
Citation: Fronzi, D.; Narang, G.;

Galdelli, A.; Pepi, A.; Mancini, A.;

Tazioli, A. Towards

Groundwater-Level Prediction Using

Prophet Forecasting Method by

Exploiting a High-Resolution

Hydrogeological Monitoring System.

Water 2024, 16, 152. https://

doi.org/10.3390/w16010152

Academic Editor: Andrzej Wıtkowskı

Received: 29 November 2023

Revised: 23 December 2023

Accepted: 27 December 2023

Published: 30 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Towards Groundwater-Level Prediction Using Prophet
Forecasting Method by Exploiting a High-Resolution
Hydrogeological Monitoring System
Davide Fronzi 1,† , Gagan Narang 2,† , Alessandro Galdelli 2,* , Alessandro Pepi 1, Adriano Mancini 2

and Alberto Tazioli 1

1 Dipartimento di Scienze e Ingegneria della Materia, dell’Ambiente ed Urbanistica (SIMAU),
Università Politecnica delle Marche, 60131 Ancona, Italy; d.fronzi@univpm.it (D.F.); a.pepi@univpm.it (A.P.);
a.tazioli@univpm.it (A.T.)

2 Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche, 60131 Ancona, Italy;
g.narang@pm.univpm.it (G.N.); a.mancini@univpm.it (A.M.)

* Correspondence: a.galdelli@univpm.it
† These authors contributed equally to this work.

Abstract: Forecasting of water availability has become of increasing interest in recent decades, espe-
cially due to growing human pressure and climate change, affecting groundwater resources towards
a perceivable depletion. Numerous research papers developed at various spatial scales successfully
investigated daily or seasonal groundwater level prediction starting from measured meteorological
data (i.e., precipitation and temperature) and observed groundwater levels, by exploiting data-driven
approaches. Barely a few research combine the meteorological variables and groundwater level data
with unsaturated zone monitored variables (i.e., soil water content, soil temperature, and bulk electric
conductivity), and—in most of these—the vadose zone is monitored only at a single depth. Our ap-
proach exploits a high spatial-temporal resolution hydrogeological monitoring system developed in
the Conero Mt. Regional Park (central Italy) to predict groundwater level trends of a shallow aquifer
exploited for drinking purposes. The field equipment consists of a thermo-pluviometric station, three
volumetric water content, electric conductivity, and soil temperature probes in the vadose zone at
0.6 m, 0.9 m, and 1.7 m, respectively, and a piezometer instrumented with a permanent water-level
probe. The monitored period started in January 2022, and the variables were recorded every fifteen
minutes for more than one hydrologic year, except the groundwater level which was recorded on a
daily scale. The developed model consists of three “virtual boxes” (i.e., atmosphere, unsaturated zone,
and saturated zone) for which the hydrological variables characterizing each box were integrated
into a time series forecasting model based on Prophet developed in the Python environment. Each
measured parameter was tested for its influence on groundwater level prediction. The model was
fine-tuned to an acceptable prediction (roughly 20% ahead of the monitored period). The quantitative
analysis reveals that optimal results are achieved by expoiting the hydrological variables collected in
the vadose zone at a depth of 1.7 m below ground level, with a Mean Absolute Error (MAE) of 0.189,
a Mean Absolute Percentage Error (MAPE) of 0.062, a Root Mean Square Error (RMSE) of 0.244, and
a Correlation coefficient of 0.923. This study stresses the importance of calibrating groundwater level
prediction methods by exploring the hydrologic variables of the vadose zone in conjunction with
those of the saturated zone and meteorological data, thus emphasizing the role of hydrologic time
series forecasting as a challenging but vital aspect of optimizing groundwater management.

