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Bianche, 60131, Ancona (AN), Italy

bASK Industries S.p.A., Viale Ramazzini, 42124, Reggio Emilia (RE), Italy

Abstract

This paper presents a novel multichannel audio equalization technique

based on evolutionary computation algorithms for tuning the filters coefficients.

Specifically, two distinct evolutionary algorithms are used on purpose, i.e. the

Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA).

Two alternative solutions for the definition of evolutionary particles have been

devised and tested with both techniques. Given the desired frequency response,

the fitness function is formulated in terms of amplitude spectral distance. These

techniques have been assessed by computer experiments, conducted on a in-car

binaural equalization scenario considering 7 loudspeakers and a binaural mi-

crophone. The obtained results show that the proposed solutions achieve a

remarkably superior performance compared to the baseline methods, with a 5

times reduction of the mean square error in the amplitude spectral domain.

Keywords: evolutionary computation, FIR filter design, audio equalization,

automotive audio, particle swarm optimization, gravitational search algorithm

1. Introduction

The interior sound quality of a car is an important decision factor for

potential customers [1], and the car cabin is among the most used audio listening
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environments [2].

For this reason, enhancing the tone quality is a necessary step and au-

dio equalization plays a fundamental role. The goal is to modify the cabin

frequency response at some sweet spots to approximate the desired results in

terms of audio quality [2]. A cabin impulse response will generally differ from

a room impulse response (RIR) due to no separation between direct wave and

reflections. Moreover cars are characterized by very small enclosure volume,

small reverberation time and high Schroeder frequency [3].

The main target of the equalization procedure is to increase sound comfort

and make the response closer to a target curve at the driver and passenger

positions [4].

In this work, we consider a multiple-input, multiple-output problem (MIMO),

where the environment (e.g. a car or a room) is fitted with several sound sources

and listening positions (or microphones), as shown in Figure 1. One possible

solution is the addition of equalizing filters gs at each sound source, aiming at

compensating for the effect of the system. Their design, however is far from

trivial. Despite being linear a problem, a large number of impulse responses

must be equalized by a lower number of filters, resulting in an underdetermined

problem. The complexity of this problem increases with the number of sources

S and microphones M. The input signal x is convolved with FIR filters gs,

thus, the signal recorded ym at the microphone m is: [5, 6]:

ym =

S∑
s=1

hs,m ∗ (gs ∗ x) m = 1...,M (1)

where hs,m is the impulse response related to microphone m and source s.
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Figure 1: MIMO equalization problem: S loudspeakers are displaced in an environment to-

gether with M microphones.

1.1. State of the art analysis

To the best of our knowledge no machine learning technique has been pro-

posed in the literature to obtain filter coefficients for audio equalization. A state

of the art analysis follows, showing previous application of computational tech-

niques for filter design and equalization in the audio and digital communication

fields. Specifically, current audio equalization techniques are briefly described,

outlining their shortcomings and focusing on the automotive use case. Then,

machine learning techniques for equalization in audio and digital communica-

tion will be described. Finally, machine learning methods for FIR and IIR filter

design will be outlined.

A large number of audio equalization techniques are proposed by the lit-

erature, however, most of these are meant for room equalization. Part of these

can, nonetheless, be adapted to the car scenario.

In [7] a report on room equalizers is available, where the filters are classified
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as minimum-phase and mixed-phase filters. Minimum-phase filters can only

provide Room Transfer Function (RTF) magnitude equalization as they only

affect the minimum-phase part of the phase response. Mixed-phase filters affect

the excess phase RTF component, removing some of the room reverberation.

An early work on a room digital equalization can be found in [8], where a

minimum phase inverse filter is designed to remove the effect of room impulse

response from a speech signal. Current trends in equalization techniques aim

at the elimination of the impulse response effect in a real-time context, usually

employing conventional digital signal processing techniques, although recent

trends such as computational intelligence and Deep Learning are paving the

way for new strategies [9, 10, 11].

A review of room response equalization algorithms [12] classifies design

techniques into the following five classes: Homomorphic filtering, where the

RIR equalizer is obtained by direct inversion of the minimum phase part [13];

Linear predictive coding (LPC) analysis, where the room response is modeled

with a minimum-phase all-pole filter and the equalizer is a finite impulse re-

sponse (FIR) filter [14]; Least-squares optimization and techniques alike, used

for adaptive equalization [15] but sensitive to the peaks and notches of the room

response; Frequency domain deconvolution, where the equalizer can be directly

designed in the discrete Fourier transform domain by considering the reciprocal

of the room response; Multiple-input/multiple-output inverse theorem (MINT)

solutions, that construct the inverse RIR from multiple FIR filters, using mul-

tiple loudspeaker or microphones. The latter approach exhibits strong limita-

tions: as shown in [16] the numerical performance is enhanced as the number of

loudspeakers is increased. A last approach employs parametric equalizers, that

allows to add peaks or notches at arbitrary frequency [17].

Major issues in the equalization approaches described above are: the

length of the equalizer impulse response; the reduced size of sweet spots where

equalization is effective; the slow time variations of the room response [12]. An

ideal equalizer has a very long impulse response capable of compensating peaks

and notches: the latter correspond to zeros close to the unit circle in the trans-
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fer function, thus, the inverse filter should have poles close to the unit circle,

determining a long impulse response. Moreover the notches at high frequencies

are extremely variable with position and time, so the equalizer is effective in

small regions of the acoustic space. For this reason, a pre-processing technique

is required to contrast these variations.

