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Background: Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) are effective substrates for
NAD synthesis, which may act as vasoprotective agents. Here, we characterize the effects of NMN and NR on
endothelial inflammation and dysfunction and test the involvement of CD73 in these effects.

Materials and methods: The effect of NMN and NR on IL1j3- or TNFa-induced endothelial inflammation (ICAM1
and vWF expression), intracellular NAD concentration and NAD-related enzyme expression (NAMPT, CD38,
CD73), were studied in HAECs. The effect of NMN and NR on angiotensin II-induced impairment of endothelium-
dependent vasodilation was analyzed in murine aortic rings. The involvement of CD73 in NMN and NR effects
was tested using CD73 inhibitor-AOPCP, or CD73 ™/~ mice.

Results: 24 h-incubation with NMN and NR induced anti-inflammatory effects in HAEC stimulated by IL1f or
TNFa, as evidenced by a reduction in ICAM1 and vWF expression. Effects of exogenous NMN but not NR was
abrogated in the presence of AOPCP, that efficiently inhibited extracellular endothelial conversion of NMN to
NR, without a significant effect on the metabolism of NMN to NA. Surprisingly, intracellular NAD concentration
increased in HAEC stimulated by IL1f or TNFa and this effect was associated with upregulation of NAMPT and
CD73, whereas changes in CD38 expression were less pronounced. NMN and NR further increased NAD in IL1f3-
stimulated HAECs and AOPCP diminished NMN-induced increase in NAD, without an effect on NR-induced
response. In ex vivo aortic rings stimulated with angiotensin II for 24 h, NO-dependent vasorelaxation induced by
acetylcholine was impaired. NMN and NR, both prevented Ang II-induced endothelial dysfunction in the aorta.
In aortic rings taken from CD73~/~ mice NMN effect was lost, whereas NR effect was preserved.

Conclusion: NMN and NR modulate intracellular NAD content in endothelium, inhibit endothelial inflammation
and improve NO-dependent function by CD73-dependent and independent pathways, respectively. Extracellular
conversion of NMN to NR by CD73 localized in the luminal surface of endothelial cells represent important
vasoprotective mechanisms to maintain intracellular NAD.

Nicotinamide riboside

1. Introduction

Nicotinamide riboside (NR) and nicotinamide mononucleotide
(NMN) have drawn attention as alternative nicotinamide adenine di-
nucleotide (NAD) substrates, devoid of side effects for nicotinic acid
(NicA), such as “flushing” or hepatotoxicity and side effects of nicoti-
namide (NA), including sirtuin inhibition. Both NAD substrates, NR and
NMN were proposed to be used in sports nutrition as good dietary
supplements [9,8] and display numerous beneficial effects in various
settings, but their bioavailability and pathways of metabolism towards

NAD differs.

NR, detectable in cow milk, milk-derived products and in natural
products containing yeast [3] has a good bio-availability and in-
tracellularly is metabolized via NRK1 and NRK2 to NMN, a major
precursor of NAD. NR was shown to be effective in restoring the NAD
pool both in mice and humans [61]. Numerous studies on NR showed a
significant impact of this substrate on NAD content, bioenergetics, and
improved regenerative capabilities in various rodent models of disease.
For example, NR treatment resulted in increased NAD concentration in
a mouse model of respiratory chain III complex deficiency [52],
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improved liver regeneration [46] and restored NAD content in mouse
skeletal muscle myotubes [17]. NR treatment also enhanced oxidative
metabolism and prevented weight gain in a mouse model of diet-in-
duced obesity [7]. Moreover, NR treatment increased NAD content in
the cerebral cortex, thus attenuated cognitive deterioration in a mouse
model of Alzheimer’s disease [21]. NR was also effective in heart
failure, as NR-supplemented diet administrated to murine models of
dilated cardiomyopathy or pressure overload-induced heart failure re-
stored myocardial NAD levels and improved impaired cardiac function
[15].

In contrast to NR, NMN has a worse bioavailability, as extracellular
NMN is unable to pass the endothelial membrane without prior de-
phosphorylation by CD73 (ecto-5"-nucleotidase) to NR [24] or prior to
metabolism to nicotinamide by extracellular CD38 [25,28]. Extra-
cellular nicotinamide in the presence of phosphoribosyl-1-pyropho-
sphate (PRPP) could be also converted NMN by visfatin as reviewed
recently [23,65]. Interestingly, in cardiomyocytes, it was demonstrated
that connexin 43 (Cx43) channels are permeable to extracellular NAD
[4] suggesting that intracellular transport of NAD and NMN may be
cell-type dependent and reliant on various transporters. Intracellularly,
NA could be converted by nicotinamide phosphoribosyltransferase
(NAMPT) to endogenous NMN in three-step Preiss-Handler pathway
[48,20,31], or methylated by nicotinamide N-methyltransferase
(NNMT) to 1-methylnicotinamide (MNA) [1]. NR is phosphorylated by
nicotinamide riboside kinases (NRK1, NRK2) to endogenous NMN
[53,17]. NMN is subsequently transformed to NAD by nicotinamide
mononucleotide adenylyltransferases (NMNAT1-3). Apart from in-
volvement in redox reactions, NAD is also substrate for sirtuins (SIRT),
poly-ADP-ribose polymerases (PARP) and other NAD-dependent en-
zymes resulting in release of endogenous NA.

