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1 Introduction

Consider the semilinear elliptic system

(PDE) −∆u+ L(x)u = Fu(x, u), x ∈ Rn, u ∈ Rm,

where L is an m by m matrix and Fu denotes the gradient with respect to
the variable u of a nonlinearity, F ≥ 0. To be more precise about L and F ,
suppose they satisfy the following conditions:

(L) L ∈ C1(Rn,Rm × Rm), is 1− periodic in xj for j = 1, . . . , n, and is
positive definite for each x ∈ [0, 1]n.

(F1) F ∈ C2(Rn ×Rm,R) and F (x, u) is 1− periodic in xj for j = 1, . . . , n.

(F2) There is a constant, C > 0, such that

|Fu,u(x, u)| ≡ Σi,j|Fui,uj(x, u)| ≤ C(1 + |u|p−1)

for any x ∈ Rn, u ∈ Rm, where 1 < p < 2∗n − 1 = n+2
n−2

if n > 2 while
p > 1 for n = 1, 2.

(F3) Fu,u(x, 0) = 0 for any x ∈ Rn.

(F4) There exists a constant, µ > 2, such that 0 < µF (x, u) ≤ Fu(x, u) · u
for any u ∈ Rm \ {0}, x ∈ Rn.

As a consequence of the conditions on F , it vanishes more rapidly than
quadratically at u = 0 and grows more rapidly than quadratically as |u| →
∞.

Associated with (PDE) is the functional,

J(u) =

∫
Rn

(
1

2
(|∇u|2 + L(x)u · u)− F (x, u)) dx.

Most of the solutions of (PDE) that we find will be obtained as critical points
of J . By (L), (F1) − (F4), J ∈ C2(E,R) where E = W 1,2(Rn,Rm). Due
to (F1), for any k ∈ Zn, J(u(· + k)) = J(u), i.e. J has a Zn translational
symmetry. In addition, as was shown in [24], (F3) − (F4) imply J has the
geometric structure that allows one to define a minimax value, c, of mountain
pass type. Namely introducing the class of mountain pass curves,

H = { h ∈ C([0, 1], E) : h(0) = 0 , h(1) 6= 0 and J(h(1)) ≤ 0 },
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the corresponding minimax value is

(1.1) c ≡ inf
h∈H

max
s∈[0,1]

J(h(s)).

Conditions (F1) − (F4) are more than adequate to show that (PDE)
possesses a solution u 6≡ 0 as is illustrated by [27] where n = 1 and [29] where
m = 1. In these papers, solutions of (PDE) were obtained by first seeking
solutions having a large period in the scalar x in [27] or in the components of
x in [29]. Then using the Mountain Pass Theorem to obtain critical points
of J in this class of functions, letting the large period(s) go to infinity and
passing to a limit with the aid of a priori bounds, yields a solution, u of
(PDE) in E with J(u) ≤ c. While these arguments provide existence, they
do not suffice to show that c as defined by (1.1) is actually a critical value
of J . However for some special cases of (PDE), it is known that c is indeed
a critical value of J . This was shown by Jeanjean and Tanaka [15] when
the problem is autonomous and by several authors for (PDE) and related
equations when a further monotonicity or convexity assumption is made on
F such as :

(F5) s−1uFu(x, su) is an increasing function of s > 0 for all x ∈ Rn and
u ∈ R \ {0}.

or

(F6) Fu(x, u)u < Fu,u(x, u)uu for all x ∈ Rn and u ∈ Rm \ {0}.

See e.g. [25], [9], [14], [28], [3].
To show that c is a critical value of J in the full generality of (L), (F1)−

(F4), as was proved in [10]-[11], a nondegeneracy condition on the set of
critical points of J suffices. The condition employed in [10]-[11], which goes
back to a related condition introduced by Séré [31] in work on homoclinic
orbits of first order Hamiltonian systems, is that there is an α > 0 such that
the set of critical points of J with critical values below c+α (modulo the Zn
symmetry mentioned above) is finite. Like [10]-[11], there are other papers
that treat simpler versions of (PDE) for Hamiltonian systems (n = 1) and
a single partial differential equation such as [12], [2], [17], [18], [7], [3] [19],
[20], [27], [29] and [33]. They also use variants of the finiteness condition.

The nondegeneracy condition as used in e.g. [10]- [11] played two roles.
First it showed c was a critical value of J thereby giving us an initial set of
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solutions of (PDE). Since these solutions decay to 0 as |x| → ∞, they are
so-called 1− bump solutions of the equation. Second it plays a role in an
indirect variational argument that in a sense glues the 1−bump mountain
pass solutions to construct multibump solutions of (PDE). This leads to
existence results of the form: for each k ∈ N with k ≥ 2, there are infinitely
many k-bump solutions that are not merely integer phase shifts of each other.
These k-bump solutions are near (or shadow) k phase shifts of 1− bump
solutions.

A recent paper [24] contains a new nondegeneracy condition that con-
siderably weakens that of [10]-[11] and its variants used in the other quoted
papers. Compared to the nondegeneracy condition of [10]- [11], this new
condition imposes a mild sort of disconnectedness requirement on the set
of critical points of J with critical values below c + α. It is the analogue
for (PDE) of conditions given to enable the construction of multitransition
solutions for various Hamiltonian systems in [30], [20], [8], [23] and for Allen-
Cahn type systems of PDEs in [21], [4]. Its precise formulation requires some
preparation so it will be postponed until our Section 2.

This new condition provides the analogue of the 1−bump solutions for
(PDE) for the current setting. It does not tell us that c is a critical value
of J but rather that there may merely be a sequence of critical values, ci,
of J that approach c from above. This possibility is due to its analogue in
the abstract critical point theorem - see Proposition 2.18 - that we employ
to get existence of critical points. Examples show that this phenomenon in
which c is not a critical value can occur in general. Whether it actually
must occur here is not yet known. In any event, for any such i, we find
a set of 1−bump solutions - see Theorem 2.19 and Proposition 3.1 - that
(modulo the Zn symmetry) is compact rather than finite. This complicates
the construction of the multibump solutions.

Another novelty of this work is that in Theorem 3.2, we are able in Corol-
lary 3.3 to find k−bump solutions for which the distance between the bumps
is independent of k. This is in contrast to [10] - [11] where the distance be-
tween the bumps is k dependent. The additional flexibility provided by our
construction enables us to use a limit process to find infinite-bump solutions
for which J(u) =∞.

The existence of k-bump homoclinic solutions where the distance between
the bumps is independent of k, and consequently the existence of solutions
with infinitely many bumps, was first proved using global variational methods
by E. Séré in [23] for first order Hamiltonian systems where the Hamiltonian,
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H(t, z) is periodic in t and convex in z. Related results were then obtained
for second order Hamiltonian systems in [17], [12], [7], [19] under different
hypotheses on the time dependence of the Lagrangian. When n > 1, the
situation changes since the geometry of the relative locations of the bumps
may be more complicated. A result in this direction is due to Angenent
[1] using the contracting mapping theorem. He studied a class of nonlinear
elliptic PDEs for which the corresponding functional, J , had a nondegener-
ate critical point. Global methods for such a class of PDEs were first used
in [18], obtaining solutions with infinitely many bumps provided that each
bump was located in a concentric annular region of sufficiently large width,
different bumps lying in different such regions. In the present paper the
geometric difficulty is overcome by using a suitable partition of Rn and em-
ploying a multibump construction somewhat related to the ones used in [32],
in [17], [18], and in [5], [6]. Thus infinite bump solutions without geometric
constraints on the relative locations of the bumps are obtained.

A precise statement and proof of our results will be given in Section 3.
In Section 2, several preliminary results from [24] will be recalled. Section 4
contains the rather long and technical construction of a pseudogradient vector
field having appropriate properties that plays a crucial role in establishing
the main existence assertions of Section 3.

2 Preliminary results

This section contains several preliminary results, both notational and other-
wise that are needed to prove the main theorems. To begin observe that as
a consequence of (F2)− (F4), for any ε > 0, there is a constant, Cε > 0 such
that

|F (x, u)| ≤ ε
2
|u|2 + Cε

p+1
|u|p+1,(2.1)

|Fu(x, u)| ≤ ε|u|+ Cε|u|p, and

|Fuu(x, u)| ≤ ε+ pCε|u|p−1 for all (x, u) ∈ Rn × Rm.

Since the proof is essentially the same, to simplify matters in what follows,
L is taken to be the identity matrix. The space E is a Hilbert space with
scalar product

〈u, v〉 ≡ 〈u, v〉W 1,2(Rn,Rm) ≡
m∑
ι=1

∫
Rn

(∇uι(x) · ∇vι(x) + uι(x)vι(x)) dx.
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and norm

‖u‖2 = 〈u, u〉 =
m∑
ι=1

∫
Rn

(|∇uι|2 + |uι|2) dx.

Above ∇uι(x) · ∇vι(x) denotes the scalar product in Rn of the two vectors
∇uι(x) and ∇vι(x): ∇uι(x) · ∇vι(x) =

∑n
i=1 ∂iuι(x)∂ivι(x). Using the nota-

tion

|∇u(x)|2 =
m∑
ι=1

|∇uι(x)|2

the norm can be written more concisely as

‖u‖2 =

∫
Rn

(|∇u(x)|2 + |u(x)|2) dx.

For future reference, for any measurable Ω ⊂ Rn and u, v ∈ E, we set

〈u, v〉Ω ≡ 〈u, v〉W 1,2(Ω,Rm) ≡
m∑
ι=1

∫
Ω

(∇uι(x) · ∇vι(x) + uι(x)vι(x)) dx,

‖u‖2
Ω ≡

∫
Ω

(|∇u(x)|2 + |u(x)|2) dx.

The functional J can be written as

J(u) = 1
2
‖u‖2 −

∫
Rn
F (x, u) dx, u ∈ E.

The assumptions on F are more than sufficient to show that J ∈ C1(E) with

J ′(u)v = 〈u, v〉 −
∫
Rn
Fu(x, u)v dx, u, v ∈ E,

where, for (a.e.) x ∈ Rn,

Fu(x, u(x))v(x) =
m∑
ι=1

Fuι(x, u(x))vι(x).

Now several results obtained in [24] will be recalled. It follows from the
properties of F and the form of J that J satisfies the geometrical hypotheses
of the Mountain Pass Theorem and in particular that there is a ρ ∈ (0, 1)
such that if u ∈ E satisfies ‖u‖ ≤ ρ, then

(2.2) J(u) ≥ 1
4
‖u‖2 and J ′(u)u ≥ 1

2
‖u‖2.
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Thus by (2.2), defining the class of mountain pass curves, H, as in the In-
troduction,

(2.3) c ≡ inf
h∈H

max
s∈[0,1]

J(h(s)) ≥ 1
4
ρ2.

Set
D = {u ∈ E \ {0} | J ′(u) = 0}

and
Tk = [k1, k1 + 1]× . . .× [kn, kn + 1] for k ∈ Zn.

Then from [24],

Lemma 2.4. There exists a ρ̄ ∈ (0, ρ/2) such that if u, v ∈ E, then

(2.5)

∫
Rn

∣∣Fu(x, u)v
∣∣ dx ≤ 1

2
‖u‖‖v‖ whenever sup

k∈Zn
‖u‖Tk ≤ 2ρ̄.

Moreover

(2.6) max
k∈Zn
‖u‖Tk > 2ρ̄ for any u ∈ D and inf

u∈D
J(u) ≥ µ−2

µ
ρ̄.

Remark 2.7. Some localized versions of (2.5) will be needed later. Towards
that end, let Ω be a measurable set of Rn which satisfies the cone property
with respect to the right-spherical cone

T = {λx | λ ∈ [0, 1], x ∈ ∂B1/2(0), x1 > 1/4}.

Due to this uniformity, for any such Ω, there is a constant, κ > 0 depending
on T but independent of Ω such that ‖u‖Lp+1(Ω,Rm) ≤ κ‖u‖Ω for all u ∈ E.
Further requiring that ρ̄ satisfies

(2.8) C1/4κ
p+1(2ρ̄)p−1 ≤ 1/4,

the argument which leads to (2.11) in [24] shows that this choice of ρ̄ implies
that if ‖u‖Ω ≤ 2ρ̄ and v ∈ E, then

(2.9)

∫
Ω

F (x, u) dx ≤ 1
4
‖u‖2

Ω and

∫
Ω

∣∣Fu(x, u)v
∣∣ dx ≤ 1

2
‖u‖Ω‖v‖Ω.

The next result, a restatement of Proposition 2.22 of [24], provides us
with a compactness property of J :

7



Proposition 2.10. Let (up) ⊂ E be such that J(up) → b, J ′(up) → 0 as
p→∞. Suppose there exists an R > 0 independent of p such that

(2.11) ‖up‖Tq < 2ρ̄

whenever q ∈ Zn with max1≤i≤n |qi| ≥ R. Then there is U0 ∈ {0}∪D∩{J ≤
b} such that, up to a subsequence, up → U0 in E as p→∞.

Towards formulating the nondegeneracy condition that we will use, for
d > 0, set Dd ≡ D ∩ {J ≤ d}, define

Sd ≡ {U |T0 | U ∈ Dd}.

Thus if u ∈ Sd, u is the restriction to T0 of a critical point U 6≡ 0 of J such
that J(U) ≤ d. Some important properties of Sd are

Proposition 2.12. 1o the map u ∈ Sd → U ∈ Dd is invertible.

2o Sd = Sd ∪ {0} is a compact metric space under the metric obtained from
‖ · ‖W 1,2(T0,Rm).

Let (e1, . . . , en) denote the canonical orthonormal base of Rn. For ` ∈
{1, . . . , n}, consider the shift map

g` : Sd → Sd, g`(U |T0) = U(·+ e`)|T0 .

More generally, letting

gk ≡ gk1
1 ◦ . . . ◦ gknn for k = (k1, . . . , kn) ∈ Zn,

gk is a homeomorphism on Sd with gk(0) = 0 for any k ∈ Zn. Note that for
u ∈ Sd,

(2.13) gk(u)→ 0 in W 1,2(T0,Rm) as |k| → ∞.

Moreover by (2.6), for any u ∈ Sd, there exists a q(u) = (q1(u), · · · , qn(u)) ∈
Zn such that

(2.14) ‖gq(u)(u)‖W 1,2(T0,Rm) > 2ρ̄.

Set
Rd = {u ∈ Sd | ‖u‖W 1,2(T0,Rm) ≥ 2ρ̄}.
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The set Rd is a compact subset of Sd and 0 /∈ Rd. Moreover whenever
u ∈ Sd, any “trajectory” {gk(u) | k ∈ Zn} intersects Rd since by (2.14):

(2.15) gq(u)(u) ∈ Rd for any u ∈ Sd.

Let Cd(0) denote the component to which 0 belongs in Sd. Since gk is a
homeomorphism on Sd, for any k ∈ Zn, gk(Cd(0)) is compact, connected and
contains 0. Hence

gk(Cd(0)) ⊂ Cd(0) for any k ∈ Zn.

In particular

(2.16) if u ∈ Cd(0) \ {0}, then gk(u) ∈ Cd(0) \ {0} for any k ∈ Zn.

By (2.15) and (2.16), either

(2.17) (1o) Cd(0) = {0} or (2o) Rd ∩ Cd(0) 6= ∅.

Our nondegeneracy condition is that (1o) of (2.17) holds. When this is the
case, classical topological separation theorems imply Sd can be split into the
disjoint union of two compact sets K1 and K2, one containing 0 and the other
Rd. More precisely

i) Sd = K1 ∪K2 and K1 ∩K2 = ∅,

ii) 0 ∈ K1, Rd ⊂ K2,

iii) K1 6= {0}, K1 and K2 are non-empty and compact in W 1,2(T0,Rm).

This decomposition of Sd is not unique but it can be assumed that

iv) ‖u‖W 1,2(T0,Rm) ≤ ρ̄/2 for any u ∈ K1.

Choose r0 ∈ (0, ρ̄/2) such that

v) ‖K1 −K2‖W 1,2(T0,Rm) ≥ 5r0.

The next abstract result, first obtained in [22], is the existence tool used
to get the basic solutions of (PDE) in [24].
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Proposition 2.18. Let E be a real Hilbert space and J : E → R. Let
e0 6= e1 ∈ E and define

Γ ≡ {γ ∈ C([0, 1], E) | γ(0) = e0, γ(1) = e1},

Assume

(J1) J ∈ C1(E,R).

(J2) b = infγ∈Γ maxs∈[0,1] J(γ(s)) > max{J(e0), J(e1)}.

(J3) There are constants, b∗ > b, ν > 0, r∗ > 0 and a sequence, (Aj)j∈Z of
disjoint subsets of E such that

(i) A ≡ {u ∈ E | ‖J ′(u)‖ ≤ ν, J(u) ≤ b∗} ⊂ ∪j∈ZAj,

(ii) ‖Ai −Aj‖ ≥ 3r∗ if i 6= j,

(iii) The Palais- Smale condition (or (PS) for short) holds in Aj for
each j ∈ Z, i.e. if (uk) is a sequence in Aj with J(uk) bounded and
J ′(uk)→ 0, then uk has a convergent subsequence in Aj.

Then for any ε > 0, J possesses a critical value bε ∈ [b, b + ε) and a critical
point, uε, with J(uε) = bε. Moreover uε is not a local minimum of J .

Proposition 2.18 implies the main theorem of [24]:

Theorem 2.19. Suppose that (L), (F1)− (F4) are satisfied and c is defined
by (2.3). Let d > c and assume 1o of (2.17) holds. Then for any ε > 0, J
possesses a critical point, Uε ∈ E, such that J(Uε) ∈ [c, c+ ε).

Remark 2.20. As was shown in [24], when the nondegeneracy condition of
[10] - [12] is satisfied, in fact c is a critical value of J .

That the critical points of J in E are classical solutions of (PDE) is a
straightforward consequence of elliptic regularity theory:

Proposition 2.21. Let (L), (F1) − (F4) be satisfied and suppose that U ∈
W 1,2
loc (Rn,Rm) is a weak solution of (PDE), i.e. for all φ ∈ C∞0 (Rn,Rm),
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(2.22) 〈U,ϕ〉 −
∫
Rn
Fu(x, U)ϕ dx = 0.

Then U ∈ C2,α
loc (Rn) for any α ∈ (0, 1) and is a classical solution of (PDE).

In particular this is true for any critical point, U ∈ E of J .

Proof: If U is a weak solution of (PDE), we will show that U ∈ C2,α
loc (Rn,Rm)

for any α ∈ (0, 1). Suppose first that m = 1, i.e. U is a scalar function. Let
ζ ∈ C(Rn, [0, 1]) with ζ smooth, ζ(x) = 1 for |x| ≤ R0 and ζ(x) = 0 for
|x| ≥ R0 + 1. If U were a solution of (PDE), then for all x ∈ Rn,

L0(ζU) ≡ −∆(ζU) + ζU = −(∆ζ)U − 2∇ζ · ∇U + ζFu(x, U) ≡ f(x),

where by (F2), f ∈ Lp(BR0+1(0)) for some p > 1 with p independent of R0.
Consider the boundary value problem

(2.23) L0v = f, x ∈ BR0+1(0), v = 0 on ∂BR0+1.