The most important pre-processing techniques are: Short filters [18], an

LPC-based technique that reduces the length of the equalizer impulse response

and can extend the sweet spot; Non-Uniform Frequency Resolution improves

the accuracy and the effectiveness of equalization, taking in account the char-

acteristics of the room response and the human ear [19], that is non uniform

and non linear, and has a logarithmic dependence on frequency; Room Impulse

Response Reshaping, reshapes the impulse response in such a way that the alter-

ation of the room becomes inaudible. This is used to reduce the reverberation

time [20] or to avoid echoes [21].

In [15] one of the first multi-point equalization algorithm is presented,

based on the Filtered-X algorithm. In [22] the algorithm is improved for the

car audio equalization. Another multi-point techinque is the clustering method,

which analyze the similarities between different spatially distributed room re-

sponses by clustering them to a chosen distance measure [23]. Other techniques

use the common acoustical poles compensation, like in [24], where the common

acoustical poles are estimated as the common pole values of many low-frequency

room transfer functions and determined using the LPC model of the room re-

sponse. Modal equalization is used to control excessively long decays in listen-

ing room caused by low-frequency modes, minimizing the audibility of these

resonances [25]. Another technique is the Plane Wave Approach, which gen-

erates a plane wave that propagates from one wall to the opposite one, where

it is absorbed by the loudspeakers. This method equalizes the sound in the

low-frequency region [26]. Another low-frequency approach is the pressure-field

chamber approach [27]. The quasi-anechoic approach is suited to mid- and high-

frequency equalization, and designs the equalizer in two steps also taking into

account the loudspeaker response: a mixed-phase equalizer is derived from the
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quasi-anechoic room impulse response, then a minimum-phase equalizer is used

to correct the remaining part of the room response [28].

Regarding the equalization inside the car passenger compartment, Cecchi

et al. [2] proposed a multi-point equalization approach using fractional octave

smoothing of impulse responses and inverting the model using the frequency

deconvolution or LPC.

Farina et al. [3] developed an equalizer for automotive applications smooth-

ing the magnitude of the impulse response and then inverting the filter. Finally

the filter is multiplied by the target curve obtained from subjective tests. In

[4] a technique is discussed that exploits objective metrics to design an inverse

filter: the inverse filter shape is based on the dynamic frequency response rather

than the steady-state frequency response.

Some contributions that use machine learning techniques for equalization

have been proposed in the literature. In the last years, machine learning tech-

niques have been used for radio channel equalization [29, 30, 31] and audio

equalization [32, 33, 34]. The latter ones are aimed at learning pleasant audio

equalization frequency responses.

In the communication systems literature a great deal of equalization tech-

niques using machine learning have been proposed. In these works, the aim is

the equalization of the transmission channel, having a linear impulse response,

that can be improved by FIR or infinite impulse response (IIR) equalizers.

In [35], the authors use the Particle Swarm Optimization (PSO) algo-

rithm to equalize the impulse response of an optical fiber communication. This

is shown to provide better results than LMS and RLS technique. Another in-

teresting approach using the PSO algorithm is reported in [36], where the PSO

particles are used to obtain optimal poles and zeros of an IIR filter. In [29] a

hybrid PSO (HPSO) is used to avoid the algorithm to stick to local minima. A

mix of PSO and Support Vector Machines (SVM) is proposed in [30] to average

the fitness function on 10 cross-validation folds. Yogi et al. [37] employs PSO

to train a Functional Link Artificial Neural Networks (FLANNs): the PSO al-

gorithm is used to update weights on training. In [31] several approaches for
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initial weight update in PSO are compared for an Adaptive Equalization. Every

particle is a filter with various coefficients. The authors based their algorithm

on [38].

In [39] Genetic Algorithms (GA) are exploited for Adaptive Channel Equal-

ization, in order to reduce the Intersymbol Interference (ISI) present in the

trasmission channel. The GA algorithms are compared with traditional LMS

and RLS technique, showing that the GA algorithm converges faster than the

LMS techinques and yields better results in terms of MSE.

A first approach for audio equalization is proposed in [40] using neural

networks. The authors use a Time Delay Neural Network (TDNN) to solve the

problem of equalization, using the input sequence, delayed by a time unit, as

features and as output of the signal registered by the microphone: the error

between the input signal and the output of the network is used for the back-

propagation algorithm. The forward approach is also employed, using a delayed

copy of the input signal as feature and the difference between the output of the

dynamic system and the network as error.

In [41] an end-to-end architecture based on Convolutional Neural Networks

(CNN) in the time-domain is implemented. The network is divided into three

parts: adaptive front-end, synthesis back-end and a latent-space DNN. The

adaptive front-end consists of a convolutional enconder formed by two CNN

layers, one pooling layer and one residual connection for the back-end.

In [32, 33] the authors describe a system that maps the gain of each fre-

quency band with the user’s preference equalization as training data. A similar

approach is undertaken by [34] where k-nearest neighbour (KNN) is used to

implement a timbre equalizer based on user preference in terms of brightness,

darkness and smoothness.

Recent works addressing the design of IIR filters using PSO can be found

in [42, 43, 44]. Foresi et al. [44] use PSO with fractional derivative constraints

to design a quasi-linear phase IIR filter for Audio Crossover Systems. The algo-

rithm gives the parameters of the desired filter with a flat magnitude response

and a linear phase. In [45] the authors use Gravitational Search Algorithm
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(GSA) to model an IIR filter and a nonlinear rational filter, then they compare

the technique with PSO and GA. In this case, the algorithms provide filter coef-

ficients as outputs. Another approach is used in [46] where the authors achieved

an IIR filter using the Artificial Immune Algorithm and compared the results

with GA, the Touring Ant Colony Optimization (TACO) and Tabu Search (TS).

