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Abstract

We analyse a nonlinear banking duopoly model with capital regulation and

asymmetric costs. We follow the literature on banking and capital regulation

focusing on Italian banks. We extend the banking duopoly model with non-

linear costs of Brianzoni and Campisi (2021), by introducing the hyperbolic

inverse demand function, following Puu (1991). In this way, we include a

further nonlinear component in the model consisting of nonlinear demand of

loans. We proceed in two parts. First, we concentrate on the analysis of the

local stability of the model. Given the high number of parameters, we sup-

port the analytical study with several numerical simulations. In the second

part, we focus on the conditions under which small banks are more efficient

than large banks. For this purpose, we study the dynamics of loans when

different parameters vary simultaneously. Our results confirm the empirical

evidence that small banks play a central role in supporting local firms and
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families more than large banks.

Keywords: Duopoly, Bifurcations, Capital Regulation, Nonlinear Dynamics

1. Introduction

The financial crises of recent years have threatened the stability of all

banks. Certainly, the role of banks to foster economy and economic growth

has been of primary importance. The present work aims at analyzing the

efficiency and regulation of Italian banks in the light of recent financial cri-

sis taking into account the heterogeneity characterizing them. According to

Banca d’Italia, Italian banks are classified in five categories (major, large,

medium, small and minor) depending on their size related to the amount of

deposits, capital and managed external funds. We start from this classifica-

tion and we take into account two categories of banks, large and small. To

this purpose, relying on the work of Alessandrini and Papi (2018a), we want

to stress the role of small banks in supporting local firms and families thanks

to their long and stable relationship. This important function of small banks

is also remarked empirically by Stefani et al. (2016), indeed the authors find

that in the period 2007−2014 this kind of banks increased their loans supply

in favor of families and small firms. An interesting work supporting the role

of local banks is that of Barboni and Rossi (2019), where the authors analyse

the role of local banks versus non-local banks in supporting local economies

by considering a data-set of loans granted by 348 Italian banks in the period

before and after the 2007-2008 Financial Crisis. In particular, they underline

the importance of soft information collected by local banks thanks to their

personal relationship established with funded entrepreneurs. According to
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the authors, soft information owned by local banks mitigates information

asymmetries in credit markets, allowing them a lower credit rationing and a

greater customer support. Moreover, the interdependency between efficiency

and size is analysed by Aiello and Bonanno (2013) showing that efficiency

decreases with size. Mesa et al. (2014) remark that local banking systems

with a lower number of entities show better efficiency ratios, too. However,

efficiency and size have to be considered in the light of the growing pressure

of regulation due to the occurrence of the financial crisis. As highlighted

by ?, regulation plays a predominant role in the period of financial distress

with the main function to stabilize the economic and financial system. In

particular, while in the period of stability of the financial system, banking

system aims at pursuit efficiency, periods of crises imply a prevalent impact

of regulation.

For what it concerns efficiency, it is worth to stress that in the banking

literature there is a debate about the implementation of a cost efficiency

or a profit efficiency without consensus on them. For example, Aiello and

Bonanno (2013) evaluate both cost and profit efficiency analysing the Italian

banking industry in the period between 2006 − 2011. Maudos et al. (2002)

find evidence of a higher level of profit inefficiency than of cost inefficiency

focusing on a sample of ten countries of the European Union. Assaf et al.

(2019) find that improving bank cost efficiency during normal times may

promote better financial crisis performance, while profit efficiency has limited

benefits. Rossi et al. (2009), analysing the link between diversification and

bank efficiency, argument that on the one hand diversification decreases cost

inefficiency and, on the other hand, increases profit efficiency. In this paper
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we consider cost efficiency, that is we consider that banks offer the maximum

level of loans at the minimum cost. However, we stress that in the paper we

take into consideration also a broader definition of efficiency. In particular,

we consider efficient a bank that is able to guarantee a constant level of loans

over time. On the contrary, we consider inefficient a bank providing volatile

level of loans over time.

Our analysis evaluates the cost efficiency of banks of different size, start-

ing from the work of Brianzoni and Campisi (2021). Most fully, the authors

investigate the role of efficiency in the Italian banking sector considering a

simplified version of the model of Monti (1972) and Klein (1971). In partic-

ular, they analyse a banking duopoly model with linear demand of loans and

asymmetric costs, assuming costs of large banks higher than those of small

banks. Further, banks are assumed to be heterogeneous in their beliefs, large

bank’s approach is based on a rule-of-thumb (the gradient mechanism), while

the small bank adopts a best response mechanism with boundedly rational

expectations. In other words, both banks are endowed with bounded ratio-

nality but they use different boundedly rational approaches.