By Theorem 9.15 of [13], there is a unique solution, v ∈ W 2,p(BR0+1(0)) ∩
W 1,p

0 (BR0+1(0)) of (2.23). We claim v = ζU . Assuming this for the moment,
then U is a strong solution of (PDE) in BR0(0). This additional regularity of
U , the fact that R0 is arbitrary, and a bootstrap argument as e.g. in Section
5 of [11] show U ∈ C2,α

loc (Rn,R) and is a classical solution of (PDE).
To verify that v = ζU , note first that v is a weak solution of (2.23): for

all smooth ϕ with support in BR0+1(0),

(2.24)

∫
Rn

(∇v · ∇ϕ+ vϕ) dx =

∫
Rn
fϕ dx.

Since this weak solution is unique, it suffices to show that ζU is also a weak
solution of (2.24). Replacing v by ζU in the left hand side of (2.24) gives∫

Rn
(ζ∇U · ∇ϕ+ U∇ζ · ∇ϕ+ ζUϕ) dx

while after an integration by parts and using (2.22), the right hand side
becomes∫
Rn

(∇ζ · (U∇ϕ+ϕ∇U)− 2ϕ(∇ζ · ∇U) + ζ∇U · ∇ϕ+ϕ∇U · ∇ζ +Uζϕ) dx.
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Thus the two sides are equal and the case of m = 1 is proved.
Next suppose that m > 1. Then U = (U1, · · · , Um) and each component,

Fi, of F satisfies

(2.25) 〈Ui, ϕ〉 −
∫
Rn
Fi,u(x, U)ϕ dx = 0.

Thus with ζ as earlier, the argument just given shows ζUi ∈ W 2,p(BR0+1(0)),
for 1 ≤ i ≤ n and again a bootstrap argument and that R0 is arbitrary yield
U ∈ C2,α

loc (Rn,Rm). Lastly any critical point of J in E is a weak solution of
(PDE).

Remark 2.26. While the content of Theorem 2.19 sufficed for the purposes
of [24], further information about the nature of the topology of the level sets
of J near J(Uε) is required to construct the multibump solutions of (PDE)
that are of concern here. This information will be provided at the beginning
of the next section.

To conclude this section, it is necessary for our multibump construction
to make more precise the relationship between Proposition 2.18 and Theorem
2.19. To apply the former to the latter, set e0 = 0 and choose v ∈ E \ {0}.
Then if s ∈ R is large and e1 = sv, we see that J(e1) < 0. In particular,
it can be assumed that ‖e1‖ > ρ with ρ as chosen prior to (2.2). Then
γ([0, 1]) ∩ ∂Bρ(0) 6= ∅ for each γ ∈ Γ, from which it follows that J satisfies
(J2) with b = c.

To describe what the sets, Aj, of Proposition 2.18 are in the setting of
Theorem 2.19, let k1, k2 ∈ Zn. Then by k1 ≺ k2, we mean that k1

` < k2
`

for each ` ∈ {1, . . . , n}. Let d > c be such that 1o of (2.17) holds and let
k−, k+ ∈ Zn with k− ≺ k+. Define

Adk−,k+ = { U ∈ E | U satisfies (A1)− (A3)}

where

(A1) J(U) ≤ d,

(A2) if k` ≥ k+
` or k` ≤ k−` for some ` ∈ {1, . . . , n}, then ‖gk(U |T0)−K1‖T0 ≤

r0,

(A3) for each ` ∈ {1, . . . , n}, k−,`` ≡ k−` + 1, k+,`
` ≡ k+

` − 1 satisfy

‖gk−,`(U |T0)−K2‖T0 ≤ r0, ‖gk+,`

(U |T0)−K2‖T0 ≤ r0.
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Then the family of sets {Aj | j ∈ Z} correspond to the sets

{Adk−,k+ | k−, k+ ∈ Zn and k− ≺ k+}.

More precisely, as proved in [24], the sets Adk−,k+ satisfy (J3) with b∗ = d,
r∗ = r0/3 and ν sufficiently small. Henceforth we set r∗ = r0/3.

Having these preliminaries, the question of constructing multibump solu-
tions of (PDE) will be studied in the next section.

3 Gluing basic mountain pass solutions

This section contains our main result, Theorem 3.2, on the existence of so-
called multibump solutions of (PDE). These solutions are obtained by a
variational argument using the basic mountain pass solutions of (PDE) pro-
vided by Proposition 2.18. This Proposition was proved in [22]. Its proof uses
a deformation argument based on property (J3). For each ε > 0, (J3) enables
us to reduce the search for critical points of J from all of E to one of the sets,
Aj. In this Aj, we then find that a local mountain pass geometry is present
at a level c̄ ∈ [c, c + ε). Since the (PS) property holds in each of these sets,
the existence of a critical point, Uε, as stated in Theorem 2.19 obtains via a
mountain pass argument. Moreover the proof of Proposition 5.7 in [22] yields
some useful local properties of the topology of the level sets of the functional
J near c̄. These properties are essential for our construction of the multibump
solutions of (PDE) and are collected in the next proposition. First some no-
tation: for s ∈ R, let Js = {u ∈ E | J(u) < s} so J̄s ⊂ {u ∈ E | J(u) ≤ s}.
In what follows, Bs(x) denotes an open ball of radius s about x. Analogously,
if A is any set, then Bs(A) = {x | dist(x,A) < s}. The underlying space will
be clear from the context.

Proposition 3.1. Suppose that (L), (F1)−(F4) are satisfied and c is defined
by (2.3). Let d > c and assume 1o of (2.17) holds. Then for any ε ∈ (0, d−c),
there exists a c̄ ∈ [c, c + ε), j ∈ N, and a nonempty compact set, Kc̄ ⊂ Aj,
of critical points of J having critical value c̄. Moreover for r∗ as in (J3), Kc̄
has the property that for each r ∈ (0, r∗/10), there is a λ(r) ∈ (0, (d− c̄)/4)
such that

(A) whenever u ∈ B10r(Kc̄)\Br(Kc̄) and c̄−2λ(r) < J(u) < c̄+2λ(r), then
there exists a µr > 0 (with µr independent of u) such that ‖J ′(u)‖ ≥
2µr, and
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(B) whenever h ∈ (0, λ(r)), then there exists a pair of points u0(r, h), u1(r, h)
on ∂B4r(Kc̄) and a path γr,h ∈ C([0, 1],W 1,2(Rn,Rm)) joining u0(r, h)
and u1(r, h) satisfying:

(i) u0(r, h), u1(r, h) ∈ J c̄−h;

(ii) u0(r, h) and u1(r, h) are not path connectible in Br∗(Kc̄) ∩ J c̄;
(iii) γr,h([0, 1]) ⊂ B̄4r(Kc̄) ∩ J c̄+h;

(iv) if distE(γr,h(θ),Kc̄) > 3r, then γr,h(θ) ∈ J c̄−h.

The goal of the present section is to use the properties stated in Proposi-
tion 3.1 to show that when the set of critical points of J with critical values
near c is not too degenerate, there are infinitely many other so-called multi-
bump solutions of (PDE). As in earlier works, for each k ∈ N, new k-bump
solutions are obtained by variationally gluing k different phase shifts of the
set of one-bump solutions of Theorem 2.19 or more properly phase shifts of
the compact set, Kc̄, given by Proposition 3.1. Moreover the Proposition
provides the topological properties required for our minimax construction
to succeed for any k ∈ N. The existence argument is an adaption to the
present setting of some of the ideas originally developed in [31], [10], [32] for
ODE systems and in [11], [18] for (PDE) when m = 1. The current setting
differs from these earlier papers in that the set Kc̄ here is merely compact
and this leads to a more complicated construction than in the cases previ-
ously studied. In addition, as was noted earlier, unlike the previous papers
on (PDE) when n > 1, our construction allows us to obtain the existence
of “k bump solutions”, whenever the (appropriately measured) distance be-
tween the 1-bump solutions is sufficiently large, independently of the choice
of k ∈ N. Consequently by limit arguments, this result gives the existence of
infinite-bump solutions to (PDE).

For a set X ⊂ E and q ∈ Zn, let fq(X) = {u(· − q) | u ∈ X}. Now our
main result can be stated:

Theorem 3.2. Suppose that (L), (F1) − (F4) are satisfied and c is defined
by (2.3). Let d > c and assume 1o of (2.17) holds. Let c̄ and K ≡ Kc̄ be
given by Proposition 3.1. Then one of the following two alternatives occurs:

(i) there exist a < b ∈ R such that c̄ ∈ [a, b] and for any s ∈ [a, b] there is
a Us ∈ Br∗(K) such that J(Us) = s and J ′(Us) = 0;
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(ii) for any δ > 0, there exists an L̄ = L̄(δ) > 0 such that for any given k ∈
N with k ≥ 2, and set of points, ξ1, . . . , ξk ∈ Zn satisfying |ξj−ξi| > 3L̄
when i 6= j, there is a solution U ∈ E of (PDE) such that

1) ‖U − fξj(K)‖BL̄(ξj) < δ for each j ∈ {1, . . . , k}, and

2) ‖U‖BL̄(x)\(∪kj=1BL̄(ξj)) < δ for each x ∈ Rn.

For either case, J has infinitely many distinct critical values.

Thus Theorem 3.2 tells us that either the set of critical values of J near
c̄ is highly degenerate in the sense of (i) or one can construct infinitely many
multibump solutions of (PDE) as in (ii). By (ii-1), the solution U is close
to fξj(K) on BL̄(ξj) for any j ∈ {1, . . . , k} while it is near 0 outside of
∪kj=1BL̄(ξj) in the sense of (ii-2). When (i) fails, fixing any sequence of
points (ξi)i∈N in Zn such that |ξj − ξi| > 3L̄ when i 6= j, for any k ∈ N
there is a solution Uk of (PDE) satisfying (ii-1) and (ii-2) with respect to the
points {ξ1, . . . , ξk}. Then, a limit procedure gives the existence of solution
to (PDE) having infinitely many bumps. The next result states this more
precisely.

Corollary 3.3. Suppose alternative (ii) of Theorem 3.2 occurs. Then for
any δ > 0, L̄ as in (ii), and sequence of points (ξi)i∈N in Zn satisfying
|ξj − ξi| > 3L̄ when i 6= j, there is a solution U ∈ C2,α

loc (Rn) of (PDE) for
each α ∈ (0, 1) such that

1) ‖U − fξj(K)‖BL̄(ξj) ≤ δ for each j ∈ N, and

2) ‖U‖BL̄(x)\(∪j∈NBL̄(ξj)) ≤ δ for each x ∈ Rn.

The Corollary will be proved at the end of this section.

Parameters play an important role in the proof of Theorem 3.2. Therefore
it is necessary to keep careful track of them. Towards that end, let δ ∈
(0, r∗/20) and r ∈ (0, δ/(3n · 20)). Recall that r∗ = r0/3. The parameter
ρ̄ was introduced in Lemma 2.4 (ρ̄ < ρ/2 and from earlier, ρ ∈ (0, 1)) and
further restricted by Remark 2.7. Lastly r0 ∈ (0, ρ̄/2) was introduced in v)
just above Proposition 2.18. Combining these observations yields

(3.4) r < δ/(3n · 20) < r∗/(3n · 400) = r0/(3
n · 1200) < ρ̄/(3n · 2400)
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and also imply δ < 1. Next set

(3.5) r1 = 3r + r/8, r2 = 3r + r/4, r3 = 4r − r/8.

To prove Theorem 3.2, it will be shown that if the strongly degenerate
case (i) does not occur, then the variational glueing provided by (ii) takes
place. Note that to verify (ii), it suffices to do so for small δ as will be done
here. The proof of the Theorem requires several preliminary steps and is
rather long and technical. Therefore it is useful to begin by briefly outlining
some of the steps.

Step 1 : Show that the failure of (i) leads to an estimate in condition (P1)
below that will be useful in Step 4.

Step 2 : The construction of a finite partition, U(ξ,L), of Rn that will
enable us to control the bumps. The properties of U(ξ,L) are given in
Proposition 3.10.

Step 3 : The partition is used to define a family of neighborhoods, B(r̄, ξ,K),
involving phase shifts of the set of critical points, K, that was intro-
duced in the statement of Theorem 3.2. These neighborhoods satisfy
1) and 2) of (ii) of Theorem 3.2. The shadowing solutions of (PDE)
that we seek will be found as critical points of J in B for an appropriate
choice of r̄ and ξ = (ξ1, · · · , ξk).

Step 4 : A key step in showing that J has a critical point in B for an
appropriate choice of r̄ is the construction in Proposition 3.14 of a
pseudogradient or p.g. vector field, V , for J in B. This is the most
lengthy and technical part of the argument and its proof will be given
in Section 4. The p.g. construction goes back to the work by Séré [32]
as adapted for second order PDEs for example in [17], [18]. A crucial
point in the construction of the p.g. vector field is that it is not merely
a p.g. vector field for J but in fact a common p.g. vector field for
J and restricted functionals, Ji, corresponding to J restricted to the
members of U(ξ,L).

Step 5 : An indirect argument is now employed. Assuming that B contains
no critical points of J , and using the flow that decreases J obtained
via Step 4, we show B can be deformed in such a fashion that there is
a curve connecting u0(r, h̄) and u1(r, h̄) in J c̄ ∩ Br∗(K) where u0(r, h̄)
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and u1(r, h̄) are as in (B) of Proposition 3.1. But by (ii) of (B) in
Proposition 3.1, no such path can exist. This contradiction completes
the proof.

With this outline behind us, we begin with Step 1. When alternative (i)
of Theorem 3.2 fails, we claim that the following condition, (P1), holds.

(P1) For any r and λ(r) as in Proposition 3.1 and h̃ ∈ (0, λ(r)/4), there
exists an h ∈ (0, h̃), λ− < 0, λ+ > 0, λ0 > 0, and a ν̃ > 0 such that

(i) (λ−− 4λ0, λ−+ 4λ0) ⊂ (−1
4
h, 0), (λ+− 4λ0, λ+ + 4λ0) ⊂ (3

2
h, 2h),

and

(ii) if u ∈ B10r(K) and

J(u)− c̄ ∈ (λ− − 4λ0, λ− + 4λ0) ∪ (λ+ − 4λ0, λ+ + 4λ0),

then ‖J ′(u)‖ ≥ 2ν̃.

Condition (P1) will aid us in obtaining some useful estimates later.
To verify (P1), suppose that alternative (i) of Theorem 3.2 does not hold.

Then for h̃ ∈ (0, λ(r)/4), there is a λ+ ∈ (0, h̃) such that there are no critical
points of J at which J = c̄+ λ+ in Br∗(K). Choose h so that λ+ ∈ (3

2
h, 2h).

Again since (i) does not hold, there is a λ− ∈ (−h/4, 0) such that there
are no critical points of J at which J = c̄ + λ− in Br∗(K). Thus for small
λ0 > 0, (i) of (P1) holds. To prove (P1)(ii), arguing indirectly, suppose
there is a sequence (up) in B10r(K) with J(up) → {c̄ + λ−} ∪ {c̄ + λ+} and
J ′(up) → 0 as p → ∞. Since 10r < r∗, (up) ⊂ B10r(K) ⊂ Br∗(Aj). Due
to (J3)(i) − (ii), (up) ⊂ Aj and by (J3)(iii), as p → ∞, up → u ∈ Aj with
J ′(u) = 0 and J(u) = c̄+λ− or J(u) = c̄+λ+. But by the choice of λ±, such
a u cannot exist. Thus (P1)(ii) follows.

Turning now to Theorem 3.2, to prove it requires showing that if alterna-
tive (i) of the Theorem fails, the parameter L̄ = L(δ)� 1 can be chosen so
that independently of the choice of k ∈ N and ξ1, . . . , ξk ∈ Zn (subject to the
constraint that mini 6=j |ξj − ξi| > 3L̄), there is a solution, U ∈ E, of (PDE)
satisfying (ii)− (1) and (ii)− (2) of the Theorem. To obtain a result of this
kind, a variational framework must be introduced which is simultaneously
independent of the value of k and of the particular set of points ξj, 1 ≤ j ≤ k
satisfying the constraint. Towards this end, the next step in our proof is the
construction of a suitable finite partition, U(ξ,L), of Rn. After some further
preliminaries, this partition will be defined and its main properties stated.
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Let L ∈ N be free for now and set

(3.6) L̄ = 10
√
nL.

For p ∈ Zn, consider the family of n−cubes, Qp ≡ Qp(L), given by

(3.7) Qp = 6pL+ [1/2− 3L, 1/2 + 3L]n.

Thus Qp is an n-cube of side length 6L centered at (6pL + ”1/2”) where
”1/2” is an n-vector all of whose components equal 1/2.

Note that

int(Qp) ∩ int(Qq) = ∅ if p 6= q ∈ Zn and Rn = ∪p∈ZnQp.

Let k ∈ N with k ≥ 2 and choose ξ1, . . . , ξk ∈ Zn such that

(3.8) min
i 6=j
|ξj − ξi| > 3L̄.

For each j ∈ {1, . . . , k}, there is a unique p(ξj) = (p1(ξj), · · · , pn(ξj)) ∈ Zn
such that

ξj ∈ Qp(ξj).

For ι ∈ {1, . . . , n}, let

(3.9) pι,min(ξ) = min
1≤j≤k

pι(ξ
j) and pι,max(ξ) = max

1≤j≤k
pι(ξ

j).

Define

Rξ = [p1,min(ξ)− 1, p1,max(ξ) + 1]× . . .× [pn,min(ξ)− 1, pn,max(ξ) + 1]

so ξ1, · · · , ξk ∈ int(Rξ). Thus Rξ is the smallest n-rectangle containing
{p(ξj) | j = 1, · · · , k} in its interior.

Now the existence of the finite partition, U(ξ,L), of Rn mentioned above
can be established. Let #S denotes the number of elements in the set, S.
Consider the norm on Rn given by

|||x||| = max
1≤i≤n

|xi|.

The closed ball of radius t about x will be denoted by B̂t(x). For p, q ∈
Zn, |||p− q||| provides a metric on Zn. The unit sphere about each such p
contains 3n − 1 points other than p. They will be referred to as the nearest
neighbors to p. The next result provides the existence of U(ξ,L) and states
those of its properties that will be required later.
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Proposition 3.10. There exists a family of sets,

U(ξ,L) ≡ {Uq | q ∈ Zn ∩Rξ} ⊂ Rn

having the following properties:

i) Rn = ∪q∈Zn∩RξUq.

ii) int(Uq) ∩ int(Us) = ∅ for q 6= s ∈ Zn ∩Rξ.

iii) ξj + [−L,L]n ⊂ Up(ξj) for each j ∈ {1, . . . , k}.

iv) Let q, s ∈ Zn ∩Rξ.

(α) If q 6= s ∈ P ≡ {p(ξ1), . . . , p(ξk)}, then B̂L(Uq) ∩ Us = ∅.

(β) If B̂L(Uq) and Us overlap, i.e. B̂L(Uq)∩Us 6= ∅, then |||q − s||| ≤ 1.

(γ) For any V ∈ U(ξ,L),

#{U ∈ U(ξ,L) | BL(V ) ∩ U 6= ∅} ≤
≤ #{U ∈ U(ξ,L) | B̂L(V ) ∩ U 6= ∅} ≤ 3n.

