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Abstract

Recently, there has been a significant increase in the utilization of digital audio-
video communication systems, even more due to the altered lifestyle imposed
by the recent pandemic, which necessitated minimizing interpersonal interac-
tions. The potential of remote communication has thus been unveiled, opening
up futuristic scenarios that go beyond simple audio or video interactions but
look toward immersive and interactive experiences. Despite the significant ad-
vancements in networking technologies, real-time transmissions continue to face
challenges due to the possibility of data loss. Especially in voice communica-
tions, this loss not only compromises sound quality but also reduces overall
intelligibility. Notably, machine learning and deep neural networks are revolu-
tionizing ever more daily activities, among them, speech enhancement showed
remarkable results in improving the speech signals affected by imperfections.

The objective of this thesis is twofold: first, to provide a novel perspective
for the analysis of audio signals used in deep neural networks, and second, to
develop methodologies, based on generative neural networks, for the restora-
tion of transmission errors, potentially occurring in packet-switched networks.
In the first study, we propose a novel way to model an audio signal by deriving
a graph representation from its spectrogram, and exploiting graph neural net-
work (GNN) learning models for the task of sound event classification (SEC).
We then used a graph structure to exploit label co-occurrence information
and improve the performance of a standard audio feature-based classifier, in a
weakly labeled SEC task.

With regard to the restoration of signals that suffer packet losses, we speak
of “concealment” of loss meaning that the approach used at the receiving end is
to provide a reconstruction that makes the listener unaware of the loss event,
thus eliminating listening fatigue. Inspired by the latest proposed solutions
for packet loss concealment (PLC), we present several approaches based on
generative neural networks, for loss mitigation. Each of these approaches aim
at improving with respect to the most critical issues of the problem under
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consideration, namely the maximum width of addressable lost gaps, and the
computational complexity, which may affect the ability to operate in real-time
scenarios. Evaluations conducted with simulated losses and traces observed on
real VoIP calls, showed state-of-the-art capabilities in modeling either speech
and music signals.

Finally, GNNs were applied in a different context, to solve a well-known com-
binatorial optimization problem, the Linear Sum Assignment Problem (LSAP),
with the goal of providing a learnable and differentiable framework, potentially
useful in tasks where such assignment problems occur.
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Chapter 1

Introduction

In the realm of artificial intelligence, the field of deep learning has emerged
as a transformative force, revolutionizing various domains by leveraging com-
plex neural networks to extract intricate patterns from vast sets of collected
data. Among its manifold applications, speech enhancement and restoration
stand out as vital components, essential for improving communication systems
and auditory experiences. The increasing prevalence of digital communication
platforms, coupled with the omnipresence of background noise and network im-
perfections, has underscored the need for sophisticated techniques to enhance
the quality of transmitted speech signals.

1.1 Motivation and objectives

The motivation behind this research lies in addressing the challenges posed by
the efficient representation of the audio signal, whether it contains voices, music
or artificial sounds, in order to extract the salient features of the contained event
and fully exploit them with computational methods, based on machine learning
and deep neural networks. Second, to address the problem posed by packet
losses and deteriorated audio quality in communication systems. Packet loss,
a common issue in networked environments, can result in information loss and
degrade the quality of transmitted audio signals. Additionally, audio inpainting
techniques are essential for reconstructing missing or corrupted portions of
signals. This study aims to delve into the field of generative deep learning,
exploring innovative solutions for speech enhancement, with a specific focus on
packet loss concealment and audio inpainting. Nonetheless, some interesting
research work will be presented on the use of graph-structured data, both for
the analysis of acoustic features and for the semantic characterisation of a

1



Chapter 1 Introduction

weakly labeled dataset in a sound event recognition context.
The primary objective of this research is to develop advanced deep learn-

ing models capable of mitigating the impact of packet loss on speech signals
transmission, potentially present in faulty networks, and explore novel au-
dio inpainting techniques for restoring degraded speech segments. Through
a comprehensive investigation, this study seeks to contribute significantly to
the refinement of communication systems, fostering clearer and more intelligible
speech transmission in the presence of network irregularities. The investigation
encompasses a spectrum of challenges, including understanding the dynamics
of packet loss in communication networks, devising effective evaluation criteria,
and exploring innovative concealment and inpainting methodologies.

1.2 Organization of the thesis

This thesis is organized into distinct chapters, each dedicated to a specific facet
of the research.

Chapter 2 aims to provide the reader who already has a solid understanding
of artificial neural networks, with founding concepts of the topics that will be
applied in the research papers presented next, and in particular the techniques
of data representation and extraction of information from audio signals, tipy-
cally used with neural networks, the tasks of sound event classification and
sound event detection, the topic of graph neural networks and methods for
learning on graph-structured data, and the generative neural networks, used to
produce new data by approximating probability distributions.

Chapter 3 opens with a study of existing works using graph neural networks
for audio processing tasks, and continues with a literature review on the topic
of multi-label classification in various fields of application. Two research works
are then presented, the first on the development of an innovative methodology
for the representation of audio information extracted from audio spectrogram,
in graph form, and its subsequent use for a sound event classification task.
The second paper deals with the evaluation of different techniques for node
embedding within a hybrid framework for multi-label sound event classification,
which uses a graph structure to model the relationships between the various
classes of events, potentially present within a recording.

Chapter 4 introduces the packet loss concealment problem and illustrates the
techniques that have been adopted in the literature for its solution, categoriz-
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1.2 Organization of the thesis

ing them into algorithmic and DNN-based approaches. It also illustrates the
concept of audio inpainting used in the subsequent works, through generative
adversarial networks for the generation of the corrupted context in the time-
frequency domain. The work presented in subchapter 4.2 deals with the repair
of corrupted recordings on signals containing speech, while the one presented
in section 4.3, deals with the repair of signals containing musical sequences.
This latter further exploits the symbolic representation given by the sequence
of notes, in order to enhance the reconstruction capability. The last work
presented in subsection 4.4 also discusses the spectrogram inpainting problem,
emphasizing the latency and computational efficiency requirements that are of-
ten crucial for PLC systems. In order to optimize these aspects, it uses a neural
network fed with complex-valued spectrograms, thereby optimally reconstruct-
ing the phase of the speech signal and reducing the computational demand. In
addition, it introduces an adaptive mode for the inference process that allows
the user for a trade-off between reconstruction quality and admissible latency
time.

Finally, Chapter 5 presents a contribution arising from the study of graph
neural networks for solving a well-known combinatorial optimization problem,
the linear sum assignment problem, along with a potential application in the
context of power smart grids.

Conclusions are then presented and possible future directions of the research
work are outlined.
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Chapter 2

Background

2.1 Audio representation for Deep Learning

In the field of academic research, a variety of audio representations have proven
their effectiveness in applications related to audio analysis and synthesis. Com-
parisons of different sound forms have often been made to investigate the opti-
mal representation for a given deep learning architecture. Initial experiments
often involve the exploration of raw representations either in time domain or
in time-frequency domain. However, contemporary studies have delved into
more advanced forms, including statistical descriptors, as well as embeddings
extracted from state-of-the-art DNN and vocoders, with the goal of providing
richer and more meaningful descriptions.

Raw waveform

In engineering contexts, the term raw audio generally refers to a waveform
encoded through pulse code modulation (PCM). This involves sampling the
local pressure deviation from the ambient atmospheric pressure, which is con-
tinuous in both time and amplitude, presenting the waveform as a sequence of
numbers (see fig. 2.1). Each number indicates an amplitude level at a given
sampling instant. In order to capture all the essential information, the high-
est frequency of the signal must conform to the Nyquist-Shannon theorem,
according to which, only frequencies less than half the sampling rate can be
accurately reproduced from the sampled signal. The most common sample rate
values for audio applications are 16 kHz, 22.050 kHz, 44.1 kHz 48 kHz and, less
frequently, 96 kHz. In this context, each real number is mapped to an approx-
imate fixed value within a finite set of discrete numbers; optionally a µ-law
non linear companding can be used to reduce the quantization range of the
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raw audio. The prevailing quantization levels are 256, 65536 and 16.8 million,
encoded with 8, 16 and 24 bits, respectively. This representation is considered
highly informative, requiring low computational impact for direct use in deep
learning networks.

a b 

d c 

n t 

t n 

Figure 2.1: Analog waveform (a) going through the processes of time sampling
(b), amplitude quantization (c), and both (d).

Spectrograms

Spectrogram is the typical bi-dimensional representation of sound in the joint
time-frequency (T-F) domain. It is generated through the Short Time Fourier
Transform (STFT), in which the Fourier Transform is applied to overlapping
segments of the waveform (eq. 2.1),

STFT [f, t] =
L−1∑︂
n=0

s[n] · w[t]e−j2πfn (2.1)

where n = 0, 1, ..., L − 1 denotes the segment index, while w[t] is a tapered
window function, like the Hanning function, which reduces spectral leakage
and improves the resolution in time.

Although the STFT operation produces a complex-valued spectrogram, most
work adopting this representation for audio tasks neglects the information from
the signal phase while retaining only the absolute values of STFT. In this way,
deep learning architectures can be directly applied and easily borrowed from the
field of image processing, due to their ability to process two-dimensional input,
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2.1 Audio representation for Deep Learning

however, a growing body of work has demonstrated the obvious advantage of
including the phase in spectrogram processing as well.

Mel and log-Mel spectrograms

Another common representation of audio signals in T-F domain is the mel-
spectrogram. Its introduction stems from psychoacoustic studies according
to which the human ear perceives differences between lower frequencies more
easily than higher frequencies. Therefore, the mel transformation is based
on the principle that equal distances on the scale have the same perceptual
distance. The feature computation involves the STFT calculation and the
subsequent flow through a triangular filterbank (fig. 2.2) that simulates the
overall frequency selectivity of the human auditory system, expressed by the
frequency warping of eq. 2.2:

Mel(f) = 2595 log10

(︃
1 + f

700

)︃
(2.2)

 frequency (mel) 

frequency (Hz) 

w
ei

gh
t 

Figure 2.2: Mel filterbanks basis function including 6 bands.

Frequently, to enhance the performance of DNN architectures, logarithmic
scaling is applied hence obtaining the log-Mel spectrogram.

CQT spectrograms

The CQT spectrogram is a time-frequency representation that offers a more
perceptually relevant frequency resolution than standard STFT, by using log-
arithmically spaced frequency bins. This makes it well-suited for tasks that
involve the analysis of audio signals with diverse and varying tonal content,
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mainly musical audio signals, but several works use CQT even on speech appli-
cations. The discrete CQT operation can be compactly expressed as follows:

CQT {x[n]} (fk) = 1
Nk

∑︂
n<Nk

x[n]wNk
[n]e−j2πn Q

Nk (2.3)

where:

Nk =
⌈︃

Q
fs

fk

⌉︃
(2.4)

is the width of the k-th basis function, while

Q = 2πfk

∆k
=

(︂
2 1

b − 1
)︂−1

(2.5)

is the Quality factor and wNk
[n] is the n-th windowing function. In the above

equations, fs denotes the signal sampling rate while b is the desired number of
bins per octave.

The CQT representation exhibits higher resolution for musical instruments
with lower registers, and higher time resolution at higher frequencies. Fur-
thermore, the frequency axis is equivariant to pitch translation: when altering
the pitch of a note, all harmonics in logarithmic scale experience a constant
shift, as they are approximately integer multiples of the fundamental frequency.
This helps convolutional architectures to share structural similarities between
different pitches.

Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients (MFCCs) provide a compact representation
of the spectral envelope of a sound signal, which are commonly used in speech
recognition systems (ASR). The calculation of the coefficients undergoes the
following steps:

1. Pre-emphasis: The audio signal is often pre-emphasized to amplify
high-frequency components. This is achieved by applying a first-order
high-pass filter.

2. Framing: The pre-emphasized signal is divided into short overlapping
frames. Each frame is typically around 20 to 30 milliseconds long, and
adjacent frames overlap by a certain amount (e.g., 50 %).
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3. Windowing: A window function (e.g., Hamming window) is applied to
each frame to reduce spectral leakage.

4. Fast Fourier Transform (FFT): The spectrum of each framed signal
is obtained by applying the FFT. This provides information about the
frequency content of each frame.

5. Mel Filtering: The spectrum is then passed through a bank of Mel
filters, such as those presented in the previous section.

6. Logarithm: The logarithm of the magnitude of the filter bank outputs
is taken. This helps in capturing the dynamic range of the audio signal.

7. Discrete Cosine Transform (DCT): The resulting mel-frequency cep-
stral coefficients are obtained by applying the DCT to the log-filter bank
energies. The DCT is used to decorrelate the coefficients and compactly
represent the information.

The number of coefficients considered in practical applications is typically be-
tween 10 and 20, since they embody the most significant features of the vocal
tract. The first few coefficients describe the coarse spectral shape, with the
very first coefficient representing the average power in the spectrum and the
second coefficient approximating the broad shape of the spectrum and related
to the spectral centroid. The higher-order coefficients represent finer spectral
details. A common method for extracting information about transitions be-
tween phonemes is to determine the first difference of MFCC features, known
as the delta (∆) of a feature, as well as the second difference, known as delta-
delta (∆2) (see fig. 2.3).

2.2 Sound Event Detection and Classification

Sound Event Classification (SEC) consists in the automatic recognition of dif-
ferent sound events within a given audio recording. Furthermore, the task of
discerning the temporal characteristics of each sound event, specifically the
onset and offset times, is known as Sound Event Detection (SED). These pro-
cesses, SEC and SED, finds a wide range of applications among different do-
mains, like autonomous driving, wearable devices, Human-Computer Interfaces
(HCI) for people with hearing impairments [3], home automation [4], surveil-
lance systems [5], hazardous environment monitoring or as a part of Acoustic
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MFCC 

MFCC- 

MFCC-2 
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time 

Figure 2.3: Example of MFCC, MFCC delta, and MFCC delta-delta of a speech
audio file.

Scene Recognition (ASR) [6]. For the SED task, datasets with strong labels
are necessary [7,8], encompassing annotations of active sound events along with
their corresponding onset and offset times. Conversely, the SEC task relies on
weakly labeled datasets, which solely provide annotations for the set of active
sound events within each recording [9–11]. In terms of complexity, annotating
strongly labeled datasets is more labor-intensive compared to weakly labeled
datasets.

Both SEC and SED problems were historically first addressed with classi-
cal machine learning algorithms like Gaussian Mixture Models (GMM) [12],
Support Vector Machines [13], Hidden Markov Models [14], using handcrafted
features, such as MFCC coefficients [15], Mel and log-Mel filterbank features,
gammatone coefficients [16] and wavelet features [17].

A significant growth in automatic recognition accuracy has been achieved
by using Deep Neural Network (DNN) based methods. Addressing the Sound
Event Classification (SEC) task has predominantly involved the utilization of
Convolutional Neural Network (CNN) architectures [9, 10, 18, 19]. In contrast,
the Sound Event Detection (SED) task, requiring the temporal localization of
sound events, has demonstrated consistently favorable outcomes through the
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adoption of a joint architecture involving CNNs and recurrent neural networks,
commonly known as Convolutional Recurrent Neural Network (CRNN) [20].
Notably, recent findings highlighted in [8] indicate that on extensive SED
datasets, the performance of CNN architectures is comparable to CRNN archi-
tectures, particularly when the detection is carried out at a one-second resolu-
tion.

Several approaches have emerged aiming to simultaneously acquire knowl-
edge in Sound Event Classification (SEC) and Sound Event Detection (SED)
using solely weakly labeled data [21–23]. In a previous study [21], various
well-established Convolutional Neural Network (CNN) architectures from the
realm of computer vision were employed for this purpose. However, these meth-
ods operated under the assumption that weak labels were consistently active
throughout the recording during training, a paradigm termed as Strong La-
bel Assumption Training (SLAT). This assumption has been demonstrated to
result in subpar SEC performance, as evidenced in [23]. An alternative ap-
proach was introduced by the authors in [24]. They proposed a method based
on Fully Convolutional Network (FCN), enabling learning from weakly labeled
datasets without presuming the continuous presence of weak labels throughout
the recording. This training strategy is subsequently denoted as Weak Label
Assumption Training (WLAT). Similar FCN-based WLAT approaches were
also suggested in [11,23,25]. However, these methods were solely evaluated on
smaller datasets, and their effectiveness on larger datasets remains uncertain.

2.3 Graph Neural Networks: an overview of
methods and applications

Graphs have recently become a powerful component for representing diverse
and intricate real-life data structures, encompassing social networks, traffic
networks, information systems, knowledge graphs, atoms and molecule interac-
tions, and physical system networks. As a versatile form of data organization,
graph structures inherently capture the hidden relationships within these en-
tities. Consequently, they can effectively depict a multitude of non-Euclidean
structures essential across various disciplines and domains due to their adapt-
able nature. For instance, in representing a social network as a graph, individ-
ual users are portrayed as nodes, and the connections between users, such as
friendships or work relationships, are represented as edges. In the biological
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context, proteins can be represented as nodes, and the interactions between
proteins, such as dynamic interactions, are depicted as edges.

By systematically analyzing and extracting insights from graph-structured
data, we gain a thorough understanding of the underlying significance within
the information.

Over the past decade, there has been substantial development in the creation
of machine learning algorithms tailored for learning from graph-structured
data. Within this spectrum, conventional graph kernel methods [26] typically
decompose graphs into distinct atomic substructures and subsequently employ
kernel functions to assess the similarity between all pairs of these substruc-
tures. While graph kernels offer insights into modeling graph topology, these
approaches often derive substructures or feature representations based on pre-
defined, handcrafted criteria. These rules tend to be heuristic, susceptible to
high computational complexity, consequently leading to weak scalability and
suboptimal performance.

Definitions

A graph is usually defined as a set of elements G = (V, E, Xn, Xe), where
V ∈

{︁
v1...v|V |

}︁
is the set of nodes and E is the set of edges. A directed edge

pointing from vi to vj is denoted by ei,j , while the neighborhood of a node
v is defined as N(v) = {u ∈ V |(v, u) ∈ E} which identifies all nodes directly
connected to v. The network connectivity is represented by the Adjacency
matrix A ∈ R|V |×|V |, whose elements Ai,j = 1 if ei,j ∈ E and Ai,j = 0 if
ei,j /∈ E. If the branch is weighted by the value wi,j ∈ R then Ai,j = wi,j .

A =

⎡⎢⎢⎣
A1,1 . . . A1,N

... . . . ...
AN,1 . . . AN,N

⎤⎥⎥⎦ (2.6)

In case of undirected graphs, A is symmetrical since for every connection
i→ j the opposite connection j → i also exists. In directed graphs, by contrast,
symmetry does not apply. The elements on the main diagonal represent the
connection of a node with itself, which is denoted as self loop.

The adjacency matrix may be computationally inconvenient when the graph
has many nodes and a low density of connections, a condition that occurs
in most real-world graphs; in this case the matrix while having considerable
size is “sparse”, that is, it has a very low density of nonzero elements. As an
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alternative to the matrix representation, the connections of a graph can be
described with a list of coordinates indicating only the connected nodes (COO
format, or Edge List).

The degree ki of node i in an undirected graph is defined as the number of
edges converging at node i. The average number of connections per node, k̄ is:

k̄ = 1
|V |

|V |∑︂
i=1

ki = 2|E|
|V |

(2.7)

The degree information of all nodes in the graph is contained in the degree
matrix D, whose elements Di,j = ki for i = j and Di,j = 0 otherwise. The
elementwise difference between entries of D and A defines the Laplacian Matrix
L = D−A, which is an effective way to describe the properties of a graph in
frequency domain, through so-called spectral analysis.

A graph may have C-dimensional node attributes, identified with Xn ∈
R|V |×C , as well as D-dimensional edge attributes Xe ∈ R|E|×D.

 

directed graph   undirected graph  weighted graph 

Figure 2.4: Different types of graphs and their corresponding adjacency matrix
representations.

GNN taxonomy

Graph neural networks can be broadly classified into four categories [27]: Con-
volutional Graph Neural Networks (ConvGNNs), Recurrent Graph Neural Net-
works (RecGNNs), Graph Autoencoders (GAEs), which deal with generative
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tasks, and Spatiotemporal Graph Neural Networks (STGNNs), which aim to
learn from time-varying structures. The first two categories will be described
in detail below as they are of interest to the work presented in the next chapter.

Convolutional Graph Neural Networks (ConvGNNs) arise from the at-
tempt to generalize the notion of convolution, widely popular in Convolutional
Networks (CNNs), by applying it to the graph domain. The reason CNNs are
extremely effective is that they operate on data inherently described on regular
domains, like images, which are in fact composed of the arrangement of pixels
on an ordered grid, for which concepts of “distance” and “closeness” between
two pixels can be easily defined.

Convolutional Graph Neural Networks can be classified into two macro-
categories based on the domain in which they operate: spectral-based and
spatial-based. The spectral-based approach defines convolution from the per-
spective of graph signal processing, in the Fourier domain; assuming an undi-
rected graph a complete representation of it is given by the Laplacian matrix:

L = D−A (2.8)

or in some cases from its normalized version:

L̃ = In −D− 1
2 AD− 1

2 (2.9)

L is real symmetrical semidefinite positive and can be factorized in the form:

L = UAU⊤ (2.10)

in which the matrix U is composed of the eigenvectors of L forming an or-
thonormal space: U⊤U = I.

Let X be the matrix of node attributes, whose rows are also called graph
signals, the spectral convolution of the graph with a kernel g can be defined by
resorting to the definitions of Fourier transform (eq. 2.11) and the convolution
property (eq. 2.12):

F(X) = U⊤X (2.11)

X ∗ g = F−1 (F(X) · F(g)) = U
(︁
U⊤X ·U⊤g

)︁
(2.12)

The spectral method has some limitations, first, the learned information is
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strongly related to the topology of the structure and cannot be transposed
to different graphs, furthermore, the computational complexity related to the
calculation of eigenvalues is proportional to O

(︁
|V |3

)︁
, so it may pose problems

for graphs with high dimensions |V |.
Spatial-based methods, on the other hand, are defined by having the graph

placed in a spatial domain that allows for the knowledge of network structure
localized to the individual node and a set of its “neighbors”; as a result, network
weights can be shared among multiple regions of the network that have similar
local structures.

The early models outlined in Gori et al [28] and further elaborated in Scarselli
et al [29], implicitly define the Spatial Convolution operator, which was later
formalized with the concept of Message Passing (MP) mechanism; it tries to
capture information by the graph manifold, edges and node feature vectors, by
aggregating informative “messages” from a neighborhood of nodes.

ConvGNNs generalize the operation of convolution, which is a widely popular
concept on image processing field, from grid data to non-Euclidean graph data.
A general framework is described by eq. 2.13 and depicted in Fig. 2.5, it
expresses the rule to update the attribute of node vi, at network layer k:

x(k)
i = γ(k)

(︂
x(k−1)

i , m
(k)
i

)︂
(2.13)

where m
(k)
i denotes the message, obtained by aggregating node vi’s previous

features x(k−1)
i , neighbors’ features x(k−1)

j and their edge features ej,i:

m
(k)
i = Mj∈N (i)

(︂
ϕ(k)

(︂
x(k−1)

i , x(k−1)
j , ej,i

)︂)︂
(2.14)

In the previous equation, M represents a differentiable, permutation invari-
ant function (tipically, sum, mean or max), while γ and ϕ denote differentiable
parametric functions such as MLPs (Multi Layer Perceptrons).

An interesting strenght point of ConvGNNs, compared with other architec-
tures such as dense networks or CNNs, is that they better scale with the graph
size, due to the localized action of the MP mechanism, which allows efficient
parameters sharing and, consequently, memory savings.