In numerous studies, NMN unequivocally afforded NAD-dependent
beneficial effects. For example, NMN improved muscular contractile
function in mouse age-related models of muscle dysfunction [17,45],
restored cardiac NAD content in mouse model of ischemia-reperfusion
[63], improved metabolic balance in type 2 diabetes mice [66],
improved NAD content and survival in rat models of hemorrhagic shock
[55] and had a protective effect in B-amyloid oligomer-induced rat
model of Alzheimer’s disease [62]. In some previous reports, the effects
of NMN and NR were compared [49,17], but in most of these studies,
either NMN or NR was characterized. Still, the role of ecto-enzymes
CD73 and CD38 in NMN-induced effects has not been fully character-
ized, so it is not clear whether NMN-triggered beneficial effects are NR-
or NA-dependent and what metabolic enzymes are involved.

Despite numerous studies on the beneficial effects of NR and NMN
in various models, there is still a paucity of data as regards the effects of
NMN and NR on endothelial function. NMN treatment had a beneficial
effect in various mouse models of age-related vascular pathologies in
line with the gradual fall in NAD content in aging [35,13]. These studies
demonstrated that NMN restored endothelium-dependent vascular
function and mitigated oxidative stress in age-related model [51], res-
cued angiogenic capacity in aged cerebrovascular endothelial cells [35]
and restored fenestration-like phenotype of liver sinusoidal endothelial
cells (LSECs) isolated from old mice [30]. NR was also shown to be
effective to improve vascular function. NR improved endothelium-de-
pendent relaxation of isolated rat mesenteric arteries in ischaemia-re-
perfusion model [60]. Beneficial endothelial effects of NR was also
shown in a mouse model of endotoxaemia, in which model NR restored
NAD contents in lung and heart as well as decreased ROS production
and apoptosis in isolated endothelial cells [29].

In the present work, we aimed to characterize the endothelial pro-
file of action of NMN in comparison to NR in cellular and vascular
models of endothelial inflammation, with particular attention to the
involvement of extracellular conversion of NMN in these effects. Our
research demonstrated, that both NMN and NR modulated intracellular
NAD content in the endothelium, inhibited endothelial inflammation
and improved NO-dependent function. The important finding of this
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work was to show that NMN effects on endothelium were mediated by
CD73-dependent conversion of NMN to NR.

2. Materials and methods
2.1. Cells and animals

Eahy.926 endothelial hybrid cell line (ATCC® CRL-2922™,
Manassas, VA, USA) and Human Aortic Endothelial Cells (HAECs, CC-
2535, Lonza, Basel, Switzerland) were used to study involvement of
CD73 and CD38 in NMN metabolism and to analyze, effects of NMN and
NR on NAD content and on endothelial inflammation induced by TNFa
or IL1P. For preliminary studies due to easier maintenance and faster
growth rate Eahy.926 line was used, while major part of experiments
were performed on primary HAEC line, used as a representative en-
dothelial in vitro model to examine the extracellular metabolism of NAD
substrates in human endothelium. Eahy.926 and HAEC lines was used
up to the fifth passage to avoid the phenotype changes during late
passaging. Cells reaching over ~90% confluence were used for the
experiments, grown on EBM-2 medium (CC-3156, Lonza, Basel,
Switzerland) or DMEM medium (ATCC® 30-2006, Manassas, VA, USA),
containing glucose 1 g/L, L-glutamine 1 mM and 20% FBS.

12-16 weeks — old C57Bl/6J control mice (Jackson Laboratories,
Bar Harbor, ME, USA) and age-matched CD73 ™/~ mice, developed in
Heinrich-Heine-Universitit, Diisseldorf, provided by Gdansk Medical
University [36] were used for ex vivo studies of vascular function. After
transportation, animals (only females) were randomly allocated to
control and experimental groups and placed in individual cages with
independent ventilation system, hosting up to five animals. Animals
were kept in quarantine for 1 week, having an unlimited access to water
and chow diet. Two or three mice a day were sacrificed (in the morning
and at midday) to isolate thoracic aorta for 24 h incubation and sub-
sequent wire myograph measurements. All animal procedures con-
formed to the ARRIVE standards and EU Directive 2010/63/EU for
animal experiments and all experimental procedures were approved by
the First Local Ethical Committee on Animal Testing at the Jagiellonian
University in Krakow.