Before giving the proof of Proposition 3.10, some remarks about it are
in order. The construction of U(ξ,L) consists of two parts. First Rn will
be expressed as a finite union of collections of the n-rectangles, Qq, and this
partition satisfies properties i) − ii) of the Proposition. Then the sets in
the finite union will be modified in such a way that the new family of sets
satisfies i) − iv). The starting point for the first part of the construction is
the set Rξ or more precisely S0 = {Qq | q ∈ int(Rξ) ∩ Zn}. The members of
S0 form the core of the covering. The remainder of the sets in the covering
are obtained by taking unions of further sets, Qq. E.g. if n = 2 and q is
internal to an edge of the rectangular region, Rξ, the corresponding member
of the covering family is a semi-infinite strip, while if q is a vertex of Rξ, the
member of the covering family is a quarter plane as can be seen in Figure
1 below. Although it hasn’t been explicitly mentioned in the statement of
Proposition 3.10, but since it will be used later, we note at this point that the
sets Uq, being the union of adjacent squares with sides length 1, satisfy the
uniform cone condition with respect to the cone, T , introduced in Remark
2.7 of Section 2.
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Proof of Proposition 3.10: Consider Zn ∩ Rξ. Let S0 = {Qq | q ∈
int(Rξ)∩Zn}. Choose any face ofRξ, say Fi = Rξ∩{xi = pi,min(ξ)−1 or xi =
pi,max(ξ) + 1} for some i, 1 ≤ i ≤ n. and let Gi denote Zn ∩ Fi. Let q be an
interior point of Gi (with respect to x1 = pi,min(ξ)− 1 or xi = pi,max(ξ) + 1)
and consider Qq. Moving Qq to infinity in the direction of the unit outer
normal to Rξ at Fi at q, sweeps out a semi-infinite n-rectangular region,
Qext
q . Let S1 denote the totality of such regions obtained by considering all

2n faces of Rξ. Next let s be a boundary point of Gi. There are n − 1
different types of such boundary points, the type depending on the number
of faces of Rξ that intersect at that point. That number, t, can be any of
the integers 2, · · · , n. Choose s so that t = 2 and consider the pair of n-
rectangular regions swept out by moving Qs to infinity in the directions of
the outer normals to each of the two faces. Take the convex hull of these
two regions, obtaining a new rectangular region, Qext

s . E.g. if n = 2, we
generate a quarter plane in this fashion. Let S2 denote the totality of the
rectangular regions, Wσ, obtained in this fashion. Continuing this process
by taking t = 3, · · · , t = n, we generate S3, · · · , Sn. For q ∈ Zn ∩Rξ, denote
the members of the set ∪n0Si by Vq. Thus {Vq | q ∈ Zn ∩ Rξ} is a partition
of Rn satisfying properties i)− ii) of Proposition 3.10.

Now the partition, {Vq | q ∈ Zn ∩ Rξ}, will be modified so as to satisfy
properties i)− iv). By definition p(ξj) ∈ intRξ so ξj ∈ Qp(ξj) = Vp(ξj) for any
j ∈ {1, . . . , k}, but we do not know where ξj is located in the set, Vp(ξj) and
in particular where it lies with respect to the boundary of Vp(ξj). Hence it
may not be the case that Ξj ≡ ξj + [−L,L]n ⊂ Vp(ξj). The simplest way to
define a partition satisfying i)− iii) is to take

Up(ξj) = Qp(ξj) ∪ Ξj for each j ∈ {1, . . . , k}

while for the remaining points q ∈ Zn ∩Rξ, let Uq be the closure of{
Qq \ ∪kj=1Ξj if q ∈ Zn ∩ int(Rξ) \ P ,
Qext
q \ ∪kj=1Ξj if q ∈ Zn ∩ ∂Rξ.

where Qext
q is the member of ∪n1Si corresponding to q. The modified sets,

U(ξ,L) satisfy i)− iii). Note also that if q ∈ P , Uq ⊂ B̂L(Qq).
To prove iv)(α), suppose that q = p(ξj) and s = p(ξi). Then q ∈ intRξ,

B̂L(Uq) = B̂L(Qq ∪ Ξj) ⊂ 6qL+ [
1

2
− 5L, 1

2
+ 5L]n
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Figure 1: The dots represent the ξj , the white sets Up(ξj), the gray ones the others U ’s

and ξj = 6qL+ ηj where ηj ∈ [1
2
− 5L, 1

2
+ 5L]n. Similarly

Us = Qs ∪ Ξi ⊂ 6sL+ [
1

2
− 4L, 1

2
+ 4L]n

and ξi = 6sL+ ηi where ηi ∈ [1
2
− 4L, 1

2
+ 4L]n. Therefore by (3.8)

(3.11) 30L
√
n = 3L̄ < 6|q − s|L+ |ηj − ηi| ≤ 6|q − s|L+ 9L

√
n

so
7
2

√
n < |q − s| <

√
n|||q − s|||.

Consequently q and s are not nearest neighbors. Moreover if x ∈ B̂L(Uq) and
y ∈ Us, similar estimates show

|x− y| ≥ 6L|q − s| − 9L
√
n ≥ 12L

√
n

so B̂L(Uq) ∩ Us = ∅.
The verification of iv)(β) involves a case analysis:
Case (a): Suppose that q ∈ P , say q = p(ξj). Then as above, q ∈ intRξ

and for any x ∈ B̂L(Uq), x = 6qL + ζq where ζq ∈ [1
2
− 5L, 1

2
+ 5L]n. From
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iv)(α), s /∈ P and either (1) s ∈ intRξ or (2) s ∈ ∂Rξ. If (1) occurs,

Us = Qs \ Ξj ⊂ 6sL+ [
1

2
− 3L, 1

2
+ 3L]n.

Hence y ∈ Us implies y = 6sL + ζs where ζs ∈ [1
2
− 3L, 1

2
+ 3L]n. Since

BL(Uq) ∩ Us 6= ∅, we can choose x = y. Therefore

(3.12) 6(q − s)L+ ζq − ζs = 0.

But |||ζq − ζs||| ≤ 8L. Thus (3.12) can hold only if |||q − s||| ≤ 1. Next suppose

that (2) holds. Then Us ⊂ Qext
s \Ξj. But since B̂L(Uq)∩Us 6= ∅, B̂L(Uq)∩Us ⊂

Qs\Ξj ⊂ 6sL+[1
2
−3L, 1

2
+3L]n so arguing as above, we conclude |||q − s||| ≤ 1.

Case (b): Suppose that q ∈ intRξ \ P . Then either (1) s ∈ intRξ or (2)
s ∈ ∂Rξ. If (1) occurs,

B̂L(Uq) = B̂L(Qq \ ∪k1Ξi) ⊂ 6qL+ [
1

2
− 4L, 1

2
+ 4L]n

and arguing as above,

B̂L(Uq) ∩ Us ⊂ B̂L(Qq \ ∪k1Ξi) ⊂ 6sL+ [
1

2
− 4L, 1

2
+ 4L]n

again leading to |||q − s||| ≤ 1. If (2) holds, the last set of inclusions still hold
as for Case (a)(2) and |||q − s||| ≤ 1.

Case (c): Suppose q ∈ ∂Rξ. Then either (1) s ∈ intRξ or (2) s ∈ ∂Rξ.
For (1), Us ⊂ 6sL+ [1

2
− 4L, 1

2
+ 4L]n and

∅ 6= B̂L(Uq) ∩ Us ⊂ B̂L(Qq) = 6qL+ [
1

2
− 4L, 1

2
+ 4L]n

so as above, |||q − s||| ≤ 1. If (2) occurs, B̂L(Uq) ∩ Us may be unbounded.

However due to the form of these two sets, they must intersect in B̂L(Qq)∩Qs

which again yields |||q − s||| ≤ 1.
To obtain iv)(γ), suppose V = Uq and U = Us where q, s ∈ Zn∩Rξ. Then

by iv)(β), B̂L(Uq) ∩ Us 6= ∅ implies |||q − s||| ≤ 1. As was observed earlier,
any q ∈ Zn ∩Rξ has at most 3n− 1 nearest neighbors in Zn ∩Rξ. Therefore

#{U ∈ U(ξ,L) | B̂L(V ) ∩ U 6= ∅} ≤ 3n.
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Since BL(V ) ⊂ B̂L(V ) for any V ∈ U(ξ,L), iv)(γ) follows and the proof of
Proposition 3.10 is complete.

Using the partition U(ξ,L), the set in which we seek a multibump solu-
tion, U , of (PDE) can be introduced. It is convenient to suitably enumerate
the elements of Zn ∩Rξ. Letting

M = Πn
ι=1(pmax,ι − pmin,ι + 3)

denote the cardinality of Zn ∩Rξ, fix an enumeration by writing

Zn ∩Rξ = {p1, . . . , pM},

such that pi = p(ξi) for i = 1, . . . , k. According to this definition,

(3.13) U(ξ,L) = {Ui ≡ Upi | 1 ≤ i ≤M}

where
ξi ∈ Ui for i = 1, . . . , k.

For r̄ > 0, consider the set

B(r̄, ξ,K) = {u ∈ E | max
1≤j≤k

‖u− fξj(K)‖Uj < r̄ and max
k+1≤j≤M

‖u‖Uj < r̄}.

The set B(r̄, ξ,K) also depends on the partition, U(ξ,L), but this dependence
will be suppressed in our notation. The set B(r̄, ξ,K) consists of functions
that are close to fξj(K) on Uj for j = 1, . . . , k and close to 0 on Uj for
j = k + 1, . . . ,M . Our goal is to find critical points of the functional, J ,
in B(δ, ξ,K) when L (and consequently L̄ by (3.6)) is sufficiently large. By
the nature of the set B(δ, ξ,K), these critical points are then multibump
solutions of (PDE). To obtain these critical points requires a closer look at
the functional, J . Due to (i) of Proposition 3.10, for any u ∈ B(r̄, ξ,K), J(u)
can be expressed as the sum of the restricted functionals

Jj(u) =
1

2
‖u‖2

Uj −
∫
Uj
F (x, u) dx, j = 1, . . . ,M.

We claim that J satisfies (PS) on B(5r, ξ,K). Proposition 2.10 shows this is
the case provided that (2.11) holds for any (PS) sequence, (up) ⊂ B(5r, ξ,K),
i.e. ‖up‖Tq < 2ρ̄ whenever q ∈ Rn is large. But q large implies Tq is in the
union of at most 3n different sets, Uj, with k+1 ≤ j ≤M . By the definition of
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B(5r, ξ,K), ‖u‖Uj < 5r for any j ≥ k + 1 and by (3.4), 3n5r < 2ρ̄. Therefore
‖up‖Tq < 2ρ̄ for q large, verifying (PS). (See the proof of Proposition 4.57
below for more details).

Having established (PS) on B(5r, ξ,K), by using (2.5), (P1) and property
(A) of Proposition 3.1, a pseudogradient construction can be carried out
leading to the following useful but rather technical result on the existence of
a vector field that will play a crucial role in our main existence result. Its
proof will be given in §4. The construction is similar to the one introduced
in [32]; see also [17], [18].

Proposition 3.14. Let r, r1, r2 and r3 be as in (3.5) and for h̃ ∈ (0, 1
4
λ(r)),

let h ∈ (0, h̃), λ−, λ+, λ0 be as in (P1). Then there is an L0 = L0(r, h) > 0
such that for any k ∈ N with k ≥ 2, whenever the three conditions

(a) L ≥ 4L0,

(b) ξ1, . . . , ξk ∈ Zn with min1≤i 6=j≤k |ξi − ξj| > 30
√
nL,

(c) there are no critical points of J in B(5r, ξ,K),

are satisfied, then there exists a locally Lipschitz vector field V : E → E,
possessing the following properties:

(i) max1≤j≤M ‖V(u)‖Uj ≤ 1 on E and J ′(u)V(u) ≥ 0 for all u ∈ E;

(ii) V(u) = 0 for u ∈ E \ B(r3, ξ,K);

(iii) there is a constant, µ1 = µ1(r) > 0 such that if u ∈ B(r2, ξ,K) and if
for some j ∈ {1, . . . , k},

r1 ≤ ‖u− fξj(K)‖Uj < r2 and |Jj(u)− c̄| ≤ λ(r),

or if for some j ∈ {k + 1, . . . ,M},

r1 ≤ ‖u‖Uj < r2,

then J ′j(u)V(u) ≥ µ1;

(iv) whenever u ∈ B(r3, ξ,K), if for some j ∈ {1, . . . , k}

Jj(u)− c̄ ∈ (λ− − λ0, λ− + λ0) ∪ (λ+ − λ0, λ+ + λ0),

or if for some j ∈ {k + 1, . . . ,M}

λ+ − λ0 < Jj(u) < λ+ + λ0,

then J ′j(u)V(u) ≥ 0;
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(v) if u ∈ B(r2, ξ,K), there is a constant µξ > 0 such that J ′(u)V(u) ≥ µξ.

Note that the constant µ1 given in (iii) of Proposition 3.14 depends only
on r and not on h̃. In the following, Proposition 3.14 will be used by choosing
h̃ = 1

32
min{λ(r), µ1r}. Then (P1) is employed to determine the values of

h, λ−, λ+, λ0 as in that condition. The value of h so determined will be
denoted by h̄ and satisfies

(3.15) h̄ ∈ (0, 1
32

min{λ(r), µ1r}).

The constant L̄ of Theorem 3.2 will be determined next. For R > 0, define
a cutoff function

ηR(x) = min{1,max{0, R− |x|}}
and with γr,h as in (B) of Proposition 3.1, set

γ̄r,h̄,R(θ)(x) = ηR(x)γr,h̄(θ)(x) for x ∈ Rn and θ ∈ [0, 1].

Then, as R→ +∞,

(3.16) ‖γr,h̄(θ)− γ̄r,h̄,R(θ)‖ → 0 and |J(γr,h̄(θ))− J(γ̄r,h̄,R(θ))| → 0

uniformly for θ ∈ [0, 1].
We claim R̄ = R̄(r, h̄) > 0 can be chosen so large that γ̄r,h̄,R̄ satisfies

(γ1) γ̄r,h̄,R̄(0), γ̄r,h̄,R̄(1) ∈ J c̄−h̄/4 \ B̄r3(K) and they do not lie on a path in
Br∗(K) ∩ J c̄;

(γ2) γ̄r,h̄,R̄([0, 1]) ⊂ B̄4r+r/16(K) ∩ J c̄+5h̄/4;

(γ3) if distE(γ̄r,h̄,R̄(θ), K) ≥ r1, then γ̄r,h̄,R̄(θ) ∈ J c̄−h̄/4;

(γ4) supp (γ̄r,h̄,R̄(θ)) ⊂ BR̄(0) for any θ ∈ [0, 1].

Aside from the statement about B̄r3(K) in (γ1), these properties are im-
mediate from Proposition 3.1 and (3.16). Similarly to verify the B̄r3(K)
assertion, note that by (3.5), r3 = 4r − r/8. By (B) of Proposition 3.1,
u0(r, h̄) = γr,h̄(0), u1(r, h̄) = γr,h̄(1) ∈ ∂B4r(K). Hence the result follows
from (3.16).

Due to the compactness of K in E, it can be further assumed that R̄ is
so large that

(3.17) ‖u‖RN\BR̄(0) ≤ r/16 for any u ∈ K.
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One further restriction on R̄ will be required later. Let [x] denote the greatest
integer in x for x ∈ R. Then the new restriction is:

(3.18) [R̄] > 96
δ2

min{1
4
|λ− − λ0|, δ2}

.

Thus for future reference, observe that R̄ satisfies (γ1) − (γ4), (3.17), and
(3.18). Now finally let k ≥ 2 and set

(3.19) L = 5 max{1, [R̄] + 1, [L0(r, h̄)] + 1} and L̄ = 10
√
nL.

Hence L̄ depends on R̄ and the constant L0(r, h̄) given by Proposition 3.14.
An indirect variational argument will be used to obtain multibump so-

lutions of (PDE). To begin to set up the variational framework for that
argument, let ξ1, . . . , ξk ∈ Zn satisfy

(3.20) min
1≤i 6=j≤k

|ξi − ξj| > 3L̄

and define the partition U(ξ,L) as in (3.13). By (γ4), (3.19) and (3.20), the
map G : [0, 1]k → E,

(3.21) G(θ)(·) =
k∑
j=1

γ̄r,h̄,R̄(θj)(· − ξj), θ = (θ1, . . . , θk) ∈ [0, 1]k,

is well defined and continuous.

Proposition 3.22. G possesses the following properties:

(G0) supp(G(θ)) ⊂ ∪ki=1Uj.

(G1) If θ ∈ [0, 1]k is such that θj = 0 or θj = 1, then ‖G(θ)−fξj(K)‖Uj ≥ r3

and in particular G(θ) ∈ E \ B(r3, ξ,K).

(G2) G([0, 1]k) ⊂ B(5r, ξ,K).

(G3) G([0, 1]k) ⊂ ∩kj=1{J
c̄+3h̄/2
j }.

(G4) If for some j ∈ {1, . . . , k}, ‖G(θ) − fξj(K)‖Uj ≥ r1, then Jj(G(θ)) ≤
c̄− h̄/4.

(G5) maxθ∈[0,1]k J(G(θ)) < k(c̄+ λ(r)).
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Proof: Since L > 5[R̄]+1, Property (G0) follows from (γ4) and the definition
of U(ξ,L). For (G1), note that by (3.17), (γ1) and (γ4),

‖G(θ)− fξj(K)‖Uj = ‖fξj(γ̄r,h̄,R̄)(θj)− fξj(K)‖Uj ≥
≥ ‖γ̄r,h̄,R̄(θj)−K‖ − sup

u∈f
ξj

(K)

‖u‖Rn\Uj > 4r − r/8 = r3

for any j ∈ {1, . . . , k}. Next by (γ2),

‖G(θ)− fξj(K)‖Uj ≤ ‖γ̄r,h̄,R̄(θj)−K‖ ≤ 4r + r/16 < 5r

for any j ∈ {1, . . . , k} while by (G0), ‖G(θ)‖Uj = 0 for any j ∈ {k+1, . . . ,M}.
Hence (G2) is proved. Property (G3) follows since by (γ2) and (γ4),

Jj(G(θ)) = Jj(fξj(γ̄r,h̄,R̄(θj)) = J(γ̄r,h̄,R̄(θj)) ≤ c̄+ 5h̄/4

for any θ ∈ [0, 1]k and j ∈ {1, . . . , k}. For (G4), note that

‖γ̄r,h̄,R̄(θj)−K‖ ≥ ‖G(θ)− fξj(K)‖Uj ≥ r1 = 3r + r/8.

Then by (γ3) and (γ4),

Jj(G(θ)) = J(γ̄r,h̄,R̄(θj))) ≤ c̄− h̄/4.

Lastly for (G5), by (γ2) and (γ4),

max
θ∈[0,1]k

J(G(θ)) ≤ k max
θ∈[0,1]

J(γ̄r,h̄,R̄(θ)) ≤ k(c̄+ 3h̄/4).