Some filter design techniques that use neural networks can be found in

the literature, such as [47], where a neural network is devised to design an IIR

filter. In this work the error is calculated by the difference in magnitude re-

sponse between the desired and the calculated filter. Kumari et al. [48] provide

a performance comparison of some neural network architectures to design a low

pass FIR filter, including radial basis function (RBF), general regression neural

networks (GRNN), radial basis exact (RBE), back-propagation neural network

(BPNN) and the Multilayer Perceptron (MLP). Wang et al. [49] proposes a two

step optimization frequency-response masking (FRM) technique based on the

design of a FRM filter optimizing the subfilters, further optimized by decom-

posing it into several linear neural networks.

1.2. Scope of this Work

In the present work we have implemented two evolutionary algorithms,

the PSO and GSA, for the design of equalizing FIR filters. These will be tested

on a MIMO equalization scenario within the car environment where a binau-

ral listening point (M = 2) is considered. These techniques can be extended

to multi-point audio equalization (M > 2) and to other use cases as well, not

addressed in our experiments. Compared to linear adaptive techniques, evolu-

tionary algorithms are nonlinear and may, thus, have more flexibility in solving

the problem.

These two evolutionary techniques generate FIR filter coefficients able to

achieve, after convolution with the input signal, the desired frequency response,

in this case a flat frequency response in a given frequency range. We impose

FIR filters to be odd and symmetrical to achieve linear phase. Moreover, two

strategies to design particles and agents are defined, referred to as time-domain
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method and frequency-domain method, described in Section 2.3. Finally two

fitness functions are analyzed, described in Section 2.4.

A real time implementation of the proposed methods can be problematic

due the high computational cost, which, in turn, depends on the number of

filters and their length. Lighter adaptive algorithms for audio equalization [12]

can be exploited for real-time fine tuning of the filter coefficients obtained offline

from the evolutionary algorithms.

Evolutionary algorithms have been compared with two baseline methods

already tested in the car scenario [2, 6]: The Prototyping Design with Frequency

Deconvolution technique and the Steepest Descent. The last is an adaptive

filtering approach.

The outline of the paper follows. In Section 2 the proposed method is

detailed, including a brief explanation of the theory of PSO (Section 2.1) and

GSA (Section 2.2). In Section 3 a description of the two baseline methods

is provided. In Section 4 the results are presented and finally in Section 5

conclusions are drawn.

2. Proposed method

2.1. Particle Swarm Optimization

The Particle Swarm Optimization is an optimization algorithm based on

the social behaviour of bird flocking and fish schooling and it is related to

evolutionary computation [50]. The PSO algorithm is based on a population,

or swarm, of individuals called particles.

In order to search the global optimum, each particle crosses through the

solution space. The algorithm iteratively evaluates the fitness function at dif-

ferent locations creating a map of the best fitness values. Each particle, then,

modifies its position using the information of the distance between the current

position, the local best pbest and the global best gbest.

The PSO algorithm steps are:
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• Initialization: the swarm is generated with particles taking random posi-

tions in the solution space;

• Evaluation: the fitness function is evaluated for each particle;

• pbest evaluation: each particle’s fitness is compared with the current par-

ticle’s fitness function;

• gbest evaluation: each fitness function is compared with the swarm’s overall

previous best to obtain gbest.

• Update: the position xi and the velocity vi at instant k of all particles is

updated according to:

vi(k + 1) = W · vi(k) + c1 · ζ(k) · (pbest − xi(k)) + c2 · ζ(k) · (gbest − xi(k)) (2)

xi(k + 1) = xi(k) + vi(k + 1) (3)

where W is the inertia weight, ζ(k) is a random value in the range [0, 1]

and c1 and c2 are constants;

• Repeat the algorithm from the evaluation process to update until the

stopping criterion is met;

2.2. Gravitational Search Algorithm

The GSA is an evolutionary algorithm inspired by the Newtonian laws:

a set of agents called masses are introduced to find the optimum solution in a

space, crossing it by following Newtonian laws of gravity and motion [51].

Let us define a system with A agents in which the position of the i-th

agent is:

Xi = (x1i , ..., x
d
i , ..., x

n
i ), i = 1, 2, ..., A (4)

where xdi is the position of the i-th agent in the d-th dimension and n is the

dimension of each search space. The mass of each agent Mi is calculated after

computing the current population’s fitness:

qi(k) =
fiti(k)− worst(k)

best(k)− worst(k)
(5)
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Mi(k) =
qi(k)∑A
j=1 qj(k)

(6)

fiti(k) is the fitness value of the agent i at instant k, worst(k) and best(k) are:

best(k) = min
j∈1,...,A

fitj(k) (7)

worst(k) = max
j∈1,...,A

fitj(k) (8)

Then the total forces from a set of heavier masses for an agent F d
i should be

considered based on the law of gravity:

F d
i =

∑
j∈kbest,j 6=i

randjG(k)
Mj(k)Mi(k)

Rij + ε
(xdj (k)− xdi (k)) (9)

After acceleration of an agent adi is computed:

adi (k) =
F d
i

Mi(k)
=

∑
j∈kbest,j 6=i

randjG(k)
Mj(k)

Rij(k) + ε
(xdj − xdi ) (10)

The velocity and the position of the agent, vi and xi are then computed, re-

spectively, as:

vdi (k + 1) = randi × vdi (k) + adi (k) (11)

xdi (k + 1) = xdi (k) + vdi (k + 1) (12)

where randi and randj are two uniformly distributed random numbers in the

interval [0, 1], ε is a small value Rij(k) is the Euclidean distance between two

agents i and j, defined as Rij(k) = ||Xi(k), Xj(k)||2, kbest is the set of first A

agents with the best fitness value and biggest mass, which is a function of time,

initialized to A0 at the beginning and decreasing with time.