Recurrent Graph Neural Networks (RecGNNs), iteratively employ a
set of parameters across nodes within a graph to derive an high-level node rep-
resentation. Due to computational limitations, initial research predominantly
concentrated on directed acyclic graphs. Based on an information diffusion
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Figure 2.5: The three main steps of the Message Passing paradigm in GNNs.

mechanism, RecGNN updates nodes’ states by exchanging neighborhood infor-
mation recurrently until a stable equilibrium is reached. A node’s hidden state
is continuously updated by

h(t)
v =

∑︂
u∈N(v)

f
(︂

xv, xe
(v,u)xu, h(t−1)

u

)︂
(2.15)

where f(·) is a parametric function, xv is the node feature vector and h(0)
v

is a random initial representation of node v hidden state. The sum operator
enables the RecGNN to be applicable regardless of the amount and order of
neighbors.

Graph pooling

Because of the potentially large number of nodes and thus the high dimen-
sionality of the node features involved in a graph neural network (GNN), di-
rectly processing them for the final task may pose computational challenges.
Therefore, a downsampling strategy becomes necessary. This strategy is given
different names depending on its objective and role within the network however
its goal is to reduce parameter size by downsampling nodes to generate smaller
representations, thus addressing concerns such as overfitting, permutation in-
variance, and computational complexity. Graph pooling can be roughly cate-
gorized into flat pooling and hierarchical pooling (fig. 2.6), according to its role
in graph-level representation learning. Flat pooling directly generates a mono-
entity graph-level representations in one step, while the hierarchical approach
coarsens the graph gradually into a smaller sized graph. In earlier approaches,
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Figure 2.6: An illustrative example of graph pooling.

graph coarsening algorithms utilized eigen-decomposition to condense graphs
based on their topological structure. However, these methods encountered is-
sues with time complexity. An alternative to eigen-decomposition, Graclus al-
gorithm [30], calculates a clustering version of the original graph. Most pooling
operators follow a hierarchical scheme in which the pooling regions correspond
to graph clusters that are combined to produce a coarser graph. These clus-
ters generalize the notion of local neighborhood exploited in traditional CNNs
and allow for pooling graphs of varying sizes. The cluster assignments can be
obtained via deterministic algorithms [31, 32] or be learned in an end-to-end
fashion [33, 34]. Furthermore, node embeddings, graph topology [35], or both
can be leveraged to pool graphs.

Node embedding

Node embedding plays a significant role in learning useful information from
graph structured data. It has recently attracted significant interest due to its
wide applications in areas such as graph visualization, link prediction, node
clustering and node classification. Broadly, node embedding refers to the task
of mapping each node of a graph in a lower dimensional vector space, preserv-
ing “similarity” between native and embedded domains. Embeddings should
capture the graph topology along with relationships between nodes and further
relevant inherent information (see fig. 2.7).

Many algorithms to generate node embeddings have been proposed [36], dif-
fering in particular in how node similarity is defined, which is a crucial aspect
for effective graph-structured data modeling. On a successive work presented
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space 

 

Figure 2.7: Node embedding from non-Euclidean domain to vector space.

in this thesis we focus on node2vec [37], a random walk based method which
uses a random walk approach to generate network neighborhoods for nodes by
stochastic sampling, and which defines similarity between nodes u and v as the
probability that both u and v co-occur in the same walk over a network.

The node2vec algorithm was presented by Stanford University researchers on
2016, inspired by the seminal work on DeepWalk algorithm [38], which intro-
duces for the first time the concept of random walk for embedding generation.

In node2vec, an encoder function ENC(·) maps the transition between graph
domain and the embedding space; it is a lookup learnable matrix Z:

ENC(vi) = zi = Zvi, (2.16)

where vi ∈ I|V| is an indicator vector.

The “similarity” of a pair of nodes vi and vj is defined as the probability of
visiting node vj on a random walk of fixed length, starting from node vi:

sG(vi, vj) = Pr(vj |vi). (2.17)

On the other hand, the concept of “similarity” in the embedding space is
modeled as a softmax of the dot product between node’s embedding vectors:

sE(zi, zj) =
exp

(︁
z⊤

i zj

)︁∑︁
k∈Ni

exp
(︁
z⊤

i zk

)︁ , (2.18)

where Ni is the neighbourhood set of node vi, sampled during the random
walk.

The objective of embedding is to maximize the likelihood of random walk
co-occurrences, defined by the following loss function:

18



2.4 Generative Deep Learning

L =
∑︂

vi,vj∈V

log (sE(zi, zj)) . (2.19)

The strategy implemented in node2vec (illustrated in fig. 2.8) to define node
neighbours is to use biased random walks that can trade off between local and
global views of the network. Specifically, given a graph and starting from a
specific node, two parameters p and q define the next hop probability during
the walk, allowing to choose between a global macro-view of neighborhood
(Depth First Search approach) or by first exploring the nearest nodes (Breadth
First Search approach).

 

Figure 2.8: node2vec sampling strategies: BFS-like walks (red) vs DFS-like
walks (blue), starting from node vi.

2.4 Generative Deep Learning

Generative models in artificial intelligence are algorithms or architectures de-
signed to learn and replicate patterns inherent in a given dataset. Unlike dis-
criminative models, which aim to predict labels or outputs based on input data,
generative models focus on understanding the underlying structure of the data
and generating new samples that resemble the training data distribution. To
elaborate formally, given a training data distribution pdata(x), the objective
is to acquire a distribution pmodel(x) that closely resembles the former. This
task constitutes a specific instance of density estimation, a fundamental issue
in unsupervised learning. There exist primarily two methodologies for address-
ing these challenges. One approach involves explicit density estimation, where
pmodel(x) is explicitly defined and solved for. Alternatively, implicit density
estimation entails learning a model capable of sampling from pmodel(x) with-
out explicit definition. Typically, the training process of a generative model
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aims to optimize a score assessing the disparity between the generated distribu-
tion and the actual data distribution. For instance, Jensen-Shannon (JS) or the
Wasserstein distances serve as metrics for quantifying the dissimilarity between
two probability distributions. Generative models are employed across various
domains and tasks, including image generation, text generation, audio genera-
tion, and more. They play a crucial role in tasks such as data augmentation,
data synthesis, anomaly detection, and simulation.

A taxonomy of generative models, reported in [39] are depicted on fig. 2.9.
The approaches on the left branch explicitly express the likelihood of the distri-
bution and try to maximize it while the ones on the right address it indirectly,
as in Generative Adversarial Networks (GANs) that defer to the discriminator
the task of evaluating the closeness of the distributions. Between the explicit
models, it is possible to distinguish the ones that work with a tractable density,
and the ones that work with an intractable one and therefore have to approxi-
mate it. In the next section, the operation of only GAN-type networks will be
discussed in detail, as these are the ones that will be of interest to the audio
signal reconstruction methods outlined in the following chapters.

 

Figure 2.9: Deep generative models that can learn via the principle of maximim
likelihood.

Generative Adversarial Networks

Generative Adversarial Networks (GANs, fig. 2.10 a) [40] have emerged in
the past years as a powerful generative modeling technique; their objective
is to replicate a data distribution in an unsupervised way. A typical GAN
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consists of two networks, a generator (G) and a discriminator (D). Given an
input of random values sampled from a normal distribution, z (latent variable),
the generator performs an upsampling in order to obtain a sample of suitable
dimensions. On the other hand, the discriminator acts as a binary classifier,
trying to distinguish “real” samples x (belonging to the dataset distribution)
from “fake” samples, generated by G.

Both G and D are trained simultaneously in a min–max competition with
respect to binary cross-entropy loss. (eq. 2.20) The final objective for G is
to output samples that follow as close as possible the “real” data distribution,
while D learns to spot the fake samples from real ones, by penalizing G for
producing implausible results.

min
G

max
D
LGAN (D, G) = Ex [log (D(x))] + Ez [log (1−D(G(z)))] (2.20)

A Conditional Generative Adversarial Network (cGAN, fig. 2.10 b) is a type
of generative model that incorporates additional conditioning information c to
guide the generation process. This additional information could be any kind
of auxiliary information relevant to the generation task. For example, in the
context of image generation, the conditioning information might include class
labels indicating the type of object to be generated, or even specific attributes
such as color, style, or orientation. Despite being a simple technique, it has
proven to prevent mode collapse, which is a serious problem afflicting normal
GANs, and allows the output of the generative network to be controlled toward
a desired output. The objective of a cGAN is as follows (eq. 2.21):

min
G

max
D
LcGAN (D, G) =Ex,c [log (D(x|c))] +

+ Ez,c [log (1−D(G(z|c)))]
(2.21)

Least Squares Generative Adversarial Networks (LSGANs) [41] are a vari-
ant of the traditional GANs that employ a different loss function to stabilize
training and produce higher quality generated samples, and at the same time
enhance stability and mitigate the vanishing gradient problem. LSGANs use
a least squares loss function, which replaces the cross-entropy loss, with the
aim to penalize the generator based on the discrepancy between the gener-
ated samples and the real samples in terms of their feature space distances.
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Minimizing the objective function of LSGAN (eq. 2.22 and 2.23) yields mini-
mizing the Pearson χ2 divergence between the real and the approximated data
distributions.

min
D
LLSGAN (D) = 1

2Ex

[︂
(D(x)− b)2

]︂
+ 1

2Ez

[︂
(D(G(z))− a)2

]︂
(2.22)

min
G
LLSGAN (G) = 1

2Ez

[︂
(D(G(z))− c)2

]︂
(2.23)

where a and b are the labels for fake data and real data, respectively, and c

denotes the value that G wants D to believe for fake data.
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Figure 2.10: Architecture of a GAN (a) and a conditional GAN (b)
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Chapter 3

Graph-based Approaches for Audio
Signal Analysis

3.1 Introduction

Applications of Graph Neural Networks in Audio Processing

The prevailing methods for audio and speech processing make use of sequence-
to-sequence approaches, with recurrent or convolutional architectures, either
working on a set of high-level features or low-level descriptors. While works
employing graphs to learn audio representations are currently limited, the inter-
est of the research community is steadily growing. A recent study has demon-
strated that graphs can effectively model audio samples, resulting in lightweight
and accurate models for speech emotion recognition [42]. This study employed
a basic cyclic graph to characterize a given audio data sample. Similarly, a
GNN was employed to capture the interconnections among different speech
segments from speakers engaged in conversation, aiming at speech emotion
classification [43]. In a separate recent study [44], individual audio channels are
considered as nodes when forming a speech graph for the purpose of speech en-
hancement tasks. This facilitates the exploration of spatial correlations among
multiple channels. Furthermore, Graph Neural Networks (GNNs) have been
utilized to integrate information from various heterogeneous modalities [45,46].
In [47], an ontology-informed strategy for acoustic event classification has been
introduced, employing both feedforward dense layers and Graph Convolutional
Networks (GCNs) as two distinct subnetworks. Another study [48] explores the
likelihood of co-occurrences among acoustic events by initially extracting audio
features using a CNN-based network. Modeling relationships between labels

23



Chapter 3 Graph-based Approaches for Audio Signal Analysis

with graphs has also proved useful in few-shot scenarios [49], for example, when
dealing with limited datasets. Furthermore, multitask GCN has been applied
in the literature to mitigate the impact of label noise and leverage the hierar-
chical structure, yielding successful outcomes in audio tagging [50]. Recently,
in [51] a Graph Convolutional Network has been utilized to solve the task of
similarity retrieval in musical sequences, which approximates human similarity
judgments between extended musical playing techniques. Finally, sound source
localization on distributed microphone arrays (DMAs) [52] also benefited from
the use of GNNs.

Graph Neural Networks for Multilabel Classification across
different domains

Typically, single-label classification is about learning from a dataset where each
example is linked to a unique label l, drawn from a subset of distinct labels L,
where |L| > 1. When |L| = 2 this learning task is termed a binary classification
problem or filtering. Conversely, when |L| > 2, it’s referred to as a multi-
class classification problem. In contrast, in multi-label classification, examples
are associated with a set of labels Y ⊆ L, this is a common problem across
several domains, including image, sound or text classification, protein function
prediction or recommender systems, just to name a few.

One simplistic but common approach to tackle multi-label classification prob-
lems involves treating individual instance in isolation, converting the multi-
label problem into a series of binary classification tasks, aimed at predicting
the presence or absence of each class of interest. Leveraging the significant ad-
vancements in single-label classification achieved by deep neural networks, the
efficacy of binarization methods has notably improved. However, these tech-
niques are inherently constrained by their disregard for the intricate topology
structure there might exists between classes. This limitation has stimulated
research into effective strategies for capturing and exploring label correlations
in multi-label classification. Various methods, including those based on Re-
current Neural Networks (RNNs) [53], probabilistic graph models [54, 55] or
attention [56,57], have been proposed to explicitly model label dependencies.

There is a growing trend to leverage graph neural networks for exploiting im-
plicit relationships between data and labels in multi-label classification tasks.
For instance, Saini et al. [58] conceptualize extreme classification as link pre-
diction within a document-label bipartite graph, employing graph neural net-
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works alongside attention mechanisms to enhance node representations through
graph convolutions, across various neighborhood orders. ML-GCN [59] utilizes
CNNs to generate image representations and captures label correlations by con-
structing a label-label graph from the label co-occurrence matrix. LaMP [60]
treats labels as nodes within a label-interaction graph, computing hidden rep-
resentations of each label node conditioned on the input via attention-based
neural message passing. Similarly, for multi-label image recognition, Chen et
al. [61] establish a directed graph over object labels, where each label node is
represented by word embeddings, and GCNs are employed to map this label
graph into a set of inter-dependent object classifiers. These aforementioned
approaches, along with others [62–64] demonstrate the growing interest and
advances in the use of graph neural networks for multi-label classification tasks
and was the starting point for our research on the label-informed SEC method,
illustrated in sec. 3.3.

3.2 Graph-based Representation of Audio signals
for Sound Event Classification

In this section, we describe an innovative method for representing information
extracted from audio spectrograms, by deriving a graph structure which can
be employed by already established Graph Deep-Neural-Networks techniques to
perform a wide variety of assignments. We evaluate this approach on a Sound
Event Classification task by employing the widely used ESC [10] and Urban-
sound8k [65] datasets and compare it with a Convolutional Neural Network
(CNN) based method. We show that such proposed graph-based approach is
extremely compact and used in conjunction learned CNN features, allows for a
significant increase in classification accuracy over the baseline with more than
50 times fewer parameters than the original CNN method. This suggests that,
the proposed graph-based features can offer additional discriminative informa-
tion on top of learned CNN features.

This work was presented at the 2021 European Signal Processing Conference
(EUSIPCO) [66].
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3.2.1 Proposed method

The proposed method is based on the key idea to define a graph whose informa-
tive elements (nodes, edges and their attributes) are derived from the log-Mel
scale spectrogram of a signal, using an image processing approach. A segmen-
tation procedure is performed over the log-Mel representation to isolate several
different graphical entities we call regions. Each of these entities encloses a
portion of the spectrum where the energy of the registration exceeds a certain
threshold, and is then identified as a node in the target graph.

In our preliminary experiments we found out that most commonly segmen-
tation methods used in image processing (like superpixel segmentation with
N-cut [67] or SLIC [68] algorithm) perform very poorly if applied directly to
spectrograms, due to the lack of both color depth and sharp edges. We instead
use a Level-Set method [69] to define level curves which enclose regions with
constant acoustic energy.

In order to reduce the amount of resulting regions, and thus the number of
nodes, a 2D Gaussian filter with square kernel is used before the segmentation
step to obtain a smoothed version of the log-Mel spectra. After smoothing, the
amplitude levels are normalized to the range [0, 1]. Figure 3.1 shows a log-Mel
scale spectrogram belonging to a clip extracted from Urbansound8k dataset (a)
and its smoothed and segmented version, (b) and (c).

We denote with x(t, f) the normalized and smoothed log-Mel spectra, where
0 ≤ f < F and 0 ≤ t < T are the Mel band and frame indexes, while F

and T are the total number of Mel bands and frames. Regions are isolated by
considering a finite set of K thresholds τ = [τ1, . . . , τK ], with each threshold
τi ∈ (0, 1). Level-sets are then extracted applying a function to the normalized
log-Mel spectrogram defined as follows:

f (x(t, f), τi) =

⎧⎨⎩0 if x(t, f) ≤ τi

1 if x(t, f) > τi

. (3.1)

This step returns a set of K + 1 discrete levels as it can be seen in figure
3.1 (c) where, for example, 10 levels in which the acoustic energy falls above a
certain threshold are identified.

As defined in equation 3.1, each log-Mel spectra level is a binary matrix,
it is thus possible to apply a trivial image segmentation procedure to isolate
regions for each level. In detail, we can isolate each region I (t; f), by taking
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Figure 3.1: Log-Mel spectrogram of an audio clip from Urbansound8k dataset
(a), smoothed and segmented version (b), exploded view (c).
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each maximally contiguous area where f(x(t, f), τi) = 1; in figure 3.1 (c) for
example, there are 4 different regions in the third level from the top. This
segmentation procedure can be implemented very efficiently using dynamic
programming.

Node Attributes and Graph Edges

Regions arising from the segmentation step are assigned to graph nodes which
are characterized through attributes encoding each region geometric shape and
position. These attributes are derived from the ith and jth order image mo-
ments Mi,j , central moments µi,j , and covariance matrix cov [I (t; f)] of the
region I (t; f).

The ith and jth order image moments are defined as:

Mij =
∑︂

t

∑︂
f

tif j · I (t; f) , (3.2)

where, as before, t and f denote the frame and Mel band indexes (x-y image
coordinates), while the corresponding central moments are:

µij =
∑︂

t

∑︂
f

(t− tc)i (f − fc)j · I (t; f) , (3.3)

where tc and fc are the region centroid along frame axis and Mel band axis,
defined as:

tc = M10

M00
, fc = M01

M00
. (3.4)

The covariance matrix is obtained from the central moments:

cov [I (t; f)] =
[︄

µ20/µ00 µ11/µ00

µ11/µ00 µ02/µ00

]︄
=

[︄
µ′

20 µ′
11

µ′
11 µ′

02

]︄
(3.5)

In this work we use eight attributes defined as follows:

• Area (which corresponds to moment M00).

• Perimeter (corresponding to the moment M00 of the region boundary).

• The centroid spatial coordinates, tc, fc, and zc (along level axis).

fc = M10

M00
tc = M01

M00
zc ∈ [0.0...1.0] (3.6)
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• Orientation, defined as the angle θ between major axis and the vertical
axis of an ellipse with the same image moment of the region. It can be
obtained from the covariance matrix elements:

θ = 1
2arctan

(︃
2µ′

11
µ′

20 − µ′
02

)︃
θ ∈

[︂
−π

2 ; π

2

]︂
(3.7)

• Eccentricity E, defined as the ratio between focal distance and the semi-
major axis of an ellipse with the same image moment of the region. It
can be obtained from the eigenvalues λi of the covariance matrix:

E =
√︃

1− λmin

λmax
(3.8)

• Solidity, which encodes if the shape is convex or concave and is defined
as the ratio between the area of the region and the area of a convex hull,
the smallest polygon enclosing the region.

Edges of graph are defined by the following empirical rule: two nodes i, j,
each corresponding to regions Ii(t, f) and Ij(t, f) are connected if they inter-
sect: Ii(t, f)∩ Ij(t, f) ̸= ∅. Edges orientation are based on the relative levels of
the two regions: from lower to higher. A directed graph is thus obtained. Fig-
ure 3.2 shows the actual graph obtained from the segmented regions of figure
3.1 (c) and the criterion of connections presented above. Other heuristic criteria
for defining edges have been explored, but they have led to worse performance.
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Figure 3.2: Graph originated from fig. 3.1 (c)

29



Chapter 3 Graph-based Approaches for Audio Signal Analysis

3.2.2 Datasets

We evaluate the performance of the proposed method using two datasets widely
employed for SEC: ESC10 which is a subset of the wider ESC50 collection [70],
and Urbansound8k [65]. We describe them thereafter.

ESC10 consists in 400 audio clips, grouped in 10 classes belonging to three
general groups of sounds: transient/percussive sounds (sneezing, dog barking,
clock ticking), sound events with strong harmonic content (crying baby, crow-
ing rooster) and structured noise/soundscapes (rain, sea waves, fire crackling,
helicopter, chainsaw). Each clip has a duration of 5 seconds and is sampled
at 44100 Hz. Due to the scarcity of audio clips and to be directly comparable
with [70], we applied the following data augmentation techniques :

• Random pitch shift, between -4 and +5 semitones

• Random time stretch, between -5% and +10%

• Random time shift, between 0 and +22050 samples (equivalent to a range
of [0, 0.5] s.

In this way, we obtain 4400 different audio clips. Furthermore, frames with an
energy content of less than -70 dB (which are presumably silence intervals) are
discarded, as they can lower the generalization capability of the model. This
practice induces a slight imbalance in dataset items between classes, especially
those with burst (short duration) sounds, and long silence. However, this
imbalance will not have a noticeable impact on classification performance.

Urbansound8k is composed by 8732 registrations of urban environmental
sounds, grouped in 10 classes:

1. air conditioner
2. car horn
3. children playing
4. dog bark
5. drilling
6. engine idling
7. gun shot
8. jackhammer
9. siren

10. street music
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These registrations are slightly more noisy than the ESC10 ones. Clips on
Urbansound8k have different lengths and different sampling frequencies, so a
resampling to 22050 Hz and a zero padding in time is performed. Sequences
resulting from data augmentation and pre-processing are used in the same form
to generate the log-Mel and delta spectrograms dataset and the graph dataset,
and both are linked with a clip_id key field to ensure synchronization of the
inputs on the multimodal framework training phase.

3.2.3 Experimental Setup

To evaluate the efficacy of the proposed graph-based representation we consid-
ered two different DNN classification approaches for each dataset:

• Graph-only (GNN), in which only the proposed graph-based features are
used and a GNN is employed for classification at graph level.

• Hybrid (GNN+CNN), in which the graph-only approach is combined us-
ing a stacking ensemble approach with more standard CNN-based fea-
tures extracted from log-Mels. The two high-level features are then com-
bined using a Multi-Layer-Perceptron (MLP).

We compare these two approaches with a state-of-the-art CNN-based architec-
ture proposed in [10]. More in detail, we use the short-segment majority voting
architecture from this latter work as our baseline system (CNN) as well as for
the Hybrid (GNN+CNN) approach. This model takes in input the log-Mel
spectra of the audio signal along with the deltas, and processes them with a
cascade of 2D convolutional layers with Rectified Linear Unit (ReLU) activa-
tions followed by two fully connected layers with ReLU non-linearity and an
output linear layer. 60 Log-Mel bands are employed with a window of 1024
samples and 50 % overlap. All networks are trained to convergence by using
early stopping and halving the learning rate if no improvement is observed for
5 epochs.

Graph-only architecture

The GNN employed in this work belongs to the category of Message Passing
Neural Networks (MPNN) [71, 72] which are composed of several graph con-
volutional layers (GNNConv). The architecture is depicted in figure 3.3. Due
to the novelty of the proposed method, could not be defined a well performing
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model on a graph dataset like the one we built, so the choice was made looking
at models tailored on datasets with similar statistical properties, like nodes
and edges distributions, and class numbers. The MPNN framework used here
is described in [71] and later in [72], where it is applied to classic benchmark
datasets (point cloud, chemical and social network graphs).

Each of the GNNConv layers transforms the input graph into another one
with same topological structure but whose nodes have an higher dimensional
feature vector. GNNConv operator is defined as:

x′
i = Θxi + 1

|N (i)|
∑︂

j∈N(i)

xj ·hΓ (ei,j) (3.9)

where xi is the input node, Θ is a learnable I × C linear transformation, and
hΓ is a non-linear transformation with learnable parameters Γ (here we use
a MLP with ReLU), fed with the node distances ei,j between node i and its
neighboring nodes N (i).