To prove Theorem 3.2, it suffices to show that if (i) does not hold then
B(5r, ξ,K) contains critical points of J . Indeed if U ∈ B(5r, ξ,K) is such
that J ′(U) = 0, then U is a classical solution of (PDE) such that, by (3.4),
max1≤j≤k ‖u− fξj(K)‖Uj < 5r < δ/(3n · 4) so part 1) of (ii) follows. To show
that part 2) of (ii) also holds, note that by (iv)(γ) of Proposition 3.10, for
any x ∈ Rn, BL̄(x) intersects at most 3n − 1 of the sets V ∈ U(ξ,L), say
{V1, . . . , Vl̄} with l̄ ≤ 3n − 1. For j ≥ k + 1,

‖U‖Uj∩BL̄(x) ≤ ‖U‖Uj < 5r < δ
3n·4

and by (3.17), for 1 ≤ j ≤ k,

‖U‖Uj∩(BL̄(x)\(∪kj=1BL̄(ξj))) ≤ ‖U−fξj(K)‖Uj + max
v∈f

ξj
(K)
‖v‖Uj\BL̄(ξj) < 6r < δ

3n·3 .
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Therefore

‖U‖BL̄(x)\(∪kj=1BL̄(ξj)) ≤
l̄∑

i=1

‖U‖Vi∪(BL̄(x)\(∪kj=1BL̄(ξj))) ≤
l̄∑

i=1

δ/(3n · 3) < δ

and (2) follows.
Now to prove that B(5r, ξ,K) contains critical points of J , an indirect

argument will be employed. Assume that (i) of Theorem 3.2 fails and that
B(5r, ξ,K) does not contain any critical points of J . With the further aid of
(3.20) and L ≥ 5L0(r, h), the hypotheses of Proposition 3.14 are satisfied so
there exists a locally Lipschitz continuous vector field V : E → E satisfying
properties (i)-(v) of that Proposition. Next the function, V , will be em-
ployed to construct a deformation mapping that will play an important role
in obtaining the desired contradiction. Thus consider the Cauchy problem:

(3.23)

{
d
ds
η(s, u) = −V(η(s, u))

η(0, u) = u.

There exists a continuous function η : R+ × E → E, satisfying (3.23).

Proposition 3.24. The function, η possesses the following properties:

(η0) The function s → J(η(s, u)) is not increasing on [0,+∞) for any u ∈
E.

(η1) η(s, u) = u for any u ∈ E \ B(r3, ξ,K), and s ≥ 0.

(η2) For s ≥ 0 and j ∈ {1, . . . , k}, η(s, J
c̄+λ−−λ0

j ) ⊂ J
c̄+λ−−λ0

j .

(η3) For s ≥ 0, if j ∈ {1, . . . , k}, then η(s, J
c̄+λ+−λ0

j ) ⊂ J
c̄+λ+−λ0

j while if

j ∈ {k + 1, . . . ,M}, then η(s, J
λ+−λ0

j ) ⊂ J
λ+−λ0

j .

(η4) There exists a T > 0 such that whenever u ∈ B(r2, ξ,K) with J(u) ≤
k(c̄+ λ(r)), there is a τu ∈ (0, T ) for which η(τu, u) /∈ B(r2, ξ,K).

(η5) If u ∈ B(r1, ξ,K) ∩
(
∩kj=1J

c̄+h̄
j

)
∩
(
∩Mj=k+1J

λ+−λ0

j

)
and J(u) ≤ k(c̄+

λ(r)), then with T as in (η4),

η(T, u) ∈ ∪kj=1J
c̄+λ−−λ0

j .
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Proof: Item (η0) follows from (3.23) since J ′(u)V(u) ≥ 0 for all u ∈ E.
That V(u) = 0 for u ∈ E \ B(r3, ξ,K) implies (η1). To prove item (η2),
let u ∈ E be such that Jj(u) ≤ c̄ + λ− − λ0. If u ∈ E \ B(r3, ξ,K), then
by (η1), Jj(η(s, u)) = Jj(u) for any s ≥ 0. If u ∈ B(r3, ξ,K) and Jj(u) ≤
c̄+λ−−λ0, we claim there is no s0 > 0 for which Jj(η(s0, u)) > c̄+λ−−λ0.
Combining these two observations then gives (η2). To verify the claim, if such
an s0 exists, by the continuity of Jj(η(·, u)), there is an interval (s1, s2) ⊂
(0, s0) such that Jj(η(s, u)) ∈ (c̄ + λ− − λ0, c̄ + λ− + λ0) for any s ∈ (s1, s2)
and Jj(η(s2, u)) − Jj(η(s1, u)) > 0. By the uniqueness of the solution of
the Cauchy problem and (η1), η(s, u) ∈ B(r3, ξ,K) for any s ∈ (s1, s2).
Moreover since Jj(η(s, u)) ∈ (c̄ + λ− − λ0, c̄ + λ− + λ0) for any s ∈ (s1, s2),
by property (iv) of Proposition 3.14, J ′j(η(s, u))V(η(s, u)) ≥ 0 for any s ∈
(s1, s2). Hence d

ds
Jj(η(s, u)) = −J ′j(η(s, u))V(η(s, u)) ≤ 0 for any s ∈ (s1, s2)

and so Jj(η(s2, u))− Jj(η(s1, u)) =
∫ s2
s1

d
ds
Jj(η(s, u)) ds ≤ 0, a contradiction.

This proves (η2) and an analogous argument based again on property (iv) of
Proposition 3.14 gives (η3).

To obtain (η4), observe that if v ∈ B(r2, ξ,K) and J(v) ≤ k(c̄+ λ(r)), by
(v) of Proposition 3.14, J ′(v)V(v) ≥ µξ > 0. If (η4) is false, for every T > 0
there is u ∈ B(r2, ξ,K) with J(u) ≤ k(c̄+λ(r)) such that η(s, u) ∈ B(r2, ξ,K)
for any s ∈ [0, T ]. Then J(η(s, u)) ≤ J(u) ≤ k(c̄ + λ(r)) for every s ∈ [0, T ]
and

(3.25) J(η(T, u))− J(u) = −
∫ T

0

J ′(η(s, u))V(η(s, u)) ds ≤ −Tµξ.

Letting T → ∞, (3.25) implies infB(r2,ξ,K) J(v) = −∞. To see this is not

possible, since J(u) =
∑M

i=1 Ji(u), it suffices to show that Ji(u) is bounded
from below on B(r2, ξ,K) for each i, for 1 ≤ i ≤ M . For such u, if k + 1 ≤
i ≤ M , then ‖u‖Ui < r2 < ρ̄ via (3.4) - (3.5). Therefore by (2.9), Ji(u) ≥
1
4
‖u‖2

Uj ≥ 0. If 1 ≤ i ≤ k and u ∈ B(r2, ξ,K), then u = vi(x− ξi) +wi, where
vi ∈ K and ‖wi‖Ui < r2, so

(3.26) Ji(u) ≥ −
∫
Ui
F (x, vi(x− ξi) + wi) dx.

Since the functions, vi(x − ξi), wi lie respectively in a compact set and a
bounded set in E, (3.26) and (2.1) imply Ji is bounded from below on
B(r2, ξ,K) and (η4) follows.
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It remains to verify (η5). Recall that h̄ < 1
32
λ(r) and also that

(λ− − λ0, λ− + λ0) ⊂ (−1
4
h̄, 0) and (λ+ − λ0, λ+ + λ0) ⊂ (3

2
h̄, 2h̄).

Suppose there exists an s ∈ [0, T ] and j ∈ {1, . . . , k} such that Jj(η(s, u)) ≤
c̄ − λ(r)/16. Since c̄ − λ(r)/16 < c̄ − 2h̄ < c̄ + λ− − λ0, (η3) shows that
Jj(η(T, u)) ≤ c̄ + λ− − λ0 and (η5) follows. Hence to complete the proof of
(η5), we can assume s is such that

(3.27) Jj(η(s, u)) > c̄− 1
16
λ(r) for every s ∈ [0, T ] and j ∈ {1, . . . , k}.

Since Jj(u) ≤ c̄+ h̄ < c̄+ λ+ − λ0 for any j ∈ {1, . . . , k}, (η3) implies

(3.28) max
s∈[0,T ]

Jj(η(s, u)) ≤ c̄+ λ+ − λ0 < c̄+ 2h̄ < c̄+ 1
16
λ(r).

Moreover, by (η4), there is τu ∈ (0, T ) such that η(τu, u) /∈ B(r2, ξ,K).
Taking the infimum among such possible values of τu we can assume η(s, u) ∈
B(r2, ξ,K) for any s ∈ (0, τu). Since u ∈ B(r1, ξ,K), by definition ‖u −
fξj(K)‖Uj < r1 for each j ∈ {1, . . . , k} and ‖u‖Uj ≤ r1 for any j ∈ {k +
1, . . . ,M}. Since η(τu, u) /∈ B(r2, ξ,K), there exists a ju ∈ {1, . . . ,M} such
that either

(a) ju ≤ k and ‖η(τu, u)− fξju (K)‖Uju ≥ r2, or

(b) ju ≥ k + 1 and ‖η(τu, u)‖Uju ≥ r2.

We claim case (b) is not possible. Indeed, if (b) occurs, there exists an
interval, (s1, s2) ⊂ (0, τu), such that η((s1, s2), u) ⊂ B(r2, ξ,K),

(3.29) r1 < ‖η(s, u)‖Uju < r2 for any s ∈ (s1, s2), ‖η(s2, u)‖Uju = r2,

and

(3.30) ‖η(s1, u)− η(s2, u)‖Uju = r2 − r1.

Then (3.29) and (iii) of Proposition 3.14 imply that for any s ∈ (s1, s2),
J ′ju(η(s, u))V(η(s, u)) ≥ µ1. Thus

Jju(η(s2, u)) = Jju(η(s1, u))−
∫ s2

s1

J ′ju(η(s, u))V(η(s, u)) ds(3.31)

≤ Jju(η(s1, u))− µ1(s2 − s1).
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Since ‖V((η(s, u))‖Uju ≤ 1 for any s ∈ (s1, s2), by (3.23) and (3.30),

(3.32) r2 − r1 ≤
∫ s2

s1

‖V(η(s, u)‖Uju ds ≤ s2 − s1.

By hypothesis, Jju(u) ≤ λ+ − λ0, so (η3) implies Jju(η(s1, u)) ≤ λ+ − λ0 ≤
2h̄. Recalling that r2 − r1 = r/2 and combining the last inequality with
(3.31),(3.15), and (3.32) yields

(3.33) Jju(η(s2, u)) ≤ 2h̄− µ1(s2 − s1) ≤ µ1r/16− µ1r/8 < 0.

On the other hand, by (3.29) and (3.4), ‖η(s2, u)‖Uj = r2 < ρ̄. Hence by (2.9),
Jju(η(s2, u)) ≥ 1

4
‖η(s2, u)‖2

Uju ≥ 0, contrary to (3.33). This contradiction
shows that the case (b) cannot occur so that we have

(a) ju ∈ {1, . . . , k} and ‖η(τu, u)− fξju (K)‖Uju ≥ r2.

To conclude the proof of (η5), repeating the argument that case (b) is
impossible, by continuity there exists an interval, (s1, s2) ⊂ (0, τu), such that
η((s1, s2), u) ⊂ B(r2, ξ,K),

(3.34) r1 < ‖η(s, u)− fξju (K)‖Uju < r2,

and

(3.35) ‖η(s1, u)− η(s2, u)‖Uju = r2 − r1.

Equations (3.27), (3.28), (3.34) and (iii) of Proposition 3.14, then imply that
for any s ∈ (s1, s2), J ′ju(η(s, u))V(η(s, u)) ≥ µ1. Thus as in (3.31),

Jju(η(s2, u)) ≤ Jju(η(s1, u))− µ1(s2 − s1).(3.36)

and using (3.35) as in (3.32),

(3.37) r2 − r1 ≤
∫ s2

s1

‖V(η(s, u)‖Uju ds ≤ s2 − s1.

As in the line following (3.32), Jju(η(s1, u)) ≤ c̄ + 2h̄. Hence r2 − r1 = r/8,
h̄ < µ1r/32, (3.36) and (3.37) imply

Jju(η(s2, u) ≤ c̄+ 2h̄− µ1r/8 ≤ c̄+ 2h̄− 4h̄ = c̄− 2h̄.
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As was shown at the beginning of the proof of (η5), −2h̄ < λ− − λ0, so

η(s2, u) ∈ J
c̄+λ−−λ0

ju
. Therefore by (η2), η(T, u) = η(T − s2, η(s2, u)) ∈

J
c̄+λ−−λ0

ju
and the proof of (η5) is complete.

For G as given by (3.21) and η and T from Proposition 3.24, consider the
map

Ḡ(θ) = η(T,G(θ)).

We claim that

(3.38) for each θ ∈ [0, 1]k, there exists a jθ ∈ {1, . . . , k} such that

Jjθ(Ḡ(θ)) ≤ c̄+ λ− − λ0.

Indeed if G(θ) /∈ B(r1, ξ,K), since −h̄/4 < λ− − λ0, (G4) holds and (3.38) is
immediate from (η2) . If G(θ) ∈ B(r1, ξ,K), then (G3) implies the hypotheses
of (η5) are satisfied and (3.38) also follows for this case.

For j ∈ {1, . . . , k}, set

0j = {θ ∈ [0, 1]k | θj = 0} and 1j = {θ ∈ [0, 1]k | θj = 1}.

Note that by (G1), and (η1),

(3.39) if 1 ≤ j ≤ k and θ ∈ 0j ∪ 1j, then Ḡ(θ) = G(θ) and

Jj(Ḡ(θ)) < c̄+ λ− − λ0.

These observations yield:

Proposition 3.40. There exists an ` ∈ {1, . . . , k} and γ ∈ C([0, 1], [0, 1]k)
such that

γ(0) ∈ 0`, γ(1) ∈ 1` and max
θ∈[0,1]

J`(Ḡ(γ(θ))) < c̄+
1

2
(λ− − λ0).

Proof: If the result is false, for each j ∈ {1, · · · , k},

Aj = {θ ∈ [0, 1]k | Jj(Ḡ(θ)) ≥ c̄+
1

2
(λ− − λ0)}

separates 0j from 1j in [0, 1]k. Equivalently if C ⊂ [0, 1]k is connected and
such that C ∩ 0j 6= ∅ and C ∩ 1j 6= ∅, then C ∩ Aj 6= ∅. The compactness of
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Aj implies there exists a ζ > 0 such that Jj(Ḡ(θ)) > c̄ + (λ− − λ0), for any
θ ∈ Nζ(Aj) = {θ ∈ [0, 1]k | |θ − Aj| ≤ ζ}. By (3.39)

Jj(Ḡ(θ)) < c̄+ (λ− − λ0) for θ ∈ 0j ∪ 1j,

so Nζ(Aj)∩ (0j ∪ 1j) = ∅. Let Cj denote the component of [0, 1]k \Nζ(Aj) to
which 1j belongs and for each j ∈ {1, . . . , k}, define the continuous function
σj : [0, 1]k → R by

σj(θ) =

{
|θ −Nζ(Aj)| if θ ∈ [0, 1]k \ Cj
−|θ −Nζ(Aj)| if θ ∈ Cj.

Then

σj|0j > 0, σj|1j < 0 and σj(θ) = 0 if and only if θ ∈ Nζ(Aj).

Hence for each j ∈ {1, . . . , k}, the function σj changes sign along any path
joining 0j to 1j. Since σ = (σ1, . . . , σk) : [0, 1]k → Rk is continuous, by
a theorem of C. Miranda, (see [16]), there exists a θ∗ ∈ [0, 1]k such that
σj(θ

∗) = 0 for each j ∈ {1, . . . , k}. This implies in particular that θ∗ ∈
∩1≤j≤kNζ(Aj), in contradiction with (3.38). Then there is an ` ∈ {1, · · · , k}
and a connected set C ⊂ [0, 1]k such that C ∩ 0` 6= ∅, C ∩ 1` 6= ∅ and
C ⊂ {θ ∈ [0, 1]k | Jj(Ḡ(θ)) < c̄+ 1

2
(λ− − λ0)}. Since {θ ∈ [0, 1]k | Jj(Ḡ(θ)) <

c̄+ 1
2
(λ− − λ0)} is open in [0, 1]k, there is actually a curve joining 0l and 1l,

and the Proposition follows.

Remark 3.41. The proof of Proposition 3.40 is related to that of Proposition
3.4 in [10] and of Proposition 3.4 in [12].

Continuing with the proof of Theorem 3.2, observe that by (G2) and (η1),

(3.42) Ḡ([0, 1]k) ⊂ B(5r, ξ,K).

In particular by (3.42) and (3.17), since r < δ/20, the triangle inequality
shows that

(3.43) ‖Ḡ(θ)‖Uj\BR̄(ξj) < δ

for any j ∈ {1, . . . , k} and θ ∈ [0, 1]k.
Consider the path

g : s ∈ [0, 1]→ g(s) = Ḡ(γ(s))|Uj` ∈ W
1,2(U`,Rm)

where γ is as determined in Proposition 3.40. It possesses the following
properties:
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(g1) g(0) = fξj` (γ̄r,h̄,R̄(0)) and g(1) = fξj` (γ̄r,h̄,R̄(1)),

(g2) maxs∈[0,1] Jj`(g(s)) ≤ c̄+ 1
2
(λ− − λ0),

(g3) maxs∈[0,1] ‖g(s)‖Uj`\BR̄(ξj` ) < δ.

Indeed, (g2) follows from Proposition 3.40 and (g3) from (3.43). To verify (g1),
observe first that by Proposition 3.40, γ(0) ∈ 0l and by (3.39), Ḡ(θ) = G(θ)
when θ ∈ 0l. Next (3.21) and (γ4) imply g(0) = fξj` (γ̄r,h̄,R̄(0)). A similar
argument yields the second statement in (g1).

The curve, g, does not possess enough properties for us to obtain the
contradiction we seek. Therefore it will be modified to obtain a new curve
g∗ ∈ C([0, 1],W 1,2(Rn,Rm)) with the support of g∗(s) ⊂ Uj` for each s ∈ [0, 1]
and satisfying

(g∗1) g∗(0) = fξj` (γ̄r,h̄,R̄(0)) and g∗(1) = fξj` (γ̄r,h̄,R̄(1)),

(g∗2) J(g∗(s)) < c̄+ 1
4
(λ− − λ0),

(g∗3) ‖g∗(s)− fξj` (K)‖ < r∗,

Assuming the existence of g∗ and making a phase shift of −ξj` then yields
a new curve connecting u0(r, h̄) and u1(r, h̄) in J c̄ ∩ Br∗(K). But according
to (ii) of (B) in Proposition 3.1, such a path cannot exist. Thus we have
a contradiction to our assumption that there are no critical points of J in
B(5r, ξ,K) and Theorem 3.2 is proved.

Now we will begin the modification process and verify the existence of g∗.
To simplify the notation, for X ⊂ Rn, set JX = J |X . The notation Ji has
already been used to denote JUi but there should be no confusion between
the two notations in what follows. Set S = Uj` \ BR̄(ξj`). For any s ∈ [0, 1],
let

Λ(s) = {v ∈ W 1,2(Uj`) | v|BR̄(ξj` ) = g(s)|BR̄(ξj` ) and ‖v‖S ≤ 3δ}.

That Λ(s) is nonempty follows since g(s) ∈ Λ(s) via (g3) above. Consider
the minimization problem

(3.44) inf
v∈Λ(s)

JS(v).

Proposition 3.45. 1o There exists a minimizer, Us, of JS in Λ(s).
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2o ‖Us‖S ≤ 2δ.

3o Us is the unique minimizer of JS in Λ(s).

4o Us satisfies

(3.46) ‖Us‖2
B2R̄+1(ξj` )\B2R̄(ξj` ) ≤ 6 min

1≤i≤[R̄]
‖Us‖2

BR̄+i(ξ
j` )\BR̄+i−1(ξj` ).

5o For each s ∈ [0, 1],

(3.47) ‖Us‖2
B2R̄+1(ξj` )\B2R̄(ξj` ) ≤

1
4

min{1
4
|λ− − λ0|, δ2}.