G is the gravitational constant, but it takes an initial value G0 and then

it will be reduced with time:

G(t) = G(G0, k) (13)

GSA and PSO are somewhat related [51, 45]. The main differences are described:
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• In PSO the direction of an agent is calculated using only two best positions,

pbest and gbest, while in GSA, the agent direction is calculated based on

the overall force obtained by all other agents;

• In PSO, updating is performed without considering the quality of the solu-

tions, and the fitness values are not important in the updating procedure,

while in GSA the force is proportional to fitness value, thus, allowing the

agents to see the influence of force in the sorrounding search space;

• PSO uses a kind of memory for updating the velocity (due to pbest and

gbest). Instead, GSA is memory-less and only the current position of the

agents plays a role in the updating procedure [45].

• In PSO, updating is performed without considering the distance between

solutions while in GSA the force is inversely proportional to the distance

between solutions.

2.3. Evolutionary algorithms for FIR filters design

2.3.1. Time-domain method

One approach to generate filter coefficients using PSO and GSA directly

derives the FIR in the time domain. The PSO and GSA algorithms provide a

vector gS of coefficients that correspond to half of the linear phase FIRs. The

complete s-th FIR is obtained as follows,

{gs[L], gs[L− 1], ..., gs[1], gs[0], gs[1], ..., gs[L]} (14)

Then the FIR is convolved with a lowpass prototype with cutoff at 15 kHz. The

magnitude frequency response at the microphone Mi is obtained by the DFT

of the microphone signal, i.e. the sum of the convolutions of signal x with the

cascade of the FIR filter and the impulse response from source Sj to Mi. The

error is computed using one of the fitness functions later explained. A diagram

of the prososed method is shown in Figure 2.
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Figure 2: Proposed method for MIMO equalization employing PSO or GSA and direct deriva-

tion of the FIR.

2.3.2. Frequency-domain method

Another design method is based on particles or agents expressing the mag-

nitude response of the FIR filters. In this process, the particles or agents are

vectors representing the magnitude response of the filters. After the computa-

tion, the FIR taps are obtained using the windowing method [52]. This approach

should reduce the computational cost because it does not require convolutions

and DFT to be performed at each iteration. The fitness functions used are later

detailed. The schematic is presented in Figure 3.

2.4. Fitness functions

We propose two fitness functions for the PSO and GSA algorithms: the

mean square error (MSE) approach and the MinMax approach[53].

MSE approach: The mean square error of the magnitude response is cal-

culated bin-by-bin for each microphone from the desired frequency response and

the microphone signal magnitude frequency response. The results are averaged
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Figure 3: Proposed method for MIMO equalization employing PSO or GSA and generation

of the FIR coefficients in the frequency domain.

between all microphones, i.e.:

ĒMSE =
1

M
M∑

m=1

1

ω

(∑
ω

(
|Hm(ω)| − |Hd(ω)|

)2)
(15)

where M is the total number of microphones used for the MIMO equalization.

Finally, the minimum MSE is choosen as pbest (PSO) or best(k) (GSA).

MinMax approach: The fitness function used in this case is the MinMax

criterion, thus, the maximum error is first calculated as the maximum bin-by-

bin difference between the desired response and the microphone signal frequency

response among all the microphones:

Emax = max
m∈M

(
max
ω

(∣∣∣|Hm(ω)| − |Hd(ω)|
∣∣∣)) (16)

Finally the minimum value is chosen as pbest (PSO) or best(k) (GSA).
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3. Baseline methods

3.1. Design of Inverse Filters using Prototyping design and Frequency Decon-

volution technique

One of the employed baseline methods is the frequency deconvolution

method [2]. With respect to [2] we generalize the technique from the stereo

case to the binaural case.

The mean of the frequency responses, H̃p(ω), is used as prototype fre-

quency response by averaging all frequency responses after smoothing them

using the fractional octave smoothing (with a fraction of 1/32th of octave):

H̃s,m(ω) =

K−1∑
i=0

Ws,m(hw(ω), i)|H((ω − 1)modK)| (17)

H̃p(ω) =
1

MS
M∑

m=1

S∑
s=1

H̃s,m(ω) (18)

where Ws,m(hw(ω), ω) is a zero-phase window function, hw(ω) is the half-

window length which is a monotonically increasing function of the frequency

index, K is the FFT length and mod is the modulo operation.

Inversion is done by frequency deconvolution with regularization:

Hinv(ω) =
H̃∗p (ω)

|H̃p(ω)|2 + β(ω)
(19)

where β(ω) is the frequency dependent regularization factor. Finally the filters

are obtained using the windowing method.

3.2. Design of Inverse Filters using Steepest Descent

Inverse filters can be obtained by steepest descent as discussed in [5, 6].

One of the most recent techniques is Multiple Input/Multiple Output Inverse

Technique (MINT) [16].