After every GNNConv layer, an Exponential Linear Unit (ELU) activation
is applied and the graph is shrunk through a graph-level pooling phase applied
on clusters of two nodes, as paired by the Graclus algorithm [30]. Graclus
algorithm is a graph clustering method designed for large-scale graphs; it op-
erates by iteratively coarsening the graph into a hierarchy of smaller graphs,
until a desired size is reached. The process involves two main steps: coarsening
and clustering. In the coarsening step, the algorithm aggregates nodes into
supernodes, effectively reducing the graph size. The clustering step involves
partitioning the coarsened graph using a spectral clustering technique. Gra-
clus optimizes a quality measure, considering both internal edge density within
clusters and external edge density between clusters. This process is repeated
recursively on each coarsened level, leading to a hierarchical clustering of the
original graph. The algorithm efficiently exploits the mathematical equivalence
between general shear targets and k-means with weighted kernel, to work in
the spatial domain, thus avoiding time-consuming computation of eigenvectors.
The last layer rejects the informative content of the graph structure by keeping
only node attributes (node-level pooling) which are then embedded in a single
vector describing the whole graph (global-pooling). Finally, an MLP with one
hidden layer and ReLU activation, is used to obtain class logits.

We used PyTorch Geometric library [73] for the implementation of the project
in Python language. Each GNNConv layers has 32 channels C for Θ, and each
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Figure 3.3: GNN architecture used in both Graph-only and Hybrid approaches.

MLP has an hidden size of 64 neurons. The readout MLP has an hidden size
of 128 neurons. We use for training Adam optimizer [74], with a batch size of
32 and a learning rate of 0.001. For ESC10 we use 2 layers of GNNConv and
3 layers for Urbansound8k.

Hybrid architecture

In the Hybrid approach we combine the high-level graph-based features ex-
tracted with the MPNN described in previous section, with high-level CNN
extracted features, in a stacking ensemble fashion. Regarding the CNN, we use
the same architecture as in [10], which is also our baseline model.

Here, we consider for this hybrid approach only the top convolutional lay-
ers of the baseline CNN architecture [10] and concatenate the embeddings as
extracted from such layers with the one obtained by the MPNN before the
readout MLP. This hybrid representation is fed to an MLP and then to a lin-
ear output layer which outputs class logits. The architecture described above
is depicted in figure 3.4.

We re-use the pre-trained MPNN from Graph-only approach as well as pre-
trained CNN layers obtained by a re-implementation of the network from [10].
In the training phase only the fusion MLP and the output layer are updated, the
CNN and GNN branches are kept frozen. We use Stochastic Gradient Descent
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(SGD) optimizer with Nesterov momentum, batch size 64 and learning rate of
0.001. The fusion MLP has 1024 hidden neurons and ReLU activations.

Figure 3.4: Hybrid GNN-CNN ensembling scheme

3.2.4 Results

In the following, we report and discuss the results obtained by the previously
defined Graph-only and Hybrid classifiers. To be comparable with [10], we cal-
culate accuracy by using 5-fold cross-validation for ESC10 and 10-fold cross-
validation for Urbansound8k. In both cases, the fold partitions are the same
defined by the dataset guidelines. We give the neural networks trainable pa-
rameters counts in table 3.1 and report accuracy in table 3.2 as well as in
figure 3.5 were we show box-plots. In table 3.2 we highlight in bold best results
validated through a Paired Student t-test [75] with a confidence level of 95 %,
performed on 10 different runs (10 different folds for Urbansound8k and 10 for
ESC10).

It can be observed that the Graph-only approach (GNN) has overall lower
accuracy than the CNN-based approach, with a significant difference especially
for Urbansound8k which is more noisy. On the other hand, the GNN-based
classifier has more than 100 times fewer parameters and, in addition, the size
of the proposed graph-based features is significantly lower than the log-Mel
features. In fact, for an ESC10 audio clip the full size of log-Mels as employed
in [10] is 25840 while for the proposed graph-based features only 30 nodes
(on average on ESC10) are extracted, with each node having 8 scalar features
as described in section 3.2.1. Thus the proposed representation is extremely
compact and this can explain the difference in performance.

Nonetheless, these very compact features are able to bring considerable im-
provement when combined with the CNN features in the Hybrid (GNN+CNN)
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approach. This Hybrid model is still considerably smaller than the CNN base-
line due to the use of a small fusion MLP. This result suggests that the proposed
graph-based approach is able to supply additional discriminative information
with respect to CNN learned features, despite the modest size of proposed
representation.

Table 3.1: Total learnable parameters for different structures.
ESC10 Urbansound8k

CNN [10] 26 M 26 M
GNN 84 K 152 K

GNN+CNN 369 K 437 K

Table 3.2: Overall classification Accuracy for 5-folds (ESC-10) and 10-folds (Ur-
bansound8k).

Method ESC10 Urbansound8k
CNN [10] 0.775 0.700

GNN 0.737 0.635
GNN+CNN 0.800 0.730

3.2.5 Final remarks

In this work we presented a novel method which allows to represent the infor-
mation contained in the log-scaled Mel spectrograms through a graph using a
segmentation step based on constant energy level curves and image processing
techniques. This graph-based representation is remarkably dense and suitable
for resource constrained device and edge-computing devices. The proposed ap-
proach is applied to a Sound Event Classification task using two real-world
datasets and compared with a state-of-the-art CNN based model. We found
that although the proposed graph-based representation is not able to compete
with current state-of-the-art CNN-based models, due to its modest size, it is
able to offer additional discriminative capability when used in conjunction with
standard CNN learned features, significantly boosting performance and allow-
ing to reduce drastically the size of the network.

Future work includes exploring different GNN models that could potentially
further improve both the computational footprint and performance as well
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Figure 3.5: Box plots for classification accuracy for the baseline (CNN) and the
proposed configurations (GNN, GNN+CNN), for ESC10 dataset
(left) and Urbansound8k dataset (right).

as devising a method for learning to extract the graph-based representation
without relying on any a-priori assumption, and finally, different GNN models
can be evaluated or custom-tailored to the specific graph audio dataset.

3.3 Graph Node Embeddings for ontology-aware
Sound Event Classification

Multi-label Sound Event Classification (SEC) is a challenging task which re-
quires to handle multiple co-occurring sound event classes. Recent works [47,50]
proposed an ontology-aware framework for multilabel SEC in which a Graph
Neural Network (GNN) approach is trained to exploit labels co-occurrence
information and improve the performance of a standard audio-feature based
classifier via late-fusion. This GNN is fed a graph-based representation of
the training set labels. In this work we adopt such framework and perform
an in-depth study on how the labels embeddings used to construct the graph
representation can affect the performance. We perform our experiment on the
FSD50K dataset and compare different embedding strategies, of which two have
already been used by previous works and two that have not yet been considered
for SEC applications. Our results show that node2vec-generated embeddings
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lead to substantial performance improvements with respect to other algorithms
used in previously ontology-aware SEC works. Our best node2vec model leads
to an absolute improvement of 3.39 % in mean average precision, with respect
to the best competing embedding strategy, with a lower number of trainable
parameters.

This work was presented at the 2022 European Signal Processing Conference
(EUSIPCO) [76].

3.3.1 Multi-label Sound Event Classification

Multi-label Sound Event Classification, also referred as multi-label Audio Tag-
ging, aims to predict the presence of certain sound events in an audio record-
ing. As multiple, different, sound events can occur in the same recording, in
multi-label SEC class labels are not considered mutually exclusive, and algo-
rithms must be able to handle multiple, co-occurring events. Typical SEC
systems are based on deep neural networks (DNN) like, for instance, convolu-
tional neural network (CNN) classifiers, working on either spectrogram-based
features [9, 18] or directly from the raw waveform [19]. More recently, many
methods use recurrent neural networks (RNN) [77–79] or convolutional recur-
rent neural networks (CRNN) [11, 80, 81], which can also capture temporal
information of sound events, or even graph neural networks (GNN) for audio
feature representation [66].

Most of these methods, do not take advantage of the intrinsic relationships
between different co-occurring sound events which are detected within the same
audio clip. In fact, some sound events are more likely to occur together as they
can belong to the same category e.g. musical instruments or to the same acous-
tic scenario e.g. office environment. Some approaches have been proposed to
embed information retrieved from labels relationships for classification tasks,
primarily in computer vision [61, 82–84], natural language processing [85, 86]
and on audio domain [47, 50]. Both [47] and [50] propose an ontology-aware
SEC framework in which a graph-based DNN approach is used to exploit prior
knowledge about sound events ontology and co-occurrences. This graph DNN
is fed a graph representation of the training set labels relationships, e.g. in [50]
graph edges are defined by the labels correlation matrix and nodes embeddings
by one-hot encoded vectors. The output of this graph DNN is used in both
works [47, 50] to improve SEC performance of a more “classic”, audio-features
based classifier via late fusion. Hereafter, building upon these previous work,
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we study how the node embedding strategy employed in the graph-based DNN
can affect SEC performance. In [50] only one-hot encoded vectors were consid-
ered for use as labels node embeddings. While in [47] pre-trained GloVe [87]
word embeddings are used. Here we study the use of two additional node
embeddings strategies which haven’t been previously explored for SEC tasks:
node2vec [37] learned embeddings and pre-trained fastText [88] word embed-
dings. We perform experiments on the recently proposed FSD50K dataset [1]
and show that node2vec embeddings bring substantial performance improve-
ments over both one-hot and pre-trained fastText and GloVe word embeddings.
Importantly, these improvements come at a modest increase in the number of
trainable parameters when compared to the original audio-feature classifier
used alone without the ontology graph DNN branch.

3.3.2 Recurrent Graph Neural Networks

The notion of graph neural networks was initially outlined in Gori et al. [28] and
further elaborated in Scarselli et al. [29]. These early models implicitly define
what will be called Spatial Convolution [71, 89, 90], and later formalized with
the concept of Message Passing (MP) mechanism, in which we aim to acquire
and propagate information by aggregating informative messages, gathered from
neighboring nodes. Furthermore, they fall into the category of Recurrent Graph
Neural Networks (RecGNNs) [91], in which a target node’s representation is
learned by propagating neighbor information in an iterative manner, sharing
memory parameters, both between nodes dimension and time domain, until a
stable fixed point is reached.

On this work we focus on a later development proposed by Li et al. called
Gated Graph Neural Network (GGNN) [92] which employs a gated recurrent
unit (GRU) [93] as a recurrent function, reducing the recurrence to a fixed
number of steps.

Given an initial node embedding x(0)
i , from which to define a hidden repre-

sentation h(0)
i as:

h(0)
i = xi ∥0, (3.10)

where ∥ denotes the concatenation operation. A node hidden state hi at
timestep t is obtained aggregating its previous hidden state and its neighboring
hidden states through the following equations:
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m(t+1)
i =

∑︂
j∈N (i)

ej,i ·Θ · h(t)
j , (3.11)

h(t+1)
i = GRU(m(t+1)

i , h(t)
i ), (3.12)

where mi is the aforementioned message, built at node i, Θ is a learnable
parameter matrix and ej,i denotes the edge weight from source node j to target
node i. GNN unrolls the recurrence for a fixed number of steps T and use
backpropagation through time in order to compute gradients.

3.3.3 Ontology-Aware Framework

As in [47,50], also here we adopt an ontology-aware framework composed of two
main modules: an audio embedding module and a label (graph) co-occurrence
learning module. The proposed approach is illustrated in figure 3.6.

The audio embedding module is used to extract an high-level, condensed
representation from feature vectors extracted from the audio waveform, such as
log-Mel filterbank energies (LFBE). On the other hand, the label co-occurrence
learning module is based on a graph neural network. This latter learns node
mappings via multi-layer GGNN and is fed with a fixed pre-defined graph,
where each node has an initial embedding representation. We describe both
modules in detail thereafter.

Audio embedding module

In this work, we consider for the audio embedding branch the Convolutional-
Recurrent Neural Network (CRNN) architecture proposed in [20] and em-
ployed as a baseline method in [1]. Other previously proposed classifiers, such
as [9, 11, 18, 19, 77–81], can be employed in principle. This model is fed in in-
put a feature vector V ∈ RF ×T obtained from a clip segment, where F and
T are the dimension of each feature vector (e.g. number of Mel bands) and
the number of time frames of the input feature, respectively. These features
are then processed by three convolutional blocks. Each block convolves the
input feature map with two-dimensional filters; then, ReLU, max-pooling and
batch-normalization are applied in this order. Following, a single-layer Bidi-
rectional Gated Recurrent Unit (BiGRU) is applied on the output of the last
convolutional layer. The CRNN architecture allows robust feature extraction
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Figure 3.6: Audio embedding module (left branch) and graph co-occurrence
learning module (right branch) of the proposed CRNN-GGNN ar-
chitecture.

against time and frequency shifts, which often occur in SEC tasks. The for-
ward and backward output vectors are then concatenated and placed as input
of a single-layer dense network which outputs a final embedding vector f ∈ RD

with dimension D which matches the output size of the label co-occurrence
learning module.

Label co-occurrence learning module

The graph learning module depends on the initial labels node embeddings and
the label correlation matrix M . These two components are in fact used to
build up a graph representation where each node i is a vector of embedding
size xi ∈ RD and the graph edges are defined by the labels correlation matrix.

Previous works [47, 48, 61, 84], propose several approaches to build this cor-
relation matrix. For example, [47] builds the correlation matrix as a binary
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matrix, where entries Mi,j which represents edges between i-th and j-th label
are either one or zero wether or not they share a common Audioset [94] parent
class label.

By contrast, here we adopt a strategy similar to [48, 61, 84] and focus on
the label co-occurrence matrix of training data to build the correlation matrix,
which is used to represent the structured graph of label relationships. Let N

be the total number of classes, the generation process is as follows: using the
training data ground-truth labels we compute the label co-occurrence matrix
M ∈ RN×N whose elements Mi,j counts the times of appearance of pairwise
events (ei, ej); then the total occurrence of each label Li in the training set is
counted and the conditional probability matrix is calculated by:

M ′
i,j = Mi,j/Li. (3.13)

The actual label co-occurrence matrix of the 200-class FSD50K dataset is
depicted on fig. 3.7. Contrary to [48, 61, 84], we further remove diagonal
elements from the resulting matrix, which correspond to self-loop connections.
We found in our experiments that these degraded performance. The labels
co-occurrence graph is then constructed from this correlation matrix M , which
defines the graph edges and the node embeddings. This graph is then fed to
a GNN which transforms such initial graph representation and outputs final
learned node embeddings H ∈ RN×D.

Multilabel class logits c are obtained by multiplying these learned node em-
beddings H with the audio embedding module feature vector f :

c = Hf⊤ (3.14)

3.3.4 Experimental Setup

In this study, we consider four different strategies for deriving the node embed-
dings of the label co-occurrence module. In detail, we compare one-hot vectors
as used in [50], pre-trained GloVe word embeddings as used in [48, 61, 84],
fastText word embeddings, as used in [61] and node2vec embeddings. These
latter two have not yet been explored for SEC tasks. We will compare the
performance of various configurations for such node embeddings within the
framework described in sec. 3.3.3.
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Figure 3.7: Label co-occurrence matrix of the 200-class FSD50K dataset, before
removal of self-connections.
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Dataset

We perform our SEC experiments using FSD50K [1], a recently introduced
dataset of sound event clips with over 100 hours of manually labeled audio
and 200 classes, drawn from the larger AudioSet ontology [94]. More in detail,
FSD50K contains 37134 audio clips for training, 4170 audio clips for validation,
and 10231 audio clips for evaluation. The clips have variable length from 0.3 s
to 30 s. We used the provided training, validation and test splits to respectively
train, tune and test the models employed in our experiments. Figure 3.8 shows
the distribution of labels in the train and validation sets jointly, (fig. 3.8 top)
and in the test set (fig. 3.8 bottom).
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Figure 3.8: Label distribution in the train + validation set (top) and test set
(bottom). Images are taken from [1].
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Feature Extraction

Following [1], we resample FSD50K from the original 44.1 kHz samplerate to
22.050 kHz and extract 96-band, LFBEs to use as input features for the CRNN
branch. To deal with variable-length clips, we feed to the CRNN LFBEs ex-
tracted from audio chunks of 1-second length with 50 % overlap. LFBEs are
computed with a Short-Time Fourier transform window size of 30 ms with 10 ms
stride. With these settings, input CRNN features have shape (F, T ) = 96×101.
The label associated with each chunk is inherited from the source clip label as
the dataset is weakly labeled.

Networks structure and node embedding

In the CRNN model we use 128 filters, (5, 5) kernel size and unitary stride
for all convolutional layers. The pooling sizes for the max-pooling layers are
(F, T ) = (5, 2), (4, 2) and (3, 2). The bidirectional GRU block has an hidden
layer with size 64. Regarding the graph co-occurrence branch, we employ a
GGNN model composed of three hidden layers with node embeddings of the
same size as input. We investigated several parameters involved in the node2vec
algorithm, and found the best configuration to be as follows:

• walk_length = 20,

• num_walks = 20,

• p = 0.1 (return parameter),

• q = 1 (in-out parameter).

Evaluation metrics

We use four evaluation metric scores, which are widely used in SEC [1]: mean
Average Precision (mAP), mean Area Under the Curve (mAUC), and sensi-
tivity index d-prime (d′); Mean Average Precision is an approximation of the
area under the Precision-Recall curve, which is more informative of perfor-
mance when dealing with imbalanced datasets. Similarly, mean Area Under
the Curve (mAUC) metric is defined as the area under the ROC curve, aver-
aged over all sound classes; d-prime index is used in signal detection theory for
similar purposes and is closely connected to AUC; it is defined as the difference
between z-scores of True Positive Rate (TPR) and False Positive Rate (FPR):
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d′ = z(TPR)− z(FPR). (3.15)

Finally, the plain label-ranking average precision (lrap) measures the average
precision of retrieving a ranked list of relevant labels for each test clip: the
system ranks all the available labels, then the precisions of the ranked lists
down to each true label are averaged. Here we employ the “label-weighted”
variant which calculates the precision for each label in the test set and gives
them all equal contribution to the final metric:

lωlrap = 1∑︁
s |C(s)|

∑︂
s

∑︂
c∈C(s)

lrap(c, s), (3.16)

where |C(s)| is the number of true classes for sample s.

Model Training

Models were trained up to 60 epochs with a random weight initialization for
networks on both modules; learning rate was initially set to the value of 5·10−4,
and then halved if validation mAP is not improved within 5 epochs. Adam [74]
was used as optimization algorithm, with L2 weight decay of 5 · 10−4. Each
model was trained with a binary cross-entropy loss with separate logits for
each class, as we perform multi-label classification. We used a batch size of
256 to maximize the GPU utilization. Once the training is over, the model
checkpoint with best validation mAP is selected and evaluated on the test set.
For all graph-based models we tuned the size of the node embedding dimension
with respect to mAP obtained on the validation set. To improve generalization,
during training, we employed mixup augmentation [95] with parameter λ drawn
from a beta distribution Beta(α, α) with α = 0.2.

3.3.5 Results

We report our results in Table 3.3. In detail, we compare the CRNN classi-
fier used alone (CRNN baseline) with the approach described in Section 3.3.3,
where we use a GGNN to learn co-occurrences prior knowledge as an additional
information for SEC. In detail, for this latter approach, we compare different
node embedding strategies while keeping the rest of the framework the same.
Firstly we can see that using one-hot encoding, as in [50], improves only lωlrap

score with respect to the baseline and instead leads to a degradation of the
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other metrics. Secondly, we can observe that using GloVe pre-trained word
embeddings for the nodes, as used in [47], leads to slighly lower performance
for most metrics in our task. This could be due to the fact that FSD50K
dataset is significantly more challenging than the dataset used in [47]. Instead,
we found the proposed node2vec-based approach to lead in general superior
results both with respect to the CRNN baseline model used alone and with the
other embeddings. The most noticeable increase in mAP and mAUC values
are observed for the 128 node2vec embedding dimension (0.4035 and 0.9340
respectively) but a slight performance increase is observed already with a mod-
est 64 embedding size model. Increasing further the embedding size leads to
a degradation of mAP and mAUC scores and, in general, mixed results: the
200-dim model obtains worse results than the baseline model while the 300-
dim model obtains the highest d′ and lωlrap figures. These are however only
marginally better than ones obtained with 128 embedding size. In general we
can conclude that using node2vec with 128 embedding size leads to the best
trade-off between the number of trainable parameters and performance.

Table 3.3: Classification performance for the considered architecture with dif-
ferent node embeddings. For each model, we report the number of
trainable parameters. The metrics used are described in detail in
Section 3.3.4

trainable
Model node embedding param. mAP mAUC d′ lωlrap

CRNN baseline - 0.923 M 0.3676 0.9307 2.0950 0.5113

CRNN-GGNN 200-dim one-hot 1.285 M 0.3532 0.9264 2.0501 0.5252
CRNN-GGNN 300-dim GloVe 1.748 M 0.3644 0.9266 2.0517 0.5114
CRNN-GGNN 300-dim fastText 1.748 M 0.3696 0.9283 2.0599 0.5248

CRNN-GGNN 64-dim node2vec 0.943 M 0.3752 0.9336 2.1254 0.5434
CRNN-GGNN 128-dim node2vec 1.062 M 0.4035 0.9340 2.1310 0.5513
CRNN-GGNN 200-dim node2vec 1.285 M 0.3551 0.9255 2.0990 0.5373
CRNN-GGNN 300-dim node2vec 1.748 M 0.3725 0.9310 2.1668 0.5516

3.3.6 Final remarks

In this work we compared different node embedding strategies for ontology-
aware SEC. Building from previous works, we adopt a SEC framework which is
able to exploit information of sound events classes co-occurrence via a learned
GNN-based module. This module is fed a graph whose nodes are labels embed-
dings and whose edges are defined by the various labels co-occurrences obtained
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from the training set. The output of this module is then combined with the out-
put of a conventional CRNN architecture which is fed audio-related features.
Using this framework, we compared different node embeddings strategies us-
ing the FSD50K dataset to perform our experiments. We show that node2vec
node embeddings can outperform other embeddings strategies used in previous
works on ontology-aware SEC. Our best node2vec-based method improves the
SEC absolute performance up to 3.39 % in terms of clip-level mAP score, 0.0711
points on sensitivity index (d′) and 0.0265 points on lωlrap score, compared
with the best competing embedding approach (fastText). Future works may
include exploring different audio modules, as well as extending the technique
to SED, by managing the event localization at frame-level rather than at the
audio clip-level.
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Chapter 4

Mitigating Packet Loss Effects in
Audio Transmissions:
Reconstruction Techniques

4.1 Packet Loss Concealment and Audio Inpainting

Speech signals are often subject to localized distortions or even total loss of
information, when data is transmitted through unreliable channels. This hap-
pens, for example, in applications such as mobile digital communications, video-
conferencing systems and Voice over Internet Protocol (VoIP) calls. In such
scenarios, audio frames are often encapsulated into packets, which are then
routed individually through the network, sometimes taking different paths,
resulting in out-of-order delivery. At the destination, the original sequence
may be reassembled in the correct order, based on the packet sequence num-
bers. Hence, a variety of issues can occur, like packet losses, over-delay or
jitter [96,97].