Proof: The set Λ(s) is closed and convex. Therefore it is weakly closed.
The functional JS is weakly lower semicontinuous. Therefore there exists a
minimizer, Us, of JS in Λ(s). To prove 2o, suppose v ∈ Λ(s). By the definition
of Λ(s), ‖v‖S ≤ 3δ. By the argument leading to (2.5), for v ∈ Λ(s),∫

S

F (x, v) dx ≤ 1
8
‖v‖2

S +
C1/4

p+1
‖v‖p+1

Lp+1(S) ≤ (1
8

+
C1/4

p+1
κp+1‖v‖p−1

S )‖v‖2
S(3.48)

≤ (1
8

+
C1/4

p+1
κp+1(3δ)p−1)‖v‖2

S.

Recalling that ρ̄ ∈ (0, ρ/2) satisfies C1/4κ
p+1(2ρ̄)p−1 ≤ 1

4
and from (3.4) that

δ < ρ̄/120 shows for all v ∈ Λ(s),

(3.49)

∫
S

F (x, v) dx ≤ 1
4
‖v‖2

S.

Thus with the aid of (g3),

(3.50) 1
4
‖Us‖2

S ≤ JS(Us) ≤ JS(g(s)) ≤ 1
2
‖g(s)‖2

S ≤ 1
2
δ2

from which 2o follows. Note that 2o implies that Us is an interior minimizer
of JS. Therefore

(3.51) J ′S(Us)ϕ = 0 for all ϕ ∈ W 1,2
0 (S).

If Us is not the unique minimizer of JS in Λ(s), there is a second such mini-
mizer, Vs, satisfying (3.49). Hence Us − Vs ∈ W 1,2

0 (S) so using it in (3.51):

(3.52) ‖Us − Vs‖2
S =

∫
S

(Fu(x, Us)− Fu(x, Vs)) · (Us − Vs) dx
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=

∫
S

(

∫ 1

0

(Fuu(x, tUs + (1− t)Vs)(Us − Vs) dt) · (Us − Vs) dx.

Using (2.4) and arguing as in (3.48) leads to

(3.53) ‖Us − Vs‖2
S ≤ (1

4
+ pC1/4κ

p+1(6δ)p−1)‖Us − Vs‖2
S.

Using (2.8) and that δ < ρ̄/120, the first factor on the right in (3.53) is less
than 1. Hence Us = Vs and 3o holds.

To prove 4o, let q0 ∈ {1, . . . , [R̄]} be such that

‖Us‖2
BR̄+q0

(ξj` )\BR̄+q0−1(ξj` ) = min
1≤i≤R̄

‖Us‖2
BR̄+i(ξ

j` )\BR̄+i−1(ξj` ).

Define a cut-off function, ηq0 , by

ηq0(x) =


1 x ∈ BR̄+q0−1(ξj`),

R̄ + q0 − |x− ξj`| x ∈ BR̄+q0(ξj`) \BR̄+q0−1(ξj`),

0 x ∈ Rn \BR̄+q0(ξj`).

Since Us satisfies 1o,

0 ≤ JUj`\BR̄(ξj` )(ηq0Us)− JUj`\BR̄(ξj` )(Us) =(3.54)

= JBR̄+q0
(ξj` )\BR̄+q0−1(ξj` )(ηq0Us)− JUj`\BR̄+q0−1(ξj` )(Us).

By (3.50),

(3.55) JUj`\BR̄+q0−1(ξj` )(Us) ≥ 1
4
‖Us‖2

B2R̄+1(ξj` )\B2R̄(ξj` ).

Since ‖ηp0Us‖2
BR̄+q0

(ξj` )\BR̄+q0−1(ξj` )
≤ 3‖Us‖2

BR̄+q0
(ξj` )\BR̄+q0−1(ξj` )

, we find

JBR̄+q0
(ξj` )\BR̄+q0−1(ξj` )(ηp0Us) ≤ 1

2
‖ηp0Us‖2

BR̄+q0
(ξj` )\BR̄+q0−1(ξj` )(3.56)

≤ 3
2
‖Us‖2

BR̄+q0
(ξj` )\BR̄+q0−1(ξj` ).

Hence (3.46) follows from (3.54), (3.55), (3.56).

Lastly 5o, will be verified. By 2o, ‖Us‖Uj`\BR̄(ξj` ) ≤ 2δ so

(3.57)

[R̄]∑
i=1

‖Us‖2
BR̄+i(ξ

j` )\BR̄+i−1(ξj` ) ≤ 4δ2.
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Using (3.18), (3.57) leads to

(3.58) min
1≤i≤R̄

‖Us‖2
BR̄+i(ξ

j` )\BR̄+i−1(ξj` ) ≤
1
24

min{1
4
|λ− − λ0|, δ2}

for any s ∈ [0, 1]. Thus (3.47) and therefore 5o follow from (3.46) and (3.58).

Continuing with the construction of g∗, an intermediate step is needed to
get from g to g∗. For s ∈ [0, 1], define

g̃(s)(x) =

{
g(s)(x) for x ∈ BR̄(ξj`)

Us(x) for x ∈ S = Uj` \BR̄(ξj`)

The uniqueness of Us for each s and the continuity of g shows that g̃ ∈
C([0, 1],W 1,2(Uj` ,Rm)). See Section 5 of [11] for a related argument. More-
over the minimality property of Us implies that for any s ∈ [0, 1]

(3.59) Jj`(g̃(s)) = JBR̄(ξj` )(g(s)) + JS(Us) ≤ Jj`(g(s)).

Consider the cutoff function

η(x) ≡ ηR+1(x) =


1 x ∈ B2R̄(ξj`),

2R̄ + 1− |x− ξj` | x ∈ B2R̄+1(ξj`) \B2R̄(ξj`),

0 x ∈ Rn \B2R̄+1(ξj`)

and define the path, g∗, via

g∗(s)(x) =

{
η(x)g̃(s)(x) for x ∈ Uj`
0 for x ∈ Rn \ Uj` ,

s ∈ [0, 1].

Then g∗ ∈ C([0, 1],W 1,2(Rn,Rm)) and its support lies in Ūj` for each s ∈
[0, 1]. We will prove that g∗ satisfies (g∗1) − (g∗3). Properties (g1) and (γ4)
show supp g(0), supp g(1) ⊂ BR̄(ξj`). Thus g(0)|∂BR̄(ξj` )

= g(1)|∂BR̄(ξj` )
= 0

so the definition of Λ(s) and (3.50) implies U0 = U1 = 0. Hence g̃(0) = g(0)
and g̃(1) = g(1) on Uj` and g∗(0) = ηg(0) = g(0) and g∗(1) = ηg(1) = g(1)
on Rn. These observations then yield

(3.60) g∗(0) = fξj` (γ̄r,h̄,R̄(0)), g∗(1) = fξj` (γ̄r,h̄,R̄(1)),

i.e. (g∗1). To verify (g∗2), note first that

(3.61) J(g∗(s)) = Jj`(η g̃(s)) = JB2R̄(ξj` )(g̃(s)) + JB2R̄+1(ξj` )\B2R̄(ξj` )(ηUs).
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We claim

(3.62) JB2R̄(ξj` )(g̃(s)) ≤ Jj`(g(s)).

Assuming (3.62) for the moment, (3.61) becomes

(3.63) J(g∗(s)) ≤ Jj`(g(s)) + 1
2
‖ηUs‖2

B2R̄+1(ξj` )\B2R̄(ξj` ).

Recalling that

‖ηUs‖2
B2R̄+1(ξj` )\B2R̄(ξj` ) ≤ 3‖Us‖2

B2R̄+1(ξj` )\B2R̄(ξj` )

and using (g2) and (3.47), (3.63) leads to

(3.64) J(g∗(s)) ≤ c̄+ 1
2
(λ− − λ0) + 3

16
|λ− − λ0| < c̄+ 1

4
(λ− − λ0),

i.e. (g∗2). To prove (3.62), note first that it is equivalent to showing that

JB
2R̄(ξj` )

\BR̄(ξj` )(Us) ≤ JS(g(s)).

By (3.59), JS(Us) ≤ JS(g(s)). Thus to complete the proof here, it suffices to
show

(3.65) JUj`\B2R̄(ξj` )(Us) ≥ 0

and this follows from (2.9), (3.4), and 2o of Proposition 3.45.
Lastly to verify (g∗3), ‖g∗(s)− fξj` (K)‖ will be estimated. Since g∗ = 0 in

Rn \B2R̄+1(ξj`),
(3.66)
‖g∗(s)− fξj` (K)‖ ≤ ‖g∗(s)− fξj` (K)‖B2R̄+1(ξj` ) + ‖fξj` (K)‖Rn\B2R̄+1(ξj` ).

The second term on the right in (3.66) is ≤ r/16 due to (3.17). Next note
that

(3.67) ‖g∗(s)−fξj` (K)‖B2R̄+1(ξj` ) ≤ ‖g∗−g‖B2R̄+1(ξj` )+‖g−fξj` (K)‖B2R̄+1(ξj` )

and the second term on the right in (3.67) is ≤ 5r by (3.42). To bound the
first term on the right in (3.67), note that

‖Us‖B2R̄+1(ξj` )\BR̄(ξj` ) ≤ ‖Us‖S < 2δ
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by 2o of Proposition 3.45, and

‖g(s)‖B2R̄+1(ξj` )\BR̄(ξj` ) ≤ ‖g(s)‖Uj`\BR̄(ξj` )
≤ δ

by (g3). These inequalities with (3.4) show

‖g∗(s)− g(s)‖B2R̄+1(ξj` ) = ‖ηUs − g(s)‖B2R̄+1(ξj` )\BR̄(ξj` )

≤ ‖ηUs‖B2R̄+1(ξj` )\BR̄(ξj` ) + ‖g(s)‖B2R̄+1(ξj` )\BR̄(ξj` )

≤
√

3 2δ + δ < r∗/2.

Combining these observations and using (3.4) again yields

(3.68) ‖g∗(s)− fξj` (K)‖ ≤ r∗/2 + 5r < r∗,

i.e. (g∗3) holds. Thus there is a critical point of J in B(5r, ξ,K). By Propo-
sition 2.21, the critical point is a classical solution of (PDE) and finally the
proof of Theorem 3.2 is complete.

Remark 3.69. Using arguments as in [11], it follows that the k-bump solu-
tions decay to 0 at an exponential rate as |x| → ∞.

This section now concludes with the

Proof of Corollary 3.3: Let (ξi) be a sequence as in the statement of the
Corollary. Let k ∈ N and Pk = {ξ1, · · · , ξk}. With this choice of vectors,
by Theorem 3.2 and Corollary 2.21, there is a solution, Uk ∈ C2,α

loc (Rn) of
(PDE) satisfying (ii) 1)− 2) of Theorem 3.2. Let (yi)i∈N ⊂ Rn be such that
∪i∈NBL̄(yi) = Rn. We claim there is a constant, M > 0 independent of i and
k such that

(3.70) ‖Fu(·, Uk)‖BL̄+1(yi) ≤M.

Assuming (3.70) for the moment, it implies that there is a subsequence of Uk
and a function, U ∈ C2

loc(Rn) such that Uk → U in C2
loc(Rn). Therefore U

is a solution of (PDE) in Rn and the linear Schauder regularity theory [13]
implies U ∈ C2,α

loc (Rn) for each α ∈ (0, 1). In addition, by (ii) 1) − 2) for
Uk, Ualso satisfies these conditions with equality being possible. To verify
(3.70), note first that due to the compactness of K in E, {‖fξj(K)‖BL̄+1(yi)} is
bounded independently of i and j. Therefore via (ii) 1)−2), the same is true
of {‖Uk‖BL̄+1(yi)} independently of i and k. As in the proof of Proposition
2.21, by (F1)− (F4), there is a p > 1 such that ‖Fu(·, Uk)‖Lp(BL̄+1(yi)) is also
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bounded independently of i and k. The linear Lp Schauder interior estimates
then give a bound on {‖Uk‖W 2,p(BL̄(yi)} independently of i and k. Bootstrap
arguments e.g. in the spirit of section 5 of [11] and using the linear Schauder
Cα theory for the final step show (3.70) is verified and complete the proof of
Corollary 3.3.

4 Proof of Proposition 3.14

The goal of this section is to prove Proposition 3.14. The Proposition will
be obtained as a consequence of the following result which provides a vector
field with useful properties on B(4r, ξ,K).

Proposition 4.1. Let r be as in (3.4), h̃ ∈ (0, 1
4
λ(r)), with λ(r) as given

by Proposition 3.1, and h ∈ (0, h̃), λ−, λ+, λ0 given by (P1). Then there
exist constants µ1 = µ1(r), µ2 = µ2(r, h) and L0 = L0(r, h) > 0 such that
if L ≥ 4L0, k ≥ 2 and the points ξ1, . . . , ξk ∈ Zn satisfy min1≤i 6=j≤k |ξi −
ξj| > 30

√
nL, then with the partition U(ξ,L) as given by (3.13), for any

u ∈ B(4r, ξ,K), there exists a Vu ∈ E possessing the properties:

1o maxj=1,...,M ‖Vu‖Uj ≤ 1,

2o if for some j0 ∈ {1, . . . , k}, the inequalities

3r < ‖u− fξj0 (K)‖Uj0 < 4r and |Jj0(u)− c̄| ≤ 3
2
λ(r),

are satisfied, then J ′j0(u)Vu ≥ 2µ1, while if for some j ∈ {k+1, . . . ,M},

3r ≤ ‖u‖Uj < 4r,

then J ′j(u)Vu ≥ 2µ1;

3o if for some j0 ∈ {1, . . . , k}, the inequalities

Jj0(u)− c̄ ∈ (λ− − 2λ0, λ− + 2λ0) ∪ (λ+ − 2λ0, λ+ + 2λ0)

are satisfied, then J ′j0(u)Vu ≥ 2µ2, while if for some j ∈ {k+1, . . . ,M},
we have

λ+ − 2λ0 < Jj(u) < λ+ + 2λ0,

then J ′j(u)V(u) ≥ 2µ2.
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If in addition, the set B̄(4r, ξ,K) does not contain critical points of J , there
exists a µξ > 0 for which

4o J ′(u)Vu ≥ 2µξ for any u ∈ B(4r, ξ,K).

Proposition 4.1 will be proved below. First it will be used to give a

Proof of Proposition 3.14: Recall that r1 = 3r + r/8, r2 = 3r + r/4,
r3 = 4r−r/8. Let u ∈ B̄(r3, ξ,K), and let the constants µξ, µ1, µ2, λ(r), λ0 be
as in Proposition 4.1. The parameter λ0 is given by (P1) which is operative
(as is Proposition 3.14) when (i) of Theorem 3.2 fails. Choose a constant
ρu > 0 so that the following conditions are satisfied.

(ρ1) ρu < r/8;

(ρ2) if v ∈ Bρu(u), then |Jj(v) − Jj(u)| ≤ 1
2

min{λ(r), λ0} for any j ∈
{1, . . . ,M};

(ρ3) if v ∈ Bρu(u), then |(J ′(v) − J ′(u))Vu| ≤ µξ and |(J ′j(v) − J ′j(u))Vu| ≤
min{µ1, µ2} for any j ∈ {1, . . . ,M}.

The family of open balls, {Bρu(u) | u ∈ B̄(r3, ξ,K)}, is a covering of B̄(r3, ξ,K).
Hence, by paracompactness, it admits an open locally finite refinement,
{Ni ⊂ E | i ∈ N}. To verify (1o), we argue as in e.g. Appendix A of
[26]. For u ∈ E, define

φi(u) = distE(u,E \ Ni), Φ(u) =
∑
i∈N

φi(u) and ψi(u) =
φi(u)

Φ(u)

Each function, φi, is Lipschitz continuous with suppφi ⊂ Ni. Since the
covering {Ni} is locally finite, Φ is strictly positive and locally Lipschitz
continuous on B̄(r3, ξ,K). Consequently the functions ψi, i ∈ N, are also
locally Lipschitz continuous on B̄(r3, ξ,K) and form a partition of unity on
B̄(r3, ξ,K) subordinate to the open covering {Ni}.

Since {Ni} is a refinement of {Bρu(u) | u ∈ B̄(r3, ξ,K)}, for any i ∈ N, a
function vi ∈ B̄(r3, ξ,K) can be selected such that Ni ⊂ Bρvi

(vi). Set

χ(u) =
distE(u,E \ B̄(r3, ξ,K))

distE(u,E \ B̄(r3, ξ,K)) + distE(u, B̄(r2, ξ,K))
,
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and define

(4.2) V(u) = χ(u)
∑
i∈N

ψi(u)Vvi .

Observing that χ is locally Lipschitz continuous onE, χ = 0 on E\B̄(r3, ξ,K),
the functions ψj are locally Lipschitz continuous on B̄(r3, ξ,K) and the sum
in the definition of V is locally a finite sum, it follows that V is also lo-
cally Lipschitz continuous on E. By Proposition 4.1, the vectors Vvi satisfy
max1≤j≤M ‖Vvi‖Uj ≤ 1 and J ′(u)Vvi ≥ 0. Thus V(u), being the product of
the positive function χ(u), which has modulus less then or equal to one,
and a convex combination of a finite number of vectors Vvi , also satisfies
‖V(u)‖Uj ≤ 1 for any j ∈ {1, . . . ,M} and J ′(u)V(u) ≥ 0. i.e V satisfies (i)
of Proposition 3.14. To prove (ii) of the Proposition, observe that χ(u) = 0
for u ∈ E \ B(r3, ξ,K). Thus for such u, V(u) = 0.

The verification of (iii) of Proposition 3.14 is more involved. Let (p1)
and (p2) denote the two possible cases considered in (iii) of Proposition 3.14,
i.e.

(p1) for some j0 ∈ {1, . . . , k},

r1 ≤ ‖u− fξj0 (K)‖Uj0 < r2 and |Jj0(u)− c̄| ≤ λ(r);

(p2) for some j1 ∈ {k + 1, . . . ,M}, r1 ≤ ‖u‖Uj1 < r2.

Since u ∈ B(r2, ξ,K), observing that B(r2, ξ,K) ⊂ ∪i∈NNi, it follows that

(a) there is an i ∈ N such that ψi(u) 6= 0.

Thus there is a vi ∈ B̄(r3, ξ,K) such that u ∈ Ni ⊂ Bρvi
(vi). Since r3 <

4r, vi ∈ B(4r, ξ,K). Note further that if (p1) occurs,

‖vi − fξj0 (K)‖Uj0 ≥ ‖u− fξj0 (K)‖Uj0 − ‖u− vi‖Uj0 ≥ r1 − ρvi > 3r

and by (ρ2), |Jj0(vi)− Jj0(u)| ≤ 1
2
λ(r) so

|Jj0(vi)− c̄| ≤ |Jj0(u)− c̄|+ |Jj0(vi)− Jj0(u)| ≤ 3
2
λ(r).

Thus we have shown if (p1) holds,

(4.3) vi ∈ B(4r, ξ,K), 3r < ‖vi−fξj0 (K)‖Uj0 < 4r and |Jj0(vi)−c̄| ≤ 3
2
λ(r).
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Similarly if (p2) occurs, again using (ρ1) gives

‖vi‖Uj1 ≥ ‖u‖Uj1 − ‖u− vi‖Uj1 ≥ r1 − ρvi > 3r

which combined with what was established above yields

(4.4) vi ∈ B(4r, ξ,K) and 3r < ‖vi‖Uj1 < 4r.

Using (4.3) and (4.4), 2o of Proposition 4.1 can be applied where ̄ = j0

if (p1) holds and ̄ = j1 if (p2) occurs. Thus with µ1 as given by Proposition
4.1, we find J ′̄(vi)Vvi ≥ 2µ1 and by (ρ3),

J ′̄(u)Vvi ≥ J ′̄(vi)Vvi − |(J ′̄(vi)− J ′̄(u))Vvi | ≥ µ1.