The technique consists in defining a target impulse response:

d = [0 . . . 0 1 0 · · · 0︸ ︷︷ ︸
L+Lg−1

]T (20)
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where L is the length of impulse response and Lg is the number of taps of the

FIR filters. In this way, the impulse responses are equalized relying to the target

ones:

ym = h1,m ∗ g1 + h2,m ∗ g2 + · · ·+ hS,m ∗ gS =

S∑
s=1

hs,m ∗ gs ≈ d (21)

where gs, s = 1, · · · ,S are the inverse responses and ym is the received signal

of the m-th microphone. The aim is to minimize the cost function:

J = ||dM − y||2 (22)

where dM is the vector containing the desired response M times and y =

[y1, y2, . . . , yM] is the vector containing the output impulse response for each

microphone. The inverse system G composed of filters g can be obtained by:

G = H+dM (23)

where H+ is the pseudo inverse of the system matrix H:

H =


H1,1 H1,2 · · · H1,S

H2,1 H2,2 · · · H2,S
...

...
...

...

HM,1 HM,2 · · · HM,S

 (24)

and Hm,s is an (L+ Lg − 1)× Lg convolution matrix of hm,s [5]:

Hm,s =



hm,s(0) 0 · · · 0

hm,s(1) hm,s(0) · · · 0
...

. . .
. . .

...

hm,s(L− 1) · · ·
...

...

0 hm,s(L− 1)
. . .

...

0 · · · 0 hm,s(L− 1)


(25)

The inverse filters are calculated adaptively: the gradient of the cost func-

tion ∇J is given by:

∇J = −2HT dM + 2HTHG (26)
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the inverse system can be obtained by:

G(k + 1) = G(k)− µ∇J (27)

where µ is the step-size.

4. Results

The performance of the proposed and the baseline methods has been as-

sessed by computer experiments. The baseline methods have been implemented

in Matlab1. The implementation of the proposed methods, however, is well

suited to parallelization, given the large number of independent particles or

agents. The algorithms have been, thus, implemented as Tensorflow2 libraries

in order to carry out the processing with GPUs.

The experiments were conducted using impulse responses recorded inside

the cockpit of a car, the Alfa Romeo Giulia: binaural impulse responses were

measured using a Kemar mannequin type 45BA placed on the driver’s seat. The

mannequin’s ears are 18 cm apart, the dummy is 73 cm high and 44 cm wide.

Audition 3.0 with Aurora plug-in was used to measure impulse responses, using

Roland Octa-Capture as audio interface and Sine Sweep [54] as input signal,

with a sampling rate equal to 28.8 kHz and later oversampled to 48 kHz. The

loudspeakers were S = 7, localized on the front left and right door, rear left

and right door, inside the trunk, in the central part of the car cockpit and on

the front left headrest. The microphones wereM = 2, for a total of 14 impulse

responses. 7 FIR filters need to be designed, one per source.

In our experiments we first compared the PSO/GSA approaches in both

the time- and the frequency-domain with FIR length of 1024 samples. We, there-

fore, evaluated the performance degradation with reduced FIR length (512, 640,

768, 896 and 1024). Then perfomances with baseline techinques are compared,

evaluating the results also with the weighing functions described in Section 4.4.

1https://it.mathworks.com/products/matlab.html
2https://www.tensorflow.org/

17



Finally we compare the computational complexity of the evolutionary algo-

rithms and the baseline methods.

Results are provided in terms of the MSE and average standard deviation

σ:

σ =

∑M
m=1 σm
M (28)

The MSE is calculated as in (15), while the standard deviation is calculated as:

σm =

√√√√ 1

Qh −Ql + 1

Qh∑
i=Ql

(10log10|Fm(i)| −D)2 (29)

D =
1

Qh −Ql + 1

Qh∑
i=Ql

(10log10|Fm(i)|) (30)

where Ql e Qh are the frequency region of interest to the equalization issue,

in our case 20 Hz and 14.4 kHz respectively. Fm is the sum of the frequency

responses on m-th microphone without equalization filters or with equalization

filters following [2].

The input signal is a delta function of length equals to 48000 samples (1 s).

For the FFT processing, K is equal to 65536.

Without equalization the MSE and σ are:

Mic 1 Mic 2 Average

MSE SD MSE SD MSE σ

2.81 3.63 1.48 3.51 2.14 3.57

Table 1: Mean and standard deviaton between the unequalized magnitude frequency response

and the reference

4.1. Experiments using PSO

The PSO algorithm exposes several hyperparameters affecting its perfor-

mance that cannot be determine a-priori. A search of the hyperparameters

Wmax, Wmin, c1, c2 has been performed in the ranges: 0.01 < Wmax < 10,

0.0001 < Wmin < 0.1, 2× 10−6 < c1, c2 < 2.
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The inertia weight W is calculated after every iteration as

W = Wmax − (Wmax −Wmin) ∗ k
N
, (31)

where N is the total number of iterations and k is the current iteration.

The algorithm stops if more than 500 iterations expire without an im-

provement of gbest. The total number of iterations was set to 2000. We use

both the fitness function for the analysis. In the initialization step of the PSO

algorithm random values are selected for all particles.

Time-domain method : In Table 2a the best results are reported when

the time-domain particle design is used. Results are ordered based on lower

average MSE. Figure 4a and Figure 4b show the magnitude responses of the

two microphones used for the equalization: the blue dashed line is the equalized

magnitude response, while the green line is the unequalized magnitude response;

the black line is the flat band taken as reference. There are deep notches at 80Ḣz,

110 Hz, almost 200 Hz and over 2 kHz, but compared to unequalized magnitude

response, the equalized one is very close to the reference band, this can also be

seen from the results in Table 2a, with an average MSE value of 0.22 and a σ

equals to 2.67.

