization. The process is then iteratively
repeated to find additional minima, eventually leading to the
identification of a minimum energy path. In order to improve the
performance of LMCS in global searches, a mixed MCMM/LMCS
strategy has been also developed (Kolossvàry and Guida, 1999)
and successfully applied to the conformational sampling of
macrocyclic compounds (Parish et al., 2002).

In basin-hopping global optimization (BHGO), the potential
energy landscape is transformed into a series of “basins of
attraction” which are explored through a hybrid random search-
geometry optimization protocol (Li and Scheraga, 1987; Wales
and Doye, 1997). In detail, random structural perturbations
such as backbone Cartesian moves or rotations of amino acid
side chains are initially applied to the biomolecule. After each
perturbation, a geometry optimization cycle is performed to find
the nearest local minimum, usually through the quasi-Newton
L-BFGS (Limited-memory BFGS) minimization algorithm (Liu
and Nocedal, 1989). The transition is finally either accepted or
rejected based on a Metropolis criterion. The method allows
crossing high barriers that separate the different energy basins,
thus leading to the identification of the global minimum.
Also, the thermodynamic properties of the system can be
computed using the data set of local minima found during the
search. Many variants of the technique have been developed
to specifically address problems of biological interest including
peptides’ conformational sampling. For instance, the efficiency
of basin hopping can be improved by including experimental
restraints (Carr et al., 2015) or by combining the method with
other approaches, such as parallel-tempering (Strodel et al.,
2010; Joseph and Wales, 2018). Connected to BHGO, is the
discrete path sampling approach. Here, a discrete path is
defined as a connected sequence of minima and the intervening
transition state(s) between them, which are appropriate for
describing dynamical properties but can also be subjected to
kinetic analysis (Wales, 2005). Discrete path sampling has been
successfully used to explore the conformational energy landscape
of both linear and cyclic peptides (Evans and Wales, 2004;
Oakley and Johnston, 2013).

Molecular dynamics (MD) based techniques are largely
explored for peptides conformational sampling both as stand
alone tools or in tandem with experiments. It has been
indeed demonstrated that the inclusion of NMR data such
as chemical shifts, interatomic distances or residual dipolar
couplings (RDCs), as structural restraints in MD simulations
can significantly improve the speed and efficiency of sampling
algorithms. Ensemble or time-averaged MD represents a first
example (Bonvin et al., 1994) followed by more recent advanced
methodologies that integrate MD with experimental data. For
instance, it was shown that, if geometrical restraints are applied

to the system and averaged over simulation replicas, ensembles of
conformations compatible with the maximum entropy principle
are generated (Cavalli et al., 2013). This approach is known as
replica-averaged restrained molecular dynamics and can offer
a valid representation of the unknown Boltzmann distribution
of a peptide conformational landscape (De Simone et al.,
2011). Also, MD simulations can be coupled to Markov State
Models (MSM) to predict the folding pathways and kinetics
of polypeptides (Chodera and Noé, 2014; Husic and Pande,
2018). An efficient alternative strategy is to employ enhanced
sampling methodologies, which allow investigating events that
extend beyond the timescale limit of standard simulations.
Important examples are umbrella sampling (US) (Torrie and
Valleau, 1977) and metadynamics (MetaD) (Laio and Parrinello,
2002), which rely on the application of a bias on a set of
user-defined reaction coordinates, specifically designed for the
system under investigation, commonly referred to as collective
variables (CVs). These methodologies can provide an accurate
description of the free energy landscape underlying the process
of interest. Particularly, MetaD (Laio and Parrinello, 2002) in
its well-tempered variant (Barducci et al., 2008) was largely
applied to conformational studies of both linear and cyclic
peptides. For instance, Musco and coworkers employed MetaD
to predict the bioactive conformation and the pharmacological
behavior of cyclic penta- and hexa- peptides designed as RGD-
integrin receptors modulators (Spitaleri et al., 2011; Simon et al.,
2018). Remarkably, metadynamics can be combined with replica-
exchange (RE) methods like parallel-tempering (PT) (Bussi
et al., 2006) and bias-exchange (BE) (Piana and Laio, 2007)
algorithms in which n exchangeable replicas of the systems
are simulated at different temperatures and biasing different
set of CVs, respectively. For instance, PT-MetaD was recently
applied to predict the turn-helix conformation of a linear peptide
reported as a selective ligand of the αvβ6 RGD-integrin, leading
to new selective cyclopeptidic ligands with potential clinical
applications (Figure 2A; Di Leva et al., 2018). Furthermore,
the metadynamics performance can be improved through the
inclusion of experimental data either in the user-defined CVs
in a BE scheme (Granata et al., 2013) or as replica-averaged
structural restraints. The latter approach is known as replica-
averaged metadynamics (Camilloni et al., 2013) and is typically
performed in the well-tempered ensemble (WTE) where the
energy is used as CV (Camilloni et al., 2013). In alternative to
CV-based techniques, other enhanced sampling methodologies
such as accelerated MD (Hamelberg et al., 2004), replica exchange
with solute-tempering (REST) (Liu et al., 2005) and reservoir-
REMD (R-REMD) (Okur et al., 2007; Roitberg et al., 2007), have
been successfully used for peptides’ conformational sampling.
In accelerated MD the sampling is improved through the
addition of a boost potential to the potential energy of the
system (Hamelberg et al., 2004). This technique demonstrated
to provide conformational ensembles for peptidic macrocycles
well reproducing the available experimental structures (Kamenik
et al., 2018). In replica exchange with solute-tempering, the
contribution of solute–solvent and solvent–solvent energies are
scaled in order to strengthen solvent interactions at elevated
temperatures. As a result, only the solute is simulated at different
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FIGURE 2 | Computational strategies to transform peptides in peptidomimetics. (A) A metadynamics-driven design approach was successfully used to convert a
helical peptide able to interact with selective the αvβ6 integrin into a cyclic pentapeptide. (B) A hydrocarbon stapling strategy guided by molecular dynamics (MD)
simulations was enabled to successfully convert an eIF4G-derived peptide of two helix turns in a stapled peptide able to inhibit the activity of the eIF4E (PDB IDs:
4AZA and 4BEA).