The type of errors in the transmission channel can originate from bit-errors,
that is transmission faults where individual bits are either omitted, added, or
flipped. These errors, often encountered in wireless links, are of a low-level na-
ture; channels vary in their error characteristics, with some being more prone
to isolated bit-errors, while others experience bursts of errors where consec-
utive bits are affected. In packet-switched networks, bit-errors are typically
addressed either at the transport layer or by identifying entire packets as lost.
One method for concealing bit-errors involves establishing transition probabili-
ties between bit configurations of consecutive packets. However, this approach
becomes overly intricate with more flexible packet structures.
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In this thesis we deal with the problem from a higher perspective than the
telecommunications approach, so we will consider an entire packet as the small-
est unit that can be affected by corruption. Lost packets occur when a packet
contains a significant number of bit-errors, rendering it completely corrupted,
or when network congestion makes packet delivery unfeasible. Congestion can
lead to queue overflow, resulting in discarded packets, or delay transmission
to the point of rendering packets effectively useless and thus “lost”. Similar to
bit-errors, packets can be lost individually or in bursts. The statistical distri-
bution of error types significantly influences the choice of the most appropriate
concealment method.

Finally, delayed packets represent another type of error typically caused by
network congestion. Delayed packets are received correctly but experience sig-
nificant delays, making timely playback impossible. Since concealment methods
must be applied at the expected playback time, errors in reconstruction and
potential error propagation may occur. In applications where latency is not a
tight constraint, the use of delayed packets may facilitate faster recovery of the
correct output.

Several approaches have been proposed in the literature to the problem
of reconstructing audio sequences corrupted by the loss of fragments, where
we mainly refer to Packet Loss Concealment [98–101] and Audio Inpaint-
ing [102–106]. The differences between the two terms are subtle and there
is no clear-cut boundary in the use of either, but we can say that the for-
mer is mostly used in the telecommunication domain, thus in the presence of
constraints posed by operating conditions such as the need to reproduce the re-
paired audio stream in real time and with low latency. Attention is also often
focused on the computational complexity of the reconstruction algorithm in
the hypothesis that this must be performed by devices with reduced capacities.
Audio inpainting, on the other hand, is referred to in works that perform sig-
nal reconstruction by borrowing restoration techniques from the field of image
processing, that are applied to time-frequency representation (spectrograms)
of the corrupted sequence, seen as a two-dimensional image.

However, since there is no common opinion in the literature on the difference
between the terms Packet Loss Concealment and Audio Inpainting, other works
differentiate them on the basis of the objective that is pursued: in this case the
word “concealment” is associated to any technique that attempts to overcome
the packet-loss problem, by masking the lost fragments by an estimated re-
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construction, which should be meaningful and consistent with the informative
content of the speech message. The concealment system should also prevent
audible artifacts and decrease listening fatigue, so that the listener remains
unaware of any problems that have occurred. “Inpainting”, by contrast, refers
to techniques that aim to precisely reconstruct the missing waveform.

4.1.1 Problem modeling

In order to experiment with Packet Loss Concealment techniques, there needs
to define a model that could simulate the packet-loss behaviour. Modeling
packet loss in a real-time setting is essential to be able to solve the concealment
problem. PLC techniques need to be tested in realistic scenarios in order to
be robust and successful. Several models has been developed for this purpose,
including Bernoulli models, two-state Markov models, also referred as Gilbert
models, and three-state Markov models [96].

The Bernoulli model is arguably the most basic model for packet loss, ac-
cording to which each data packet is independently lost with a fixed probability
p, that equals the loss rate (PLR):

PLR = p (4.1)

Models based on Markov chains attempt to represent the correlation between
losses and free losses in communication networks and can also be represented
resorting to finite-state machines. In these models, N denotes the “Non-loss”
state, to represent a correctly received packet, while L denotes the “Loss” state,
to represent a lost packet. The transition probability from N to L is indicated
with p, while the opposite transition is denoted by q. A two-state Markov chain
model, also known as simple Gilbert model, is depicted in fig. 4.1. In such a
model p ̸= q and p + q < 1. Unlike the Bernoulli model, it is able to capture
the dependence between consecutive losses in the network. For this model, the
packet loss rate is given by:

PLR = p

p + q
(4.2)

In order to better capture the temporal dependence of the packet loss process
and model consecutive binary losses in burst-noise channels, the problem must
be posed from a higher perspective than previous approaches. In the following
models, B indicates a “bad reception” state, which does not necessarily imply
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Figure 4.1: Two-state Markov chain for the simple Gilbert model. It matches
the Bernoulli model for q = p.

that the received packet is considered lost, and dually, G indicates a “good
reception” state. Thereby, two additional parameters, k and h, must be intro-
duced to determine the probability of discarding the packet in each of the two
states G and B; a loss can occur as independent event, with a probability of
1− k and 1−h respectively. The model proposed by Gilbert in 1960 has k = 1
(i.e., no loss occurs in the “good” state) and 0 ≤ h ≤ 1 (see fig. 4.3); its final
PLR is given by:

PLR =
(︃

p

p + q

)︃
(1− h) (4.3)
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Figure 4.2: Gilbert model.

A later estension to the Gilbert model, called Gilbert-Elliot model (fig. 4.3),
includes the possibility of losses in both states by introducing variability also
for the parameter k. The values of k and h can be chosen arbitrarily, with
0 ≤ h ≤ 1 and 0 ≤ k ≤ 1. The resulting PLR is thus:

PLR =
(︃

q

p + q

)︃
(1− k) +

(︃
p

p + q

)︃
(1− h) (4.4)

Three-state Markov models introduce a new “intermediate” state (I) between
the “good” (G) and “bad” (B) states of the Gilbert-Elliot model. They have
been shown to be more effective in reproducing trace characteristics of real
samples in channels with higher losses, however, the study of complex models,
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Figure 4.3: Gilbert-Elliot model.

along with their variants, is beyond the scope of this thesis and can be found
in the extensive review of Gouvea et al. [96].

4.1.2 Classical PLC approaches

Traditionally, Packet Loss Concealment (PLC) operates within the feature
space of the codec utilized for speech data packetization, encoding, and decod-
ing, such as EVS [107], Opus [108], and AMR-WB [109], prior to the decoding
phase. This becomes particularly crucial if the codec relies on sequential packet
information for decoding. These conventional approaches have undergone itera-
tive enhancements with newer codec generations. While they generally perform
well under moderate packet loss conditions, they exhibit significant degrada-
tion in speech quality during high or burst packet loss scenarios. Modern
codecs enhance their performance by categorizing missing frames into various
types (e.g., silence, voiced speech, non-periodic) and employing diverse pre-
diction techniques for each frame type. Regeneration-based strategies leverage
knowledge of the audio compression algorithm to extract codec parameters and
reconstruct lost packets by utilizing surrounding packet parameters. Although
effective, such recoveries entail considerable implementation costs. In addition
to these methods, many codecs incorporate Forward Error Correction (FEC),
where upon detecting adverse network conditions, the sender transmits redun-
dant information concerning past frames to better compensate for short losses
if subsequent frames are already available. However, this approach introduces
network overhead and additional latency.

Receiver-based techniques, which operate independently of sender interac-
tion, include Insertion-based schemes, wherein losses are recovered by inserting
fill-in packets, often comprising noise or silence (zero-fill) sequences. While
straightforward to implement, these techniques compromise speech quality af-
ter repairs.
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Linear predictive coding (LPC) [110] is a technique that has been widely
adopted since GSM technologies. It operates by predicting a value x̂n for a lost
frame based on K preceding frames xn−K . . . xn−1, using a linear recurrence:

x̂n =
K∑︂

i=1
ci · xn−i (4.5)

Another popular approach is the use of hidden Markov models (HMM) [111,112]
in which previous packets help to build a statistical prior and estimate the
missing packet.

Sparse representation has proven to be competitive with contemporary meth-
ods [102,113,114], exploiting the local sparse structure of audio frames in a Ga-
bor dictionary for recovering missing or distorted audio data using extensions
of the Orthogonal Matching Pursuit (OMP) algorithm.

Interpolation-based schemes recover losses by identifying matching patterns
or performing interpolation to derive replacement packets resembling the origi-
nals. Although computationally intensive, these techniques outperform inserti-
on-based schemes. Notably, the odd-even interpolation technique [115] sepa-
rates speech samples into adjacent odd-sample and even-sample packets, with
recovery accomplished by interpolating based on the available correctly re-
ceived sample set, however it fails to recovery the loss if both the odd-sample
and even-sample packets in a pair are lost. Waveform substitution techniques
leverage the speech signal before or after the loss to find alternatives for recov-
ering the lost segment, particularly effective when the speech signal remains
relatively stable during the loss. A specialized form known as Pitch Waveform
Replication (PWR) [110] is proposed for voiced segments with distinctive pitch
periods P , then the missing segment can be filled by repeatedly copying the
last P ms of received speech before the loss, after the loss or both. Instead,
for non-speech segments, simple repetition of previous packets is used. Recent
advancements introduce methods for restoring long-duration gaps in audio sig-
nals by utilizing similarity graphs to model non-local dependencies [116, 117].
Large hole inpainting is achieved by extracting features from surrounding data
and identifying similar regions based on these border contents.
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4.1.3 Deep PLC approaches

The advent of Deep Neural Networks (DNN) has significantly improved the
quality of several audio processing tasks, leading to successful explorations of
DNN architectures for deep PLC and Audio Inpainting.

Two primary frameworks define the operation of Deep Packet Loss Conceal-
ment. Firstly, in real-time scenarios, upon receipt of each segment, it imme-
diately undergoes post-processing through the PLC algorithm. The resulting
frame after post-processing could be either the original non-lost frame or the
concealed frame. Typically, these segments are short in length, resembling prac-
tical packet sizes (10-20 ms). Secondly, the alternative framework involves pro-
cessing larger audio segments, encompassing one or more lost packets, employ-
ing deep generative models such as Generative Adversarial Networks (GANs)
or Autoencoders. Generally, the non-lost segments offer a broader context,
facilitating PLC techniques in concealing the lost segments. However, the ap-
proaches in the second framework are more suited for offline processing due
to their utilization of broader contexts, potentially including future segments
(lookahead). Additionally, the utilization of deep models and processing larger
segments makes them less suitable for real-time low-latency processing.

In the following, the works that first pioneered the use of a specific structure
for PLC will be discussed, although in the years to follow numerous variants
have been proposed and nowadays, approaches based on generative inference
were found to be he most promising.

The work of Lee et al. [99] is the first that addresses the packet-loss problem
using deep learning. They introduce a framework for a PLC algorithm consist-
ing on a feed-forward neural network driven by the features of P consecutive
past frames, which predicts the features of the succeeding frame. In the infer-
ence phase, each reliable frame is decoded as it is, while, to conceal the lost
frame, the network predicts a potential reconstruction and inverts it to gener-
ate the predicted waveform. Previous work comes with two major limitations,
that is it strictly relies on invertible features and uses a limited context of P

preceding frames to estimate the lost frame.
Successive approaches address these issues while maintaining the same frame-

work. The authors in [118] use the raw audio as input in an end-to-end fashion,
thus removing the need for feature selection and their need to be invertible.
Additionally, they apply LSTMs [119] on raw audio frames directly to estimate
the succeeding frame. One of the main advantages of using recurrent cells like
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LSTMs is handling long-term dependencies in sequential data, by maintaining
internal memories. A crucial advantage introducted in [118] is adapting online-
training into the framework, where every frame that is not lost, can be used
at inference time to enhance the model by also making a training step. This
would make the trained model more enhanced when it is used for a long time.

Several works [104, 120] resort to an encoder-decoder architecture, often
shaped as U-Net [121], in which the inputs are encoded into a lower-dimensional
representation that is then used to reconstruct the signal. The encoder relies on
a traditional convolutional neural network (CNN) architecture that is passed
the spectrogram representations of the pre- and post-gap context segments and
encodes these into a single vector. The resulting encoding is then reconstructed
by the decoder which uses deconvolutional layers to produce a single TF rep-
resentation of the gap only. The authors of [122] train the U-Net using deep
feature losses by employing a VGG [123] feature extractor network, wherein the
network is trained to minimize the difference between the features extracted
from the reconstructed spectrogram and those of the original spectrogram.

The authors in [124] first succesfully addressed PLC using a GAN variant
called Speech Enhancement GAN (SEGAN) [125] that operates in the time
domain by producing raw audio signals directly. The SEGAN generator G is
constructed as an autoencoder, where the audio is encoded by using successive
convolutional layers into a vector. This is concatenated with a vector of ran-
dom noise and together, they are passed to the decoder which has a mirrored
structure to that of the encoder. The decoder learns to recreate an enhanced
version of the audio input to the encoder. In order to not lose low-level details
of the input audio, the authors use skip-connections between the corresponding
layers of the encoder and the decoder to allow information such as phase or
alignment to pass. On the other hand, given a pair of an impaired speech and
its enhanced version, the discriminator D is trained to classify if the enhanced
speech is “real”(actually from the dataset) or “fake” (i.e. a bad imitation of
the dataset).

Early methods fall into the category of informed inpainting, since they require
as input a mask specifying which segments have been lost. However, moving
toward real use cases, where such information is unlikely to be available, recent
work converges on so-called blind inpainting, where the task of identifying the
temporal location of the lost packet is included in the reconstruction process.

In order to return the signal to a time domain representation via inverse
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STFT, methods working with magnitude spectra must reconstruct the phase
information, so approximate algorithms such as Griffin-Lim [126] or Phase Gra-
dient Heap Integration (PGHI) [127] are usually employed. Less frequently
phase vocoders are used since these have far greater computational demands.
For this reason, methods that favor the real-time aspect often agree in choos-
ing to operate in the time domain. Alternatively, it is still possible to exploit
the time-frequency representation by operating phase inpainting as well, with
the processing of complex-valued spectrograms, as we proposed in our last and
most recent work (section 4.4).

4.1.4 Evaluation metrics for PLC algorithms

The evaluation of a specific PLC mechanism poses a complex challenge. This
assessment can be classified as a form of Speech Enhancement (SE) evaluation.
The primary challenge arises from the multitude of factors influencing the per-
ceived speech quality. While various metrics capture certain aspects of these
factors, they still fall short of fully modeling realistic speech distortions [128].
Mean Opinion Score (MOS) is often regarded as the benchmark evaluation
method, involving listeners manually rating enhancements on a five-point scale.
Subsequently, these ratings are averaged [128]. However, while this approach
can produce reliable results with a sufficient number of raters, it is also costly
and time-consuming. Additionally, it does not facilitate rapid iteration on
new insights, which could greatly benefit researchers in their work. Moreover,
there are objective measures for SE tasks. Standard metrics can be used as
objective measures, for example, Mean Squared Error (MSE), Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Mel Cepstral Dis-
tance (MCD) and Concordance Correlation Coefficient (CCC) which measures
data reproducibility, and is trending in Speech Emotion Recognition. Addi-
tional sound specific measures commonly considered are: Log Spectral Distance
(LSD) [129], Signal to Noise Ratio (SNR), Signal to Interference Ratio (SIR),
Signal to Distortion Ratio (SDR), and Signal to Artifacts Ratio (SAR) [130].
Perceptual Evaluation of Speech Quality measure (PESQ) emerged as a valid
objective metric on a competition to develop metrics for SE tasks [128]. The
PESQ algorithm operates by simulating human perception of speech quality
and assigning a scores ranging from -0.5 to 4.5. Short-Time Objective Intelligi-
bility (STOI) [131] operates on short-time segments of speech signals, typically
utilizing a time-frequency representation such as the Short-Time Fourier Trans-
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form (STFT). It calculates a correlation-based measure between the processed
speech and the reference speech in each time-frequency bin, aiming to cap-
ture the perceptual intelligibility of the processed speech. These metrics, while
quick and easy to compute, may not have a very strong correlation with human
ratings, and may be insufficiently exact when trying to compare two relatively
similar models. They also require an aligned reference, which limits their use
to scenarios where such a reference is available. Particularly in scenarios in-
volving packet loss concealment with a jitter buffer and timescale modification,
which are commonly implemented, the reference signal is typically unaligned,
potentially leading to additional errors.

Non-intrusive DNN-based metrics were succesfully applied to the PLC prob-
lem. Despite the fact that they were trained for other type of tasks many
researchers consider them to be sufficiently correlated with reconstruction qual-
ity in the presence of missing segments. Among the most widely used is the
Deep Noise Suppression Mean Opinion Score (DNSMOS) [132]. In its first
version it was developed as a non-intrusive metric predicting the scores from
ITU-T Rec. P.808 subjective evaluation, whose the goal is to reflect the over-
all quality of the audio clip. Subsequently DNSMOS was related to the P.835
standard which provides 3 different scores: speech quality (SIG), background
noise quality (BAK), and overall quality (OVRL) of the audio. The developed
metric is proven to be highly correlated with human ratings, with a Pearson’s
Correlation Coefficient (PCC) of 0.94 for SIG and 0.98 for BAK and OVRL.
Recently, at the 2022 Interspeech conference, as part of an initiative to foster
research on the PLC topic, Microsoft researchers present PLCMOS [133], a
DNN-based score in which a neural network is trained to estimate the ratings
human raters would assign to an audio file. Unlike the previously described
metrics, PLCMOS model has been trained with audio degraded through lossy
transmissions, with real packet loss traces observed in VoIP calls and then
healed using several different PLC algorithms. PLCMOS is fully non-intrusive
and therefore does not require a reference signal; it has become very popular
in recent times as a method of comparing PLC algorithms.
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4.2 A Time-Frequency Generative Adversarial
Based Method for Audio Packet Loss
Concealment

In this study, we introduce a system based on a generative adversarial ap-
proach, which aims to repair the lost fragments during the transmission of
audio streams. Inspired by the powerful image-to-image translation capability
of Generative Adversarial Networks (GANs), we propose bin2bin, an improved
pix2pix [134] framework to achieve the translation task from magnitude spectro-
grams of audio frames with lost packets, to non-corrupted speech spectrograms.
In order to better maintain the structural information after spectrogram trans-
lation, we adopt the combination of two STFT-based loss functions, mixed with
the traditional GAN objective. Furthermore, we employ a modified PatchGAN
structure as discriminator and we lower the concealment time by a proper ini-
tialization of the phase reconstruction algorithm.

Experimental results show that this solution, while preserving global tem-
poral and spectral information along with local information, can outperform
competing approaches, based either on classical digital signal processing solu-
tions or learning methods.

This work was presented at the 2023 European Signal Processing Conference
(EUSIPCO) [135].

Generative Deep Learning in Speech Processing

Generative Adversarial Networks (GANs) [40] have emerged in the past years
as a powerful generative modeling technique. Given the success achieved in
the field of image processing, GANs have also been effective in speech process-
ing tasks. In this regard, WaveGAN [136] represents the pioneering attempt
to adapt a deep convolutional GAN (DCGAN) structure for speech, by com-
pressing the two-dimensional image input into one-dimensional. It laid the
foundations for GAN-based practical audio synthesis and for converting differ-
ent image generation GANs to operate on waveforms.

Several extensions have been derived from WaveGAN; to name a few, cWave-
GAN [137], which allows conditioning both G and D with additional informa-
tion to drive the generation process, and Parallel WaveGAN [2], which uses a
multi-resolution STFT loss along with the adversarial loss.
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Figure 4.4: Spectrogram inpainting approach based on adversarial learning.

As outlined in [136], in the generative setting, working with compressed time-
frequency representations may be problematic as the generated spectrograms
are non-invertible, hence they cannot be listened to without lossy estimations,
nevertheless, the practice of bootstrapping image recognition algorithms for
audio tasks has become commonplace; examples include SpecGAN [136], Mel-
GAN [138], VocGAN [139] and StyleGAN [140].

Pix2pix

Pix2pix [134] is a conditional GAN (cGAN) originally developed in 2017 by
Phillip Isola, et al. for synthesizing photos from label maps, reconstructing
objects from edge maps and colorizing images. Unlike a vanilla GAN which
uses only random noise seeds to trigger generation, a cGAN introduces a sort of
supervision by feeding the generator with the target information c, categorical
labels or contextual samples. The discriminator is also conditioned by c, to
help distinguish more accurately the matching and alignment of two images.

Unlike other cGAN-based works (e.g. [141] [142]), Isola et al. demonstrate
that the input noise vector z does not have a significant impact if the con-
ditioning information is strong enough, so they removed it, getting the same
stochastic behavior by adding dropout layers to the generator.

The operating principle of the network we propose is illustrated in figure
4.4, it is a straightforward adaptation of the image inpainting task, for which
pix2pix has been shown to be capable.
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4.2.1 Neural Concealment Architecture

An overview of our bin2bin architecture is presented in Fig. 4.5. The main
contribution of this paper is the adaptation of the pix2pix architecture, for the
audio packet loss concealment task, through an in-depth evaluation of both gen-
erative and discriminative processes, optimized to inpaint spectrograms gaps.
We adopt the term bin2bin as a direct translation of pix2pix, inspired by the
fundamental unit (bin) of the discretized time and frequency axes of the spec-
trogram.

Generator

In the proposed bin2bin scheme, the generator architecture makes use of the
U-Net [121] structural design with the insertion of skip-connections between
affine layers. The U-Net is composed of a convolutional encoder that down-
samples the input image in the first half of the architecture, and a decoder that
upsamples the latent representation applying 2D transposed-convolutions.

The clean signal s and its lossy counterpart s̃, are first transformed into
time-frequency spectrograms. In the provided implementation, all STFTs are
computed with a 512 points Hann window, corresponding to 32 milliseconds
at the sample rate of 16000 Hz, and a hop size of 64. The STFT parameters
have been chosen to ensure a balanced resolution between the regions to be
reconstructed and the reliable parts acting as conditioning contexts.

Our generator G accepts 1× 256× 256 inputs, where each dimension repre-
sents, respectively, the number of Channels, Frequency and Time bins, hence,
a portion of such size is extracted at a random time, from the aforementioned
spectrograms S and S̃, regardless of the amount of lost fragments present in-
side.

Only the log-magnitude spectrogram is fed into the generator; for the training
stage, the phase information is discarded, while for the test stage it is used to
initialize the Griffin-Lim [126] phase reconstruction algorithm.

Discriminator

The discriminator is built on a custom architecture, specifically designed for the
pix2pix framework, called PatchGAN [134]. It is basically a fully convolutional
network that maps the input image into an N ×N feature map of outputs Y ,
in which each patch yij indicates whether the corresponding portion of input

61



Chapter 4 Mitigating Packet Loss Effects in Audio Transmissions: Reconstruction Techniques

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

6
4

 
1

2
8

 

5
1

2
 

 
 

 

 𝑆𝑇𝐹𝑇  𝑆𝑇𝐹𝑇 

 

 P
at

ch
G

A
N

  L
o

ss

 M
ag

n
it

u
d

e 
L

o
ss

Sp
ec

tr
al

 

 C
o

n
ve

rg
en

ce
  L

o
ss

4
×

4
 𝐶

𝑜
𝑛

𝑣
+

𝐵
𝑎

𝑡𝑐
ℎ

𝑁
𝑜

𝑟𝑚
+

𝐿
𝑒𝑎

𝑘
𝑦

𝑅
𝑒

𝐿
𝑈

4
×

4
 𝐶

𝑜
𝑛

𝑣
+

𝑅
𝑒𝐿

𝑈
4

×
4

 𝑇
𝑟𝑎

𝑛
𝑠𝑝

𝑜
𝑠𝑒

𝑑
 𝑐

𝑜
𝑛

𝑣
+

𝐵
𝑎

𝑡𝑐
ℎ

𝑁
𝑜

𝑟𝑚
+

𝑅
𝑒𝐿

𝑈
+

𝐷
𝑟𝑜

𝑝
𝑜

𝑢
𝑡

𝑆
𝑘

𝑖𝑝
 𝐶

𝑜
𝑛

𝑛
𝑒𝑐

𝑡𝑖
𝑜

𝑛
𝑠

C
le

an
 w

av
ef

o
rm

 

L
o

ss
y

 w
av

ef
o

rm

2
5

6
 

5
1

2
 

5
1

2
 

5
1

2
 

5
1

2
 

5
1

2
 

5
1

2
 

5
1

2
 

5
1

2
 

2
5

6
 

 

1
2

8
 

 

6
4

 

 

 4×4 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑑 𝑐𝑜𝑛𝑣+𝑇𝑎𝑛ℎ 

 4×4 𝐶𝑜𝑛𝑣+𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 

1
 

1
 

Fi
gu

re
4.