2.2. Measurement of extracellular metabolism of nicotinamide
mononucleotide (NMN) in Eahy.926 cells and HAECs

Eahy.926 cells (ATCC, Manassas, VA, USA), cultured in the 24-well
plates, were incubated with substrates for CD73 (AMP and NMN) or for
CD38 (only NMN) at the concentration range 1-5 mM. The enzymatic
reaction was carried at 100% of confluence in incubation medium (1 ml
of Hanks solution) with or without 5 uM EHNA as adenosine deaminase
inhibitor, 5uM nucleoside transport inhibitor (NBTI) and ecto-5'nu-
cleotidase inhibitor - Adenosine 5’-(a,p-methylene)diphosphate
(AOPCP; 50 uM), all reagents were purchased from Sigma Aldrich, Saint
Louis, MO, USA. Michaelis Constant, Vmax and reaction kinetics were
extracted from a graphic presentation of experimental points. Medium
samples were taken for HPLC measurement of extracellular adenosine,
NA and NR, according to the methodology described by Kutryb-Zajac
et al. [38]. After washing with cold PBS, cells were frozen in —80 °C for
protein concentration measurement following solubilization in 0.5M
NaOH, using Pierce BCA protein assay kit (Thermo Fisher Scientific,
Waltham, MO, USA) and Synergy4 multiplate reader (BioTek, Wi-
nooski, VT, USA).

To confirm the data from Eahy.926 cells HAEC line (HAECs, CC-
2535, Lonza, Basel, Switzerland) were cultured in 24-well plates and
treated with AOPCP (50 uM) for 24 h. After incubation, cells were
washed and placed in Krebs buffer for 2 h-nicotinamide starving, then
NMN 100 puM was applied for 1 h-incubation. The concentration of
NMN was chosen after initial assessment of Km reaction for adenosine
release by CD73, to induce the NR production by this enzyme from
NMN. NBTI was not used since nucleotide uptake was considered a
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marginal and not affecting NMN bio-availability during short-time in-
cubation with this substrate. Effluent samples were taken at time points
0, 30, 60 min. and frozen for further NR and NA measurement, ac-
cording to the methodology described previously [43]. After sample
collection, cells were frozen for protein concentration measurement.

2.3. Assessment of endothelial inflammation in HAECs by
immunofluorescent staining of ICAM1 and von Willebrand factor

To study the effect of NR and NMN supplementation on the ICAM1
and vWF expression of TNFa- and IL1-stimulated HAEC line (CC-2535,
Lonza, Basel, Switzerland), cells were plated in 96-well format on black
Corning multiplates with clear bottom, then supplemented with NR,
NMN, or NA (100 uM/24 h) and stimulated with TNFa (10 ng/ml/24 h)
or IL1P (Sigma Aldrich, Saint Louis, MO, USA) used at the same con-
centration. After 24 h incubation, cells were fixed with a 4% formalin
solution (10 min), washed with PBS, then incubated with a blocking
solution containing 5% normal goat serum (Jackson Immuno,
Cambridgeshire, UK) and 2% filtered dry milk (Gostyn, Poland) were to
minimalize non-specific binding of antibodies. For indirect im-
munohistochemical detection of intercellular adhesion molecule 1
(ICAM1) and von Willebrand factor (VWF), cells were incubated over-
night with mouse anti-ICAM1 monoclonal Ig, (Thermo Fisher Scientific,
Waltham, MO, USA), rabbit anti-vWF polyclonal Ig (Abcam,
Cambridge, UK). After rinsing in PBS (Thermo Fisher Scientific,
Waltham, MO, USA), HAEC cells were treated with different secondary
antibodies; Alexa Fluor 647-conjugated goat-anti-mouse for ICAM1 and
Alexa Fluor 488-conjugated goat-anti-rabbit for vVWF (Jackson Immuno,
Cambridgeshire, UK). For nuclei counterstaining, Hoechst 33258 solu-
tion (Sigma Aldrich, Saint Louis, MO, USA) was applied. Images of
immunostained cells were taken using CQ1 confocal quantitative image
cytometer (Yokogawa, Musashino, Tokio, Japan) and CQ 1.04 software,
then analyzed automatically by Columbus 2.4.2 software (Perkin Elmer,
Waltham, MA, USA) to assess mean fluorescence specific for im-
munostained cells. For data normalization, each immunostaining
(n = 6) was performed using cells with similar confluence (=90%), the
same primary and secondary antibody concentration and constant in-
cubation time for each staining step. As a negative control, cells treated
only with secondary antibodies were used to estimate the background
signal.

2.4. Measurements of changes in NAD contents in HAECs

HAECs (CC-2535, Lonza, Basel, Switzerland) were cultured in 96
well format at the density 12-15 x 10* for 24 h. After the required
confluence was reached (80-100%), cells were supplemented with
100 uM of NMN (Sigma Aldrich, Saint Louis, MO, USA) or NR
(ChromaDex, Irvine, CA, USA). CD73 activity was inhibited by 50 uM
AOPCP. For pro-inflammatory activation of HAEC line, IL13 (Sigma
Aldrich, Saint Louis, MO, USA) was used at a concentration 10 ng/ml
for 24 h. TNFa was also used as a pro-inflammatory stimulator, but as
TNFa -stimulated cells display inconsistent results of intracellular NAD
content after 24 h-incubation, IL1f3 was preferably used. Cells were
washed with PBS (pH = 7.4), treated with 40 ul of cold 0.4 M HClO4
(Chempur, Piekary Slaskie, Poland) and frozen at —80 °C for at least
24 h. After thawing on ice, HCIO4 cell extracts were centrifuged
(14000 pm/10 min/4°C). The supernatant was collected and neu-
tralized to ph = 6.5 using 3M K3POy,, kept on ice for 15min, cen-
trifuged and frozen for further HPLC-RT analysis as described pre-
viously [56]. Protein deposit remaining after removing the supernatant
was resuspended in 30 pl of 0.5 NaOH (Chempur, Piekary Slaskie, Po-
land) and used for BCA protein concentration assay.
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2.5. Assessment of the expression of extracellular metabolism enzymes by
immunofluorescent staining and Western Blot in HAECs