The choice of different beliefs is justified by the empirical evidence that small

banks have maintained their level of loans almost constant over time, in-

creasing its volume especially in the period of crisis, while large banks have

rationed the credit supply. Brianzoni and Campisi (2021), relying on the

empirical facts resumed above, confirm the higher efficiency of small banks

to manage loans demand in local economies, moreover, a particular case is

studied. They consider a scenario where only small banks operate in the

market and in this case they show that the stability of the economic system
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increases. The key parameters of the model are the costs of the two banks

and the impact of regulation. They show by means of local and global prop-

erties of their map that higher level of costs of large banks ensures higher

stability, while it is confirmed the stabilizing role of regulation as in Fanti

(2014), too.

This work is dedicated to Tönu Puu for his huge contributions in the

field of economic dynamics (Puu (1991, 1995, 1998, 2013), Puu and Sushko

(2002)). In particular we consider the work of Puu (1991) where a Cournot

duopoly model based on an isoelastic demand function and constant marginal

costs for the competitors is studied. In his analysis, Puu finds a period-

doubling cascade towards chaos.

In the present work, following Puu (1991), we include a further nonlinear

component in the model consisting of nonlinear demand of loans, in order

to extend the framework of Brianzoni and Campisi (2021) which considers a

banking duopoly with capital regulation and asymmetric costs but adopting

linear inverse demand function. Given the high nonlinearity of our model,

the analytical part is deeply extended via numerical simulations. In details,

we analyse stability of fixed points via local properties of our map.

The present work aims at analysing the cost efficiency of Italian banks in

the presence of capital regulation. To achieve our goal, we consider a bank-

ing duopoly model with nonlinear demand and asymmetric cost functions.

Moreover, in order to take into account the empirical evidence of the greater

efficiency of small banks with respect to the large banks (see Alessandrini and

Papi (2018a,b), Aiello and Bonanno (2013), Giordano and Lopes (2006)), we

endow large banks with quadratic cost function implying a decreasing return
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to scale, while we assume that small banks face constant marginal costs. This

set-up allows us to consider the role played by small banks in supporting lo-

cal communities increasing the volume of loans especially in the period of

crisis. Conversely, large banks have rationed the credit supply (see Stefani

et al. (2016) for more details).

Additionally, the present paper stresses similarities and differences with

respect to the model with linear demand of Brianzoni and Campisi (2021).

The comparison between this framework in honor of Tönu Puu who inspired

this Special Issue and the linear demand’s case has a twofold interest.

On the one hand, some results confirm and, hence, reinforce the link between

asymmetric costs and the level of the total demand of loans. In fact, as we

will see, large banks should increase their costs more than small banks, in

order to support the total demand of loans.

On the other hand, we contribute to the field with different results and new

evidences, which can be summarized as follows.

In our simulations, unlike Brianzoni and Campisi (2021), we focus on the

effects of regulation considering the case of homogeneous and heterogeneous

regulation. In both cases, it emerges that small banks are more efficient than

large banks. Moreover, we consider a regulation parameter coherent with

the total capital ratio established by the Basel Accords which must be no

lower than 8%. In addition, in this model all the banks are always active in

the market unlike Brianzoni and Campisi (2021), where a scenario with only

small banks operating in the market was possible.

The paper is organized as follows. In Section 2 we describe the model

highlighting the new ingredients introduced. In Section 3 we prove the exis-
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tence of the fixed point, afterward we perform the dynamical analysis of the

most interesting economic scenarios. In Section 4 we conduct a numerical

analysis which aims at stressing the joint effect of parameters under study.

Section 5 concludes our work.

2. The model

Banking models have become of greater importance in the oligopoly lit-

erature. In particular, Fanti (2014) and Brianzoni and Campisi (2021) make

use of banking duopoly models in order to focus on two main issues, i.e.

efficiency and regulation. In this way, the study of nonlinear dynamics in

oligopolies (see, among others, Puu (1991) and Puu and Sushko (2002))

meets the banking sector.

In this paper, following the above mentioned works on the field, we con-

sider a banking duopoly model, with absence of open positions between

banks in the interbank market, as in Fanti (2014) and Brianzoni and Campisi

(2021).