Frequency-domain method : with the frequency-domain particle design the

MinMax fitness function achieves better performance. Table 2b shows the

results. The average MSE is 0.44 and the σ is 3.54 In Figure 4c and Figure 4d the

magnitude responses of the best configuration are reported, showing a reduction

of the average MSE and σ, but the magnitude responses are higher than the

desired response at low frequencies (almost 10 dB).

19



Wmax - Wmin c1 c2
Fitness

function

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

1.0 - 0.1 2.0 2.0 MSE 0.21 2.67 0.23 2.67 0.22 2.67

0.1 - 0.01 0.02 0.02 MSE 0.19 2.66 0.25 2.90 0.22 2.78

0.1 - 0.01 0.02 0.02 MSE 0.21 2.72 0.23 2.87 0.22 2.80

0.01 - 0.001 0.2 0.2 MSE 0.24 2.87 0.21 2.74 0.22 2.80

0.01 - 0.001 0.2 0.2 MSE 0.21 2.79 0.24 2.79 0.23 2.84

(a)

Wmax - Wmin c1 c2
Fitness

function

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

0.1 - 0.01 2.0 2.0 MinMax 0.46 3.50 0.43 3.58 0.44 3.54

0.01 - 0.001 2.0 2.0 MSE 0.47 3.70 0.42 3.46 0.45 3.58

0.01 - 0.001 2.0 2.0 MSE 0.45 3.76 0.45 3.53 0.45 3.65

0.1 - 0.01 2.0 2.0 MinMax 0.48 3.66 0.43 3.56 0.46 3.61

1.0 - 0.1 2.0 2.0 MSE 0.49 3.62 0.43 3.58 0.46 3.60

(b)

Table 2: Results obtained by PSO: with particles used as filter coefficients (Table 2a); with

particles used as magnitude response for each frequency bin (Table 2a).
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(a) Time-domain method - LEFT
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(b) Time-domain method - RIGHT
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(c) Frequency-domain method - LEFT
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(d) Frequency-domain method - RIGHT

Figure 4: Audio equalization using PSO: comparison of the magnitude frequency response

without equalization (green line), with equalization (dashed blue line). The desired magnitude

response is in black.

4.2. Experiments using GSA

The hyperparameters for the GSA case are: G0max , G0min , A, kbest. Since

we have used few agents, there is not decrease of them at each repetition, so

A0 = A at every iterations.

The gravitational constant G(k) decreases linearly starting from G0max
up

to G0min :

G(k) = G0max
− (G0max

−G0min
)
k

N
(32)

where N is the total number of iterations and k is the current iteration.

Time-domain method : Results of the time-domain GSA filter design are

reported in Table 3a. In Figure 5a and Figure 5b the equalized magnitude

frequency responses of the two microphones are shown. The response is almost

flat at low frequency except for notches at 90 Hz and 200 Hz for the first and

second output respectively. At high frequencies, significant notches appeared
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from 12 kHz. Comparing the results with the PSO, GSA has better performance,

reaching an average MSE of 0.13.

Frequency-domain method : Table 3b reports the best results using the

frequency-domain design method. In this case the performance is lower than

PSO. Figure 5c and Figure 5d show the filter magnitude frequency responses.

The peaks between 20 Hz and 200 Hz are reduced, however notches are present

from 1 kHz.

G0max
- G0min

A kbest Fitness

function

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

10.0 - 0.01 10 2 MSE 0.12 2.01 0.14 2.34 0.13 2.18

10.0 - 0.01 5 1 MSE 0.17 2.50 0.20 2.58 0.19 2.54

1.0 - 0.001 10 2 MSE 0.19 2.60 0.20 2.67 0.19 2.63

10.0 - 0.01 10 2 MinMax 0.23 2.87 0.28 3.03 0.25 2.95

1.0 - 0.001 10 2 MinMax 0.26 2.96 0.27 3.11 0.27 3.03

(a)

G0max
- G0min

A kbest Fitness

function

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

10.0 - 0.01 5 1 MSE 0.57 3.58 0.40 3.53 0.49 3.56

10.0 - 0.01 10 2 MSE 0.59 3.60 0.40 3.40 0.50 3.50

1.0 - 0.001 10 2 MSE 0.61 3.63 0.41 3.49 0.52 3.56

1.0 - 0.001 5 1 MSE 0.63 3.58 0.41 3.54 0.52 3.56

0.1 - 0.0001 10 2 MSE 0.62 3.63 0.42 3.50 0.52 3.56

(b)

Table 3: Results obtained by GSA with agents: Table 3a used as filter coefficients, Table 3b

used as magnitude response.
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(b) Time-domain method - RIGHT
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(c) Frequency-domain method - LEFT
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(d) Frequency-domain method - RIGHT

Figure 5: Audio equalization using GSA: comparison of the magnitude frequency response

without equalization (green line), with equalization (dashed blue line). The desired magnitude

response is in black.

4.2.1. Results with varying filter order

The experiments have been performed defining the particles and the agents

using the time-domain method: the experiments with particles and agents the

frequency-domain technique were not considered because it was seen above that

in Section 4.1 and in Section 4.2 the first tipology of particles and filters are

better than the second ones.

Experiments using PSO : In Table 4a are presented the best results ob-

tained with the different filter orders: the best results are obtained using the

MSE fitness function, moreover it was seen that using filters of order 640, the

MSE is the less than the other orders. In Figure 8e and Figure 8f are presented

the magnitude responses.