Immunofluorescent staining of NAMPT, CD73 and CD38 were per-
formed in HAECs plated in 96-well format (Corning, NY, USA), sup-
plemented with 100 pM NMN or NR, after incubation with IL1f (10 ng/
ml/24 h). Cells were fixed with a 4% formalin solution (10 min), wa-
shed with PBS, then incubated with a blocking solution containing 5%
normal goat serum (Jackson Immuno, Cambridgeshire, UK) and 2%
filtered dry milk (Gostyn, Poland). Before NAMPT immunostaining cells
were slightly permabilized with TritonX-100 (0,1% in PBS for 5 min) to
improve antibody binding. The following primary antibodies were
used; rabbit anti-NAMPT (Thermo Fisher Scientific, Waltham, MO,
USA), rabbit-anti-CD38 (Abnova, Taipei, Taiwan) and mouse-anti-CD73
(Merck Millipore, Burlington, MA, USA). For visualization on primary
antibody binding sites, Alexa Fluor 488-conjugated goat-anti-rabbit and
Cy3-conjugated goat-anti-mouse secondary antibodies (Jackson
Immuno, Cambridgeshire, UK) were added for 30 min. Images were
taken and analyzed as described above.

For Western Blot analysis of NAMPT, CD73 and CD38 expression in
HAEC line, cells were plated in 6-well format (Corning, NY, USA), in-
cubated or not with 100 uM NMN or NR and stimulated with IL1f3
(10 ng/ml/24 h), then collected using Accutase solution for 5min.
(Thermo Fisher Scientific, Waltham, MO, USA), lysed by M-Per reagent
(Thermo Fisher Scientific, Waltham, MO, USA) and frozen in —80 °C.
Samples were thawed on ice, spinned down (12000G/10 min/4°C) to
remove protein clots, then the protein concentration was measured,
using BCA protein concentration assay (Thermo Fisher Scientific,
Waltham, MO, USA) and Synergy4 multiplate reader (BioTek,
Winooski, VT, USA). WB samples were prepared by combining 30 ug
protein with a proper volume of 4x Laemmli buffer, heating (95 °C/5
min.) and frozen in —80 °C. At the day of the analysis, samples were
thawed on ice and placed in a 12% FastCast separating gel (BioRad,
Hercules, CA, USA). As a protein standard, 5ul of PrecisionPlus
Unstained Protein Ladder was used. The separation was performed
under 100V during 1,5h, then proteins were transferred to PVDF
membrane during 1h transfer, under 400 mA, using PowerPac HC
Power Supply (BioRad, Hercules, CA, USA). Membranes were blocked
with 2% milk solution in TBST (TBS + 0,1% Tween 20) for 1h, then
incubated (overnight, 4 °C) with primary antibodies; mouse anti-CD73
(Merck Millipore, Burlington, MA, USA), rabbit anti-NAMPT (Novus
Biologicals, Cenntenial, CO, USA) or rabbit-anti-CD38 (Abnova, Taipei,
Taiwan), used at dilutions 1:1000 to 1:5000. After washing with TBST,
secondary antibodies were applied for 1h; goat-anti-rabbit-HRP or
goat-anti-mouse-HRP (Santa Cruz Biotechnology, Dallas, Texas, USA),
used at recommended concentration 1:5000. As an additional control,
mouse anti-B-actin Ig (Santa Cruz Biotechnology, Dallas, Texas, USA)
was used to detect B-actin bands at 42 kDa site, followed by goat-anti-
mouse-HRP (Santa Cruz Biotechnology, Dallas, Texas, USA). Due to a
similar molecular weight of NAMPT and CD38, to avoid band over-
lapping, -actin Ig was used only on CD73-immunostained membranes.
NAMPT and CD38, total protein load was used as a reference unstained
control bands. Protein bands were detected using Clarity Max Western
ECL Substrate and ChemiDoc Imaging Station (BioRad, Hercules, CA,
USA). Specific bands representing molecular weights 37 kDa, 45 kDa
and 70kDa were detected for NAMPT, CD38 and CD73, respectively.
Western Blot assay was repeated three times for each of analyzed
proteins.