Consequently, the balance sheet of bank i is composed by loans (Li) on

the asset side, capital (Ki) and deposits (Di) on the liability side, (with

i = 1, 2).

We extend the work of Brianzoni and Campisi (2021) by assuming that

the total demand function for loans is nonlinear, leading to the inverse de-

mand function f :

f(L) =
1

L
, L = L1 + L2

The functional form of f(L) consists of a decreasing, concave and hy-
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perbolic inverse demand. This map has been analysed by Puu (1991) and

Tramontana (2010). The authors show the emergence of different routes

to complicated dynamics. Moreover, Fanti et al. (2015) use a more gen-

eral functional form for the demand function. In particular, the authors, in

their nonlinear Cournot duopoly model, assume that the price elasticity of

demand is different from one, causing interesting local and global dynamic

events that cannot be observed in the case of unit-elastic demand and homo-

geneous players.

As in Brianzoni and Campisi (2021), in this paper we consider hetero-

geneity in the bank size. More precisely, we recall that quadratic costs are

assumed for large banks (i = 1), while linear costs for small banks (i = 2).

This last assumption is due to empirical results coming from the recent bank

literature (e.g. Alessandrini and Papi (2018a,b), Aiello and Bonanno (2013),

Giordano and Lopes (2006)) which find evidence of the greater efficiency of

small banks with respect to the larger ones. These studies show that the ef-

ficiency reflects the role played by small banks to economically sustain local

firms and families.

As a consequence, the cost functions for loans are respectively given by c1L
2
1

and c2L2, so that marginal costs for loans are increasing (decreasing returns

to scale) for large banks (i = 1) and constant for small banks (i = 2).

With regard to the costs for deposits, they are assumed to be linear for

both banks. This choice follows Fanti (2014), which assumes that capital

regulation is based on the supply of loans. In this case, the deposit remuner-

ation is not relevant. However, the optimal volume of loans does not depend

on the properties of the deposit market in the case of separable cost func-
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tions. Small banks have the same constant marginal cost for deposits and

loans, while large banks face greater marginal costs for loans than deposits

only for L1 > 0.5, indeed marginal costs of large banks are equal to 2c1L1.

To make our analysis clearer, in the rest of the paper, we refer to c1 and c2

as parameter costs keeping in mind that the marginal cost for large banks is

2c1L1 while for small banks is c2.

In this way, we arrive to the following profit functions:

π1 =

(
1

L1 + L2

)
L1 − rK1 − c1D1 − c1L

2
1

π2 =

(
1

L1 + L2

)
L2 − rK2 − c2D2 − c2L2

for large and small banks, respectively. The parameter r > 0 is the exoge-

nous capital remuneration which has to be high enough for having capital

remuneration higher than marginal costs,1 i.e. r > max[c1, c2].

The capital requirement is binding, i.e. Ki = γLi (γ is the percentage

determined by the regulator) and Di = Li − Ki = (1 − γ)Li, (i = 1, 2).

Unlike Fanti (2014) and Brianzoni and Campisi (2021), we consider a regula-

tion parameter coherent with the total capital ratio established by the Basel

Accords which must be no lower than 8%.

As a consequence, profit functions become:

π1(L1, L2) = L1 ·
{

1
L1+L2

− [c1(1 + L1) + γ(r − c1)]
}

π2(L1, L2) = L2 ·
{

1
L1+L2

− [2c2 + γ(r − c2)]
} (1)

1Considering an endogenous capital remuneration such that it is higher than marginal

costs for any loan level can be an interesting development.
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and marginal profits are given by:

∂π1

∂L1
(L1, L2) =

L2

(L1+L2)2
− γr − (1− γ)c1 − 2c1L1

∂π2

∂L2
(L1, L2) =

L1

(L1+L2)2
− γr − (2− γ)c2

(2)

Dynamical setup. Let us go to introduce a dynamical setting where

time is indexed by t ∈ Z+. Following the related literature (see Bischi et al.