Experiments using GSA: In Table 4b are presented the best results ob-

tained with the different filter orders: the best was occured when it was used
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filters of 768-th order, with a MSE respect to flat band equals to 0.13 and σ

equals to 2.07. The magnitude responses are presented in Figure 8g and Fig-

ure 8h.

Wmax - Wmin c1 c2
Fitness

function

Filter

order

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

0.01 - 0001 0.02 0.02 MSE 512 0213 2.65 0.22 2.75 0.21 2.70

0.01 - 0001 2.0 2.0 MSE 640 0.22 2.63 0.21 2.71 0.21 2.67

0.01 - 0001 0.2 0.2 MSE 768 0.19 2.59 0.24 2.89 0.22 2.74

10.0 - 0.1 0.2 0.2 MSE 896 0.20 2.54 0.24 2.76 0.22 2.65

1.0 - 0.1 2.0 2.0 MSE 1024 0.21 2.67 0.23 2.67 0.22 2.67

(a)

G0max
- G0min

A kbest Fitness

function

Filter

order

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

10.0 - 0.01 10 2 MSE 512 0.13 2.14 0.15 2.31 0.14 2.23

10.0 - 0.01 10 2 MSE 640 0.12 2.08 0.15 2.39 0.14 2.24

10.0 - 0.01 10 2 MSE 768 0.12 2.02 0.13 2.12 0.13 2.07

10.0 - 0.01 10 2 MSE 896 0.12 2.04 0.15 2.23 0.14 2.14

10.0 - 0.01 10 2 MSE 1024 0.12 2.01 0.14 2.34 0.13 2.18

(b)

Table 4: Results obtained with: 4a PSO particles with time-domain method; 4b GSA agents

with time-domain method.

4.3. Results with baseline methods

4.3.1. Results with Prototyping Design using the frequency deconvolution Method

The first baseline method used is the Prototyping Design using the Fre-

quency Deconvolution explained in Section 3.1. After some attempts, β(ω) has

been set to 1.

In Table 5 is presented the obtained results: the average MSE is less

than the unequalized response, but the average standard deviation is double.

Analyszing the Figure 8a and Figure 8b, it has been seen that the equalization

decrease the amplitude at low frequencies, but at high frequencies there are

problems caused by β(ω).
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Filter

order

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

512 0.87 5.71 0.74 5.49 0.80 5.60

640 0.88 5.75 0.73 5.53 0.81 5.64

768 0.89 5.78 0.74 5.57 0.81 5.68

896 0.90 5.81 0.74 5.61 0.82 5.71

1024 0.91 5.81 0.74 5.61 0.82 5.71

Table 5: Mean and standard deviaton of the equalized magnitude frequency response using

the prototyping design using the frequency deconvolution.

4.3.2. Results with the Steepest Descent Method

The other baseline method is the Steepest Descent, explained in Sec-

tion 3.2. After some attempts, the number of iterations was setted to 250000

and the step size µ was choosen to be 0.00001; as the desired response was

chosen the IFFT of the desired frequency response.

The results are presented in Table 6: even if there are many loudspeakers

and a very high number of iterations, there is a very large value both of average

MSE, σ and MSEw(0.98, 7.13 and 0.25 respectively). Figure 8c and 8d show

that the large error is mostly related to the higher frequency bands, where the

method fails to equalize properly.

Filter

order

Mic 1 Mic 2 Average

MSE σ MSE σ MSE σ

512 0.98 7.10 0.98 7.43 0.98 7.26

640 0.98 7.09 0.99 7.17 0.98 7.13

768 0.99 7.08 0.99 7.11 0.99 7.09

896 0.99 7.23 0.99 7.24 0.99 7.09

1024 1.02 6.30 1.03 6.47 1.03 6.39

Table 6: Mean and standard deviaton of the equalized magnitude frequency response using

the Steepest Descent Method.
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4.4. Comparison with the Baseline Methods

Performances with PSO and GSA have been compared with baseline tech-

niques. In addition to using the MSE described in Eq. (15), the weighted

MSE is also used with three different normalized weighing functions: the first

normalized function Ψw(ω) derives from the equal-loudness contour, the sec-

ond ΨA(ω) and the third ΨC(ω) are the A-weighting and C-weigthing curve,

properly normalized [55].

The weighting function Ψw(ω) has been determined taking the 60 phons

equal loudness contour from the ISO226:2003 standard [56], inverting the curve

in the frequency range of interest and normalizing it. The weight function is

presented in Figure 6a. The psycho-acoustically weighted MSEw is used to give

more importance to frequency ranges that are strongly perceived by the human

ear. A-weighting and C-weigthing curves are also widely employed in acoustics,

and are used to evaluate the effect of the error on frequency ranges that are

perceptually relevant.

For each weighing function, a weighted MSE has been derived according

to the following:

MSEw,A,C =
1

M
M∑

m=1

1

ω

(∑
ω

Ψw,A,C(ω)
(
|Hm(ω)| − |Hd(ω)|

)2)
(33)

where, the three erros: MSEw, MSEA, MSEC are computed from Ψw(ω), ΨA(ω),

ΨC(ω), respectively.
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Figure 6: Normalized function: (6a) Weight function used for the evaluation, (6b) normzalized

A-Weight function used for the evaluation, (6c) normalized C-Weight function used for the

evaluation

In Table 7 we compare the results obtained by PSO and GSA, with baseline

methods and with no equalization applied. The PSO and GSA algorithms

obtain better results in terms of MSE. The average variance, computed bin by

bin, also reduces with these two methods, with the time-domain particles and

agents providing best results. In addition, it can be seen from the frequency

plots that the matching with the target response improves when using the GSA

algorithms (see Figure 8 for comparison).