2.6. Measurement of endothelium-dependent vasodilation in aortic rings
After ketamine/xylazine anesthesia, thoracic aorta was isolated,

washed with cold PBS, cleaned of perivascular fatty tissue and divided
into three 2-mm-long rings, which was placed in DMEM medium
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containing a vehicle, NMN, NR (100 uM) and/or AOPCP (50 uM). To
trigger endothelial dysfunction aortic rings were incubated with an-
giotensin II at a concentration of 100 nM for 24 h. (Sigma Aldrich, Saint
Louis, Missouri, USA). Then, each ring was placed separately in DMT
620 M multi-wire myograph chamber (Danish Myo Technology A/S,
Aarhus, Denmark) containing Krebs solution (37°C) with constant CO,
flow and kept for 15min. under stabilizing conditions. After initial
stretching with 30 mM and 60 mM KCl, the endothelium-dependent and
endothelial-independent vasodilatory function were measured ac-
cording to a standardized protocol, in phenylephrine-precontracted
vessels using increasing concentrations of acetylcholine or sodium ni-
troprusside, respectively. Data were acquired and analyzed by LabChart
3.01 software (Danish Myo Technology A/S, Aarhus, Denmark).

2.7. Statistical analysis

Data were analyzed by Prism 6.0 software (GraphPad, CA, USA),
using the nonparametric Mann-Whitney test and Kruskal-Wallis One
way ANOVA, followed by post hoc multiple comparisons Dunn test. Data
were shown as mean + SEM (*<0.05, **<0.01, ***<0.001).

3. Results

3.1. Effect of CD73 inhibition by AOPCP on the extracellular conversion of
NMN in Eahy.926 and HAEC cells

In Eahy.926 cells exposed to the increasing concentration of exo-
genous NMN, the release of NR and NA was increased as measured by
HPLC assay (Fig. 1A and 1B). The Michaelis constant and Vmax for
NMN — NR reaction was 1.37 mM and 1.138 nmol/ml/min, respec-
tively, while for NMN — NR reaction: 2.29 mM and 0.583 nmol/ml/
min, respectively. AOPCP (CD73 inhibitor) incubated for 2h at a con-
centration of 50 uM effectively diminished adenosine production from
AMP by CD73 (Fig. 1C) as well as NR production from NMN, but had
almost no effect on NA production from NMN (Fig. 1D). In HAECs
AOPCP (incubated for 24h) also effectively inhibited conversion of
NMN to NR as measured by LC/MS/MS assay (Fig. 1F), resulting in very
low concentration of extracellular NR, as compared with NMN-treated
group not pretreated with AOPCP (33.54 nmol/g of prot. vs 3355 nmol/
g of prot, respectively, p < 0.01). NA production was only marginally
affected by AOPCP (1147 nmol/g of prot. in NMN/AOPCP-treated
group vs 1357 nmol/g of prot in NMN-treated group; p < 0.05).

3.2. Effects of NMN and NR on von Willebrand factor and ICAM1
expression in IL1f3- and TNFa-stimulated HAEC cells; involvement of CD73

IL1B-induced the upregulation of vWF and ICAM1 in HAECs, and
NMN prevented the pro-inflammatory effects of IL1f. The anti-in-
flammatory effect of NMN was lost in the presence of CD73 inhibitor
AOPCP (50 uM). HAECs treated only with AOPCP displayed increased
expression of VWF, as compared with untreated control HAECs
(p = 0.05). IL1p~induced upregulation of vVWF and ICAM1 expression
was also reduced in the presence of NR but the anti-inflammatory effect
of NR was not modified by AOPCP (Fig. 2).

Similarly to the effects of IL1f, 24 h-incubation with TNFa also
resulted in the upregulation of vVWF and ICAM1 in HAECs. Both NMN
and NR prevented TNFa-induced upregulation of vWF and ICAM1 and
these effects were abolished by CD73 inhibition in NMN-treated HAECs,
while in NR-treated HAECs CD73 inhibition had no effect on vWF-
specific and ICAM1-specific fluorescence (Fig. 3).

3.3. Effects of NMN and NR on intracellular NAD concentration in HAECs
after stimulation with IL1p; effects of CD73 inhibition

NMN or NR raised intracellular NAD content in basal non-stimu-
lated HAECs (Fig. 4). NMN-triggered NAD increase was a CD73-
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dependent response, since, in AOPCP-treated HAECs, NMN supple-
mentation did not increase significantly NAD content. In contrast to
NMN, NR-induced raise of NAD was not modified by AOPCP. Stimu-
lation with IL1f was not linked to the significant fall in intracellular
NAD content, rather an increased was noted. CD73 inhibition by
AOPCP prevented the rise in NAD induced by NMN in IL1j3-stimulated
HAECs, however effects of NR on NAD content in this experimental
setup was not modified by AOPCP.