(1998), Fanti et al. (2012, 2013), Tramontana (2010), Brianzoni et al. (2015))

we assume that bank 1 has limited information, in other words large banks set

the level of loans between two periods according to the following adjustment

process:

L1,t+1 = L1,t + αL1,t
∂π1

∂L1,t

(L1,t, L2,t), t ∈ Z+

where α > 0 is the speed of adjustment. As in Brianzoni and Campisi (2021),

large banks increase or decrease their loans according to the marginal profit

of the last period. In fact, the empirical literature (see Stefani et al. (2016))

finds that large banks have cut supply of loans following the market trend in

financial crisis and looking at the profitability of their investments. Moreover,

it points out that small banks have maintained their level of loans almost

constant over time, increasing its volume especially in the period of crisis.

Coherently, small banks expect that the level of loans of large banks will be

equal to the last period’s one and, then they maximize their expected profit,

i.e.:

L1,t

(L1,t + L2,t+1)2
− γr − (2− γ)c2 = 0.
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The final discrete time dynamical system (T,R2
+) describing the dynamics

of loans, is given by :


L1,t+1 = f(L1,t, L2,t) = L1,t + αL1,t

[
L2,t

(L1,t+L2,t)2
− γr − (1− γ)c1 − 2c1L1,t

]

L2,t+1 = g(L1,t) =
√

L1,t

γr+(2−γ)c2
− L1,t

(3)

where: α > 0, r > 0, γ ∈ [0, 1], c1, c2 ≥ 0, so that γr + (2 − γ)c2 > 0. Note

that the condition γr + (2− γ)c2 > 0 ensures the survival of small banks in

the market.

3. Analysis of equilibrium points

Differently from Brianzoni and Campisi (2021), in this model it is not

possible to derive the solutions of the algebraic system T (L1, L2) = (L1, L2).

Hence, in this section we analyse the existence and the number of fixed points

owned by the system, taking into account the positivity of the equilibrium

level of loan.

Please notice that, even though steady states are not explicitly defined,

we can obtain very interesting results about their existence and localization,

as described by the following proposition.

Proposition 1. System (3) always admits a unique interior steady state

L⋆ = (L⋆
1, L

⋆
2) > (0, 0), which is located on the following curve of the (L1, L2)−

plane:

L2 = ϕ(L1) =
γr + (1− γ)c1 + 2c1L1

γr + (2− γ)c2
· L1 (4)
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Proof. Once the equilibrium conditions Li,t = Li ∀i = 1, 2 are set, from the

second equation of System (3), we get (L1 +L2)
2 = L1

γr+(2−γ)c2
. By substitut-

ing it into the first equation, it is possible to arrive to the curve ϕ of Formula

(4) by making use of some algebra.

After that, we substitute (4) into the second equation of the System (3) in

equilibrium:(
2γrL1+(2−γ)c2L1+(1−γ)c1L1+2c1L2

1

γr+(2−γ)c2

)2

= L1

γr+(2−γ)c2
. From the last equation,

we arrive to the following third degree equation: AL3
1+BL2

1+CL1+D = 0,

with A = 4c21 > 0, B = 4c1[2γr+ (2− γ)c2 + (1− γ)c1] > 0, C = [2γr+ (2−

γ)c2 + (1− γ)c1]
2 > 0, D = −[γr + (2− γ)c2] < 0, which corresponds to one

positive solution (for the Descartes’ rule).

The curve ϕ defined by Proposition 1 is very helpful in order to compare

the equilibrium levels for loans of small and large banks. In fact, we find a

condition on the parameter values under which small banks are characterized

by a greater equilibrium value of loans with respect to large banks, as proved

by the following result.

Proposition 2. If (1− γ)c1 > (2− γ)c2 then L⋆
2 > L⋆

1.

Proof. The curve ϕ defined by (4), along which the unique fixed point lies,

has got the following geometrical properties: (i) it always intersects the axis

at the origin, i.e. ϕ(0) = 0 and (ii) it is strictly increasing for any admissible

set of the parameter values. As a consequence, if ϕ′(0) > 1 then the result

holds. From this, we obtain the sufficient condition (1− γ)c1 > (2− γ)c2 of

the proposition.
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This proposition shows that the small bank performs better than the large

one at the equilibrium, just when c2 is not excessive with respect to c1, taking

into account also the regulation parameter γ. Moreover, the mathematical

result is important because it reflects the main empirical assumptions of the

model (in line with Barboni and Rossi (2019), Alessandrini and Papi (2018a),

Stefani et al. (2016)) . In particular, small banks support their customers

(firms and families) increasing their loans supply during financial crisis. The

key of their successful performance with respect to that of the large banks,

relies on the knowledge of the relevant information that facilitates lending

decisions (soft information).