Noting that χ(u) = 1 since u ∈ B(r2, ξ,K) gives

J ′̄(u)V(u) =
∑

{i|ψi(u)6=0}

ψi(u)J ′̄(u)Vvi ≥
∑

{i|ψi(u)6=0}

ψi(u)µ1 = µ1,

and (iii) of Proposition 3.14 follows.
A similar argument proves (iv) of Proposition 3.14. Assume that u ∈

B(r3, ξ,K) is such that one of the following properties is satisfied:

(p3) for some j0 ∈ {1, . . . , k},

Jj0(u)− c̄ ∈ (λ− − λ0, λ− + λ0) ∪ (λ+ − λ0, λ+ + λ0)

(p4) for some j1 ∈ {k + 1, . . . ,M},

λ+ − λ0 < Jj1(u) < λ+ + λ0.

As in the proof of (iii), (a) holds, so by (ρ1), vi ∈ B(4r, ξ,K) and by (ρ2),
|Jj(vi)− Jj(u)| ≤ 1

2
λ0 for 1 ≤ j ≤M . If (p3) or (p4) hold, the hypotheses of

3o of Proposition 4.1 are satisfied so setting ̄ = j0 if (p3) occurs or ̄ = j1 if
(p4) occurs, it follows that J ′̄(vi)Vvi ≥ 2µ2. Hence, by (ρ3),

J ′̄(u)Vvi ≥ J ′̄(vi)Vvi − |(J ′̄(vi)− J ′̄(u))Vvi | ≥ µ2.

As earlier, χ(u) = 1 so we conclude

J ′̄(u)V(u) =
∑

{i|ψi(u)6=0}

ψi(u)J ′̄(u)Vvi ≥ µ2 > 0,
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establishing (iv) of Proposition 3.14.
To complete the proof of Proposition 3.14, it remains only to verify prop-

erty (v). Let u ∈ B(r2, ξ,K). Due to (a) and (ρ1), vi ∈ B(4r, ξ,K). By
assumption, there are no critical points of J in B(4r, ξ,K). Consequently by
4o of Proposition 4.1, J ′(vi)Vvi ≥ 2µξ so by (ρ3),

J ′(u)Vvj ≥ µξ for any j ∈ N such that ψj(u) 6= 0.

Again χ(u) = 1 so

J ′(u)V(u) =
∑

{j|ψj(u)6=0}

ψj(u)J ′(u)Vvj ≥ µξ,

finishing the proof of Proposition 3.14.

The remainder of the paper consists of the proof of Proposition 4.1. Due
to its length and technical nature, we preface the proof with some clarifying
remarks and an outline of the main steps. The proof of the Proposition is
based on the use of Property (A) of Proposition 3.1, which is the main tool
used to verify 2o of Proposition 4.1, and the employment of property (P1)
to derive 3o. Property 4o of Proposition 4.1 is obtained as a consequence
of Proposition 2.10 under the assumption that B(4r, ξ,K) does not contain
critical points of J .

To describe the underlying ideas a bit more fully, consider the first part
of Property 2o. It states that if u ∈ B(4r, ξ,K) satisfies

(4.5) 3r < ‖u− fξj0 (K)‖Uj0 < 4r and |Jj0(u)− c̄| ≤ 3
2
λ(r),

for some j0 ∈ {1, . . . , k}, then J ′j0(u)Vu ≥ 2µ1. The relationship between this
statement and Property (A) of Proposition 3.1 is particularly explicit when
the restriction of u to Uj0 , the function vj0 = u|Uj0 , is such that supp(vj0) ⊂
int(Uj0). Indeed, then extending vj0 as 0 outside Uj0 , shows that vj0 ∈ E and
by (4.5), vj0 satisfies

|J(vj0)− c̄| = |Jj0(u)− c̄| ≤ 3
2
λ(r),(4.6)

3r < ‖vj0 − fξj0 (K)‖ < 5r if L is suitably large.(4.7)

By (4.6) - (4.7), Property (A) of Proposition 3.1 can be applied to the func-
tion vj0 yielding ‖J ′(vj0)‖ ≥ 2µr. Since J ′(vj0)h = J ′j0(u)h for any h ∈ E, we
find Vj0 ∈ E with ‖Vj0‖ ≤ 1, suppVj0 ⊂ int(Uj0) and J ′j0(u)Vj0 ≥ µr. Then
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Vj0 can be used to construct Vu. In other words, when supp(u|Uj0 ) ⊂ int(Uj0),
Property (A) of Proposition 3.1 can be applied to the single bump function
vj0 = u|Uj0 . A similar mechanism exploiting Property (P1) should then lead
to 3o. To use these ideas a suitable family of cutoff functions related to
the partition U1, . . . ,UM will be constructed. It will allow us to isolate the
behavior of u on each domain Uj.

An outline of the above process is:

Step 1 : Various constants are fixed and the family of cutoff functions is
defined. The construction has to take account of the errors due to the
cutting procedure and requires several preliminaries and some estimates
which are summarized in Proposition 4.19 below.

Step 2 : In preparation for the proof of 2o, Property (A) of Proposition 3.1 is
used in conjunction with the family of cutoff functions. See Proposition
4.37 below.

Step 3 : Property (P1) is used in a similar fashion to obtain 3o. See Propo-
sition 4.49.

Step 4 : In preparation for 4o of Proposition 4.1, Proposition 2.10 is used
exploiting the fact that B(4r, ξ,K) does not contain critical points of
J . See Proposition 4.57.

Step 5 : The final part of the proof shows how to put together all the
contributions derived from the preceding steps to define a vector field
Vu satisfying the properties stated in Proposition 4.1. See (4.63).

Now we are ready for the
Proof of Proposition 4.1: Define
(4.8)
µ1 = µ1(r) = 1

100
min{µ2

r, r
2, λ(r)}, µ̄2 = µ̄2(r, h) = 1

100
min{ν2, r2, λ0}.

where µr is given by (A) in Proposition 3.1, h is fixed via (3.15) and ν by
property (P1). Take

(4.9) ε0 <
1

3n
1
32

min{r, µ1, µ̄2, λ(r)1/2, λ
1/2
0 }

Since K is compact in E, there exists an R0 > 0 such that

(4.10) ‖v‖Rn\BR0
(0) ≤ ε0, for all v ∈ K.
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Let

(4.11) L0 = L0(r, h) ∈ N be such that L0 ≥ max{R0, 3
n · 50 r2/ε0}

and L ∈ N such that L ≥ 4L0. Given k ≥ 2 and ξ1, . . . , ξk ∈ Zn satisfying
|ξi − ξj| > 30

√
nL for i 6= j, consider the family U(ξ,L) = {U1, . . . ,UM}

defined as in (3.13). Recall that by (iii) of Proposition 3.10, we have ξj +
[−L,L]n ⊂ Uj for 1 ≤ j ≤ k. Then, since L ≥ 4L0, (i) and (ii) of Proposition
3.10 imply that for any j ∈ {1, . . . , k} and i ∈ {1, . . . ,M},we have

(4.12) B4L0(ξj) ⊂ Uj and B2L0(ξj) ∩BL0(Ui) = ∅ whenever i 6= j.

Let u ∈ B(4r, ξ,K) and j ∈ {1, . . . , k}. Since L ≥ 4L0 and L0 ≥ R0,
(4.10) and (4.12) show that

4r ≥ ‖u− fξj(K)‖Uj\BL0
(ξj) ≥ ‖u‖Uj\BL0

(ξj) − ε0.

Hence by (4.9),

(4.13) ‖u‖Uj\BL0
(ξj) ≤ 5r for any j ∈ {1, . . . , k}.

Moreover, since for any j ∈ {1, . . . , k},

{x ∈ Rn | L0 ≤ |x− ξj| ≤ 2L0} ⊂ Uj \BL0(ξj),

(4.13) and (4.11) imply that

(4.14) min
0≤l≤L0−1

‖u‖2
{L0+l≤|x−ξj |≤L0+l+1} ≤ 25r2

L0
≤ 1

2
ε0 for 1 ≤ j ≤ k.

For each u ∈ B(4r, ξ,K) and j ∈ {1, . . . , k}, the minimum in (4.14) is
achieved at some integer lu,j ∈ {L0, . . . , 2L0 − 1}. Although lu,j is not nec-
essarily determined uniquely, any such choice suffices for our later purposes.
For j = 1, . . . , k, set

N int
u,j = Blu,j+1(ξj) \Blu,j(ξ

j) and Au = Rn \ ∪kj=1Blu,j+1(ξj).

See Figure 2 below. Then by (4.14),

(4.15) ‖u‖2
N intu,j
≤ 1

2
ε0 for any j ∈ {1, . . . , k}.

The inequalities, (4.15), show that in each such annular region, N int
u,j , around

ξj, the function u has a very small norm.
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L0 N int
u,j

∂Uj
L0

L0

L0

2L0

Uj lu,j

L0

ξj

Figure 2: N int
u,j , j ≤ k, is represented in dark gray, Uj in gray. By (4.12),

N int
u,j ∩BL0(Ui) = ∅ if i 6= j.

In an analogous fashion, annular regions surrounding each set Ui ∈ U(ξ,L),
N ext
u,i can be constructed for which the same inequality holds. The first step

in proving this is to show that

(4.16) ‖u‖2
BL0

(Ui)\Ui ≤ 3n · 25 r2 for any i ∈ {1, . . . ,M}.

Indeed (i), (ii) and (iv) of Proposition 3.10 imply

‖u‖2
BL0

(Ui)\Ui ≤ 3n max{‖u‖2
V ∩(BL0

(Ui)\Ui) | V ∈ U(ξ,L), BL(Ui) ∩ V 6= ∅}.

By the definition of B(4r, ξ,K), ‖u‖2
V ≤ 16r2 for any V ∈ {Uk+1, . . . ,UM}.

By (4.12) and (4.13), ‖u‖2
V ∩(BL0

(Ui)\Ui) ≤ 25r2 for any V ∈ {U1, . . . ,Uk}.
Combining these observations yields

(4.17) max{‖u‖2
V ∩(BL0

(Ui)\Ui) | V ∈ U(ξ,L), BL(Ui) ∩ V 6= ∅} ≤ 25r2

and (4.16) follows. Since L0 ≥ 3n · 50 r2/ε0, as for (4.14), we obtain

min
0≤l≤L0−1

‖u‖2
Bl+1(Ui)\Bl(Ui) ≤

3n·25r2

L0
≤ 1

2
ε0 for 1 ≤ i ≤M.
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Hence as above, for each u ∈ B(4r, ξ,K) and i ∈ {1, . . . ,M}, there exists an
integer l̄u,i ∈ {0, . . . ,L0 − 1}, such that for the set

N ext
u,i ≡ Bl̄u,i+1(Ui) \Bl̄u,i(Ui),

(pictured in Figure 3) we have

(4.18) ‖u‖2
N extu,i
≤ 1

2
ε0.

For u ∈ B(4r, ξ,K) and j ∈ {1, . . . , k}, define the cutoff functions

ζu,j(x) =


1 x ∈ Blu,j(ξ

j),

lu,j + 1− |x− ξj| x ∈ N int
u,j ,

0 x ∈ Rn \Blu,j+1(ξj),

and

ζ̄u,j(x) =


1− ζu,j(x) x ∈ Bl̄u,j(Uj),
1− dist(x,Bl̄u,j(Uj)) x ∈ N ext

u,j ,

0 x ∈ Rn \Bl̄u,j+1(Uj),

while for j ∈ {k + 1, . . . ,M}, set

ζ̄u,j(x) =


1 x ∈ Bl̄u,j(Uj),
1− dist(x,Bl̄u,j(Uj)) x ∈ N ext

u,j ,

0 x ∈ Rn \Bl̄u,j+1(Uj).

See Figures 4, 5. These cutoff functions will be used to study the contribution
to the norm of u restricted to each of the sets, Blu,j+1(ξj), where (roughly) u
is near a single bump, fξj(K), and each of the sets, Au∩Uj, where u is near 0.
The functions ζ̄j for j = 1, . . . ,M , have supports in regions where u is close
to zero in contrast to the functions ζj for j ∈ {1, . . . k} which are supported
on sets where u is close to the bump fξj(K). For future reference, note that
if ζ is any one of the above cutoff functions, then 0 ≤ ζ(x), |∇ζ(x)| ≤ 1
a.e. on Rn. A straightforward computation then shows if v ∈ E and Ω is a
measurable subset of Rn, ‖ζv‖2

Ω ≤ 3‖v‖2
Ω.
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L0

Uj

l̄u,j

∂Uj

N ext
u,j

Figure 3: N ext
u,j , 1 ≤ j ≤M , is represented in dark gray. We have N ext

u,j ⊂ BL0
(Uj) \ Uj .

L0

l̄u,j2L0

lu,j

∂Uj

ξj
L0

Uj

2L0

∂Uj

lu,j

ξj
L0

Figures 4: A representation of ζ̄u,j (on the left) and ζu,j (on the right) for 1 ≤ j ≤ k.
In the dark gray region they are equal to 1, equal to 0 in the white region.
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∂Uj

L0

l̄u,j

Figure 6: A representation of the functions ζ̄u,j when k + 1 ≤ j ≤M .

In the dark gray region they are equal to 1, equal to 0 in the white region.

The next proposition estimates J ′j(u)ζ̄u,iu and J ′(u)ζ̄u,iu.

Proposition 4.19. If u ∈ B(4r, ξ,K), then

1o J ′j(u)ζ̄u,ju ≥ 1
2
‖u‖2

Uj∩Au − ε0 for 1 ≤ j ≤ k and J ′j(u)ζ̄u,ju ≥ 1
2
‖u‖2

Uj for
k + 1 ≤ j ≤M ;

2o J ′(u)ζ̄u,ju ≥ 1
2
‖u‖2

Uj∩Au−2ε0 for 1 ≤ j ≤ k and J ′(u)ζ̄u,ju ≥ 1
2
‖u‖2

Uj−ε0
for k + 1 ≤ j ≤M ;

3o if i 6= j ∈ {1, . . . ,M} are such that the associated members of Zn ∩Rξ

are pi, pj and |||pi − pj||| ≤ 1, then J ′j(u)ζ̄u,iu ≥ −ε0 while if |||pi − pj||| ≥
2, then J ′j(u)ζ̄u,iu = 0.

Proof: To prove 1o, for u ∈ B(4r, ξ,K), an estimate is needed for

J ′j(u)ζ̄u,ju = 〈u, ζ̄u,ju〉Uj −
∫
Uj
Fu(x, u)ζ̄u,ju dx

for two ranges of values of the index j: 1 ≤ j ≤ k and k + 1 ≤ j ≤ M .
Suppose first that 1 ≤ j ≤ k. For such values of j,

ζ̄u,j(x) = 1 on Uj \Blu,j+1(ξj) = Uj ∩ Au, ζ̄u,j(x) = 0 on Blu,j(ξ
j), and

0 ≤ ζ̄u,i(x), |∇ζ̄u,i(x)| ≤ 1 for x ∈ N int
u,j = Blu,j+1(ξj) \Blu,j(ξ

j).
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Consequently, to evaluate 〈u, ζ̄u,ju〉Uj = 〈u, ζ̄u,ju〉Uj∩Au + 〈u, ζ̄u,ju〉N intu,j
, ob-

serve that

m∑
ι=1

∫
Uj
∇uι · ∇(ζ̄u,juι) dx =(4.20)

=
m∑
ι=1

(

∫
Uj∩Au

|∇uι|2dx+

∫
N intu,j

ζ̄u,j|∇uι|2dx+

∫
N intu,j

(∇uι · ∇ζ̄u,j)uιdx)

≥
m∑
ι=1

‖|∇uι|‖2
L2(Uj∩Au) − ‖|∇u|‖L2(N intu,j )‖u‖L2(N intu,j ,Rm)

≥
m∑
ι=1

‖|∇uι|‖2
L2(Uj∩Au) − ‖u‖2

N intu,j
.

Since

(4.21) 〈u, ζ̄u,ju〉L2(Uj ,Rm) ≥ ‖u‖2
L2(Uj∩Au,Rm),

combining (4.20) and (4.21) and using (4.15) yields

(4.22) 〈u, ζ̄u,ju〉Uj ≥ ‖u‖2
Uj∩Au −

1
2
ε0 for any j ∈ {1, . . . , k}.

To complete the estimate of J ′j(u)ζ̄u,ju, the contribution from
∫
Uj Fu(x, u)ζ̄u,ju dx

must also be taken into account. Towards this end, we first claim that for
any v ∈ E,

(4.23)

∫
Uj\Blu,j (ξj)

∣∣Fu(x, u)v
∣∣ dx ≤ 1

2
‖u‖Uj\Blu,j (ξj)‖v‖Uj\Blu,j (ξj).

Indeed, by (4.13), (4.9), and (3.4),

‖u‖Uj\Blu,j (ξj) < ρ̄.

Thus, since the set Ω = Uj \Blu,j(ξ
j) satisfies the cone property with respect

to the cone T , (4.23) follows from (2.9) in Remark 2.7. For future reference,
note also that the same reasoning gives

(4.24)

∫
Uj\Blu,j (ξj)

F (x, u) dx ≤ 1
4
‖u‖2

Uj\Blu,j (ξj).
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Using (4.15) and (4.23), shows for any j ∈ {1, . . . , k},∫
Uj

∣∣Fu(x, u)ζ̄u,ju
∣∣ dx ≤ ∫

Uj\Blu,j (ξj)

∣∣Fu(x, u)u
∣∣ dx(4.25)

≤ 1
2
‖u‖2

Uj∩Au + 1
2
‖u‖2

N intu,j
≤ 1

2
(‖u‖2

Uj∩Au + 1
2
ε0).

Combining the estimates (4.22) and (4.25) then gives

(4.26) J ′j(u)ζ̄u,ju = 〈u, ζ̄u,ju〉Uj −
∫
Uj
Fu(x, u)ζ̄u,ju dx ≥ 1

2
‖u‖2

Uj∩Au − ε0

and the first statement of 1o of Proposition 4.19 follows for j = 1, . . . , k.
When j ∈ {k + 1, . . . ,M}, ζ̄u,j(x) = 1 and ∇ζ̄u,j(x) = 0 for any x ∈ Uj.

Moreover ‖u‖Uj ≤ 4r < ρ̄ due to the definition of B(4r, ξ,K). Then as in
(4.23),

∫
Uj

∣∣Fu(x, u)v
∣∣ dx ≤ 1

2
‖u‖Uj‖v‖Uj . Hence

J ′j(u)ζ̄u,ju ≥ ‖u‖2
Uj −

1
2
‖u‖2

Uj = 1
2
‖u‖2

Uj for any j ∈ {k + 1, . . . ,M}
and the verification of 1o is complete.

To prove 2o, let u ∈ B(4r, ξ,K) and 1 ≤ j ≤ M . Then independently of
the choice of j, due to the definition of ζ̄u,j,

supp ζ̄u,j ⊂ Bl̄u,j+1(Uj) and ζ̄u,j(x) = 1 for x ∈ Bl̄u,j(Uj) \ Uj.
Hence,

J ′(u)ζ̄u,ju =(4.27)

= J ′j(u)ζ̄u,ju+ 〈u, ζ̄u,ju〉Bl̄u,j+1(Uj)\Uj −
∫
Bl̄u,j+1(Uj)\Uj

Fu(x, u)ζ̄u,ju dx

= J ′j(u)ζ̄u,ju+ ‖u‖2
Bl̄u,j

(Uj)\Uj −
∫
Bl̄u,j

(Uj)\Uj
Fu(x, u)u dx+

+ 〈u, ζ̄u,ju〉N extu,j
−
∫
N extu,j

Fu(x, u)ζ̄u,ju dx.