3.4. Changes in NAMPT, CD38 and CD73 expression in IL1S-stimulated
HAECs

To explain the increase of NAD content in IL1 -stimulated HAECs
we analyzed the expression of NAMPT and two ectoenzymes; CD73 and
CD38 in this experimental setting by immunocytochemistry and
Western Blot. As shown in Fig. 5A, a specific immunofluorescence of
NAMPT, the main cytosolic enzyme involved in NAD synthesis was
upregulated (p < 0.01) in HAECs stimulated by IL13. CD73-specific
immunofluorescence was higher in IL1f3- treated HAECs, as compared
with untreated HAECs (Fig. 5B). Similarly, CD73 and NAMPT expres-
sion in HAEC stimulated by IL1[3 were increased as assessed by Western
Blot (Fig. 5D). Supplementation with NMN or NR resulted in a decrease
of upregulated NAMPT and CD73 expression in IL1B-stimulated HAECs,
which was also confirmed by WB assay. Stimulation with IL1 had no
significant effect on CD38-specific immunofluorescence (Fig. 5C), while
WB analysis shown a minor upregulation of CD38 in IL1p-treated cells
and downregulation after co-incubation with NMN or NR. This data
suggests the compensatory upregulation of NAMPT, CD73 in response
to inflammatory stimulus, might contribute to the preservation of NAD
pool in IL1B-stimulated HAECs. NMN or NR treatment resulted in the
anti-inflammatory effects, and reverted compensatory upregulation of
NAMPT and CD73 expression in IL13-stimulated HAECs.

3.5. Effects of NMN or NR on angiotensin Il-induced impairment of
endothelium-dependent vasodilatory response in aortic rings in wild type and
CD73~/~ mice

Angiotensin II impaired vasodilatory response to Ach in aorta taken
from C57Bl/6 mice, without an effect on SNP-induced vasodilation. Co-
incubation with NMN mitigated the impairment of Ach-induced vaso-
dilation induced by Angiotensin II (Fig. 6A), and this effect of NMN was
abrogated by CD73 inhibitor AOPCP. NMN had no effect on Angio-
tensin II-induced impairment of vasodilation of aortic rings to Ach in
CD73~/~ mice (Fig. 6B). In contrast to NMN, NR effectively restored
response to Ach in Angiotensin II-treated aortic rings isolated both from
C57 and CD737/~ mice (Fig. 6C, D). SNP-induced vasodilation was
similar in magnitude in all experimental groups including NMN- and
NR- treated vessels taken from C57Bl/6J and CD73-deficient mice
(Fig. 6E, F). AOPCP used alone had no significant effect on vasodilatory
responses (data not shown).

4. Discussion

Here we demonstrated that NMN inhibited endothelial inflamma-
tion and improved NO-dependent function by extracellular conversion
via ecto-5-nucleotidase (CD73)-dependent pathway to NR and by
modulation of endothelial intracellular NAD pool. Our results suggest,
that extracellular conversion of NMN to NR by CD73 localized in the
luminal surface of endothelial cells represents important vasoprotective
mechanisms maintaining intracellular NAD and healthy phenotype of
endothelial cells.

The salient findings of this work was to demonstrate the anti-in-
flammatory (inhibition of upregulation of ICAM1, vWF in response to
IL1B and TNFa) and vasoprotective (inhibition of the impairment of
NO-dependent function in response to Ang II) effects of NMN, that was
comparable to the effects of NR in endothelial cells in vitro as well as the
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extracellular nicotinamide riboside/adenosine (A) and nicotinamide production (B) by from exogenous nicotinamide mononucleotide and/or AMP. The rates of
adenosine production from adenosine monophosphate (AMP) (C), nicotinamide riboside production from nicotinamide monophosphate (NMN) (D) and nicotinamide
production from NMN (E) on the surface of EA.hy926 cells. The concentration of extracellular nicotinamide riboside (F) and nicotinamide (G) released by HAEC
cells, measured after 24 h-preincubation with CD73 inhibitor AOPCP and 60 min-incubation with nicotinamide mononucleotide (100 uM). n = 6, * p < 0.05, **

p = 0.01, *** p < 0.001.

in the aortic rings ex vivo. Furthermore, NMN-afforded effects, but not
NR-induced effects were absent in the presence of CD73 inhibitor
AOPCP or in CD73-deficient mice. To substantiate that the inhibitory
effect of AOPCP on NMN response in endothelial cells was indeed due
to the inhibition of CD73, we demonstrated that AOPCP (50 uM) ef-
fectively diminished NR production from NMN in two types of

endothelial cells (Eahy.926, HAECs), but had almost no effect on NA
production from NMN suggesting selective inhibition of CD73 without
an effect on CD38. The Michaelis Constant and Vmax for NMN — NR
reaction was approximately 10x lower then AMP — adenosine value
that could point out that the major physiological and pathophysiolo-
gical role of this enzyme might be linked to AMP, not to NMN



&. Mateuszuk, et al.

A.