It is interesting to consider a parameter configuration for which the con-

dition in Proposition 2 is violated, but the level of L2 is higher than the level

of L1 also outside the equilibrium. To this end, we present Figure 1, where

a trajectory of the system shows such a result for the appropriate parameter

values. In the case considered, it is relevant the fact that small banks per-

form better than large banks but numerical simulations show that c2 has to

be consistently smaller than c1.

Let us go to move to the local stability analysis of the steady state.

According to the well known stability conditions (see e.g. Medio and Lines

(2001)):

1. 1 + tr(J) + det(J) > 0

2. 1− tr(J) + det(J) > 0

3. 1− det(J) > 0

we have to compute the Jacobian matrix J evaluated at the equilibrium

point. After some algebra, the partial derivatives of System (3) are given by:
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Figure 1: Trajectories of the system when Proposition 2 is violated. Parameters values:

γ = 0.06, α = 3.8, r = 2, c1 = 0.14, c2 = 0.0688 and i.c. L1,0 = 0.6, L2,0 = 0.55.

∂f
∂L1

(L1, L2) = 1− α
{
γr + (1− γ)c1 + 4c1L1 +

L1−L2

(L1+L2)3
L2

}
∂f
∂L2

(L1, L2) = αL1
L1−L2

(L1+L2)3

∂g
∂L1

(L1, L2) = −1 + 1
2

1
γr+(2−γ)c2

√
γr+(2−γ)c2

L1

∂g
∂L2

(L1, L2) = 0.

As a consequence, the determinant of the Jacobian matrix is given by

det(J) = −α L1−L2

(L1+L2)3
·
[
−L1 +

1
2

√
L1

γr+(2−γ)c2

]
. Taking into account the sec-

ond equation of the system in equilibrium, it can be rewritten as det(J) =

α
2
(L1−L2)2

(L1+L2)3
> 0. About the trace, imposing the first equation of the sys-

tem in equilibrium into tr(J) = ∂f
∂L1

(L1, L2), we find that tr(J) = 1 − α ·[
L2

(L1+L2)2
+ 2c1L1 +

(L1−L2)·L2

(L1+L2)3

]
= 1− 2αL1

[
c1 +

L2

(L1+L2)3

]
.

As a first result we observe that the second stability condition 1− tr(J)+

det(J) > 0 is always fulfilled. Mathematically speaking, this means that the

fold bifurcation is ruled out, since the necessary condition for its existence

cannot be verified.

In order to study the first and the third stability conditions, we are faced

with the complicated structure of the system, characterized by a high number
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Figure 2: Bifurcation diagram on varying α ∈ (2.5, 3.6). Parameters values: γ = 0.08,

r = 2, c1 = 0.25, c2 = 0.16, and i.c. L1,0 = 0.36, L2,0 = 4.

of parameters and a not explicitly defined fixed point. Nevertheless, we can

observe that the equilibrium point L⋆ does not depend on the parameter

α. Hence, once the other parameter values are fixed, we can focus on α’s

values such that the stability conditions are violated. This, together with

the conditions on the other parameters coming from our analysis, allows us

to continue the study by performing simulations.

Numerical evidence shows that for high values of the speed of adjustment

α, the primary bifurcation through which the fixed point loses stability is

the period doubling (see Figure 2). Note that in Figure 2 the value of α

causing the emergence of complex dynamics is large (i.e. α ≃ 3.4). However,

in Figures 3 and 4 we can understand two facts. From a mathematical point

of view, other parameters make the fixed point to lose its stability, that is,

the parameter cost of small banks (Figure 3) and the parameter cost of large

banks (Figure 4). In addition, in both cases, the value of α is smaller than

the bifurcation value observed in Figure 2, being α = 2.35 in Figure 3 and

α = 2.02 in Figure 4. On the other hand, the configuration of parameters

15



Figure 3: Bifurcation diagram on varying c2 ∈ (0.15, 0.43). Parameters values: γ = 0.12,

α = 2.35, r = 1.5, c1 = 0.34, and i.c. L1,0 = 0.3, L2,0 = 0.5.