Lower bounds for the first term on the right hand side of (4.27) are provided
by 1o, so 2o follows from (4.27) once we show that for 1 ≤ j ≤M ,

‖u‖2
Bl̄u,j

(Uj)\Uj −
∫
Bl̄u,j

(Uj)\Uj
Fu(x, u)u dx ≥ 0(4.28)

〈u, ζ̄u,ju〉N extu,j
−
∫
N extu,j

Fu(x, u)ζ̄u,ju dx ≥ −ε0.(4.29)
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The inequality (4.28) involves the behaviour of u on the set Bl̄u,j(Uj) \ Uj.
This set can be decomposed as follows:

Bl̄u,j(Uj) \ Uj = ∪i 6=j Ui ∩ (Bl̄u,j(Uj) \ Uj).

By (4.17), since l̄u,j ≤ L0 − 1,

‖u‖Ui∩(Bl̄u,j+1(Uj)\Uj)) ≤ 5r < ρ̄ for any i 6= j such that Ui ∩BL0(Uj) 6= ∅.

Then again as for (4.23), for any i 6= j such that Ui ∩BL0(Uj) 6= ∅, we have∫
Ui∩(Bl̄u,j

(Uj)\Uj)
|Fu(x, u)u| dx ≤ 1

2
‖u‖2

Ui∩(Bl̄u,j
(Uj)\Uj)

from which it follows that

‖u‖2
Bl̄u,j

(Uj)\Uj −
∫
Bl̄u,j

(Uj)\Uj
Fu(x, u)u dx =

=
∑
i 6=j

(‖u‖2
Ui∩(Bl̄u,j

(Uj)\Uj) −
∫
Ui∩(Bl̄u,j

(Uj)\Uj)
Fu(x, u)u dx) ≥ 0,

i.e. (4.28) follows. A similar argument proves (4.29), namely by (4.18),
‖u‖2

N extu,i
≤ 1

2
ε0 < ρ so as for (4.23),∫

N extu,j

|Fu(x, u)ζ̄u,ju| dx ≤
∫
N extu,j

|Fu(x, u)u| dx ≤ 1
2
‖u‖2

N extu,i
≤ 1

4
ε0.

Moreover, since ζ̄u,j ≥ 0, 〈u, ζ̄u,ju〉L2(N extu,j ,Rm) ≥ 0, so as for (4.20),

〈u, ζ̄u,ju〉N extu,j
≥

m∑
ι=1

∫
N extu,j

∇uι∇(ζ̄u,juι) dx

=
m∑
ι=1

∫
N extu,j

ζ̄u,j|∇uι|2dx+

∫
N extu,j

(∇uι · ∇ζ̄u,j)uιdx

≥ −‖ |∇u| ‖L2(N extu,j )‖u‖L2(N extu,j ,Rm) ≥ −‖u‖2
N extu,j
≥ −1

2
ε0.

Thus using the results of the last two inequalities shows

〈u, ζ̄u,ju〉N extu,j
−
∫
N extu,j

Fu(x, u)ζ̄u,ju dx ≥ −ε0,
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i.e. (4.29) and completing the proof of 2o.

Lastly 3o will be established. Let u ∈ B(4r, ξ,K), and i, j ∈ {1, . . . ,M}
with i 6= j. By (iv) of Lemma 3.10, if |||pi − pj||| ≥ 2, then BL0(Ui) ∩ Uj = ∅.
Hence ζ̄u,i(x) = 0 for any x ∈ Uj and J ′j(u)ζ̄u,iu = 0 as stated in the second
part of 3o.

Thus assume |||pi − pj||| ≤ 1. To estimate

J ′j(u)ζ̄u,iu = 〈u, ζ̄u,iu〉Uj −
∫
Uj
Fu(x, u)ζ̄u,iu dx,

recall that by the definition of ζ̄u,i, for any i ∈ {1, . . . ,M},

(i) supp ζ̄u,i ⊂ Bl̄u,i(Ui) ∪N ext
u,i ,

(ii) ζ̄u,i(x) = 1 for x ∈ Bl̄u,i(Ui) \ Ui,

(iii) 0 ≤ ζ̄u,i(x), |∇ζ̄u,i(x)| ≤ 1 for x ∈ N ext
u,i .

By property (i),

J ′j(u)ζ̄u,iu = 〈u, ζ̄u,iu〉Uj∩(Bl̄u,i
(Ui)∪N extu,i ) −

∫
Uj∩(Bl̄u,i

(Ui)∪N extu,i )

Fu(x, u)ζ̄u,iu dx.

By (ii), ζ̄u,i(x) = 1 for x ∈ Uj ∩ Bl̄u,i(Ui) so the scalar product term can be
written as

〈u, ζ̄u,iu〉Uj∩(Bl̄u,i
(Ui)∪N extu,i ) = ‖u‖2

Uj∩Bl̄u,i (Ui)
+ 〈u, ζ̄u,iu〉Uj∩N extu,i

.

Moreover 0 ≤ ζ̄u,i(x) for x ∈ Uj ∩N ext
u,i via (iii) so 〈u, ζ̄u,iu〉L2(Uj∩N extu,i ,Rm) ≥ 0.

Then, since again by (iii), |∇ζ̄u,i(x)| ≤ 1 for x ∈ Uj ∩ N ext
u,i , using (4.18) as

in (4.20) leads to

〈u, ζ̄u,iu〉Uj∩N extu,i
≥

m∑
ι=1

∫
Uj∩N extu,i

∇uι · ∇(ζ̄u,iuι) dx =

=
m∑
ι=1

∫
Uj∩N extu,i

ζ̄u,i|∇uι|2dx+

∫
Uj∩N extu,i

(∇uι · ∇ζ̄u,i)uιdx

≥ −‖|∇u|‖L2(Uj∩N extu,i )‖u‖L2(Uj∩N extu,i ,Rm)

≥ −‖u‖2
Uj∩N extu,i

≥ −1
2
ε0.
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Combining the two above inequalities yields

(4.30) 〈u, ζ̄u,iu〉Uj ≥ ‖u‖2
Uj∩Bl̄u,i (Ui)

− 1
2
ε0.

To complete the lower bound for J ′j(u)ζ̄u,iu, an estimate is needed for∫
Uj∩(Bl̄u,i

(Ui)∪N extu,i )

Fu(x, u)ζ̄u,iu dx =

∫
Uj∩Bl̄u,i+1(Ui)

Fu(x, u)ζ̄u,iu dx

For this purpose, observe first that due to (4.17),

(4.31) ‖u‖Uj∩BL0
(Ui) ≤ 5r < ρ̄.

Thus since l̄u,i + 1 ≤ L0, as for (4.23), for any v ∈ E,

(4.32)

∫
Uj∩Bl̄u,i+1(Ui)

∣∣Fu(x, u)v
∣∣ dx ≤ 1

2
‖u‖Uj∩Bl̄u,i+1(Ui)‖v‖Uj∩Bl̄u,i+1(Ui).

Then by (4.18) and (4.32),∫
Uj∩Bl̄u,i+1(Ui)

∣∣Fu(x, u)ζ̄u,iu
∣∣ dx ≤ ∫

Uj∩Bl̄u,i+1(Ui)

∣∣Fu(x, u)u
∣∣ dx(4.33)

≤ 1
2
‖u‖2

Uj∩Bl̄u,i (Ui)
+ 1

2
‖u‖2

Uj∩N extu,i
≤ 1

2
(‖u‖2

Uj∩Bl̄u,i (Ui)
+ 1

2
ε0).

By (4.30) and (4.33), if i 6= j ∈ {1, . . . ,M} are such that |||pi − pj||| ≤ 1, then

(4.34) J ′j(u)ζ̄u,iu = 〈u, ζ̄u,iu〉Uj −
∫
Uj
Fu(x, u)ζ̄u,iu dx ≥ 1

2
‖u‖2

Uj∩Bl̄u,i (Ui)
− ε0.

Thus the proof of 3o and Proposition 4.19 is complete.

To investigate the properties of J ′(u) further and in particular to pre-
pare for the verification of 2o of Proposition 4.1, use will be made of (A) of
Proposition 3.1. For each u ∈ B(4r, ξ,K), consider the set of indices

I1(u) = {j ∈ {1, . . . ,M} | either

1 ≤ j ≤ k, 4r > ‖u− fξj(K)‖Uj ≥ 3r and |Jj(u)− c̄| ≤ 3
2
λ(r) or

k + 1 ≤ j ≤M and 4r > ‖u‖Uj ≥ 3r.}
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If j ∈ I1(u), either

(a) ‖u‖Uj∩Au ≥ 1
2

min{r, λ(r)1/2} or (b) ‖u‖Uj∩Au < 1
2

min{r, λ(r)1/2}.

For σ ∈ {a, b} let

I(σ)
1 (u) = {j ∈ I1(u) | case (σ) occurs }.

Note that by construction Uj∩Au = Uj for any j ∈ {k+1, . . . ,M}. Hence, if
j ≥ k + 1 and j ∈ I1(u), then ‖u‖Uj∩Au = ‖u‖Uj ≥ 3r. Thus case (a) always
occurs when j ∈ {k + 1, . . . ,M} ∩ I1(u). Consequently

(4.35) I(b)
1 (u) ⊂ {1, . . . , k} ∩ I1(u).

Note now that due to the choice of µ1,ε0 <
1

100
min{r2, λ(r)}. Therefore if

j ∈ I(a)
1 (u), by 1o and 2o of Proposition 4.19,

(4.36) J ′j(u)ζ̄u,ju >
1
10

min{r2, λ(r)} and J ′(u)ζ̄u,ju >
1
10

min{r2, λ(r)}.

When (b) holds, the next result provides more information about ζu,ju:

Proposition 4.37. If u ∈ B(4r, ξ,K) and j ∈ I(b)
1 (u), then

(4.38) ζu,ju ∈ B10r(fξj(K)) \Br(fξj(K)),

(4.39) |Jj(ζu,ju)− c̄| < 2λ(r),

and there exists a Z
(1)
u,j ∈ E with ‖Z(1)

u,j‖ ≤ 1 for which

(4.40) J ′(u)ζu,jZ
(1)
u,j = J ′j(u)ζu,jZ

(1)
u,j ≥

µr
2
.

Proof. First note that since j ∈ I(b)
1 (u), (4.35) shows 1 ≤ j ≤ k so ζu,j is

well defined. To verify (4.38), recall that supp ζu,j ⊂ Blu,j+1(ξj). Hence

‖ζu,ju− fξj(K)‖2 ≤ ‖ζu,ju− fξj(K)‖2
Blu,j+1(ξj)(4.41)

+ sup
v∈f

ξj
(K)

‖v‖2
Rn\Blu,j+1(ξj).
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The second term on the right hand side of (4.41) can be bounded via (4.10).
To estimate the first term on the right, observe that since ζu,j = 1 on Blu,j(ξj),

‖ζu,ju− fξj(K)‖2
Blu,j+1(ξj) = ‖u− fξj(K)‖2

Blu,j (ξj)(4.42)

+ ‖ζu,ju− fξj(K)‖2
N intu,j

.

The inequality

‖u− fξj(K)‖2
Blu,j (ξj) ≤ (4r)2 for u ∈ B(4r, ξ,K)

provides a bound for the first term on the right in (4.42) while for the second,
we have

(4.43) ‖ζu,ju− fξj(K)‖2
N intu,j
≤ 2‖ζu,ju‖2

N intu,j
+ 2 sup

v∈f
ξj

(K)

‖v‖2
N intu,j

.

The right hand side of (4.43) can be bounded via (4.15) and (4.10). Com-
bining these observations with the choice of ε0 gives

(4.44) ‖ζu,ju− fξj(K)‖2 ≤ (4r)2 + 10 ε0 < (10r)2.

Now to complete the proof of (4.38), it remains to show that if case (b)
occurs, then

‖ζu,ju− fξj(K))‖ > r.

To obtain this estimate, observe that by (b) and (4.10),

‖u− fξj(K)‖Uj∩Au ≤ ‖u‖Uj∩Au + sup
v∈f

ξj
(K)

‖v‖Ui∩Au ≤ 1
2
r + ε0.

Since j ∈ Ib1(u), as was noted above, 1 ≤ j ≤ k and also ‖u − fξj(K)‖2
Uj ≥

(3r)2. Hence by (4.9),

(4.45) ‖u− fξj(K)‖2
Uj\Au ≥ (3r)2 − (1

2
r + ε0)2 > 8r2.

Observing that

Uj \ Au = Blu,j+1(ξj) = Blu,j(ξj) ∪N int
u,j

and that ζu,j = 1 on Blu,j(ξj), we have

‖(1− ζu,j)u‖Uj\Au = ‖(1− ζu,j)u‖N intu,j
≤
√

3‖u‖N intu,j
.
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Thus by (4.45), (4.15) and (4.9),

‖ζu,ju− fξj(K)‖ ≥ ‖ζu,ju− fξj(K)‖Uj\Au
≥ ‖u− fξj(K)‖Uj\Au − ‖(1− ζu,j)u‖Uj\Au
≥ ‖u− fξj(K)‖Uj\Au −

√
3‖u‖N intu,j

> r

and (4.38) follows.
To verify (4.39), note that since j ∈ I1(u)∩{1, . . . , k}, |Jj(u)−c̄| ≤ 3

2
λ(r).

Hence it suffices to show that |Jj(u) − J(ζu,ju)| < 1
2
λ(r). Recalling that

supp ζu,j ⊂ Uj \ Au and ζu,j(x) = 1 on Uj \ (Au ∪N int
u,j ) leads to

|Jj(u)− J(ζu,ju)| ≤ |1
2
‖u‖2

Uj −
1
2
‖ζu,ju‖2|+

∫
Uj
|F (x, ζu,ju)− F (x, u)| dx

≤ 1
2
‖u‖2

Uj∩Au + 1
2
‖u‖2

N intu,j
+ 1

2
‖ζu,ju‖2

N intu,j
+

+

∫
N intu,j

F (x, ζu,ju) + F (x, u) dx+

∫
Uj∩Au

F (x, u) dx.

We will estimate each of the terms on the right hand side of this inequality.
Observe that

1o ‖u‖Uj∩Au ≤ 1
2

min{r, λ(r)1/2} < ρ̄ via (b) and (3.4);

2o ‖ζu,ju‖2
N intu,j
≤ 3‖u‖2

N intu,j
≤ 3ε0/2 by (4.15);

3o
∫
N intu,j

F (x, u) dx ≤ 1
16
λ(r) by applying (4.24) with Uj ∩ Au replaced by

N int
u,j ;

4o
∫
N intu,j

F (x, ζu,ju) dx ≤ 1
16
λ(r) as in item 3o;

5o
∫
Uj∩Au F (x, u) dx ≤ 1

4
‖u‖2

Uj∩Au ≤
1
16
λ(r) by (4.24) and 1o.

To obtain the estimate for
∫
N intu,j

F (x, ζu,ju) dx, the fact that ‖ζu,ju‖N intu,j
≤ ρ̄

was used. Combining these estimates and using (4.9) yields

|Jj(u)− J(ζu,ju)| ≤ 5
16
λ(r) + 2ε0 <

1
2
λ(r)

and (4.39) is proved.
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Now that (4.38) - (4.39) hold, property (A) in Proposition 3.1 can be

invoked giving a Z
(1)
u,j ∈ E with ‖Z(1)

u,j‖ ≤ 1 such that J ′(ζu,ju)Z
(1)
u,j ≥ µr.

Thus (4.40) follows once it is shown that

(4.46) |J ′(u)ζu,jZ
(1)
u,j − J ′(ζu,ju)Z

(1)
u,j | ≤ µr/2.

To verify (4.46), observe that

|J ′(u)ζu,jZ
(1)
u,j − J ′(ζu,ju)Z

(1)
u,j |

≤ |〈u, ζu,jZ(1)
u,j 〉 − 〈ζu,ju, Z

(1)
u,j 〉|+

∫
Rn
|Fu(x, ζu,ju)Z

(1)
u,j − Fu(x, u)ζu,jZ

(1)
u,j | dx

= |〈u, ζu,jZ(1)
u,j 〉N intu,j

− 〈ζu,ju, Z(1)
u,j 〉N intu,j

|+
∫
N intu,j

|Fu(x, ζu,ju)Z
(1)
u,j − Fu(x, u)ζu,jZ

(1)
u,j | dx

≤ 3
√

3‖u‖N intu,j
≤ 4
√
ε0

where item 2o as well as the analogies of items 4o−5o for Fu were used. Now
(4.46) follows via (4.9) and the definition of µ1 in (4.8).

Next, as the third step in the proof, we will prepare for the proof of 3o of
Proposition 4.1. This discussion parallels what was just done in preparation
for 2o. Let λ±, λ0 be as in (P1) and u ∈ B(4r, ξ,K). Consider the set of
indices

I2(u) = {j ∈ {1, . . . ,M} \ I1(u) | either

1 ≤ j ≤ k and Jj(u)− c̄ ∈ (λ− − 2λ0, λ− + 2λ0) ∪ (λ+ − 2λ0, λ+ + 2λ0) or

k + 1 ≤ j ≤M and Jj(u) ∈ [λ+ − 2λ0, λ+ + 2λ0]}.

For j ∈ I2(u), either

(a) ‖u‖Uj∩Au ≥ 1
2

min{r, λ1/2
0 } or (b) ‖u‖Uj∩Au < 1

2
min{r, λ1/2

0 }.

For σ ∈ {a, b}, let

I(σ)
2 (u) = {j ∈ I2(u) | case (σ) occurs}.

As in the previous case,

(4.47) I(b)
2 (u) ⊂ {1, . . . , k} ∩ I2(u).
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Indeed assume that j ∈ I2(u)∩{k+1, . . . ,M}. Since j ≥ k+1, Uj∩Au = Uj.
In addition, since j ∈ I2(u) ∩ {k + 1, . . . ,M}, by definition,

Jj(u) ≥ λ+ − 2λ0 >
1
8
λ0.

Since Jj(u) ≤ 1
2
‖u‖2

Uj , the above two observations give

‖u‖2
Uj∩Au = ‖u‖2

Uj ≥ 2Jj(u) > 1
4
λ0,

showing that case (a) always occurs when j ∈ I2(u) ∩ {k + 1, . . . ,M} and
(4.47) follows.

If j ∈ I(a)
2 (u), since ε0 <

1
100

min{r2, λ0}, by 1o and 2o of Proposition 4.19,

(4.48) J ′j(u)ζ̄u,ju >
1
10

min{r2, λ0} and J ′(u)ζ̄u,ju >
1
10

min{r2, λ0}.

When case (b) occurs, there is an analogue of Proposition 4.37:

Proposition 4.49. If u ∈ B(4r, ξ,K) and j ∈ I(b)
2 (u), then

(4.50) ζu,ju ∈ B10r(fξj(K)),

(4.51) Jj(ζu,ju)− c̄ ∈ (λ− − 4λ0, λ− + 4λ0) ∪ (λ+ − 4λ0, λ+ + 4λ0),

and there exists a Z
(2)
u,j ∈ E with ‖Z(2)

u,j‖ ≤ 1 such that

(4.52) J ′(u)ζu,jZ
(2)
u,j = J ′j(u)ζu,jZ

(2)
u,j ≥ ν

2
.