temperatures as in traditional REMD, while the solvent is kept
at original temperature in all replicas. The exchange probabilities
exclusively depend on the contribution from solute atoms that
generally show broader energy distributions compared to the
solvent. Accordingly, a lower number of replicas is needed
to cover the desired temperature range compared to standard
REMD, thus saving computational time and resources (Liu et al.,
2005). Finally, R-REMD is based on a classical PT scheme
in which, the highest temperature replica is replaced by a
structure reservoir that is pre-generated through standard MD
simulations performed at the same temperature (Okur et al.,
2007; Roitberg et al., 2007).

ESTIMATION OF THE PEPTIDES/
PEPTIDOMIMETICS BINDING
FREE-ENERGY

An accurate estimation of the protein–peptide binding affinity
is important to guide key steps in the drug discovery pipeline
such as the hit-to-lead and lead optimization processes. This
is however, a challenging task to achieve with standard
computational methodologies. For instance, docking algorithms
can provide rapid qualitative information about the peptide
binding modes but generally fail in accurately estimating
receptor affinities due to the intrinsic approximations of the
method. On the other hand, standard MD would require tens
of microseconds of simulations to collect enough statistics

to describe the full ligand binding process (Dror et al.,
2011; Shan et al., 2011), which are rarely accessible with the
current protocols and resources (Salmaso and Moro, 2018).
The timescale limitation of classical MD can be overcome by
means of free-energy methods, which can be grouped in three
main categories: endpoint, alchemical perturbation and physical
pathway methods.

Endpoint methods, which include linear interaction energy
(LIE) (Aqvist et al., 2002), molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA) (Srinivasan et al., 1998),
and generalized Born surface area (MM-GBSA) (Kuhn and
Kollman, 2000), compute the binding free energy by taking
the difference between the absolute free energy of the ligand
in unbound and bound states, which are sampled separately.
These methods, particularly MM-PBSA and MM-GBSA, offer
a good balance between computational efficiency and accuracy,
and can be successfully used to predict the binding affinities and
identify or rescore the correct binding poses for protein–peptide
systems (Weng et al., 2019). Interestingly, a dampened MM-
PBSA scoring function was recently introduced in HADDOCK to
further improve the predictiveness of the docking protocol and
to estimate the protein–peptide binding affinity (Spiliotopoulos
et al., 2016). Nevertheless, a large-scale application of endpoint
approaches use is partly limited by some approximations to both
the sampling and energy calculation which are mainly due to the
use of implicit solvent models (Wang et al., 2019).