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

c
1

0.05

0.1
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0.2

0.25

0.3

0.35

0.4

0.45

L
* 1

Figure 4: Bifurcation diagram on varying c1 ∈ (0.25, 0.73). Parameters values: γ = 0.12,

α = 2.02, r = 1.59, c2 = 0.35, and i.c. L1,0 = 0.15, L2,0 = 0.63.

used reveals that large banks are able to bear a growth of costs better than

small banks as in consequence of economy of scale. In this respect, there is

the need of some policy intervention in order to equally distribute the costs

between all the banks, and for this purpose the regulation plays a key role.

In order to highlight the role of regulation in our model, in Figure 5 we

analyse the role of regulation parameter when we have a stable two cycle.

From an economic point of view, we are interested in understanding what
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Figure 5: The volatility of the demand of loans. Trajectories of the system for different

values of the cost of regulation γ = 0.08 (Panel (a)), γ = 0.15 (Panel (b)), γ = 0.22 (Panel

(c)) when α = 3, r = 2, c1 = 0.22, c2 = 0.1 and i.c. L1,0 = 0.8, L2,0 = 0.7.

kind of dynamics appears when the system is stable tuning some key param-

eter. In detail, in Figure 5 we plot the trajectories of the loans of the two

types of banks for different values of γ (representing the exogenous bank-

ing regulation parameter). Note that all the trajectories reported in Figure

5 show lower volatility in the demand of loans for small banks than large

banks. In addition, increasing values of γ lead to an average decrease in the

demand of loans for all banks.

To sum up, when the market is composed by two types of banks, large

and small, a stability period is always admissible. In our analysis we have

concentrated the attention on three parameters: the intensity of bank reg-

ulation γ, and the costs of the two banks c1 (for large banks) and c2 (for

small banks). From numerical simulations it has emerged that for moderate

growth of the parameter costs, all the banks are able to provide the demand

of loans at the equilibrium. Otherwise, when the costs grow consistently,

large banks are able to better manage them than small banks, due to the
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favorable economy of scale. On the other hand, when we consider the effects

of regulation on the demand of loans of all banks we find that, generally

speaking, an increase of the regulation parameter causes a decrease in the

demand of loans. In addition, the demand of loans of small banks exhibits

lower volatility than the demand of loans of large banks, for all the values

of γ which we considered. Given the importance of regulation and costs in

the model, in the next section we devote our attention to the study of the

combined effect of these parameters.

4. Numerical Simulations

This section collects several numerical simulations to help in the under-

standing the behavior of the main variables of interest, under different param-

eter settings. As we already explained, this model has no algebraic solution

so that we analyse the main results by implementing simulations. Unlike

Brianzoni and Campisi (2021), beyond the effects of asymmetric costs on the

equilibria of the model we also focus on the effects of regulation. We proceed

in two parts. First, we run simulations in a two dimensional parameter space,

in other words we compute values of loans for simultaneous variations of both

c1 and c2 (Figure 6 (a)), γ and c1 (Figure 6 (b)), γ and c2 (Figure 6 (c)).

Second, we analyse the effects of regulation on the demand of loans in two

scenarios: homogeneous regulation (Figure 7), and heterogeneous regulation

(Figure 8).

To get a general view of our model, we present a 2D-bifurcation diagram

for different parameter configurations in the plane (Figure 6). Here, different

colors correspond to attracting cycles of different periods k, with k < 16, and
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red is related either to chaotic attractors, or to cycles of higher preiodicity.

In particular, in Figure 6 (a), we present a 2D-bifurcation diagram in the

(c1, c2)-parameter plane. It results that a stability region does exist until

the cost of small banks belongs to the range (0.1, 0.23). After that, only an

increase of the costs of large banks may ensure the existence of a stability

region. Similarly, this happens in Brianzoni and Campisi (2021), and in this

sense our work confirms and reinforces the link between asymmetric costs

and the level of the total demand of loans. Furthermore, when we consider

the effects of regulation on both the costs of large and small banks, we find

that large banks are better able to handle increased regulation. Indeed, in

Figure 6 (b) we present a 2D-bifurcation diagram in the (γ, c1)-plane, and

we can see that for γ ∈ (0.05, 0.15) only a fixed point exists. Differently,

when we consider the joint effect of regulation and the cost of small banks

in the 2D-bifurcation diagram of Figure 6 (c), for γ ∈ (0.05, 0.15) we see a

transition from a fixed point to a 2−cycle.