5:
T

he
pr

op
os

ed
fra

m
ew

or
k

is
co

m
po

se
d

of
th

e
U

-N
et

fo
r

sp
ec

tr
og

ra
m

in
pa

in
tin

g.
D

ee
p

fe
at

ur
e

lo
ss

fo
r

tr
ai

ni
ng

th
eU

-N
et

is
ob

ta
in

ed
by

en
se

m
bl

in
g

th
ed

isc
rim

in
at

or
lo

ss
(b

in
ar

y
cr

os
s-

en
tr

op
y

be
tw

ee
n

pa
tc

he
s)

,
al

on
g

w
ith

th
e

sp
ec

tr
al

di
st

an
ce

s
(L

m
a

g
an

d
L

s
c
),

be
tw

ee
n

th
e

re
pr

es
en

ta
tio

ns
of

th
e

re
co

ve
re

d
an

d
th

e
ac

tu
al

ST
FT

lo
g-

m
ag

ni
tu

de
s.

62



4.2 A Time-Frequency Generative Adversarial Based Method for Audio Packet Loss Concealment

is real or fake. The patches originate from overlapped receptive fields, which
can be retrieved through simple backtracking operations.

In the original paper [134], an ablation study was conducted to determine
the best configuration of D (number of convolutional layers, kernels size), to
maximize the evaluated metrics. In this work we focused on a similar aspect: we
tested the effect of varying the size of the discriminator convolutional kernels, to
achieve a rectangular receptive field, instead of the square dimension (70× 70
pixels) used in pix2pix. We motivated this decision by observing that the
portions of the spectrogram to be concealed extend over the entire frequency
dimension, and a relatively small part of the time dimension. We traded-
off between the complexity of D and the desired shape, obtaining an optimal
receptive field of 162× 24, with rectangular 8× 2 kernels for all conv layers.

Post-processing

The generator output represents the magnitudes of the TF coefficients, both
of the reliable and lost regions. The synthesis by the inverse STFT introduces
an inherent cross-fading, which significantly reduces artifacts. For the phase
reconstruction we used a modified version of the Fast Griffin-Lim [143] algo-
rithm, by providing the phase of the lossy frame as an initial estimate. In this
way the synthesis of the reconstructed waveform is considerably sped up; we
can obtain maximum quality, with less than 10 iterations of the algorithm. The
original version of the Griffin-Lim algorithm [126] is based on the redundancy
of the short-time Fourier transform (STFT). A pseudo-algorithmic description
is provided below:

Algorithm 1 Griffin-Lim algorithm (GLA)
1: Input: magnitude spectrogram |S0|
2: Set: initial phase guess ϕ0

3: Initialize: Ŝ0 = |S0| · ejϕ0

4: for i← 1 to N do
5: Ŝn = STFT (ISTFT (|Ŝ0| · ejϕn−1))
6: ϕn = arg(Ŝn)

7: Output: |S0| · ejϕN
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Loss functions

The generator model is trained by mixing the GAN objective with a traditional
pixel-wise loss, between the generated reconstruction of the source spectrogram
and the expected target spectrogram. In the original paper, L1 and L2 distances
were evaluated; though both produce blurry results on image generation tasks,
the former is preferred as it introduces fewer artifacts.

Differently from the original paper, we have found it more beneficial to use
loss functions related to the perceptual quality of the audio signal: log-STFT
magnitude loss (Lmag) and Spectral Convergence loss (Lsc), defined as follows:

Lmag

(︁
S, S̃

)︁
=

∑︁
t,f |log|St,f | − log|S̃t,f ||

T ·N
(4.6)

Lsc

(︁
S, S̃

)︁
=

√︂∑︁
t,f

(︁
|St,f | − |S̃t,f |

)︁2√︂∑︁
t,f |St,f |2

(4.7)

where |St,f | and |S̃t,f | represent the STFT magnitude vector of s and s̃ respec-
tively, at time t, while T and N denote the number of time bins and frequency
bins of a frame.

As outlined in [144], Lsc highly emphasizes large spectral components, which
helps especially in early phases of training, while Lmag accurately fits small am-
plitude variations, which tends to be more important towards the later phases
of training.

The goal of the adversarial loss is to drive the generator model to output T-F
representations that are plausible in the target domain, whereas the spectral
losses regularize the generator model to output spectrograms that are a plau-
sible translation of the source context. The combination of the adversarial loss
and the spectral losses is controlled by the hyperparameters λ1 and λ2, both
set to 250, since it has been observed that the spectral loss is more important
for reconstruction than the adversarial one.

L = LcGAN + λ1Lmag + λ2Lsc (4.8)

The discriminator model is trained in a standalone manner in the same way
as in a traditional GAN model, minimizing the negative log-likelihood of iden-
tifying real and fake images, although conditioned on the clean spectrogram,
which is concatenated with G(S̃) to form the input of D.
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We followed a common practice in training generative networks [39], which
consists in balancing the evolution of training by iterating nG times the gener-
ator weights update, for every one of D. We used the value nG = 10.

The models were trained for 50 epochs, following an early stopping policy
based on the spectral losses observed on the validation set. We used the Adam
[74] optimizer with a learning rate of 0.0002 for both the generator and the
discriminator, and a batch size of 8.

4.2.2 Datasets

We used the VCTK Corpus (Centre for Speech Technology Voice Cloning
Toolkit) [145] set of data to simulate loss traces, for training and evaluation of
the speech PLC model.

VCTK contains about 44 hours of clean speech from 109 English speakers,
47 males and 62 females, with different accents. To comply with the policy
followed by the methods under comparison, we downsampled the audio to 16
kHz, trimmed leading and trailing silence, and split into three subsets: train,
validation and test, the latter containing 5 speakers held out from the train and
validation sets. We assumed that the lost packets have a duration multiple of
20 ms, and were simulated by zeroing samples of the clean waveform, finally we
limited to 120 ms the maximum gap length, equivalent to 6 consecutive packets.
Fig. 4.6 shows the distribution of lost gaps, obtained by injecting packets with
rates in the range 10 % - 40 %.

4.2.3 Results and comparisons

The proposed PLC method has been compared with three algorithmic solu-
tions, represented by the general purpose codecs Opus [108], WebRTC [146] and
Enhanced Voice Services (EVS) [107], and against four state-of-the-art deep
PLC methods: the wave-to-wave generative adversarial network (PLCNet)
[147], the mel-to-wave non-autoregressive adversarial auto-encoder (PLAAE)
[101], the wave-to-wave adaptive recurrent neural network (RNN) [118] and
the time-frequency hybrid generative adversarial network (TFGAN) [100]. In
addition, the evaluation metrics obtained by simply zero-filling the lost gaps
were also reported as a baseline.

We evaluated the performances of the proposed generative inpainting method,
in terms of Wide-Band Perceptual Evaluation of Speech Quality (PESQ) [148]
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Figure 4.6: Gap size distribution obtained by injecting zero-valued frames, with
different rates.

and Short-Time Objective Intelligibility (STOI) [131]. The implementations
used in this paper are from [149] for PESQ, and from [150] for STOI.

Table 4.1 shows the experimental results for PESQ and STOI, under different
packet loss rates, compared with the PLCNet method, It can be seen that the
proposed model can achieve a significant improvement in performance, the
more the loss rate increases, so it is also able to cope better with large gaps of
adjacent lost packets. The improvement is notable on PESQ scores; it ranges
from +6.0 % (loss rate 10 %) to +27.5 % (loss rate 40 %). The STOI shows less
noticeable gains, only for higher loss rates: +2.3 % (loss rate 30 %) and +7.8 %
(loss rate 40 %).

Table 4.2 and fig. 4.7 summarize the results of the proposed method with
all the competing approaches. Values represent the average score of PESQ and
STOI under all packet loss rates investigated. Compared with the best per-
forming network among previous state-of-the-art systems (PLCNet), bin2bin
improves PESQ by 15.3 % and STOI by 2.4 %, while, in comparison with the
best codec-based concealment (EVS), the improvement rises up to 43.9 % for
PESQ and 12.8% for STOI.

Figure 4.8 shows the qualitative results of a concealed 120 ms wide gap,
within a test sample. This represents the worst scenario, in terms of extent of
lost fragments, the network is trained to face. The system is unaware of the
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quantity, location and extension of lost fragments presents inside the input.
In addition, we timed the forward execution of the bin2bin inpainting process,

both in a CPU environment (Intel core i7-6850K) and a GPU environment
(Nvidia Titan Xp), obtaining real-time (RT) factor values of 0.17 and 0.11
respectively.

Table 4.1: Objective scores for bin2bin and PLCNet, under different packet loss
rates

Packet Loss Rate zero-fill PLCNet bin2bin

PESQ

10 % 2.13 3.12 3.31
20 % 1.04 2.60 2.87
30 % 0.89 2.04 2.50
40 % 0.81 1.71 2.18

STOI

10 % 0.86 0.93 0.92
20 % 0.81 0.90 0.90
30 % 0.73 0.85 0.87
40 % 0.61 0.77 0.83

Table 4.2: Average objective scores for the comparison PLC solutions, under
packet loss rate 10 %-40 %

PESQ STOI
bin2bin 2.72 0.88
PLCNet 2.36 0.86
PLAAE 2.04 0.84
TF-GAN 1.97 0.81

RNN 1.91 0.77
EVS 1.89 0.78
Opus 1.77 0.77

WebRTC 1.70 0.70
zero-fill 1.22 0.75

4.2.4 Final remarks

In this work, we proposed an end-to-end pipeline for spectrogram inpainting
and audio concealment using a cGAN-based architecture, inspired by the pop-
ular pix2pix framework. We combined the classical discriminative loss with
a linear combination of two loss functions, that are correlated with the per-
ceptual quality of speech. In addition, we adapted the receptive field of the
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PatchGAN discriminator and we used a custom initialization of the Griffin-Lim
algorithm to speed up post-processing. We demonstrated experimentally that
the proposed method is capable of simultaneously identifying and recovering
missing parts, thus outperforming the state-of-the-art DNN method by +15.3 %
on PESQ and +2.4 % on STOI, respectively. Finally, inference time evaluation
suggests that this approach can be integrated into a real-time application, even
with a mid-range hardware setting.

As future developments we plan to investigate the generator to directly pro-
cess complex-valued spectrograms, in order to incorporate the phase recon-
struction directly into the generative model.
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Figure 4.7: Bar graphs representing PESQ and STOI results for comparison.
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4.3 A Score-aware Generative Approach for Music
Signals Inpainting

In this work we explore the ability to conceal missing gaps on musical signals,
through a conditional-GAN (cGAN) based framework operating in the time-
frequency (TF) domain, with the specific aim of inpainting large audio gaps.
We address this problem by exploiting a well-established cGAN framework pro-
posed for computer vision tasks and incorporate several modifications tailored
to this specific use case. This study extends from our activities in the field
of speech signal inpainting [135]. Two important novelties with respect this
previous work are the introduction of a parallel objective criterion to support
the GAN training and the use of CQT spectrograms. Both these novelties are
motivated by the application domain i.e. musical signals. Furthermore, we add
polyphonic pitch estimation into the generator flow, to translate the candidate
inpainted frame from the TF domain to a piano-roll representation. This latter
is then used to minimize the differences with the ground-truth roll, extracted
by the aligned MIDI file. Compared to a similar approach [151] which relies on
a-priori knowledge of the score in the form of a MIDI file (and enforces a tight
execution of it), our method can be extended to any type of music execution,
be it improvised or not. Our method will be also compared to a state-of-the-art
method for audio inpainting, called GACELA [104].

This work was presented at the 4th International Symposium on the Internet
of Sounds, in October 2023 [152].

4.3.1 Time-Frequency features

To efficiently process audio files, we adopt a TF representation to extract rel-
evant input features. Commonly used methods for preprocessing audio sig-
nals include the Short-Time Fourier Transform (STFT), Mel Filterbank Cep-
strum Coefficient (MFCC), Mel-Scale Spectrogram and constant-Q transform
(CQT) [153].

As pointed out in most of the state-of-the-art works on Chord Recognition
[154,155], Automatic Music Transcription [156,157] and Pitch Detection [158],
the CQT offers advantages over STFT or Mel-scaled spectrograms in note
identification. This makes it particularly well-suited for processing musical
audio signals. In CQT, the frequency bins are logarithmically spaced, as a
result, it exhibits higher resolution for instruments with lower registers, and
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higher time resolution at higher frequencies (see fig. 4.9). The combination
of these resolutions makes it possible to recover pitch and timing information
for individual notes, even if played simultaneously. Another significant feature
of the CQT representation, particularly relevant to AMT applications is the
equivariance of the frequency axis to pitch translation. When altering the pitch
of a note, all harmonics in logarithmic scale experience a constant shift, as they
are approximately integer multiples of the fundamental frequency. This helps
convolutional architectures to share structural similarities between different
pitches.
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Figure 4.9: Comparison between the STFT of a piano play (left) and the CQT
of the same clip (right). The time axis are consistent between the
two representations, while the frequency axes are not: the STFT
frequency bins spans from 0 to fs/2, while CQT frequency bins
ranges from 32.7 Hz (note C1) and 4186.0 Hz (note C8), as a design
choice.

4.3.2 Inpainting Architecture

The proposed architecture is a generative neural inpainter that improves pix2pix
by using different arrangements for the task of musical signals time-frequency
inpainting; an overview of it is depicted in fig. 4.10. As also explained in our
previous work [135], the term bin2bin draws inspiration from the fundamental
unit (TF bin) of the time and frequency axes of the spectrogram.
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Generator

The bin2bin scheme utilizes a generator architecture based on the U-Net [121]
design with added skip-connections between homogeneous layers. The U-Net
consists of a convolutional encoder that down-samples the input image in the
first half and a decoder that upsamples the latent representation using 2D
transposed-convolutions. Both the clean signal (s) and its lossy version (s̃)
undergo transformation into CQT spectrograms, denoted in the following by S

and S̃, respectively. In detail, 84 pitch levels are covered, corresponding to as
many notes, from C1 (32.7 Hz) to C8 (4186.0 Hz) spanning a total of 7 octaves,
each represented by 72 bins. At the sampling rate of 22050 Hz, the FFT hop
size was set to 128 samples, to ensure a balanced resolution between the regions
to be reconstructed and the reliable parts that serve as conditioning contexts.

The generator G is fed spectrograms of size 504×504, where each dimension
represents, respectively, the number of frequencies and time bins. Only the
magnitude spectrogram is fed into the generator, since it processes real-valued
inputs, hence the phase information is discarded.

PatchGAN Discriminator

The discriminator module is based on a custom architecture known as Patch-
GAN. It operates as a fully convolutional network, transforming the input
image into an N ×M feature map of outputs Y . Each patch yi,j in this fea-
ture map indicates whether the corresponding portion of the input is real or
fake. The authors who first introduced PatchGAN [134] conducted an ablation
study to find the best configuration, in terms of number of convolutional layers
and kernel sizes, to optimize the evaluated metrics. Similarly, in our work, we
tested the effect of varying the size of the discriminator’s convolutional kernels
to achieve a rectangular receptive field instead of the square dimension com-
monly used in CV. Our motivation for this decision came from observing that
the portions of the spectrogram to be inpainted span the entire frequency di-
mension but cover a smaller part of the time dimension. Following our previous
study [135] we employed a receptive field of 162 × 24, using 8 × 2 rectangular
kernels for all convolutional layers.
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4.3 A Score-aware Generative Approach for Music Signals Inpainting

4.3.3 Multi-objective training

Multi-objective optimization [159] has received considerable attention in recent
years as many real world problems have multiple conflicting objectives. In gen-
eral, since the multi-objective deep learning methods use richer information to
achieve the desired goal, their performance in comparison to the other methods
should be better.

In the proposed framework, we adopt the concept of multi-objective opti-
mization by training the generator with an ensemble of three loss functions:
the first is the Binary Cross-Entropy loss LBCE as in a classic GANs. We also
propose a score loss LP R, that is the MSE computed between two piano rolls
(represented as 2D images): the predicted one and the reference one, extracted
from the aligned MIDI file. Its rationale is to help the generator to inpaint the
signal with musical events that are likely to be present in the original score. In
other words, the generator should learn to fill gaps with note pitches and tim-
ings that are harmonically and rhythmically compatible with the surrounding
context (thus likely to be the ones in the original score). Finally, we employ
the Spectral Convergence Loss Lsc, defined as

Lsc

(︁
S, S̃

)︁
=

√︂∑︁
t,f

(︁
|St,f | − |S̃t,f |

)︁2√︂∑︁
t,f |St,f |2

(4.9)

Reducing this loss helps improving the perceptual quality of the audio signal
[144].

4.3.4 Pitch estimation

To build the piano-roll representation used in the pitch estimation module,
note-on and note-off messages were extracted along with their timestamps,
from each MIDI file associated with the music clip, and transformed into a
2D binary matrix consisting of 84 rows and 504 columns. The time dimension
(504) coincides with the size of the aligned input CQT spectrogram, while the
84 rows represent as many pitch levels chosen in the symbolic representation.
(see fig. 4.11).

The pitch estimation module we adopted was the result of a preliminary
study conducted on three types of neural network layers commonly used in
polyphonic pitch estimation, i.e. fully connected, LSTM and convolutional,
arranged as a stack of several layers (as it is done, e.g. with MLP and CNN) or
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Figure 4.11: Example of a CQT frame (top) and its aligned piano-roll extracted
from the MIDI file (middle). The bottom figure represents the
pattern obtained placing the CQT spectrogram as input to the
pitch estimation module.

in a U-Net fashion. The best choice was to use convolutional layers shaped as a
U-Net, as also supported in a recent study comparing different architectures for
multipitch estimation [160]. The architecture was derived, for simplicity from
the same U-Net with skip-connections used in the bin2bin generator module,
with the addition of an appropriate ConvTranspose2D layer in the upsample
branch, to achieve the desired shape of the output.

The module was trained for 200 epochs, following the criterion of minimizing
the Mean Squared Error (MSE) between the predicted and actual roll. The
MSE criterion is used, since the estimated piano-roll contains continuous values
in [0, 1], and thus comparison with the ground truth piano-roll is not strictly a
binary classification task.
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4.3 A Score-aware Generative Approach for Music Signals Inpainting

4.3.5 Experiments

During our experiments, we found that training the network with damaged
frames larger than those actually used during testing, increases the network
performance. For this reason we trained the models with lossy gaps of 900 ms
and tested the model with either “small” or “medium” lossy gaps of 375 ms and
750 ms, respectively. The training gap width is the largest we could employ
without affecting the network ability to converge during training. In contrast,
GACELA is constrained to use the same gap size in both training and test.
The lossy gaps are always at the center of the context frame (see fig. 4.12). We
conducted the experiments both with and without the support of the piano-roll
based loss, obtaining two different architectures which will be later referred to
as bin2bin and bin2bin-MIDI.

Dataset

Our experiments were conducted using the MAESTRO dataset [161], which
includes nearly 200 hours of paired audio and MIDI recordings from nine years
of International Piano-e-Competition events. More detailed statistics are re-
ported on Table 4.3. The MIDI data in this dataset provides information on key
strike velocities and sustain pedal positions, although we used only the note-
on note-off informations. Both the audio and MIDI files are precisely aligned
with an accuracy of approximately 3 ms and divided into individual musical
pieces. The uncompressed audio in the dataset is of CD quality or higher, with
a sampling rate of either 44.1 or 48 kHz and a 16-bit PCM stereo format. To
ensure proper training, validation, and testing, we adhere to the specific split
configuration proposed by the dataset’s creators. This configuration ensures
that the same musical composition, even if performed by multiple contestants,
does not appear in multiple subsets.

Table 4.3: Statistics of the MAESTRO dataset

Split Duration (hours) Size (GB) Notes (million)
Train 159.2 96.3 5.66

Validation 19.4 11.8 0.64
Test 20.0 12.1 0.74

Total 198.6 120.2 7.04
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Figure 4.12: Example of CQT spectrograms inpainted with the bin2bin frame-
work. Due to the variable length of the CQT basis filters, the
damaged gaps affect a portion of the spectrogram unevenly dis-
tributed over time.
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Post-processing

Since the generator output represents the magnitudes of the CQT coefficients of
both the damaged regions and the reliable surrounding contexts, we had to ap-
ply a phase reconstruction using the Fast Griffin-Lim algorithm (FGLA) [143],
with a map of all zeros as the initial phase guess. The phase recovery algorithm
is a critical issue in audio processing approaches working with real-valued spec-
trograms. We made this choice favoring the quality of the reconstruction, but
the high number of iterations required by FGLA makes it challenging to use in
real-time applications.

Next, we minimized the reconstruction error, introduced by both the gener-
ator and the time conversion, by merging the inpainted corrupted region with
the reliable surrounding context, using a cross-fade operation. We adopt the
ascending and descending profiles of a Hann function, to respectively fade-in
and fade-out the amplitude of the waveforms involved.

Comparative method: GACELA

As a baseline we used the GACELA context encoder [104], which is currently
considered state-of-art in music inpainting. Briefly, GACELA is a cGAN frame-
work proposed in 2020 by A. Marafioti et al, which performs Mel-scaled spec-
trogram inpainting using five parallel discriminators with increasing resolution
of receptive fields. It relies only on cross-entropy loss while it does not employ
reconstruction losses, neither in the frequency nor in the time domain, and this
aspect, in our opinion, strongly penalizes the final reconstruction. The authors
provide results based solely on subjective listening tests, practiced on a subset
of files, thus we replicated the experiments evaluating two different types of
objective metrics, on all files in the test set.

Evaluation metrics

To evaluate the inpainting methods numerically, we calculate the Objective
Difference Grade (ODG) [162] and the Structural Similarity Index (SSIM) [163],
between the outputs and the ground truth magnitude spectrograms.

Objective Difference Grade is the overall quality measure introduced in PEAQ
(Perceptual Evaluation of Audio Quality) [162] which is considered standard
for audio quality evaluation. PEAQ algorithm performs a direct comparison
between a recovered signal and a reference signal and is designed to mimic
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perceptual quality ratings made by a human listener. Its output ranges from
0 (imperceptible difference) to -4 (very annoying artifact). We used the MAT-
LAB implementation from [164] which is based on the ITU-R recommendation
(BS 1387) of 1999 [165].

The Structural Similarity Index (SSIM) [163] is a pixel-wise quality metric
first introduced in Computer Vision but quite popular also for audio synthesis
[151,166]. It is defined as the weighted product of three factors: luminance (l),
contrast (c) and texture (s), consisting of the local means, standard deviations
and cross-covariance statistics for spectrograms S and S̃:

SSIM =
[︁
l
(︁
S, S̃

)︁]︁α ×
[︁
c

(︁
S, S̃

)︁]︁β ×
[︁
s

(︁
S, S̃

)︁]︁γ (4.10)

4.3.6 Results

The results of the evaluation tests are reported on the following tables. The ex-
periments demonstrate that our model significantly outperforms the GACELA
framework, being able to produce a more plausible and artifact-free gap in-
painting.