Proof. Since several arguments are the same as in the proof of Proposition
4.37, we will be brief. Note again that since j ∈ Ib2(u) by (4.47), 1 ≤ j ≤ k,
so ζu,j is well defined and

(4.53) Jj(u)− c̄ ∈ (λ− − 2λ0, λ− + 2λ0) ∪ (λ+ − 2λ0, λ+ + 2λ0).

As a consequence of (i) of (P1) in Section 3,

(4.54) (λ± − 2λ0, λ± + 2λ0) ⊂ (−3
2
λ(r), 3

2
λ(r)).

Combining (4.54) and (4.53) shows

(4.55) |Jj(u)− c̄| ≤ 3
2
λ(r).
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Now (4.55) and j ∈ I(b)(u) imply ‖u−fξj(K)‖Uj < 3r for otherwise j ∈ I1(u).
The estimates which led to (4.44) in the proof of Proposition 4.37 can be used
here to get (4.50) and will be omitted. Next to prove (4.51), it suffices to
show that

(4.56) |Jj(u)− J(ζu,ju)| ≤ 2λ0.

The verification of (4.56) follows the same lines of that of (4.39). Again we
have

|Jj(u)− J(ζu,ju)| ≤ 1
2
‖u‖2

Uj∩Au + 1
2
‖u‖2

N intu,j
+ 1

2
‖ζu,ju‖2

N intu,j
+

+

∫
N intu,j

F (x, ζu,ju) + F (x, u) dx+

∫
Uj∩Au

F (x, u) dx.

By (b), ‖u‖Uj∩Au ≤ 1
2

min{r, λ1/2
0 } < ρ̄ so item 1o in the proof of Proposition

4.37 holds. Analogues of the remaining items follow in a similar fashion and
(4.56) obtains. Now to verify (4.52), by (4.50), (4.51) and property (P1),

whenever u ∈ B(4r, ξ,K) and j ∈ I(b)
2 (u), there exists a Z

(2)
u,j ∈ E with

‖Z(2)
u,j‖ ≤ 1 and J ′(ζu,ju)Z

(2)
u,j ≥ ν. The corresponding part of the proof of

Proposition 4.37 then gives (4.52).

Lastly to prepare for 4o of Proposition 4.1, recall that for this setting,
B(4r, ξ,K) does not contain critical points of J . This leads to:

Proposition 4.57. If u ∈ B(4r, ξ,K) and I1(u) = I2(u) = ∅, then there

exists a constant, µ̄ξ > 0 and a Z
(3)
u ∈ E with ‖Z(3)

u ‖ ≤ 1 for which

J ′(u)Z
(3)
u ≥ µ̄ξ.

Proof: The proof relies on a more quantitative version of Proposition 2.10.
Indeed set

R = 6L(max
q∈Rξ
|||q|||+ 3).

Below it will be proved that for any u ∈ B(4r, ξ,K), we have

(4.58) ‖u‖Tp < 2ρ̄ for any p ∈ Zn such that |||p||| ≥ R.

Then via (4.58), Proposition 2.10 can be invoked yielding
(4.59)

there exists a µ̄ξ > 0 such that ‖J ′(u)‖ ≥ 2µ̄ξ for any v ∈ B(4r, ξ,K)
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from which the existence of a Z
(3)
u as in Proposition 4.57 follows.

To verify (4.58), let p ∈ Zn be such that

(4.60) |||p||| ≥ R = 6L(max
q∈Rξ
|||q|||+ 3).

Property (4.60) implies that

(4.61) if Tp ∩ Uj 6= ∅, then j ∈ {k + 1, . . . ,M}.

To prove (4.61), arguing indirectly, suppose that Tp ∩ Uj 6= ∅ for some j ∈
{1, . . . , k}. By definition, Uj = Qp(ξj)(L) ∪ (ξj + [−L,L]n) with p(ξj) ∈
int(Rξ) and Qp(ξj)(L) = 6Lp(ξj) + [1

2
−3L, 1

2
+ 3L]n. Therefore the condition

Tp ∩ Uj 6= ∅ implies
|||p− 6Lp(ξj)||| ≤ 4L+ 2.

Combining this inequality with (4.60) shows

|||p(ξj)||| ≥ 1
6L |||p||| −

4L+2
6L ≥

1
6LR− 1 ≥ max

q∈Rξ
|||q|||+ 2

which contradicts that p(ξj) ∈ int(Rξ).
Due to (4.61), Tp intersects at most 3n different sets Uj with j ∈ {k +

1, . . . ,M}, i.e. there is a set of i0 ≤ 3n indices j1 < . . . < ji0 ∈ {k+1, . . . ,M}
such that Tp ⊂ ∪i0i=1Uji . Since ‖u‖Uj ≤ 4r for k + 1 ≤ j ≤ M and by (3.4),
4r < ρ̄/3n,

‖u‖Tp ≤
ι0∑
i=1

‖u‖Uji ≤ 3n · 4r < ρ̄

and (4.58) follows.

Having obtained (4.58), an indirect argument will be employed to get
(4.59). Assume that there exists a sequence (vi) ⊂ B(4r, ξ,K) such that
J ′(vi) → 0 as i → ∞. Using (4.58), Proposition 2.10 can be applied and
there is a U ∈ B(4r, ξ,K) with vi → U as i → ∞ and J ′(U) = 0. But this
contradicts our assumption that there are no critical points of J in B(4r, ξ,K)
and (4.59) and Proposition 4.57 follow.

Remark 4.62. Proposition 4.57 defines Z
(3)
u for u ∈ B(4r, ξ,K) when I1(u) =

I2(u) = ∅. For the sequel, we extend the definition of Z
(3)
u to the rest of

B(4r, ξ,K) by setting Z
(3)
u = 0 when u ∈ B(4r, ξ,K) and I1(u) 6= ∅ or I2(u) 6=

∅.
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Now using the above preliminaries, for each u ∈ B(4r, ξ,K), a vector
Vu satisfying properties 1o–4o of Proposition 4.1 can be constructed. More
precisely, for u ∈ B(4r, ξ,K), define

(4.63) Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

ζ̄u,iu+ 1
4

∑
i∈I(b)

1 (u)

ζu,iZ
(1)
u,i + 1

4

∑
i∈I(b)

2 (u)

ζu,iZ
(2)
u,i +Z(3)

u

where Z
(1)
u,i is given by Proposition 4.37, Z

(2)
u,i by Proposition 4.49 and Z

(3)
u by

Proposition 4.57 and Remark 4.62.

To see that Vu satisfies 1o − 4o requires case analyses. For 1o, i.e.

(4.64) ‖Vu‖Uj ≤ 1 for any j = 1, . . . ,M,

suppose first that I1(u) = I2(u) = ∅. Then Vu = Z
(3)
u and, by Proposition

4.57, ‖Z(3)
u ‖ ≤ 1. Next assume that I1(u) 6= ∅ or I2(u) 6= ∅ and let j ∈

{1, . . . ,M}. Then by its definition, Z
(3)
u = 0 and since supp ζu,i ⊂ Ui,

(4.65) ‖Vu‖Uj ≤ 1
2
‖

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

ζ̄u,iu‖Uj + 1
4

∑
i∈I(b)

1 (u)

δi,j‖ζu,iZ(1)
u,i ‖Uj

+1
4

∑
i∈I(b)

2 (u)

δi,j‖ζu,iZ(2)
u,i ‖Uj

where δi,j = 1 if i = j and δi,j = 0 if i 6= j.
To estimate the first term on the right in (4.65), note that supp ζ̄u,i ⊂

BL0(Ui). Hence by (iv) of Lemma 3.10, there exist at most ι0 ≤ 3n indices,

i1, . . . , iι0 ∈ I
(a)
1 (u) ∪ I(a)

2 (u), such that supp ζ̄u,iι ∩ Uj 6= ∅. For any such
index iι, using (4.31), (4.18), (3.4), (4.8) and (4.9) leads to

‖ζ̄u,iιu‖Uj ≤ ‖u‖Uj∩Bl̄u,iι (Uiι ) + ‖ζ̄u,iιu‖Uj∩N extu,iι
≤ 5r +

√
3/2 ε

1/2
0 < ρ̄/3n.

Therefore

(4.66) ‖
∑

i∈I(a)
1 (u)∪I(a)

2 (u)

ζ̄u,iu‖Uj = ‖
ι0∑
ι=1

ζ̄u,iιu‖Uj ≤
ι0∑
ι=1

ρ̄/3n < ρ̄ < 1/2.

To handle the remaining two terms in the right hand side of (4.65), observe
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that, if j ∈ I(b)
1 (u) and Z = Z

(1)
u,j or j ∈ I(b)

2 (u) and Z = Z
(2)
u,j , then, by

Propositions 4.37 and 4.49,

(4.67) ‖ζu,jZ‖Uj ≤
√

3‖Z‖Uj ≤
√

3.

By definition I1(u) ∩ I2(u) = ∅, so that by (4.67),

(4.68) 1
4

∑
i∈I(b)

1 (u)

δi,j‖ζu,iZ(1)
u,i ‖Uj + 1

4

∑
i∈I(b)

2 (u)

δi,j‖ζu,iZ(2)
u,i ‖Uj ≤

√
3

4
.

Then, using (4.66) and (4.68) in (4.65) gives

‖Vu‖Uj ≤ 1
4

+
√

3
4
< 1.

Since j is arbitrary in {1, . . . ,M}, (4.64) follows for this case also and 1o has
been established.

Before going on to the proofs of 2o-4o, observe that by Proposition 4.19,

J ′j(u)ζ̄u,iu ≥ −ε0 for i, j ∈ {1, . . . ,M} such that |||pi − pj||| ≤ 1,

and

J ′j(u)ζ̄u,iu = 0 for i, j ∈ {1, . . . ,M} such that |||pi − pj||| ≥ 2.

In particular, for any j ∈ {1, . . . ,M}, by (iv) of Lemma 3.10,

#{i ∈ {1, . . . ,M} | |||pi − pj||| ≤ 1} ≤ 3n.

Therefore for any I ⊂ I(a)
1 (u) ∪ I(a)(u) and any j ∈ {1, . . .M}, this leads to

the lower bound

(4.69) J ′j(u)(
∑
i∈I

ζ̄u,iu) ≥ −
∑

{i∈I | |||pi−pj |||≤1}

ε0 ≥ −3nε0.

Now 2o can be proved. The first part of 2o requires us to show that if
j0 ∈ {1, . . . , k} is such that

3r < ‖u− fξj0 (K)‖Uj0 < 4r and |Jj0(u)− c̄| ≤ 3
2
λ(r),
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then J ′j0(u)Vu ≥ 2µ1. By definition, j0 ∈ I1(u) so j0 /∈ I2(u) and Z3
u = 0. In

particular it follows that

(4.70) J ′j0(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′j0(u)ζ̄u,iu+ 1
4

∑
j∈I(b)

1 (u)

δj,j0J
′
j0

(u)ζu,jZ
(1)
u,j .

There are two subcases to consider: either

(c) j0 ∈ I(a)
1 (u) or (d) j0 ∈ I(b)

1 (u).

If (c) occurs, j0 ∈ I(a)
1 (u) and then δj,j0 = 0 for any j ∈ I(b)

1 (u). Thus by
(4.70),

(4.71) J ′j0(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′j0(u)ζ̄u,iu.

Observe now that by (4.36), J ′j0(u)ζ̄u,j0u ≥ 1
10

min{r2, λ(r)}. Hence by (4.9),
(4.71) and (4.69),

J ′j0(u)Vu = 1
2
J ′j0(u)ζ̄u,j0u+ 1

2
J ′j0(u)(

∑
i 6=j0,i∈I(a)

1 (u)∪I(a)
2 (u)

ζ̄u,iu)(4.72)

> 1
20

min{r2, λ(r)} − 1
2
3nε0 > 2µ1.

Consider now subcase (d) where j0 ∈ I(b)
1 (u). Hence by (4.70),

(4.73) J ′j0(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′j0(u)ζ̄u,iu+ 1
4
J ′j0(u)ζu,j0Z

(1)
u,j0

.

By Proposition 4.37, J ′j0(u)ζu,j0Z
(1)
u,j0
≥ µr/2. Thus the use of (4.9), (4.73)

and (4.69) shows

J ′j0(u)Vu = 1
2
J ′j0(u)(

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

ζ̄u,iu) + 1
4
J ′j0(u)ζu,j0Z

(1)
u,j0

(4.74)

≥ −1
2
3nε0 + 1

8
µr > 2µ1.

Combining (4.74) and (4.72) shows J ′j0(u)Vu ≥ 2µ1 and the first part of 2o

follows.
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For the second part of 2o, it must be shown that if j1 ∈ {k + 1, . . . ,M}
is such that 3r ≤ ‖u‖Uj0 < 4r, then J ′j1(u)Vu ≥ 2µ1. Even in this case

j1 ∈ I1(u) so that j1 /∈ I2(u), Z3
u = 0 and

(4.75) J ′j1(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′j1(u)ζ̄u,iu+ 1
4

∑
j∈I(b)

1 (u)

δj,j1J
′
j1

(u)ζu,jZ
(1)
u,j .

Since j1 ≥ k+1, by (4.35), j1 ∈ I(a)
1 (u). Therefore δj,j1 = 0 for any j ∈ I(b)

1 (u)
and by (4.36), J ′j1(u)ζ̄u,j1u ≥ 1

10
min{r2, λ(r)}. Thus using (4.9), (4.75) and

(4.69) shows,

J ′j1(u)Vu = 1
2
J ′j1(u)ζ̄u,j1u+ 1

2
J ′j1(u)(

∑
i 6=j1,i∈I(a)

1 (u)∪I(a)
2 (u)

ζ̄u,iu)(4.76)

> 1
20

min{r2, λ(r)} − 1
2
3nε1 > 2µ1.

This gives the second part of 2o.

The proof of 3o involves similar arguments. Suppose that u ∈ B(4r, ξ,K).
The first part of (3o) states that if

Jj0(u)− c̄ ∈ (λ− − 2λ0, λ− + 2λ0) ∪ (λ+ − 2λ0, λ+ + 2λ0)

for some j0 ∈ {1, . . . , k}, then J ′j0(u)Vu ≥ 2µ2. In this case j0 ∈ I1(u)∪I2(u).
Then Z3

u = 0 and

J ′j0(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′j0(u)ζ̄u,iu+ 1
4

∑
j∈I(b)

1 (u)

δj,j0J
′
j0

(u)ζu,jZ
(1)
u,j(4.77)

+ 1
4

∑
j∈I(b)

2 (u)

δj,j0J
′
j0

(u)ζu,jZ
(2)
u,j .

If j0 ∈ I1(u), then δj,j0 = 0 for any j ∈ I(b)
2 (u) and (4.77) reduces to (4.70).

The argument used for 2o then applies unchanged to show

(4.78) J ′j0(u)Vu > 2µ1.

If j0 ∈ I2(u), then δj,j0 = 0 for any j ∈ I(b)
1 (u) and

(4.79) J ′j0(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′j0(u)ζ̄u,iu+ 1
4

∑
j∈I(b)

2 (u)

δj,j0J
′
j0

(u)ζu,jZ
(2)
u,j .
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Again two subcases must be considered:

(e) j0 ∈ I(a)
2 (u) or (f) j0 ∈ I(b)

2 (u).

If (e) occurs, j0 ∈ I(a)
2 (u) and δj,j0 = 0 for any j ∈ I(b)

2 (u). Moreover, by
(4.48), J ′j0(u)ζ̄u,j0u >

1
10

min{r2, λ0} so using (4.9), (4.79) and (4.69) leads
to

J ′j0(u)Vu = 1
2
J ′j0(u)ζ̄u,j0u+ 1

2
J ′j0(u)(

∑
i∈I(a)

1 (u)∪I(a)
2 (u)\{j0}

ζ̄u,iu)(4.80)

≥ 1
20

min{r2, λ0} − 1
2
3nε0 > 2µ̄2.

If (f) occurs, j0 ∈ I(b)
2 (u), so by Proposition 4.52, J ′j0(u)ζu,j0Z

(2)
u,j0
≥ ν/2 and

the use of (4.9), (4.79) and (4.69) gives

J ′j0(u)Vu = 1
2
J ′j0(u)(

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

ζ̄u,iu) + 1
4
J ′j0(u)ζu,j0Z

(1)
u,j0

(4.81)

≥ −1
2
3nε0 + 1

8
ν > 2µ̄2.

Combining (4.78), (4.80) and (4.81) yields the first part of 3o with µ2 =
min{µ1, µ̄2}.

To complete the proof of 3o, assume that j1 ∈ {k+1, . . . ,M} is such that
λ+ − 2λ0 ≤ Jj1(u) ≤ λ+ + 2λ0. To be shown is that J ′j1(u)Vu ≥ 2µ2. Again
if j1 ∈ I1(u), the same argument used to obtain 2o proves

(4.82) J ′j1(u)Vu > 2µ1.

If j1 ∈ I2(u), then Z3
u = 0 and since j1 ≥ k + 1, (4.47) implies j1 ∈ I(a)

2 (u).
Hence by (4.48), J ′j1(u)ζ̄u,j1u ≥ 1

10
min{r2, λ(r)} and as for (4.80),

(4.83) J ′j1(u)Vu > 1
20

min{r2, λ(r)} − 1
2
3nε0 > 2µ2.

The second part of (3o) follows from (4.82) and (4.83) with µ2 = min{µ1, µ̄2}.

Lastly (4o) will be proved. To do so, note first that by (4.8), (4.9), (4.36)
and (4.48),

(4.84) J ′(u)ζ̄u,ju > 4µ1 if j ∈ I(a)
1 and J ′(u)ζ̄u,ju > 4µ2 if j ∈ I(a)

2
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Moreover, since supp(ζu,j) ⊂ Uj for any j ∈ Ib1 ∪ I
(b)
2 , by (4.8), (4.9) and

Propositions 4.37 and 4.49 we have,

J ′(u)ζu,jZ
(1)
j = J ′j(u)ζu,jZ

(1)
j > 8µ1 if j ∈ I(b)

1 and(4.85)

J ′(u)ζu,jZ
(2)
j = J ′j(u)ζu,jZ

(2)
j > 8µ2 if j ∈ I(b)

2 .(4.86)

Hence (4.63), (4.84), (4.85), (4.86) imply that if I1(u) ∪ I2(u) 6= ∅, for the

case in which Z
(3)
u = 0 we have

J ′(u)Vu = 1
2

∑
i∈I(a)

1 (u)∪I(a)
2 (u)

J ′(u)ζ̄u,iu+ 1
4

∑
i∈I(b)

1 (u)

J ′(u)ζu,iZ
(1)
u,i(4.87)

+ 1
4

∑
i∈I(b)

2 (u)

J ′(u)ζu,iZ
(2)
u,i ≥ min{2µ1, 2µ2}.

If I1(u) = ∅ and I2(u) = ∅, then Vu = Z
(3)
u and for this case, Proposition

4.57 gives

(4.88) J ′(u)Vu = J ′(u)Z(0)
u ≥ 2µ̄ξ.

Combining (4.87) and (4.88), (4o) follows with µξ = min{µ̄ξ, µ1, µ2} and
Proposition 4.1 is proved.
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[31] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian
systems, Math. Z. , 209, 27–42, (1992).
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Non Linéaire, 10, 561-590, (1993).

[33] G. S. Spradlin, Multibump solutions to a class of semilinear partial
differential equations, University of Wisconsin thesis, 138 pages,(1995).

71