The last aspect we are interested in is the effect of different levels of

regulation. To this purpose, we consider two scenarios. First we analyse the

case of homogeneous regulation and, then, we consider the case in which the

two banks face heterogeneous regulation levels. In order to be coherent with

the Basel Accords, which establish a total capital ratio no lower than 8%, we

check the effects due to different levels of regulation on the demand of loans

that lie close to the initial one. Accordingly, we consider γ equal to: 0.05,

0.08, 0.1. Figure 7 shows the time evolution of L1 (panel (a)) and L2 (panel

(b)), respectively, considered for c1 = 0.2 and c2 = 0.01: each line represents

the time series corresponding to different values of γ. It emerges that, for
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Figure 6: In (a) 2D bifurcation diagram in the (c1, c2)-parameter plane for γ = 0.08,

α = 2.4, r = 2, c1 ∈ (0.33, 0.63) and c2 ∈ (0.1, 0.3), and initial condition L1,0 = 0.36

L2,0 = 0.4. In (b) 2D bifurcation diagram in the (γ, c1)-parameter plane for c2 = 0.1,

α = 2.4, r = 2, γ ∈ (0.05, 0.18) and c1 ∈ (0.2, 0.63), and initial condition L1,0 = 0.38

L2,0 = 0.42. In (c) 2D bifurcation diagram in the (γ, c2)-parameter plane for c1 = 0.4,

α = 2.4, r = 2, γ ∈ (0.05, 0.18) and c2 ∈ (0.1, 0.36), and initial condition L1,0 = 0.37

L2,0 = 0.41.

all the values of γ, the level of the demand of loans of small banks is higher

than the level of the loans of large banks.

When the scenario of heterogeneous regulation is considered, we have to

take into account the following map:


L1,t+1 = f(L1,t, L2,t) = L1,t + αL1,t

[
L2,t

(L1,t+L2,t)2
− γ1r − (1− γ1)c1 − 2c1L1,t

]

L2,t+1 = g(L1,t) =
√

L1,t

γ2r+(2−γ2)c2
− L1,t

(5)

where: α > 0, r > 0, γ1, γ2 ∈ [0, 1], c1, c2 ≥ 0, so that γ2r + (2 − γ2)c2 > 0

which represents the survival condition of small banks.

In Figure 8 we plot the time series of L1 and L2 when the two banks
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Figure 7: Time series of L1,t (in (a)) and L2,t (in (b)) for three values of γ. In both

panels, we use the following parameter values: α = 3, c1 = 0.2, c2 = 0.01, r = 2.2. Initial

conditions L1,0 = 0.39, L2,0 = 0.31.

face different costs of regulation. In particular, in Figure 8 (a), we assume

that the parameter cost of regulation for large banks (γ1) is smaller than

the parameter cost of regulation of small banks (γ2), while in Figure 8 (b),

we consider a larger parameter cost of regulation for large banks than for

small banks. When γ1 < γ2, we see a larger volatility of the demand of

loans for large banks with respect to small banks. Conversely, when γ1 > γ2,

both banks offer a constant level of loans in the economy and, additionally,

small banks are able to lend more than large banks. From the results of

Figures 7-8 it emerges that, if the configuration of the costs of both banks is

different enough (as in the case of Figure 7), then in the case of homogeneous

regulation between banks, the demand of loans of small banks is higher with

respect to large banks, independently of the considered value of γ. Otherwise,

if regulation is heterogeneous between banks, it results that small banks are

more efficient than large banks, in contrast with the evidence shown in Figure

6. Indeed, in one case (γ1 < γ2) small banks are able to maintain a constant

level of loans, unlike large banks whose demand of loans is characterized by
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Figure 8: Trajectories of the system for heterogeneous cost of regulation. In (a), γ1 = 0.09,

γ2 = 0.11, α = 2.8, r = 2, c1 = 0.27, c2 = 0.1 and i.c. L1,0 = 0.6, L2,0 = 0.55. In (b)

γ1 = 0.12, γ2 = 0.08, α = 2.8, r = 2, c1 = 0.215, c2 = 0.1 and i.c. L1,0 = 0.6, L2,0 = 0.55.

high volatility (in line with empirical evidence of Stefani et al. (2016)). In the

other scenario (γ1 > γ2), small banks are able to offer more than large banks.

This case shows that it would be desirable to divide the costs of regulation

between banks proportionally, according to their size and typology (in line

with the proportionality principle) in order to guarantee a stable demand of

loans of the entire banking system.