The best results are obtained using GSA, yielding a 0.13 MSE (σ = 2.07).
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Similarly, all three perceptually-motivated MSE have been achieved by GSA

(MSEw = 0.04, MSEA = 0.10 and MSEC = 0.1), suggesting that the technique

performs better also from a perceptual standpoint. Another consideration is

that GSA uses just 10 agents, while PSO uses 50 particles, resulting in a smaller

number of elements to insert in the search space. As a downside, the GSA

has a higher computational cost as later discussed. The obtained filters are

symmetrical, thus, each filter has linear phase (see Figure 7).

Algorithm
Average Weight A-Weight C-Weight

MSE σ MSEw MSEA MSEC

No Equalization 2.14 3.57 0.90 1.23 1.98

Prototyping Design

with Frequency Deconvolution
0.80 5.60 0.25 0.52 0.58

Steepest Descent 0.98 7.13 0.36 0.72 0.72

PSO 0.21 3.83 0.08 0.15 0.16

GSA 0.13 2.07 0.04 0.10 0.10

Table 7: Comparison of best results obtained with the different algorithms.

4.5. Computational cost analysis

In this section we analyze the computational complexity of all the algo-

rithms under test analyzing the number of floating-point operations (flop) for

single iteration. Table 8 shows the number of floating-point operations of the

baseline techniques and the evolutionary algorithms using FIR filter of 512-th

order, S = 7 sources and M = 2 microphones. The result of each method

is referred to an individual iteration, except for the Frequency Deconvolution

method, that is not iterative, thus, the cost reported in Table 8 is the overall

cost. Among the iterative algorithms, the Steepest Descent is the least expen-

sive. Please note, however, that the first iteration requires 360.06 Gflop due to

the products HTH and HT d. These need be calculated only at the first iter-

ation, since the matrix H is not time-varying in this context, differently from

on-line adaptive applications of the Steepest Descent algorithm. It also worth

28



noting that this implementation of the Steepest Descent is block-based, while

iterative frame-by-frame processing could result in a significant computational

cost reduction. GSA has the highest computational cost per iteration overall,

which stands as a challenge for a potential real-time implementation.

Going into deeper detail: the computational cost of the Frequency De-

convolution method is mainly due to the calculation of the Fourier transform

and the smoothing of the frequency responses (see Eq. (17)). For the Steepest

Descent algorithm, the largest number of operations is given by the update of

the filter coefficients (see Eq. (27)). The high cost of PSO and GSA is related

to the fitness function calculation (Eq. (15)) and the update of particles and

agents. In particular, the highest cost of the GSA can be attributed to the

calculation of the force (see Eq. (9)).

Algorithm Floating-point operations per iteration

Prototyping Design

with Frequency Deconvolution
16.13 G

Steepest Descent 1.89 G

PSO 7.25 G

GSA 14.51 G

Table 8: Number of floating point operations of Prototyping Design with Frequency Deconvo-

lution, Steepest Descent, PSO and GSA. Flops of PSO and GSA are referred to one particle

and one agent. Frequency Deconvolution operations is executed in one single iteration.

5. Conclusion

This paper tackles the binaural equalization problem using computational

intelligence techniques, namely, the PSO and GSA algorithms. Two approaches

are proposed to define particles and agents, either in the time-domain or in the

frequency-domain, and fitness functions are proposed. Computer experiments

have been performed to evaluate the proposed approach for a specific use-case,

the equalization of a car cockpit with several loudspeakers and a binaural mi-
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Figure 7: Filters of the best configuration
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Figure 8: Magnitude frequency response of the two microphones used for the equalization.

Green line is the magnitude frequency response without equalization, dashed blue line is the

one with equalization, black line is the reference magnitude response. Figure 8a Figure 8b are

the magnitude frequency response when it was used the Prototyping Design with Frequency

Deconvolution method, Figure 8c Figure 8d are referred to the Steepest Descent Method,

Figure 8e Figure 8f are the ones of PSO, Figure 8g Figure 8h are referred to the GSA algorithm.
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crophone. The obtained results are compared with two baseline methods: the

Steepest Descent method and the Frequency Deconvolution method. The tests

seem to confirm the validity of the approach, with results improving over state

of the art methods. The best results achieved in the experiments are 6.15 times

better in terms of average MSE than the Frequency Deconvolution method, re-

ducing peaks and notches introduced by the sum of the sound sources and their

reflections in the cockpit, especially in the low-to-mid frequency range. Reduc-

ing the filter order even by an order of 2 does not degrade the performance

significantly, suggesting that the method can scale well to embedded digital

signal processors with low computational power.

Some issues still need to be addressed. In the high frequency range, al-

though improved, the equalized frequency response still has large variations,

resulting in peaks and notches.

Furthermore, the proposed techniques are not currently aimed at real-time

equalization. Movements of the listener head can affect the impulse response

and decrease the equalization performance. As discussed above, offline methods

can be complemented with adaptive equalization techniques for real-time tuning

of the filters [12, 57]. As an example, Kalman filters and Steepest Descent could

be used for real-time estimation of the impulse responses and their inversion by

equalizing filters [6]. Offline methods can be also employed to extend the volume

of space to be equalized. For instance, virtual microphone methods [58, 59] can

be used. Additionally, in future works we aim at employing machine learning

algorithms aiming at further improving audio equalization performance and

possibly run these online.
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