Table 4.4 and the box-plot depicted in Fig. 4.13 show that bin2bin achieves
a gain of about 10.5 % (without the piano-roll loss) and 13.3 % (with the piano-
roll loss), for the “small” gap condition, while the performance improvement
is about 8.5 % and 10.3 %, for the “medium” gap condition, in terms of ODG
score with respect to the baseline. Given the narrow margin of gain between
the two variants of the bin2bin method, the evidence of ODG improvement,
obtained by introducing the additional loss, was also successfully validated with
a statistical Z-test on the mean, with a significance level of 0.05.

Table 4.5 and the box-plot of Fig. 4.14 show the results obtained on the
same test files in terms of SSIM index. Here the advantage between GACELA
and bin2bin is noticeable as well. Our method allows an improvement of 12.6 %
(“small” gap) and 13.6 % (“medium” gap), however, the SSIM index between
the two training schemes, with and without the piano-roll loss, is about the
same magnitude, with no evidence of statistical difference.

Finally, in fig. 4.15 we show in detail the clipping of a reconstructed area,
compared with the original one. It can be seen that the bin2bin method suc-
ceeds better than GACELA, in reproducing the sharpness of the fundamental
frequencies along with the harmonics of piano notes, especially in the lower
octaves, thus reproducing a sound that is more faithful to the original.

78



4.3 A Score-aware Generative Approach for Music Signals Inpainting

Table 4.4: ODG score values for the three compared methods, and the two gap
width configurations.

Gap size Method ODG score ↑

Small (375 ms)
GACELA -3.232 ± 0.232
bin2bin -2.892 ± 0.510

bin2bin-MIDI -2.800 ± 0.491

Medium (750 ms)
GACELA -3.318 ± 0.202
bin2bin -3.039 ± 0.495

bin2bin-MIDI -2.976 ± 0.456
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Figure 4.13: ODG score box plots, for the three compared methods, and the
two gap width configurations.

Table 4.5: SSIM index values for the three compared methods, and the two gap
width configurations.

Gap size Method SSIM index ↑

Small (375 ms)
GACELA 0.809 ± 0.035
bin2bin 0.911 ± 0.053

bin2bin-MIDI 0.913 ± 0.036

Medium (750 ms)
GACELA 0.796 ± 0.054
bin2bin 0.904 ± 0.036

bin2bin-MIDI 0.905 ± 0.036
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Figure 4.14: SSIM index box plots, for the three compared methods, and the
two gap width configurations.
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Figure 4.15: Cropped portions of the CQT spectrograms affected by a 750 ms
gap. Clean reference (left), bin2bin-MIDI inpainting (center),
GACELA inpainting (right).

80



4.4 Complex-bin2bin: A Latency-Flexible Generative Neural Model for Audio Packet Loss Concealment

4.3.7 Final remarks

In this paper, we presented an end-to-end pipeline for CQT spectrogram in-
painting and music signal gap concealment. The pipeline utilizes a cGAN-based
architecture, initially introduced in our previous research on speech PLC, and
inspired by the widely known pix2pix framework.

We integrated the traditional cross-entropy loss of a PatchGAN discriminator
with two additional loss functions: one correlated with the perceptual quality of
speech and another representing the MSE difference between the ground truth
piano-roll and the predicted piano roll, obtained through a pre-trained pitch
estimation module. The evaluation shows that our framework outperforms a
well-consolidated cGAN-based method, which tends to produce segments that
are richer in notes but often dissonant with the surrounding context. The reader
is encouraged to personally evaluate some listening examples we provide in the
accompanying demo website 1.

An interesting aspect that has arisen during the development of this project is
the possibility of applying the inpainting process at the piano-roll level, rather
than (or in conjuction with) the spectrogram level. In fact, we believe that a
lower-dimensional representation can be considerably helpful to the training of
the GAN, allowing it to generate lost contexts in a more musically meaningful
way, and thus addressing gaps that easily exceed a thousand ms. We plan to
develop metrics and tools to evaluate this concept as a future development.

4.4 Complex-bin2bin: A Latency-Flexible
Generative Neural Model for Audio Packet
Loss Concealment

On this section we propose a time-frequency generative framework for PLC,
aiming to address challenges posed by computational overhead and joint magnitude-
phase recovery. Inspired from our previous studies on PLC through spectro-
gram inpainting [135,152], we name the proposed method complex bin2bin (also
referred to as cplx-bin2bin), to emphasize that the restoration involves the real
part as well as the imaginary part of the acoustic spectrogram, while the term
bin2bin points to the mapping of the fundamental discrete time and frequency
units (bin).

1https://aircarlo.github.io/bin2bin_music_inpainting
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4.4.1 Proposed method

One of the main innovations we have introduced in this work is the possibility
of performing the repair of damaged segments in “adaptive” mode. In contrast
to the totality of work in the literature, in which the forward settings (such
as operating context window and stride step) must be predetermined in the
training phase, our model performs a training procedure under more general
conditions, which allows it to be flexible and operate in different inference
conditions. In this way, the proposed model is capable of repairing damaged
segments regardless of their numerosity and position within a context window
of varying size, from 20 ms to 1024 ms. This operating modality is designed
to give the user the ability to trade-off between computational latency and
reconstruction quality in real time and without the need to change the backbone
model at runtime.

The diagram in Fig. 4.16 illustrates the generic operation mode of the pro-
posed framework. Prediction of lost frames in the current context is done based
on both the buffer and the context itself, the former of which contains either
correctly received and previously reconstructed frames. Then, according to a
binary mask that labels the state of each packet, only the actually reconstructed
packets flow through to form the final sequence.

 

0    1    0             …             1    1    0 
DNN 

… … 

… 

reliable packet 

lost packet 

generated concealed packet 

buffer context current context 

time  

Figure 4.16: Overview of the proposed PLC mechanism, operating on a given
time frame.

Network structure

An overview of our complex bin2bin architecture is presented in fig. 4.17. One
of the main contributions of this paper is the adaptation of the TCN-DenseUNet
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Figure 4.17: Generator network composed of the U-Net with temporal convo-
lutional bottleneck.
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architecture for the audio packet loss concealment task, through an in-depth
evaluation of both generative and discriminative processes, optimized to in-
paint complex-valued spectrograms gaps. We chose this architecture given its
large use in various speech enhancement tasks such as speaker separation [167]
and speech dereverberation [168]. The structure is built on a U-Net [121] with
skip-connections and DenseNet blocks [169] at multiple frequency scales in the
encoder and decoder. A temporal convolutional network (TCN) [170] at the
middle section leverages long-range information by using dilated convolutions
along time. Exponential Linear Unit (ELU) activations and Instance Normal-
izations (IN) are used after convolution and deconvolution blocks. The network
takes as input a real-valued tensor with shape C×F ×T = 2×257×257, where
C is the number of channels, F the number of STFT frequenciy bins and T the
number of STFT frames. The RI components of the lossy spectrogram, S are
concatenated along the channel axis and fed to the network, while the output
Ŝ yields the same size as input.

This work evolves from our previous researches on spectrogram inpainting
using conditional GANs [135,152]. Unlike the latter, the use of complex-valued
spectrograms throughout the generation process allows for multiple advantages,
first of all, the ability to convert the repaired spectrogram back in time domain
with a single inverse STFT operation, without the need to resort to approxi-
mate algorithms for phase estimation, which are known to be the bottleneck of
methods operating on magnitude spectrograms.

Loss criteria

As widely experienced in multiple research works on speech enhancement oper-
ating in the time-frequency domain, combining multiple resolution loss criteria
can have beneficial effects on several aspects, even more so in the case of gener-
ative adversarial networks, where convergence and stability are critical issues.
The first to introduce such an approach being Yamamoto et al [2].

To facilitate the generation of high-resolution slices of inpainted spectro-
grams, we used a multiresolution STFT criterion for the generator, which is
based on the evaluation of the repaired and target spectrograms, at three dif-
ferent resolutions in time and frequency. We defined each individual STFT
loss as the weighted sum of three contributions: the spectral convergence loss
(Lsc), the log-STFT magnitude loss (Lmag) and the phase loss (Lpha):
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LST F T (G) = λ1 · Lsc

(︂
S, Ŝ

)︂
+ λ2 · Lmag

(︂
S, Ŝ

)︂
+ λ3 · Lpha

(︂
S, Ŝ

)︂
(4.11)

where S ∈ C and Ŝ ∈ C denote respectively the STFT of the clean signal (s)
and the repaired spectrogram. The optimal weights were chosen as λ1 = λ2 = 1
and λ3 = 0.1, during the hyperparameter tuning process. The individual loss
terms are defined as follows:

Lsc

(︂
S, Ŝ

)︂
=

√︃∑︁
t,f

(︂
|St,f | − |Ŝt,f |

)︂2

√︂∑︁
t,f |St,f |2

(4.12)

Lmag

(︂
S, Ŝ

)︂
=

∑︁
t,f |log|St,f | − log|Ŝt,f ||

T ·N
(4.13)

Lpha

(︂
S, Ŝ

)︂
=

∑︁
t,f

(︂
∠St,f − ∠Ŝt,f

)︂2

T ·N
(4.14)

where |·| and ∠ represent the STFT magnitude and phase components respec-
tively, while T and N denote the number of time bins and frequency bins of a
frame.

As outlined in [144], Lsc highly emphasizes large spectral components, which
helps especially in early phases of training, while Lmag accurately fits small am-
plitude variations, which tends to be more important towards the later phases
of training. Finally Lpha helps in phase estimation, although most of the insight
about the structure of the speech is obtained from the magnitude [171].

The multiple resolutions of LST F T are given by the parameters sets reported
in Table 4.6. All three terms are then averaged and summed to an additional
contribution, LP MSQE . The latter is a perceptual-related metric operating
in the time domain, defined by the combination of the MSE criterion and a
differentiable implementation of the PESQ algorithm:

LP MSQE = 1
T

∑︂
t

(︂
MSE + α ·D(s) + β ·D(a)

)︂
(4.15)

where α and β are weighting factors experimentally determined, T is the num-
ber of frames in the training batch, D(s) and D(a) are two disturbance terms
inspired by the PESQ algorithm. To delve into the details of LP MSQE see [172].
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Table 4.6: Parameters used to settle multi-resolution losses. The window sizes
and hop lengths in ms are derived from [2] by fitting the actual
sampling rate.

Loss # FFT size Window size Hop length
LST F T,1 1024 400 (25 ms) 80 (5 ms)
LST F T,2 2048 800 (50 ms) 160 (10 ms)
LST F T,3 512 160 (10 ms) 32 (2 ms)
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Figure 4.18: Illustration of the adversarial training strategy, assisted by the
multi-resolution STFT loss and the perceptual loss.

Finally, we used the least squares loss function instead of the sigmoid cross-
entropy loss function for the discriminator, as in Least squares GANs (LS-
GANs) [41] (see section 2.4). The objective functions for joint conditional and
least squares GAN (which will be referred as LSCGAN) can be defined as
follows:

min
D
LLSCGAN (D) = 1

2Ex,c

[︂
(D (x|c)− 1)2

]︂
+ 1

2Ez,c

[︂
(D(G(z)|c))2

]︂
(4.16)

min
G
LLSCGAN (G) = 1

2Ez,c

[︂
(D (G(z)|c)− 1)2

]︂
(4.17)

Figure 4.18 shows the operative adversarial training scheme, used in gener-
ator and discriminator update.
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4.4.2 Experimental Setup

The evaluation of the proposed method was carried out using two different
criteria for simulating lost packets, according to the most common scenarios
used by works dealing with the PLC problem.

First, a series of experiments were conducted using a synthetic dataset, gen-
erated from clean speech recordings taken from the VCTK corpus [145]. To
simulate the occurrence of lost packets, fragments of 20 ms duration were filled
with zeros, each selected randomly, regardless of the state of the preceding
packets. As experienced in our previous work, the most effective strategy for
training is to use over-corrupted recordings, i.e. with a higher loss rate than
that used in the test phase. In addition, to ensure a stable and fast convergence
of the generative network, each training sequences were corrupted with varying
amount of losses, ranging from 10 % to 60 %.

The second operational scenario was to consider corrupted speech recordings
with loss traces observed in actual VoIP calls. For this purpose, the dataset
provided for the Microsoft PLC challenge 2022 [173] was used, which consists of
clean audio clips taken from radio podcasts, and separate lost packet descriptor
files, that can be coupled with clean registrations to form a potentially large
dataset for our purpose. The traces of lost packets from real video calls have a
slightly higher variability than those obtained by randomly simulating losses.
The statistical distribution of gap width for both data sets is shown in figure
4.19.

Additionally, we applied a set of data augmentation techniques, directly on
the raw waveforms, with the aim to improve model performance and general-
ization abilities. Augmentations include:

• Gaussian noise injection,

• Time stretch, with a rate in [0.8, 1.25],

• Pitch shift, within −4 and +4 semitones.

Training is conducted with an early stop criterion. Specifically, to obtain a
real-world evaluation of the training progress, we employ one of the evaluation
metrics, described in 4.4.2. The validity of this approach is later discussed in
4.4.3 after the experimental results are described.
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Figure 4.19: Heatmap showing the distribution of gap widths characterising
the datasets. The first six rows refer to the manually injected
gaps, at different rates, PLCC refers to the Microsoft PLC chal-
lenge dataset, while variable indicates the distribution obtained
with varying rates in [10 %, 60 %]. The dashed line separates test
configurations (above) from train one (bottom).

Evaluation metrics

We assessed the performance of the proposed model in terms of several criteria,
some of which were also used by the models taken as comparisons. In both sets
of experiments, with the synthetic dataset (VCTK) and the real-traces dataset,
we calculated the values of PESQ [148], STOI [131], DNSMOS [174], PLCMOS
and Word Error Rate [133].

Perceptual Evaluation of Speech Quality measure (PESQ) [148] emerged as a
valid objective metric on a competition to develop metrics for speech enhance-
ment tasks. The PESQ algorithm operates by simulating human perception of
speech quality and assigning a scores ranging from -0.5 to 4.5.

Short-Time Objective Intelligibility (STOI) [131] operates on short-time seg-
ments of speech signals, typically utilizing a time-frequency representation such
as the Short-Time Fourier Transform (STFT). It calculates a correlation-based
measure, expressed as a percentage value, between the processed speech and the
reference speech in each time-frequency bin, aiming to capture the perceptual
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intelligibility of the processed speech.

The latter metrics, while quick and easy to compute, may not have a very
strong correlation with human ratings, and may be insufficiently exact when
trying to compare two relatively similar models. They also require an aligned
reference, which limits their use to scenarios where such a reference is available.
Particularly in scenarios involving packet loss concealment with a jitter buffer
and timescale modification, which are commonly implemented, the reference
signal is typically unaligned, potentially leading to additional errors.

Non-intrusive deep neural network (DNN)-based metrics were also effectively
utilized in addressing the PLC problem. One of the most prevalent metrics is
the Deep Noise Suppression Mean Opinion Score (DNSMOS) [174]. Despite
being originally trained for different tasks, many researchers consider it suffi-
ciently aligned with reconstruction quality, especially in scenarios with missing
segments. DNSMOS was initially conceived as a non-intrusive metric to pre-
dict scores from the ITU-T Rec. P.808 subjective evaluation, which aims to
capture the overall quality of an audio clip, was later upgraded to the P.835
standard. This standard delineates three distinct scores: speech quality (SIG),
background noise quality (BAK), and overall audio quality (OVRL). Authors
stated that the DNSMOS metric exhibits a high correlation with human rat-
ings, showing a Pearson’s Correlation Coefficient (PCC) of 0.94 for SIG and
0.98 for BAK and OVRL.

PLCMOS [133] is a newly implemented DNN-based metric formulated by
Microsoft researchers as part of an effort to advance research on Packet Loss
Concealment. The scoring system employs a neural network trained to predict
the ratings that human evaluators would assign to an audio file. Unlike the
previously described DNSMOS, the PLCMOS model is trained using audio
degraded by lossy transmissions, incorporating real packet loss traces observed
in VoIP calls, and subsequently restored using various PLC algorithms. As a
fully non-intrusive method, PLCMOS does not necessitate a reference signal.
It has gained significant popularity as a means of comparing different PLC
algorithms in recent times.

Word Error Rate (WER) is the primary accuracy metric used to evaluate
Automatic Speech Recognition (ASR) systems, so it plays an important role
in judging the correct gap reconstruction. Obviously, the impact of small and
sparse gaps is significantly smaller than bursts of close gaps can have, so we ex-
pect different and non-comparable WER values between the two datasets con-
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sidered. To calculate WER, we adopted the pre-trained ASR Whisper frame-
work [175]. Specifically, the medium.en model was chosen since it is adequately
accurate and lightweight at the same time, to allow feasible evaluations. The
ASR model first alignes the reference and the recognized transcription by min-
imizing a proper distance (e.g. the Levenshstein or edit distance) between the
two texts. After this, it counts the number of insertions (I), substitutions (S)
and deletion (D) word errors and outputs the proportion of the total number
of errors over the number of words (N) in the reference:

WER = I + S + D

N
· 100 % (4.18)

Comparative methods

The baseline systems used for evaluation of VCTK data include two strictly
causal solutions, DNN and CRN, two methods designed for offline use, SEGAN
and Wave-U-Net, and a flexible solution, TFGAN-PLC, that allows two latency
options, 20 ms and 160 ms, but still requires the models to be trained separately.

DNN [176] is a deep approach to predicting lost speech frames by resorting to
the FFT features of previous correctly received frames. Specifically, two DNNs
with three hidden layers and 2048 neurons each are employed to separately pre-
dict the magnitude and phase of the candidate frame. CRN [177] is a convolu-
tional encoder-decoder architecture with LSTMs which has achieved excellent
results in speech enhancement with magnitude-only mapping. The SEGAN-
based speech enhancement approach [124] works end-to-end with the raw audio
signals and reconstructs the lost frames directly in the time domain. Unlike
the original SEGAN paper, a reduced configuration is used for the PLC task,
with fewer output channels and shorter time frames. Wave-U-Net [178] is an
application of the 1D convolutional U-Net architecture, originally designed to
perform end-to-end speech enhancement, for the PLC task. TFGAN-PLC [100]
is an end-to-end PLC approach adopting a time-frequency hybrid generative
adversarial network with the integration of time-domain and frequency-domain
discriminators.

Finally, real-world traces from MS dataset were tested with LPCNet [179],
an autoregressive neural vocoder that improves on WaveRNN [180] using linear
prediction. It allows causal operation, reconstructing 20 ms lost packets as they
occur, or by looking at 5 ms lookahead, which will be considered having 25 ms
stride. In addition, a variant of LPCNet called LPCNet-dc is tested, in which
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the authors state a special handling for DC offsets.

4.4.3 Results

Comparative results are provided in the following for all the aforementioned
methods, according to PESQ, STOI, DNSMOS and PLCMOS scores. Table
4.8 reports PESQ scores at different loss rates for the reference clean speech,
the lossy speech (with zero-fill where packets are lost) and the neural network
approaches that accept a stride of 20 ms or 160 ms. In addition we provide
results for the cplx-bin2bin network with a 1024 ms (being the only one that can
accept such a long stride). As can be seen, the proposed method outperforms all
the comparative methods in terms of PESQ. With very high loss rates (40 %
and 50 %) there is no data for the comparative methods, but we tested our
method showing that an improvement in terms of PESQ can be still achieved
with respect to the zero-fill lossy speech. Please note that according to PESQ
the clean audio gets a slightly lower result than the ideal score (5.0).

Evaluations are also conducted on the same data using the STOI index,
as shown in Table 4.10. In this case, the TFGAN-PLC scores better with
low loss rates (5 % with stride 160 ms, and 5-10 % with stride 20 ms), but the
proposed method scores almost identically and scores better with higher loss
rates, making it more suitable to heavy loss scenarios.

In addition to PESQ and STOI we also evaluated the PLCMOS and DNS-
MOS scores for the proposed method, which are shown in Table 4.9 and 4.12.
In all cases, the proposed algorithm is able to increase both the PLCMOS and
the DNSMOS scores of the lossy speech. Specifically, the PLCMOS score is
increased from a minimum of 39% (loss rate 50%, stride 20 ms) to a maximum
of 86% (loss rate 20%, stride 1024 ms).

Overall, these results show the effectiveness of the proposed approach. To
keep the results in context, on table 4.7 we also provide an insight on the
number of trainable parameters for each of the compared solutions.

For the sake of completeness, we also conducted tests with the cplx-bin2bin
network with varying length of the stride, to assess the PESQ, STOI, PLCMOS
and DNSMOS performance. These are shown in figures 4.21, 4.22, 4.23 and
4.24. All scores follow a similar pattern, i.e. that with shorter strides the con-
cealment performance increases. Specifically, the performance rises quickly in
terms of PESQ and PLCMOS when the stride increases from 20 ms to values
between 300-400 ms. Then a plateau is reached, meaning that the added con-
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Table 4.7: List of trainable parameters in each architecture. For the
adversarial-based models, only the generator was considered.

Model trainable params (M)
DNN 24.37
CRN 17.50
SEGAN 20.49
Wave-U-Net 10.13
TFGAN-PLC 1.85
LPCNet 5.90
cplx-bin2bin 3.14

text between 400 and 1000 ms is of little help to increase the reconstruction
quality. It is interesting to note that with high loss rates, an increase in the
stride can highly improve the STOI, the PLCMOS and the DNSMOS.

Another method to evaluate the proposed method and its ability to restore
the original speech signal is to assess the WER on the reconstructed signal.
Table 4.11 shows that with a stride of 20 ms the network can only slightly
increase the performance2. However, with a larger stride the network benefits
from the added context and is capable of reducing the WER up to a half, with
loss rates as high as 50 %.

To visually assess the qualitative results of the proposed model, we report
on fig. 4.20 (top-right) the spectrogram of a 1024 ms long segment (equivalent
to nearly 50 packets) corrupted by losses of varying size.
The example is taken from a real validation sample. The regions affected by
losses are not sharply demarcated because the STFT operation introduces an
inherent cross-fade that smooth the transition in time. On fig. 4.20 (top-left)
is the spectrogram of the same clean segment, while the image below shows
the output of the reconstruction network. Although this visual evaluation does
not allow for quantifying the presence of other types of distortions potentially
introduced by the network, it is observed that the differences between the
reconstructed and clean spectrogram are imperceptible, and the typical formant
frequencies of the speech signal are reconstructed seamlessly.