5. Conclusions

This paper has investigated the effects that bank diversification across

size and costs can have on efficiency. Our analysis makes use of the theory

of discrete dynamical systems, in particular, local stability analysis of equi-

libria and numerical simulations have been the essential instruments which

helped us to deeper analyse the model. Although the high nonlinearity of the

system, the conditions found on the parameter values by the analytical part

have been crucial to address both the bifurcation analysis and the numerical
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simulations. Moreover, the latter has allowed us to study the joint effect of

different parameters of the model, in particular the costs of both banks and

the regulation parameter.

In our theoretical investigation we found that, under suitable conditions,

the role of small banks in supporting local communities is a key factor for

the growth and the sustainability of the local territories. This emerged in

both the analytical and numerical analysis. Indeed, comparing the effects of

regulation on the costs of both banks, large banks are better able to handle

increased regulation. In contrast, when we focus on the demand of loans of

large and small banks, we have seen that in the scenario of homogeneous

regulation, the level of the demand of loans of small banks is higher than the

level of the loans of large banks. The higher efficiency of small banks with

respect to large banks holds also in the scenario of heterogeneous regulation.

Indeed, when γ1 < γ2 the demand of loans of small banks exhibits lower

volatility than the demand of loans of large banks. When γ1 > γ2, small

banks are able to offer more than large banks. Finally, we have observed

that if the costs of regulation are proportionally shared among banks with

respect to their size and typology (in line with the proportionality principle),

then it is possible to tune the level of regulation allowing an increase of banks’

loans (especially those of small banks).

Our work highlights the importance of relationship lending, particularly

in a period of financial distress focusing on the role of local banks, which rely

more on soft information than not local banks.

23



Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgements

We thank all the participants to the 12th Nonlinear Economic Dynamics

conference (NED-2021) in Milan, for their useful suggestions. We thank

also the participants to the 11th Nonlinear Economic Dynamics conference

(NED-2019) in Ukraine where an earlier version of the model was presented.

References

Aiello, F., Bonanno, G., 2013. Profit and cost efficiency in the Italian banking

industry (2006-2011). Economics and Business Letters 2, 190–205.

Alessandrini, P., Papi, L., 2018a. Banche locali e piccole imprese dopo la

crisi tra nuove regole e innovazioni digitali. Money and Finance Research

group (Mo. Fi. R.) Working Papers No 148.

Alessandrini, P., Papi, L., 2018b. L’impatto della” bolla regolamentare” sulle

banche: alcune valutazioni. Money and Finance Research group (Mo. Fi.

R.) Working Papers No 150.

Assaf, A.G., Berger, A.N., Roman, R.A., Tsionas, M.G., 2019. Does efficiency

help banks survive and thrive during financial crises? Journal of Banking

& Finance 106, 445–470.

24



Barboni, G., Rossi, C., 2019. Does your neighbour know you better? The

supportive role of local banks in the financial crisis. Journal of Banking &

Finance 106, 514–526.

Bischi, G.I., Stefanini, L., Gardini, L., 1998. Synchronization, intermittency

and critical curves in a duopoly game. Mathematics and Computers in

Simulation 44, 559–585.

Brianzoni, S., Campisi, G., 2021. Dynamical analysis of a banking duopoly

model with capital regulation and asymmetric costs. Discrete & Continu-

ous Dynamical Systems - B 26, 5807–5825.

Brianzoni, S., Gori, L., Michetti, E., 2015. Dynamics of a Bertrand duopoly

with differentiated products and nonlinear costs: Analysis, comparisons

and new evidences. Chaos, Solitons & Fractals 79, 191–203.

Fanti, L., 2014. The dynamics of a banking duopoly with capital regulations.

Economic Modelling 37, 340–349.

Fanti, L., Gori, L., Mammana, C., Michetti, E., 2013. The dynamics of a

Bertrand duopoly with differentiated products: synchronization, intermit-

tency and global dynamics. Chaos, Solitons & Fractals 52, 73–86.

Fanti, L., Gori, L., Sodini, M., 2012. Nonlinear dynamics in a Cournot

duopoly with relative profit delegation. Chaos, Solitons & Fractals 45,

1469–1478.

Fanti, L., Gori, L., Sodini, M., 2015. Nonlinear dynamics in a Cournot

duopoly with isoelastic demand. Mathematics and Computers in Simula-

tion 108, 129–143.

25



Giordano, L., Lopes, A., 2006. Preferenza al rischio e qualità degli impieghi
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