7.0x107 4
6.0x107 4
5.0x107 4
4.0x107 4
3.0x107 4

6x100 6,
4x100°4
2x10°°4
0- T T

NMN 100pM =
IL1B 10ng/ml - - = =
AOPCP 50pM - - + - -

VWF (NMN-treated)

[AF488 fluoresc./cell counts]

IL18+NMN

+ o+
1]

7.0x107 4
6.0x107 4
5.0x107 4
4.0x107 1
3.0x1074

6x10° o
4x10°°%4
210064
0- T

NR 100pM - -
IL1g 1Ongm - - - - +
AOPCP 50pyM - = + + -

[AF488 fluoresc./cell counts]

‘ IL1B+NMN+

+

+ + 1

>
(®]
)
o
a)

+ + +

+

IL1B+NR+
AOPCP

Biochemical Pharmacology 178 (2020) 114019

B. ICAM1 (NMN-treated)

6.0x100 6 i *

soqoef * .---q -----

4.0:100¢4

3.0:10064
iﬁﬁ"-uillliil:-llup

[AF647 fluoresc./cell counts]

8x100 5,
6x10°°4
4x10°54
2x10°°4

0+

+

NMN 100pM - IL18+NMN
IL18 10ng/ml - =- - - + + + +
AOPCP50pM - - + + - - + +
ICAM1 (NR-treated)
E‘ 6.0x10°% & *% |L1B+NR
§ 5.0x100° ¢4
S 4.0x100¢4
T 3.0x100%
'S
2 81005
S 64005
=] s IL1B+NMN
- +AOPCP
© 24005
<
< ol
NR 100pM -+ - +
IL1B 10ng/ml - - - =
- - + + -
AOPCP 50uM IL1B+NR+
AOPCP

Fig. 2. Effects of NMN and NR on IL1f3-induced increase in vVWF and ICAM1 expression in HAECs. Expression of vVWF in NR and NMN- and NR-treated HAEC cells
after 24 h-stimulation with IL1f3 in the presence or absence of CD73 inhibitor AOPCP, (A); expression of ICAM1 in NR- and NMN-treated HAEC cells after 24 h-
stimulation with IL1{ in the presence or absence of CD73 inhibitor AOPCP, (B); n = 6, * p < 0.05, ** p < 0.01; white scale bar represents 25 um.

metabolism. However, the extracellular concentration of AMP was de-
tected in the nanomolar range [22,10]. On the other hand, although
this opinion is not univocally accepted [26], the local extracellular
concentration of NMN may reach micromolar concentration range as
suggested by some authors [54]. Therefore, CD73, a well-known en-
zyme responsible for the conversion of AMP into adenosine and in-
organic phosphate [5] may represent an important regulatory pathway
for extracellular NMN metabolism in endothelial cells.

Previously expression of CD73 in endothelial cell membrane was
linked to anti-inflammatory, immunosuppressive, vasoprotective or
anti-platelet action of adenosine [69,50,42,12,32,39]. Despite the va-
soprotective effect of CD73-derived adenosine, this pathway plays also
an important role in tumor progression as a potent suppressor of anti-
cancer immune responses [67,2]. Interestingly, mutation in human
NT5E gene encoding CD73 triggers recently described genetic mal-
function (2011) known as ACDC (“arterial calcification due to defi-
ciency of CD73”), which is reflected by complex phenotype of vascular
calcification, arteriomegaly, and tortuosity, and sometimes calcification
in small joints [47,33] underscoring the important role of CD73 in
vascular homeostasis. Mouse CD73 /™ model is criticized as it does not
reflect the symptoms of CD73 knockout in humans [33]. However, this
differences were ascribed to adenosine-mediated mechanisms; in
human blood the half-life of adenosine is <15 s, while in mice the half-
life is =2min [58,68,16]. In the present work we used human en-
dothelium to study CD73-dependent conversion of NMN to NR but not
to study adenosine-dependent mechanisms. Further studies are need to
determine the relative importance of CD73-dependent regulation of
NAD metabolism in mice and humans.

Nevertheless these limitations, CD73 knockdown in mice seriously

affected vascular function. Mierzejewska et al. [44] demonstrated that
CD73~/~ mice displayed endothelial dysfunction with enhanced ad-
hesion molecules, activation of pro-inflammatory cytokine and im-
paired L-Arginine metabolism, and these changes progressed with the
age of animals. CD73 was also shown to limit endothelial permeability
[11], trans-endothelial leukocyte trafficking and immune sequelae of
allograft vasculopathy [27]. In all these studies vasoprotective and anti-
inflammatory roles of CD73 were uniquely linked to adenosine-medi-
ated mechanisms, for example exerted via A,p receptors [11,27].