2With loss rates 5-10 % the WER of the reconstructed signal is slightly higher than the one
computed on the lossy speech, which may imply that pre-trained ASR Whisper model
used in this work is robust to rare drops of small audio segments.
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Table 4.8: PESQ scores for complex-bin2bin and the comparative DNN solu-
tions, evaluated at different loss rates and stride.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %
Clean - 4.64 4.64 4.64 4.64 4.64 4.64
Lossy (zero-fill) - 2.61 1.84 1.33 1.18 1.10 1.03
DNN 20 2.73 1.89 1.54 1.39 - -
CRNN 20 2.79 1.93 1.66 1.48 - -
TFGAN-PLC 20 2.94 2.16 1.87 1.63 - -
cplx-bin2bin 20 3.30 2.64 1.99 1.75 1.51 1.47
SEGAN 160 2.76 1.95 1.63 1.49 - -
Wave UNet 160 2.87 2.11 1.76 1.54 - -
TFGAN-PLC 160 3.24 2.59 2.14 1.86 - -
cplx-bin2bin 160 3.73 3.23 2.65 2.26 1.94 1.68
cplx-bin2bin 1024 3.76 3.41 2.89 2.49 2.15 1.87

Table 4.9: PLCMOS scores for complex-bin2bin evaluated at different loss rates
and stride.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %
Clean - 4.274 4.274 4.274 4.274 4.274 4.274
Lossy - 4.025 3.586 2.721 2.179 1.822 1.547
cplx-bin2bin 20 4.179 3.982 3.567 3.163 2.853 2.613
cplx-bin2bin 160 4.229 4.131 3.939 3.728 3.477 3.168
cplx-bin2bin 1024 4.222 4.174 4.064 3.927 3.742 3.518
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Table 4.10: STOI scores for complex-bin2bin and the comparative DNN solu-
tions, evaluated at different loss rates and stride.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %
Clean - 100 100 100 100 100 100
Lossy - 95.45 91.20 83.94 75.75 68.87 63.99
DNN 20 95.73 92.57 85.36 78.84 - -
CRNN 20 96.25 92.77 86.11 79.24 - -
TFGAN-PLC 20 97.69 94.68 88.93 83.72 - -
cplx-bin2bin 20 97.15 94.63 89.72 84.59 79.92 75.39
SEGAN 160 96.82 94.20 87.03 81.37 - -
Wave UNet 160 97.15 94.23 87.68 82.17 - -
TFGAN-PLC 160 98.45 95.82 90.11 86.39 - -
cplx-bin2bin 160 97.74 96.00 93.05 89.99 86.30 81.71
cplx-bin2bin 1024 97.81 96.78 94.45 91.65 88.41 84.25

Table 4.11: Word Error Rates obtained on the synthetic dataset, with different
loss rates.

stride Loss rate
Model (ms) 5 % 10 % 20 % 30 % 40 % 50 %
Clean 1.76 1.76 1.76 1.76 1.76 1.76
Lossy 1.95 2.19 2.94 3.86 6.44 12.98
cplx-bin2bin 20 2.10 2.27 2.82 3.74 5.51 12.01
cplx-bin2bin 160 1.95 2.04 2.53 3.02 3.89 6.84
cplx-bin2bin 1024 1.89 1.99 2.28 3.0 3.46 6.30
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Figure 4.20: Magnitude spectrograms (in dB) of an example reconstruction.
Top-left: target signal, top-right: lossy signal with red markers
indicating gap displacements, bottom: reconstruction by the com-
plex bin2bin network. The axes of the plots indicate the frequency
bin and the frame index.

Choice of the early stopping metric

In Section 4.4.2 we described the validation method and the early stop criterion.
These are based on one of the evaluation metrics, the PLCMOS, in order to
stop the training according to a real-world assessment of the audio signal. The
underlying assumption is that the choice of PLCMOS is not arbitrary and
correlates well with any other of the metrics, including the PESQ, which is one
of the addends in the training loss, and could be well used in its spite.

From the experimental data, we report scatter plots, in Figure 4.25 that
shows the PLCMOS score of each test sample as y-coordinate and each of the
other three metrics (PESQ, STOI, DNSMOS OVRL) in the x-coordinate. As
can be seen the PLCMOS is positively correlated (PCC > 0) to the other indices
used for evaluations. The positive association between the metrics motivates
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Figure 4.21: Trend of PESQ values, for recovering a selected file, by varying
the stride and loss rate, through the entire admissible ranges.
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Figure 4.22: Trend of STOI values, for recovering a selected file, by varying the
stride and loss rate, through the entire admissible ranges.
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Figure 4.23: Trend of PLCMOS values, for recovering a selected file, by varying
the stride and loss rate, through the entire admissible ranges.
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Figure 4.24: Trend of DNSMOS ovrl values, for recovering a selected file, by
varying the stride and loss rate, through the entire admissible
ranges.
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the use of the PLCMOS as a criterion for early stopping, alternative to the
losses used during training, to provide a more robust training focused for PLC.
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Figure 4.25: Scatter plots showing the correlation between PLCMOS and
PESQ (top-left), PLCMOS and STOI (top-right), PLCMOS and
DNSMOS (bottom). Data points are extracted from the tests us-
ing cplx-bin2bin with 1024 ms stride.

4.4.4 Final remarks

In this work we proposed a novel approach for Audio Packet Loss Concealment
that provides flexible handling of latency and is comparable or superior to
state of the art DNN solutions. Its flexibility lies in the ability of recovering
spectrograms without prior knowledge on the segment to be restored, therefore,
it can be employed to repair the latest audio packet, as well as any other in the
input temporal context. The approach is based on a generative bin2bin network
that handles complex spectrograms, thus restoring the phase and magnitude
information jointly. The system also employs an audio quality metric, PESQ,
implemented as a differentiable DSP algorithm, in order to use it as a loss
function during the training.
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Experiments were conducted on different datasets. On voice recordings with
randomly inserted gaps, at rates ranging from 5 % to 50 %, the proposed model
outperformed five recent alternative approaches, based on neural networks,
with improvements up to 22.2 % (20 ms latency) and 23.8 % (160 ms latency) for
PESQ, and improvements of 1.04 % (20 ms latency) and 4.17 % (160 ms latency)
for STOI. Furthermore, experiments conducted on corrupted signals with ac-
tually lost packet distributions over communications networks, the complex-
bin2bin model showed improvements of 14.08 % (PESQ), 1.17 % (STOI), 26.2 %
(PLCMOS), 0.64 % (DNSMOS ovrl), 0.29 % (DNSMOS sig), 0.26 % (DNSMOS
bak), and succeeding in lowering the word error rate perceived by an automatic
recognition system by 1.27 percentage points.

Despite the excellent results obtained by our novel PLC approach, two as-
pects leave room for future investigations. First is the need to reduce the com-
putational footprint of the model, which is currently the second lightest among
those examined. This can be achieved by a proper data distillation technique
applied to the TCN-DenseUNet. Second, to improve the performance of the
model in terms of word error rate, especially at minimum latency where re-
sults have been shown to be negative, we plan to incorporate an additional loss
criterion that minimizes the expected WER.

100



Chapter 5

Other contributions

5.1 A graph-based neural approach to linear sum
assignment problems

5.1.1 Introduction

Linear assignment [181] is a fundamental problem in operations research; it
aims at assigning the elements of one finite set to the elements of another set.
This is done under the condition of one-to-one correspondence, so that the re-
sulting assignment satisfies some optimality criterion, such as minimum cost
or, in a dual form, maximum profit. When the sum of the costs is the objec-
tive to be minimized, the problem is called a Linear Sum Assignment Problem
(LSAP). This type of problem is found in many image processing applica-
tions such as point matching [182], handwritten character and mathematical
expression recognition [183], multiple object tracking (MOT) [184], and object
segmentation [185]. In wireless communication systems, it plays an important
role in tasks such as mode selection for device-to-device communications [186],
resource allocation in MIMO systems [187] and unlicensed channel management
for LTE systems [188]. On audio processing field, the permutation ambiguity
problem of multiple source separation [189] is closely related to LSAP, as well
as to end-to-end neural diarization [190] and, in general, for metrics computa-
tion, such as diarization error rate [191] or permutation-invariant word error
rate [192] for automatic speech recognition.

Related works

A well-established method for linear assignments is the Hungarian algorithm
[193], developed by H. Kuhn in 1955 and revised by J. Munkres in 1957 [194],
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which succeeds in obtaining the optimal solution without a greedy search. How-
ever, it does not scale well with the size of the problem N , since its computa-
tional complexity is O(N3).

Bertsekas et al. proposed the auction algorithm [195] to solve LSAP prob-
lems, so called because it mimics the actual auction process. This method
comprises two steps: a bidding phase and an assignment phase. Later, an ex-
tension based on a scaling strategy, further enhanced the performance of the
auction algorithm. While being close to the ideal solution, it still has a high
computational complexity, which affects its outcomes for linear assignment is-
sues.

A variant of the Hungarian algorithm that uses the shortest alternating paths
to supplement primal solutions has been proposed by Jonker and Volgenant.
[196]. It begins with an initialization phase based on a naive auction algorithm.

Several algorithms, including the interior point method [197, 198] and dual
forest method [199], solve linear assignment problems using general linear pro-
gramming techniques. Ramakrishnan et al. [198] modified the Karmarkar
interior-point method [200] and created an approximate dual projective al-
gorithm.

Additionally, a lot of heuristic methods based on greedy tactics try to find
quick approximate solutions. For the generalized assignment problems, Trick
et al. suggest a greedy heuristic technique [201] and demonstrate that adding
some randomization to the greedy approach can help find better solutions.
Another similar approach is the greedy randomized adaptive search procedure
(GRASP) [202]. Naiem et al. develop the Deep Greedy Switching (DGS)
algorithm [203, 204], which starts with a random initial guess and attempts
to discover a better solution by searching inside a well defined neighborhood.
Although these methods are much faster than the previous heuristics having
polynomial complexity, they often get stuck when the value of the objective
function reaches a local optimum. Moreover, because the gradients of these
heuristic solutions are somewhat difficult to describe, they cannot be directly
included in learning frameworks.

Recently, deep neural networks (DNNs) have achieved promising results on
mathematical optimization problems, with practical applications such as wire-
less resource management allocation [205], link scheduling optimization [206] or
interference management [207]. Several data-driven algorithms have also been
proposed for linear assignment problems. In [208], the assignment task was con-
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verted into an equivalent continuous linear programming problem solved by a
recurrent neural network. Recent works address smaller sub-tasks by breaking
the N ×N assignment problem into N multi classification tasks, using stacked
perceptrons layers [209], bidirectional long short-term memory neural network
(Bi-LSTM) [210] and bidirectional recurrent neural networks (Bi-RNN) [211].

This work is an extension of the one presented in [212], where we propose a
graph-based LSAP description and a DNN technique built on graph learning is
used to address the assignment challenge. This extended version of the article
includes a case study of a real application on smart meter scheduling and an
in-depth analysis of GNN network performance as the number of hidden lay-
ers and batch-size used in training vary. As a comparison, we build upon the
framework proposed by Lee et al. [209], where LSAP of different dimensional-
ity N are decomposed into N independent sub-assignment problems, and two
types of DNNs, a feed-forward MultiLayer Perceptron (MLP) and a Convolu-
tional Neural Network (CNN) are applied to address the sub-assignments as
independent classification tasks.

In this work we show that using an MLP is the worst approach because it
forces the problem to be treated as independent assignments. A better model-
ing strategy is arguably to process the entire cost matrix as input. However, for
example, in the CNN approach as convolutional kernels cover a narrow recep-
tive field, it is required to stack several layers to cover the entire cost matrix
as the size of the problem increases. Moreover, CNNs have finite receptive
field, thus this solution cannot scale to cover arbitrarily large cost matrices. In
contrast, the proposed graph representation of the cost matrix together with
graph-based DNN techniques, allow for an efficient information spread, exploit-
ing relations between all agent-job pairs, even for networks with limited depth,
with obvious advantages in terms of scalability.

This work originated from our contribution to the Second International Con-
ference on Applied Intelligence and Informatics, AII 2022 [212], and was later
extended for publication on the International Journal of Neural Systems, in
January 2024 [213].

5.1.2 Problem formulation

Typically, in the literature, assignment problems are described by resorting to
a toy-example in which N jobs must be assigned to as many different workers
or agents, taking into account a quantity associated with each assignment (e.g.,
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a cost to be minimized or a profit to be maximized). This of course can be
extended to any other context in which two sets of the same cardinality are
involved and all elements must be paired one by one.

Given two finite sets I = {1, 2, ..., N} and J = {1, 2, ..., N}, let assume that
the assignment of element i ∈ I to element j ∈ J incurs a cost ci,j . The problem
has a straightforward integer programming formulation, in which the decision
variable xi,j is equal to 1 or 0 to indicate a feasible or infeasible assignment,
respectively; therefore, it can be expressed as the minimization of the following
objective function:

N∑︂
i=1

N∑︂
j=1

ci,jxi,j (5.1)

subject to the constraints:

N∑︂
i=1

xi,j = 1 j = 1..N (5.2)

N∑︂
j=1

xi,j = 1 i = 1..N (5.3)

xi,j ∈ {0, 1} i, j = 1..N (5.4)

Another common way of modeling assignment problems is by means of graph
theory, through a complete bipartite graph, a structure where the set of vertices
can be divided into two disjoint sets or classes, and the only edges connect
vertices from one class to those of the other class. Let N be the problem
dimensionality, the associated graph has 2N nodes, N of which represent agents
while the rest represent jobs. The assignment costs, properly arranged in a
N ×N adjacency matrix, C, thus represent the weights of connections between
nodes.

The resulting assignments can be also expressed as a permutation ϕ of the
elements inside set I or set J , or with a permutation matrix Xϕ, whose elements
xi,j = 1 if j = ϕ(i), and xi,j = 0 if j ̸= ϕ(i), the latter being the Adjacency
matrix of a bipartite assignment graph (fig. 5.1).
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Figure 5.1: Different representations for the same assignment permutation.

5.1.3 Hungarian algorithm

Formally, the Hungarian algorithm involves manipulating the weights of the
bipartite graph in order to find a stable, minimum-weight perfect matching
[214]. However, most implementations use dynamic programming techniques
by acting on cost matrix values, given the key observation that if a number
is added to or subtracted from all of the entries of any one row or column of
the cost matrix, then an optimal assignment for the resulting matrix is also
an optimal assignment for the original cost matrix. The next page presents
the pseudo-code formulation of the iterative algorithm on which most software
libraries are based. When the algorithm ends, the entries of the returned
matrix A containing ones indicate the optimal assignments, which ensure that
all constraints are satisfied.
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Algorithm 2 Hungarian Algorithm
Input: Cost matrix C ∈ RN×N

Output: Assignment matrix A ∈ {0; 1}N×N

Step 1: Subtract the smallest element in each row from all elements in that
row.
for i← 1 to N do:

mi = min(Ci,:)
for j ← 1 to N do:

Ci,j = Ci,j −mi

Step 2: Subtract the smallest element in each column from all elements in
that column.
for j ← 1 to N do:

mj = min(C:,j)
for i← 1 to N do:

Ci,j = Ci,j −mj

Step 3: Draw the minimum number of lines to cover all zeros in C.
l← minimum_lines_to_cover_zeros(C)
if l == N then:

if Ci,j == 0 then:
Ai,j ← 1

else:
Ai,j ← 0

return A

else:
Step 4a: Extract the submatrix C∗ by selecting the columns and rows

not yet covered.
C∗ = C − {covered_rows_and_columns}
Step 4b: Find the smallest element in C∗

n← min(C∗)
Step 4c: Subtract n from each row of C∗,
for i← 1 to |C∗| do:

Ci,: = Ci,: − n

Step 4d: Add n to each column of C∗,
for j ← 1 to |C∗| do:

C:,j = C:,j + n

Go back to Step 3
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5.1.4 GNNs for combinatorial optimization problems

In the field of combinatorial optimization (CO), GNNs have already demon-
strated their practical value. They have been used in various contexts, either to
produce a solution directly or as an integrated component of an existing solver.
Most of the previous works on such topic focused towards finding feasible, op-
timal or near-optimal solutions, while a smaller number tried to quantify the
optimality of the proposed solution, or prove its infeasibility. Below, we briefly
review the main works involving GNNs for basic CO problems. For a more
extensive review, see [215].

Prates et al. [216] trained a GNN in a supervised manner to solve small-
scale instances (up to 105 cities) of the Traveling Salesman Problem (TSP).
A similar structure was further extended by Lemos et al. [217] for the Graph
Coloring Problem. To solve the TSP, Joshi et al. [218] suggested using Residual
Graph Convolutional Neural Networks [219] in a supervised manner. Instead of
producing a valid TSP tour, the model provides the probability that each edge
belongs to the tour. Li et al. [220] used Graph Convolutional Networks [221] on
combinatorial problems easily reducible to Maximum Independent Set (MIS)
problems. Li et al. [222] studied the use of GNN for Graph Matching, that
is, to search for an alignment between two graphs or sub-graphs, such that a
cost function is minimized. Fey et al. [223] proposed an extended architecture
for the same matching problem, in the first stage of which a GNN learns a
node embedding to compute a similarity score between nodes based on local
neighborhoods. A GNN-based architecture known as GraphSIM is presented
by Bai et al. [224] to address the challenges of graph edit distance and maximum
common sub-graph problems, in an end-to-end pipeline. A similar challenge to
the one addressed in this paper is presented by Nowak et al. [225] who trained a
GNN in a supervised manner to predict solutions to the Quadratic Assignment
Problem (QAP). They modeled the QAP instances as two adjacency matrices
and used the two corresponding graphs as input to the GNN.

5.1.5 Proposed method

In the following, given the assignment problem, the cost overview has been
modeled with a fully connected bipartite graph, a structure where the set of
vertices can be divided into two disjoint sets or classes, and the only edges
connect vertices from one class to those of the other class. Let N be the problem
dimensionality, the associated graph has 2N nodes; N of which represent agents
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Figure 5.2: Illustration of the nodes and edges definition, from the cost matrix
to the corresponding bipartite graph.

while the rest represent jobs.
The input raw feature vectors of the nodes, [x1 . . . x2N ], are initialized with

the cost values between source agents and receiving jobs, according to the cost
matrix C ∈ RN×N :

xi = [Ci,1 . . . Ci,N ] i = 1..N agents (5.5)

xN+j = [C1,j . . . CN,j ] j = 1..N jobs (5.6)

Conversely, all the raw attributes of the edges eij in the constructed graph
are initialized with zero-valued vectors, hence they are not taken into account
by the convolution operator.

The GNN structure is composed of K layers, through which the graph pre-
serves its bipartite layout, while node feature vectors are updated according to
the message passing (MP) operator expressed, for the generic node v and all
its neighbors w, by the following equation:

x(k)
v = 1

|N (v)|
∑︂

w∈N (v)

MLP
(︂

x(k−1)
v |x(k−1)

w

)︂
(5.7)

Comparing eq. 5.7 with the general structure described in section 2.3, it can
be seen that messages are generated by a learnable function (MLP), a dense
network whose input vector is obtained by concatenating the attribute vector
of node v with that of each of its neighbors. Then, the average acts as the
aggregation function of messages from neighboring nodes, collected in a set of
K hops.

Finally, the feature map at last layer, X(K) = [x(K)
1 . . . x(K)

2N ]⊤ is transformed
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to the actual output Y ∈ RN×N through a linear projection with learnable
parameters Θ ∈ RN×2N , to obtain the estimated assignment matrix:

Y = ΘX(K) (5.8)

Loss fuction and evaluation metric

The proposed model solves the assignment task as 2N separate classifiers to
jointly comply both constraints of the assignment problem formulation (eq. 5.2-
5.3); at train stage, the predicted scores are obtained from the output logits Y

by applying softmax operations, in both row-wise and column-wise directions:

ri = softmax (yi,1 . . . yi,N ) (5.9)

cj = softmax (y1,j . . . yN,j) (5.10)

then, given the ground truth binary assignment matrix Ŷ ∈ RN×N , the cross-
entropy loss is computed for each of the 2N separate classifiers, in the form of
negative-log likelihood:

Lr = − 1
N

N∑︂
i=1

N∑︂
j=1

rij · log
(︁
ŷi,j

)︁
(5.11)

Lc = − 1
N

N∑︂
i=1

N∑︂
j=1

cij · log
(︁
ŷi,j

)︁
(5.12)

finally, the total loss L = Lr + Lc is backpropagated to update the network
weights.

At inference stage, the output prediction matrix Y passes through a threshold
criterion, to obtain a binary assignment map, whose rows and columns are
one-hot encoded vectors. The criterion allows for “collision” avoidance (e.g.
multiple jobs assigned to the same agent or multiple agents tasked with the
same job); it consists of an iterative procedure, in which the assignment with
the highest output value (thus the highest probability of being a correct match)
is selected from the prediction matrix. Then the corresponding row and column
are deleted, and the process is repeated until a single entry remains.

To benchmark our proposed approach we use accuracy as defined in [209],
that is, the amount of jobs correctly matching their optimal agents, divided by
N . This also lets us to compare directly with methods proposed in [209].
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Network architecture

The Graph Neural Network consisted of K = 2 layers, which was experimen-
tally proven to be the best performing depth for each of the problem dimen-
sionality (N) evaluated. A higher number of layers showed the same level of
accuracy, with the drawback of parameters, memory and time consumption
increase, as evidenced by the ablation study of Section 5.1.6.

The MLP network used for message propagation has one input layer of size
2N , an hidden layer with 128 neurons, ReLU activation and an output layer of
size N . This configuration was applied identically for all investigated values:
N = {2, 4, 8, 12, 16}. The choice of a single hidden layer for the MLP follows
the network design made by the authors of [226] and [227], where the MP
operator (5.7) was originally introduced.

Dataset

The policy we adopted to generate data samples follows the one implemented
in the reference paper: we generated 100.000 synthetic cost matrices, drawing
samples from a continuous uniform distribution: ci,j ∼ U [0, 1), then, 80% of
such matrices were used for training, while the remaining 20 % were reserved
for the validation process.

When running experiments, several times with identical settings, we ensured
that the chosen amount of data is sufficiently large to avoid the model to
overfit. With the same criterion we generated 20.000 samples which are used
for testing. In order to further reduce the dependence of the results with respect
to a specific data distribution, we investigated a minor variation on train phase
by generating different samples at every epoch, but did not obtain a noticeable
improvement.

The ground truth decision matrix Ŷ is obtained at runtime for each sample,
using the Hungarian algorithm; specifically we used the munkres [228] Python
package which implements the original algorithm.

Compared learning approaches

The MLP and CNN approaches we took as comparison [209] address LSAP
by first decomposing it into N separate sub-assignment problems on how to
assign one of N jobs to agent j. Only constraints of eq. 5.2 and eq. 5.4 are
strictly guaranteed, while the constraint of eq. 5.3 is not taken in consideration
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at train time, hence there may exist some collisions such that one job may be
assigned to different agents simultaneously. To prevent this issue, a greedy
collision-avoidance rule is applied to finally state the actual assignment.

The MLP and CNN architectures developed in [209] consisted of N models in
parallel; the former has four layers with 32, 64, 256, and N hidden neurons, and
ReLU non-linearity, while the latter (CNN) includes five convolutional layers,
each containing 32, 32, 32, 32, and N kernels of size 1 × 1, and an output
projection map. In both cases, cross-entropy is taken as objective criterion,
while Adam [74] is used as optimization algorithm.

5.1.6 Experiments and results

Models were trained up to 50 epochs with a random weight initialization for
networks; the learning rate was initially set to the value of 6 · 10−3, and then
halved if validation loss is not improved within a patience interval of 5 epochs.
Empirically, it has been found that the learning rate is halved only once within
the entire training stage; an extension of the training interval does not lead
to further improvements. Stochastic Gradient Descent (SGD) was used as
optimization algorithm, with L2 weight decay of 5 · 10−4. Once the training
is over, the model checkpoint with best validation accuracy is selected and
evaluated on the test set.

Results

We report in table 5.1 the results obtained in terms of accuracy, in conjunction
with the bar plot of fig. 5.3, where we compared the proposed graph approach
with the other solutions described on sec. 4.4: MLP and CNN.

The proposed GNN model exhibited relative performance improvements of
0.2 % (N = 2), 2.2 % (N = 8), 18.9 % (N = 12) and 17.3 % (N = 16) if com-
pared with the conventional CNN. Improvements rise to 1.5 % (N = 2), 20.8 %
(N = 8), 32.7 % (N = 12) and 31.1 % (N = 16) if compared with the con-
ventional MLP. Conversely, a slight worsening of accuracy has been observed
for N = 4, however, the significant improvement achieved as N increases sug-
gests that large LSAP problems may benefit more from the GNN approach
than the CNN or MLP ones. An interesting aspect which characterizes the
GNN framework is the limited amount of memory required to store network
parameters.
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Figure 5.3: Accuracy comparison bar chart between the proposed GNN archi-
tecture and reference learning approaches.

Table 5.1: Accuracy performance comparison for the proposed GNN architec-
ture and reference learning approaches, for different sizes N .