Alchemical methods are typically more rigorous and accurate,
although suffering from the higher demanding computational
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cost. They include thermodynamic integration (TI) (Kirkwood,
1935), free-energy perturbation (FEP) (Kirkwood, 1935) and
Bennett Acceptance Ratio (BAR) (Bennett, 1976; Shirts and
Chodera, 2008). In these calculations, ligand and protein are
gradually decoupled and the binding free energy computed from
a thermodynamic path connecting the bound and unbound
states. At each step of the alchemical path, the sampling
can be alternatively performed using either MC or MD
simulations, with the latter approach being the most widely
utilized. Frequently, a translational restrained potential is applied
along the path to control the turning off of the molecular
interactions between the ligand and the protein binding site.
This allows reducing the configurational space to sample between
the end-points, thus enhancing the efficiency of the free
energy calculation. Alchemical transformations which employ
translational restraints are generally referred as to the “double
decoupling method” (DDM), while those calculations in which
no translational restraint is present are classified as “double
annihilation method” (DAM) (Deng and Roux, 2009).

In physical pathway methods, which include steered molecular
dynamics (SMD) (Izrailev et al., 1997) and US (Torrie and
Valleau, 1977), the ligand and the receptor are physically
separated along the binding pathway and finally the potential
of mean force (PMF), and in turn the binding free energy,
is computed. In SMD, an external force with tuneable spring
constant and velocity is applied to pull the ligand out from the
binding site. The PMF is then obtained from the average of
the irreversible work minus the dissipative work of the process
according to the Jarzynski non-equilibrium work theorem
(Jarzynski, 1997a,b). Several independent SMD trajectories need
to be carried out to provide a statistically significant calculation
of the irreversible work, and, accordingly, an accurate estimation
of the PMF. Also, the optimization of the pulling force can
reduce the dissipative part of the work, which eventually leads
to an increased calculations convergence. In US, an external
harmonic bias potential is applied on a user-defined CV to
physically drive the ligand from the bound state to the unbound
state. The pathway is usually divided in n steps, commonly
known as windows, in which standard MD calculations are
performed in presence of the harmonic potential. The change in
free energy between adjacent windows can be computed from the
collected MD trajectories using different methods, with the most
commonly used being the Weighted Histogram Analysis Method
(WHAM) (Souaille and Roux, 2001).

Numerous successful applications of both alchemical
and pathway methods are reported in literature. However,
also these methodologies can suffer from some limitations
such as: (1) a limited use to small-size ligands, for which
relatively few conformations must be sampled and (2) the
need of a priori knowledge of the ligand binding mode,
for alchemical transformation methods; (3) an incomplete
sampling of the ligand solvated state (Limongelli et al., 2012);
(4) an insufficient sampling of the ligand bound state(s) in
case of receptor’s large conformational changes; and (5) the
presence of additional degrees of freedom important for the
ligand binding/unbinding process which are neglected during
the calculation (Limongelli et al., 2012; Limongelli, 2020).

In addition, the binding free energy calculation typically
converges slowly and might change in dependence of the
ligand size and charge, thus hampering the application of
such methods in studying peptide/peptidomimetics-protein
interaction (Gumbart et al., 2013).

In the attempt to address these problems, many variants of
these methodologies were developed over the last decades. In
the field of alchemical transformations, for instance, REMD-
based approaches were introduced to increase the accuracy
and the convergence rate of calculations. Among these is
a mixed FEP/REMD strategy that relies on accelerated MD
simulations performed in a Hamiltonian replica exchange
MD (H-REMD), in which n replicas of the system with a
modified Hamiltonian are run in parallel and are exchanged
according to specific acceptance criteria (Sugita et al., 2000).
The FEP/REMD approach allows the ligand to escape from
kinetically trapped conformations, which usually affect the
efficiency of standard FEP/MD calculations (Jiang and Roux,
2010). A more recent example is Modeling Employing Limited
Data (MELD)-accelerated MD in which experimentally derived
constraints are applied in a temperature and H-REMD
simulations framework (Morrone et al., 2017). Alternatively,
a single decoupling method was proposed, in which a single
alchemical calculation is performed in a H-REMD scheme using,
however, an implicit solvent model (Kilburg and Gallicchio,
2018). In its original formalism, SDM (Single-Decoupling
Binding Free Energy Method) relied on US simulations
performed in Hamiltonian replica exchange and combined
with the WHAM method for the calculation of the binding
free energy. This approach is known as Binding Energy
Distribution Analysis Method (BEDAM) and computes the
binding constant through a Boltzmann-weighted integral of the
probability distribution of the binding energy obtained in the
canonical ensemble in which the ligand, while positioned in
the binding site, is embedded in the solvent continuum and
does not interact with receptor atoms (Gallicchio et al., 2010;
Di Marino et al., 2015c).