In the present study, we provide evidence suggesting that CD73
represents an important pathway that controls the extracellular con-
version of NMN to NR before it could be used as the intracellular
substrate for NMN (by NRK1 or NRK2) and subsequently for NAD (by
NMNAT1-3) in endothelial cells. Thus, the vasoprotective effects of
CD73 described previously might be not only linked to adenosine-
mediated pathways, but could be also linked to extracellular conversion
of NMN to NR by CD73. However, we cannot exclude, that in our ex-
perimental system CD73-dependent adenosine signaling in endothelial
cells played a role since HAEC cells incubated with AOPCP only dis-
played a higher expression of von Willebrand Factor (Fig. 2B). The role
of CD73 in the conversion of extracellular substrate for endothelial NAD
such as NMN converted to NR, seem quite likely not only in aging, a
well-known state of NAD deficiency [35,13], but also in various other
contexts where vasoprotective effects of NMN or NR were demonstrated
[51,30,60,29]. The key element of this concept that yet has to be ad-
dressed is the exact source and concentration of NMN in proximity of
endothelial luminal surface. That may not be represented by plasma
concentration, but by cell surface concentration that may be vastly
different as suggested for adenine nucleotides [64].
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This notion supported by experimental results of this study, stays in
line with the recent discovery of NAD-related function of CD73 after the
structural and functional analysis of Haemophilus influenzae NAD nu-
cleotidase (NADn), an ortholog of human CD73 capable of processing
NMN [19,18]. Indeed, CD73 was previously shown to be involved in the
NMN dephosphorylation into extracellular NR to sustain intracellular
NAD in various human cancer cells subjected to inhibition of NAMPT
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Fig. 3. Effects of NMN and NR on TNFa —induced increase in vWF and ICAM1 expression in HAECs. Expression of vVWF in NR and NMN- and NR-treated HAEC cells
after 24 h-stimulation with TNFa in the presence or absence of CD73 inhibitor AOPCP, (A); expression of ICAM1 in NR- and NMN-treated HAEC cells after 24 h-
stimulation with TNFa in the presence or absence of CD73 inhibitor AOPCP, (B); n = 6, * p < 0.05, ** p < 0.01; white scale bar represents 25 um.
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[24]. The intrinsic role of CD73 in the NMN-dependent effect on in-
tracellular NAD concentration was confirmed in numerous cancer cell
lines (U87, A549, PC3, OVCAR-3, HePG2) as well as in HEK293 cells
[37,57,24]. Furthermore, high CD73 expression in the tumor tissue has
been linked to poor overall survival and recurrence-free survival in
patients suffering from breast and ovarian cancer and this phenomenon
could be linked not only to adenosine-dependent pathway [42,59] but
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Fig. 4. Effects of NR and NMN on NAD content in HAEC cells, in the presence and absence of CD73 inhibition by AOPCP. Effect of NR (A) and NMN (B) on
intracellular NAD after 24 h-stimulation with IL1B-in the presence or the absence of CD73 inhibitor AOPCP, n = 5, * p < 0.05, ** p < 0.01, ns- not statistically

significant.
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possibly also to NAD-dependent mechanisms. In the present work, we
demonstrated NAD-related function of CD73 in endothelium and as-
cribed beneficial effects of NMN and NR to NAD-dependent mechan-
isms described previously in numerous papers in other experimental
systems [17,15,51].

It was quite a surprising finding of these studies to show that en-
dothelial inflammation was not associated with NAD deficiency.
However, there was an upregulation of NAMPT and CD73, as shown by
immunocytochemistry and Western Blot. These results suggest again
that intracellular NAD synthesis by NAMPT from nicotinamide and
extracellular conversion of NMN to NR represents the two major sys-
tems maintaining intracellular NAD in endothelial inflammation. WB
assay, but not immunofluorescent imaging, showed a slight upregula-
tion of CD38 after stimulation with IL1[3. CD38, identified previously as
an main enzyme degrading NMN in mouse tissues in vivo [6] seems to
play a minor role in NMN conversion in human endothelial cells. These
results suggest that pharmacokinetics of NMN in vivo is dependent more
on NMN uptake by other tissues studied by Camacho-Pereira et al. [6]
such as liver, brain skeletal muscle, and spleen, not by endothelial
uptake of NMN.

Although in the present work we demonstrated that NMN inhibited
endothelial inflammation and improved NO-dependent function by
extracellular conversion via ecto-5-nucleotidase (CD73)-dependent
pathway to NR we did not explicitly show that NAD-dependent

mechanisms were involved. Obviously, NAD-dependent activation of
sirtuins could play a role, for example endothelial SIRT1 that control
endothelial homeostasis and vascular functionality by modulating en-
dothelial nitric oxide synthase (eNOS) activity, p53, angiotensin II (Ang
II) type 1 receptor (AT1R), forkhead box O1 (FOXO1) or other me-
chanisms [14].

In summary, we demonstrated the nicotinamide mononucleotide
reversed endothelial dysfunction and inflammation by extracellular
conversion to nicotinamide riboside via CD73, whereas nicotinamide
riboside-induced effects were CD73-independent. Beneficial effects of
NMN and NR were comparable and could be both ascribed to NAD-
dependent mechanisms, as suggested in previous studies [51,3]. In
addition, we demonstrated that endothelial inflammation was asso-
ciated with the upregulation of NAMPT and CD73, suggesting that in-
tracellular NAD synthesis by NAMPT from nicotinamide and extra-
cellular conversion of NMN to NR, represent the major compensatory
systems activated in endothelial inflammation. Altogether, our results
point to the extracellular conversion of NMN to NR by CD73 localized
in the luminal surface of endothelial cells as important vasoprotective
mechanisms to maintain intracellular NAD. Thus, the vasoprotective
role of endothelial CD73 cannot be solely attributed to AMP-adenosine
dependent mechanisms and the importance of NAD-dependent me-
chanisms in vascular pathologies where CD73 is altered [34,40,41],
needs to be elucidated in further studies.
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