Size N 2 4 8 12 16
MLP [209] 0.9849 0.9763 0.7019 0.5918 0.5614
CNN [209] 0.9974 0.9829 0.8295 0.6605 0.6274
GNN 0.9997 0.9660 0.8477 0.7856 0.7361

Table 5.2: Learnable parameters required by different models and sizes N .
Size N 2 4 8 12 16
MLP [209] 38.8 k 81.3 k 183.1 k 317.7 k 497.4 k
CNN [209] 9.7 k 13.7 k 32.1 k 64.4 k 125.9 k
GNN 2.5 k 4.9 k 9.6 k 14.4 k 19.2 k

Table 5.3: MAC operations required by different models and sizes N .

Model Size N

2 4 8 12 16
MLP [209] 38.1 k 79.8 k 180.2 k 313.3 k 491.5 k
CNN [209] 26.4 k 215.5 k 1.79 M 6.29 M 15.46 M
GNN 18.4 k 147.5 k 1.18 M 3.98 M 9.44 M
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Table 5.4: Measurements of peak RAM memory usage for the execution of a
single LSAP instance. Values are in kB.

Model Size N

2 4 8 12 16
MLP [209] 6.1 12.2 24.6 37.3 50.2
CNN [209] 8.7 67.4 548.3 1900.4 4629.1
GNN 17.4 72.6 319.5 786.1 1480.0
Hungarian [194] 56.0 176.0 608.0 1296.0 2240.0

Table 5.5: Measurements of CPU average load time when processing a single
LSAP instance. Times are in µs.

Model Size N

2 4 8 12 16
MLP [209] 177.2 340.8 639.2 1023.6 1314.4
CNN [209] 221.5 454.0 934.0 1731.0 2324.4
GNN 331.1 353.8 446.7 583.5 813.3
Hungarian [194] 28.7 88.2 518.6 1719.2 4197.5

Since the MLP and the CNN approached the LSAP problem as N differ-
ent classification sub-problems, the parameters are shared to a limited extent
within each of these classifiers; moreover, each of them needs the full cost matrix
as input, which causes a noticeable overhead. On the other hand, the message
passing operator (eq. 5.7) allows for efficient reuse of the internal MLP, since it
operates at node-level. Tables 5.3 and 5.2 report the exact count of learnable
parameters and MAC, Multiply and ACcumulate operations involved for each
of the considered architectures for different graph sizes; the values have been
estimated by performing inference with a single-batch input sample. Figures
on the next page help to better visualize the trends of required parameters (fig.
5.4) and MAC (fig. 5.5) as N increases.

Table 5.4 and and fig. 5.6 show the peak RAM memory use, for each of
the considered methods, when solving an instance of the assignment problem.
The results reveal that the CNN method has significantly more memory con-
sumption than the MLP-based one. This is largely due to the fact that the
allocation of the 2D convolutional kernels is quite costly. It is important to
note, as previously mentioned, that these two methods actually use N models
in parallel on sub-instances of the entire problem.
The GNN network is positioned between MLP and CNN in terms of RAM
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Figure 5.5: Trend in demand for MAC operations requirements.

usage, mainly due to the locality of the graph-convolutional operator and the
fact it does not require N models in parallel. As we can see it is always less
demanding with respect to the Hungarian algorithm, for all addressed case
studies (different N values).

The peak RAM occupation allows us to estimate the maximum memory
footprint of a specific solver, and hence the hardware minimum requirements;
in order to get a better insight into resource consumption (it is almost al-
ways possible to trade-off memory occupation for execution time) we perform
also, in parallel, a time-profile analysis, reporting on tab. 5.5 and fig. 5.7 an
estimation of mean execution time, obtained over 10.000 runs, between the
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proposed approach, the comparison ones, and the Hungarian algorithm imple-
mented in plain Python language [228]. We can note a cubic trend in time
complexity, which makes the Hungarian algorithm impracticable to apply on
resource-constrained devices, even for small dimensions.
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Figure 5.6: Peak RAM memory usage for the different algorithms in exam.

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2 4 8 12 16

A
v

er
ag

e 
ru

n
n

in
g

 t
im

e 
(µ

s)

Problem size N

MLP CNN GNN Hungarian

Figure 5.7: CPU average running times for the different algorithms in exam.

Looking at figure 5.5 we observe that the MAC operations required by the
MLP are significantly lower than those required by the GNN, however figure
5.7 seems to indicate an opposite trend. As before, this behavior is because
execution times do not depend exclusively on the number of raw operations,
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but are also very sensitive to other time-greedy operations such as read/write
memory accesses. Indeed, we expect that the GNN, making heavy use of pa-
rameter sharing, can be significantly fast even if it experiences a high load in
terms of MACs.

Figure 5.8 further emphasizes the trade-off between effectiveness and effi-
ciency introduced by the graph-based approach, compared with the Hungarian
algorithm.
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Figure 5.8: Inference time (solid lines) versus accuracy (dashed lines).

Finally, figure 5.9 shows the comparison between the accuracy obtained in
terms of correct assignments and the cost accuracy. The latter quantifies the
deviation of the obtained assignment cost from the optimal one. As already
mentioned, the GNN is a sub-optimal solver, however, an interesting aspect
emerges from this graph: although the number of correct assignments produced
by the GNN is significantly lower than the optimal solution, the error in terms
of total cost is quite small. This indicates that the GNN is very efficient in
determining those assignments that have a major impact on minimizing total
cost, while errors are concentrated on the remaining assignments which have
little impact on total cost. To further confirm this behavior, we performed
additional experiments with N = 24 and N = 32, although previous analyses
stop at N = 16 to comply with the configuration used in the comparison
methods, MLP and CNN.

All experiments were conducted on an Ubuntu 16.04 machine, with six In-
tel(R) Core(TM) i7-6850K CPUs @ 3.60GHz and 32GB RAM; network models
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were developed in Python language with PyTorch and PyTorch geometric [73]
framework libraries.
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Figure 5.9: Trends in accuracy of exact assignments and deviation from the
minimum attainable cost.

Ablation studies

For ablation studies on the proposed model, we conducted experiments with
different parameters, including batch size (BS) and number of GNN hidden
layers (K), to explore how these factors may affect the overall accuracy.

Figure 5.10 demonstrates that an high batch value decelerates the conver-
gence in terms of total required epochs. On the other hand, contrary to what
reported in [209], a low batch size did not lead to unstable convergence be-
havior. In fact we were able to achieve the best results in the least number of
epochs, using the batch value of 1.

Figure 5.11 shows the results in terms of accuracy and inference time, achieved
for several values of GNN hidden layers: K = {2, 3, 4, 5}.

The lack of improvement in accuracy, as depth increases, is due to a phe-
nomenon, known in the GNN literature as over-smoothing [229–231], according
to which node features tend to converge to the same vector and become nearly
indistinguishable as the result of applying multiple graph convolutional layers.
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5.1.7 Scheduling of smart meter data access in electricity
distribution grids

Nowadays, smart meters play a crucial role in the operation of modern power
distribution networks. Although their functionality is mainly targeted for
billing purposes, they have the potential to enable smart grid capabilities, such
as forecasting of household consumption, photo-voltaic load matching and de-
tection of outages and flickers in low voltage (LV) grids [232].

Measurements of active power, current or voltage data are made at specific
time intervals and rely on bidirectional communication to transmit information
to a control center, utility or retail company.

These agents are coordinated through a centralized head-end system [233].
Due to bandwidth restrictions in communicating, the head-end accesses mul-
tiple meters sequentially, through data concentrators. The data is then trans-
mitted in clusters, from the concentrators to the head-end system, but due to
resource-constrained communication networks, it is challenging to obtain the
relevant measurements in near real-time.

Figure 5.12 depicts a high-level architecture of an Advanced Meter Infras-
tructure (AMI), consisting of Smart Meters (SMs), Data Concentrators (DC),
Head-End station (HE) and Distribution System Operator (DSO) control cen-
ter. The low bandwidth AMI communication networks between DC and smart
meters, result in high latency and infrequent updates, which strongly affects
data quality in real-time data-demanding applications.

Classically, the information validity is quantified by so called age [234], that is
the time from measurement until the data is being utilized. A deeper link from
the information age to the signal dynamics leads to another common metric,
called mismatch probability [235] (mmPr), which in previous works [236] has
shown to be a useful parameter for describing information quality.

Since the timings at which SMs are accessed directly affects the age of the
information, altering the scheduling order can determine the quality of the data
information.

Several works addressed the scheduling problem under the assumpion of such
metrics and concepts. In addition to [237] and [238], which face the problem
without a specific policy but with brute-force analysis, [239], [240] and [241]
use joint routing and TDM-based scheduling in wireless mesh networks. These
works optimized the scheduling algorithm by taking into account communica-
tion network constraints incurred due to wireless interference.
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Figure 5.12: Typical Advanced Metering Infrastructure (AMI)

Recently, Farooq et al. [242] experiment with the use of the Hungarian al-
gorithm, to find the best sequence for accessing smart meter data in case of
low-performance networks.

System description

A time diagram showing how smart meters are accessed during an example
reading cycle, is shown in fig. 5.13. The DC employs a reactive approach,
which means that it submits a request for access to meter data, and the meter
replies with the needed response. This information is forwarded by DC to
the head-end (HE), which accumulates it and only at the end of the cycle
forwards it to the controller or any other grid monitoring software. Every access
to meters is associated by a specific access delay, which takes into account
both communication stack delays and any potential cache or other systemic
optimization measures that may have been used.

All of the smart meters’ data is gathered within one collection cycle. When
the previous data is transmitted to the controller, the subsequent cycle starts.
After all the readings are taken, there is an idle time ti that can be used for
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Figure 5.13: Example of SM data access time diagram. Dashed arrows repre-
sent data requests from DC, while solid arrows represent responses
from SM. Dash-dot arrows mark data feedback from DC to DSO
through HE.

features like updating the firmware or sending alerts.
Due to their position in the timetable, each meter experiences different age-

ing. For instance, on the highlighted cycle of fig. 5.13, meter N (smN) is
accessed shortly before data transmission to the DSO system, since it is placed
in the last position of the read queue; as a result, smN will have the shortest
access delay and in a similar vein, sm1 will experience the longest access delay.

Information quality metrics

In this work we considered the following performance metrics in relation to the
access strategies:

• Information Age: the period of time between when data are acquired
by the smart meter and when they are finally available to the DSO (for
simplicity, the feedback time from HE to DSO is neglected). For example,
the age of the n-th meter is expressed by:

Agen = tcc − tsm,n (5.13)

where tcc and tsm,n are taken from the same read cycle (see fig. 5.13).
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• Mismatch probability (mmPr): the probability that any of the N val-
ues of the information elements that are used at the requester does not
match the current true value at the remote location, within a sensitivity
threshold ε:

mmPr(n) = P{In(tcc)− In(tcc −Agen) > ε} (5.14)

where In(·) indicates the information message i.e. power, current or voltage
readings, of n-th smart meter.

Dataset

To perform the simulations we used the free-access dataset published by the
Indian Council on Energy, Environment and Water, as part of the study “What
Smart Meters Can Tell Us, Insights on Electricity Supply and Use in Mathura
and Bareilly Households” [243].

The data was collected using smart meters installed in nearly 100 urban
households in Mathura and Bareilly districts of Uttar Pradesh, India. These
smart meters recorded electricity consumption patterns and power supply infor-
mation at three-minute intervals, from May 2019 to October 2021. The data
also provides information on the situation of power supply (including hours
timestamp, voltage, current withdrawn and other related variables). Figure
5.14 shows an example of the data series contained in the dataset; the con-
sumption profile recorded from two households, over a 24-hours range.

GNN Assignment solver

To asses the impact of the access scheduling, we performed an analysis based
on the system described above. We considered coverage areas with 4, 8, 16
and 32 smart meters and we made the following assumptions about the system
dynamics:

• Meters are queried at fixed intervals of 15 minutes. This is currently the
most frequent time resolution of meters readings, as stated in Refs. [237]
and [242]. In addition, this assumption allows for a high level of ab-
straction that does not take into account the type of connection between
each meter and the control center, whether it is through a slow or unreli-
able line, thus with high latency times, or through a reliable, wide-band
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Figure 5.14: Consumption profile of two different households over 24 hours.

network. We assume that within the established time interval, data com-
munication has occurred correctly.

• All meters are polled every cycle. This is a simplification since in real-
world scenarios some SMs may be queried at a lower rate and thus ex-
cluded from one or more cycles. However, we bypass this option, which
can be the subject of a future parametric study.

• Based on simulation studies, and relying on previous works [237,242] we
set the tolerance threshold for the mmPr parameter (ε) at 10 % of the
mean power value.

The first step in the analysis is to determine the mmPr profiles for each of
the meters, simulating every possible position in the read queue. As mentioned
earlier, we considered four different scenarios for the total number of SMs inside
the domain of a data concentrator: 4, 8, 16, and 32. We estimated the mmPr
values over a 24-hour time frame, as we believe that the non-stationarity of the
consumption data requires recalculation of the reading order after this time
interval, to maintain the optimality of the scheduling criterion.

Figure 5.15 shows the trend of calculated mmPr values during a 24-hour
time interval, for 8 smart meters from the dataset. Both the observation day
and the smart meters were chosen with a random criterion, only for illustrative
purposes.

Once the mmPr values for a single day were obtained, the problem of de-
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Figure 5.15: Calculated mmPr profiles, in relation to information age and po-
sition of SM in the reading queue.

termining the reading order was easily modeled as a linear sum assignment
problem (LSAP), because a one-to-one assignment must be determined be-
tween the meters and the positions in the read queue, in order to identify the
lowest “cost” that is the overall mmPr of a schedule.

The cost matrix was then defined by vectorizing the mmPr curves and over-
laying them in an N×N grid, as shown on figure 5.16. The range of cost values
lies in [0, 1], so we could use the same training strategy as defined in chapter 4.

Experimental findings

In the following, two methods were applied to solve the assignment problem,
the Hungarian algorithm, as defined in [194], and the GNN data-driven assign-
ment method, which is sub-optimal but has lower complexity. The results are
presented in the following tables.

Moreover, the fastest way to deal with the assignment problem is to disregard
cost optimization and make random assignments. This obviously eliminates
the computation time but drastically lowers the level of accuracy, which, for a
problem of size N , can be calculated on a statistical basis as 1/N ! being N !
the possible number of valid assignments.

Table 5.6 shows the total cost obtained from each of the two allocation meth-
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Figure 5.16: Example of the 8 × 8 cost matrix, related to the mmPr curves of
figure 5.15.

Table 5.6: Assignment cost, e.g. mmPr values obtained by the Hungarian
algorithm (Min), the worst possible solution (Max) and the GNN
method.
Problem size Min Max GNN Relative error
N = 4 0.4134 0.5309 0.4153 1.61 %
N = 8 0.5032 0.6559 0.5071 2.55 %
N = 16 0.5661 0.7195 0.5699 2.48 %
N = 32 0.6318 0.8057 0.6353 2.01 %

ods, i.e. the minimum attainable mean mmPr. This value cannot be zero, since
even with a few meters within each read cycle, mismatch of information is vir-
tually inevitable. The minimum value of mmPr, given in the second column,
also corresponds to that obtained by the Hungarian algorithm, since it is opti-
mal. In contrast, the GNN approach fails to always determine the correct as-
signment, leading to sub-optimal scheduling. The column labeled with “Max”
reports the upper bound of mmPr values, achieved with the worst scheduling.
The rightmost column of table 5.6 reports the percentage deviation between
the GNN prediction and the minimum value, within the spanning range.

Table 5.7 shows the accuracy in terms of matching assignments, between the
optimal solution and the GNN solver.

Finally, table 5.8 reports the time results in the execution of the two algo-
rithms, which is the main motivation in favor of the GNN approach.

As pointed out earlier, the size of the assignment problem greatly affects the
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Table 5.7: Accuracy levels obtained by the Hungarian algorithm and the GNN
method.

Problem size Hungarian GNN
N = 4 100 % 85.0 %
N = 8 100 % 75.0 %
N = 16 100 % 66.5 %
N = 32 100 % 65.0 %

Table 5.8: Mean execution time for a single-batch LSAP instance. Values are
in µs.

Problem size Hungarian GNN
N = 4 88.2 353.8
N = 8 518.6 446.7
N = 16 4197.5 813.3
N = 32 34064.8 1209.0

execution time of the Hungarian algorithm, although it manages to reduce its
complexity to O(N3), which is much lower than the brute-force solution. Table
5.8 shows that GNN produces faster assignments, by about 1.1×, for N = 8,
5.1× for N = 16 and 28.2× for N = 32. The trend suggests that the advantage
would grow for larger N . This is significant in real-world scenarios, as some
smart grids may hold up to a hundred meters within the same subsystem, as
stated in [237].

5.1.8 Final remarks

In this work we proposed a novel learning framework by adapting a data-
driven approach of the linear sum assignment problem, and then compared the
performances with two existing DNN-based strategies.

We demonstrated experimentally that the proposed approach has compet-
itive performance, compared to previous MLP and CNN based approaches,
regarding small assignment problems. For larger problems it is able to outper-
form significantly these approaches, while requiring significantly fewer compu-
tational resources.

Subsequently, this study introduced the typical components of an AMI, Ad-
vanced Meter Infrastructure of a smart grid, explaining how a proper scheduling
of the smart meters query order can minimize information obsolescence dur-
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ing the data collection process. Smart meter power readings from different
grid spans are employed, as experimental settings. Although simulation results
show lower accuracy of the GNN approach compared to the optimal solution,
there is a notable gain in computational demand and execution time, the more
so as the number of counters in the neighborhood area network is larger.

Furthermore, we observed that the incorrect assignments of the GNN network
actually minimally affect the error in terms of total cost. This indicates that
although the network has been trained to minimize the assignments on a binary
cross-entropy basis, it also succeeds to exploit the cost values on its decision
mechanism, and tends to produce assignments which while not optimal (lower
accuracy) have total assignment cost close to the optimal solution.

Future work will attempt to explore new application areas for the assign-
ment problem, such as integrating the proposed GNN solver into a speaker-
independent multi-talker speech separation model [244–246] in order to increase
performance or speed up training time. In such systems the network produces
multiple outputs in an unpredictable order, which must be assigned to the cor-
responding target signals to perform properly supervised training. Assignment
is made based on a metric that quantifies the similarity between each target
signal and the possible candidate output.

Another potential application we might consider is the use of the GNN LSAP
solver for Multi-Object Tracking and Segmentation (MOTS). This involves not
only detecting and segmenting objects in a sequence of video frames, but also
assigning consistent IDs to each visible instance of the same object. Typically,
this is formulated as consecutive assignment problems involving a few dozen
objects and must be carried out under tight constraints, to be in sync with
a real-time video stream [247]. In such context, the use of the proposed sub-
optimal GNN solver could bring considerable advantage.
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Chapter 6

Conclusions

In this dissertation we addressed the issues of sound signals analysis, and their
most suitable representations for use within deep neural networks, and subse-
quently investigated sound sequence restoration techniques, using neural net-
works, as these having become the de-facto standard for most speech enhance-
ment tasks. An overview was given of both restoration approaches proposed in
the scientific literature and those currently employed in modern communication
systems.

Chapter 2 aimed to provide the reader with the basic concepts necessary to
understand the topics developed in the following chapters, and in particular it
set out an overview of the most popular feature representation of audio signals,
currently used in digital signal processing, explained the concepts of sound
event detection and classification tasks, provided the founding principles of
deep learning techniques on graph-structured data, and finally illustrated the
concept of generative artificial intelligence, setting out the working principle of
the most successful paradigms.

In chapter 3 we delved into the use of graph neural networks for audio pro-
cessing applications, first briefly listing existing work that, in different ways,
exploits graph structures for modeling the aspect of the task at hand. Then
the topic of multilabel classification has been further explored, by also analyz-
ing domains other than audio processing, where graph structures have been
exploited to enrich the learning process by modeling the relationships between
classes of objects or events. The chapter then continued with the exposition
of the two papers produced during the doctoral activity, the first of which sees
the proposal of an innovative method for the representation in graph form of
features, derived from the sound spectrogram of a recording, through the ap-
plication of geometric concepts, and the subsequent application for a sound
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event classification (SEC) task. The resulting compact representation proved
effective at extracting complementary informative features from the audio spec-
trogram, bringing noticeable improvements when used in a hybrid CNN-GNN
architecture for SEC. The second paper presented in chapter 3 dealt with the
semantic representation of event co-occurrences in a SEC dataset, through a
graph structure, which was then integrated into a classical pipeline for sound
event classification, demonstrating its effectiveness in a weakly labeled data
context.

Chapter 4 presented the topic of repairing audio sequences, corrupted as a
result of packet losses, due to networks affected by various types of imperfec-
tions such as noise, limited bandwidth, outdated hardware, or traffic conges-
tion. The chapter introduced the problems of packet loss concealment (PLC)
and audio inpainting, defined the various models adopted for representing the
problem, devised evaluation criteria for judging audio quality and outlined the
techniques currently in the literature for its solution, both algorithmic, statis-
tical, and DNN-based approaches, the latter being the most recent and best
performing. Then the three works that address the packet loss concealment
problem through generative neural networks were presented. Specifically, the
generative adversarial network (GAN) paradigm was employed, first adapt-
ing a framework, already existing in the literature and successfully used for
many image-to-image translation tasks, pix2pix, for inpainting damaged spec-
trograms. Subsequent work borrows the same framework and adapts it to
the task of repairing signals containing musical sequences, introducing an addi-
tional comparison criterion based on the musical score, to increase performance
and the ability to reconstruct large gaps, up to 750ms. Finally, the last work
presented in chapter 4 dealt with the PLC problem by inpainting complex-
valued spectrograms. This allowed the signal phase to be considered in the
reconstruction process as well, an aspect that is typically neglected by the pro-
posed approaches. Furthermore, the method was developed to have “adaptive”
behavior, in the sense that its operation can be tuned at runtime to find a
tradeoff between reconstruction quality and computational latency. This is
of utmost importance in practical applications that have to run on resource-
constrained devices. The three proposed methods presented state-of-the-art
performances in comparison with similar recent methodologies based on deep
neural networks, including the best performing ones based on generative neural
networks.
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Finally, in chapter 5, a contribution was presented that is somewhat separate
from the audio processing topic, but still falls within the study of graph neural
networks. This is the modeling in graph form of the Linear Sum assignment
problem, known in combinatorial optimization, which frequently appears in
various disciplines, as part of the solving process of specific tasks. The proposed
GNN-based solver is sub-optimal and has been shown to be superior to other
currently proposed DNN-based approaches, being at the same time competitive
in terms of scalability.

Future perspectives

At the time this thesis is being written, research activities on the topic of re-
construction of damaged audio signals, are currently ongoing, driven by the
growing interest of the research community in this topic and the proliferation
of generative networks strategies. Two strands of research out of all possibly
offer the most interesting perspectives: first, the field of denoising diffusion
probabilistic models (DDPM) [248], which originated for image synthesis tasks
and are rooted on non-equilibrium thermodynamics, are successfully forming
the basis of many speech enhancement approaches, and although they still
have downsides, related mainly to the difficulty of parallelizing computation,
the quality of the samples they produce is astounding. Second, a promising
approach to PLC should be complementing conditional-GAN networks, with
a context characterization model, based on the transformer architecture [249].
The latter has seen considerable success in recent years being the basis of GPT
models that, in the natural language processing field, produced the “AI revo-
lution” known to the general public. In fact, some preliminary experiments we
conducted confirmed the initial intuitions that conditioning the GAN with a
signal drawn from the latent dimension of the transformer, succeeds in trans-
ferring to the generator a wide overview of the semantic content of the words
contained in the recording. This allows the reconstruction of the missing gaps
in a very selective manner, and leaves the generator with the sole task of mod-
eling the speech pattern.
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