As mentioned above, physical pathway methods are typically
affected by an insufficient sampling of the ligand solvated state.
A possible solution to this critical point was provided by the
works of Roux and Henchman who introduced a cylindrical
restrained potential in US simulations to reduce the sampling
space in the unbound state (Woo and Roux, 2005; Doudou et al.,
2009). Following this example, geometrically restricted potentials
were introduced in other enhanced sampling methodologies such
as MetaD. A recent example is Funnel-Metadynamics (FM) in
which a funnel-shaped restrained potential is applied to the
system along the simulation to reduce the phase space exploration
by the ligand in the unbound state. This enhances the sampling
of both the target binding site and the ligand solvated state,
leading to a thorough characterization of the binding free-energy
surface and an accurate calculation of the absolute protein-
ligand binding free energy (Limongelli et al., 2013). So far, the
method has been employed to study both ligand/protein and
ligand/DNA systems (Troussicot et al., 2015; Moraca et al., 2017;
Yuan et al., 2018; D’Annessa et al., 2019b), being suitable also in
the investigation of peptide-protein binding processes.
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CONCLUDING REMARKS

Designing peptides able to interact with specific target proteins
is only the first step toward the development of compounds
that can be considered as drug candidates. Despite their great
potential, as largely discussed above, some limitations to the
use of peptides in clinical routines still exist, mainly due to
their low stability in solution, poor permeability through cellular
membranes and physiological barriers, such as the blood–
brain barrier (BBB).

The introduction of modifications in the chemical structure
that could stabilize a peptide in its bioactive conformation,
increasing efficiency, represents the smartest strategy. This
can be achieved by introducing non-natural side chains, D-
amino acids, non-alpha-amino-acids, peptide bond isosteres,
staples and cyclization that change peptides into peptoids or
peptidomimetics (Figure 2; Vagner et al., 2008; Zhang et al.,
2018). Typically, these modifications are designed by either
adding chemical functional groups to a well-characterized active
peptide or using small molecules as building blocks that
mimic the amino acids backbone with the aim of reproducing
the geometry of secondary structure elements (SSE) (i.e.,
α-helix and β-strand) of bioactive peptides (Vagner et al.,
2008; Zhang et al., 2018). Indeed, SSEs play a key role in
PPIs, and among them α-helices are the most commonly
found at PPI interfaces. Peptidomimetics guarantee enhanced
protection against peptidases, improved systemic delivery and
cell penetration, high target specificity and poor immune
response and they are already in use against different pathologies,
such as cancer and diabetes (Vagner et al., 2008; Zhang
et al., 2018). In this context, computational approaches such as
MetaD (Figure 2A) and classical MD simulations (Figure 2B)
demonstrated to be valid tools to drive the conversion of
peptides in more active peptoids/peptidomimetics, targeting
αvβ6 RGD-integrin in one case (Di Leva et al., 2018) and the
eukaryotic translation initiation factor 4E (eIF4E) in the other
(Lama et al., 2013, 2019).

As highlighted in this review, peptides and peptidomimetics
can play a central role in pharmacological applications, also
having a potential strong economic impact on the pharmaceutical
industries. Indeed, the use of peptides/peptidomimetics for the
treatment of very different pathologies, including some types
of cancer, Alzheimer’s disease, metabolic diseases and microbial
infections, is now becoming a standard approach (Qvit et al.,
2017; Mabonga and Kappo, 2019).

Furthermore, the implementation of “hybrid” approaches that
combine theoretical and experimental techniques can sensibly
assist drug design, allowing, for instance, to overcome some
issues related to the development of peptides, mainly due to their
nature and size.

We strongly believe that the improvement of computational
peptidology techniques aimed at modifying and increasing the
potential of these molecules to obtain multifunctional peptides,
cell penetrating peptides and peptide drug conjugates, will
help strengthen the efficacy and the applicability of peptides
as therapeutics.

In conclusion, peptide design is an appealing but complex
process that raises many challenges and for a successful outcome
a deep knowledge of the available approaches and how to
combine them to overcome some major drawbacks are necessary.
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