Keywords: groundwater; vadose zone; time series forecasting; artificial intelligence

1. Introduction

Water is indisputably one of the most important natural resources since its availability
sustains life, agriculture, industry, and its dependent ecosystems [1–3]. A continuously
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increasing strain on freshwater supplies is observed due to world population growth
and climate change [4,5], hence water conservation practice and water availability pre-
diction emerge as a vital objective [6,7]. Indeed, while the causes of climate change are
still debated and often divergent, the produced effects are globally recognized. The most
common include a rise in dry periods and an increase in intense rainfall events. Those
phenomena have a strong impact on both groundwater and surface water resources. In
fact, while large amounts of rainfall occurring in a few hours can cause floods, a gradual
depletion of groundwater available for human consumption is observed. In this context,
some authors suggest that a shift in monitoring focus from the groundwater to the va-
dose zone is necessary to understand the processes that regulate the decreasing of aquifer
recharge [8–11]. During the last decades, special attention has been paid to monitor the
unsaturated zone layers to characterize infiltration processes and thus estimate groundwa-
ter recharge vs. run-off generation [12,13]. The unsaturated zone represents the portion
that encompasses the topographic surface until the top of the groundwater body, where
most of the biogeochemical processes take place and where rainwater infiltrates [14]. At
the beginning of the 21st century, the unsaturated zone was included, according to the US
National Research Council, in the more elaborated concept of “Critical Zone”, because of
the extreme complexity of the phenomena that regulate it [15]. The various heterogeneities
in the unsaturated zone (presence of roots, lenses of fine or coarse materials, different gas
phases, and redox conditions) are reflected in a heterogeneous response in terms of recharge,
transport of pollutants, and their attenuation. Hence, understanding unsaturated-zone
processes is crucial to determine the amount and quality of groundwater that is available
for human and ecosystem use [16,17]. In this context, the growing interest in groundwater
level (GWL) prediction to support water management operations was accompanied by a
proliferation of advanced sensors and data collection technologies [18,19]. Usually, Time
Domain Reflectometry (TDR) moisture probes are used to monitor the soil hydrologic
variables such as water content, soil temperature, and bulk electric conductivity, providing
useful information to understand aquifer recharge mechanisms. These sensors can gather
vast amounts of hydrologic data at different scales. However, few hydrogeological studies
still analyze the aquifer response to meteoric inflow by investigating the vadose zone. Most
of the studies deal with precipitation and air temperature data to perform water balance by
exploiting the most known empirical methods [20–22] or more complex physically based
methods [23,24]. A recent work by Berthelin et al., 2023 [25] exploits soil moisture content
only measured at a single depth (20 cm) at different locations, to determine the aquifer
recharge of the investigated catchment.

The increasing improvement of monitoring systems and the large amount of hydro-
logic data collected by the scientific community fostered the development of data-driven
methods to characterize and understand complex natural phenomena [26]. Several studies
are based on the application of machine learning approaches in geosciences and related
subjects [27–31]. Utilizing data-driven approaches toward the prediction of groundwater
level is not a new phenomenon, and traditionally, numerical methods have been used for
groundwater level modeling [32–34]. However, recent studies have extensively employed
Artificial Intelligence (AI) based techniques [35–37]. Due to the inherent non-linear and
non-stationary nature of groundwater level time series, intelligent data-driven methodolo-
gies have showcased promising results. Across the literature, various popular forecasting
approaches have been tested on specific applications of groundwater level forecasting, in-
cluding Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks
(ANN), Long Short-Term Memory (LSTM) as well as hybrid approaches such as ARIMA-
LSTM [38–41]. Comparative studies have consistently shown that machine learning-based
methods outperform traditional numerical approaches [42] with superior prediction per-
formance and capturing complex and non-linear relationships between input and output
variables [43]. In a bibliometric study of machine learning and mathematical modeling
techniques of forecasting using piezometric data [44], authors find that machine learning
techniques such as Random Forest (RF), Support Vector Machine (SVM), and deep learn-
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ing techniques like ANN achieve higher accuracies if compared to mathematical model
techniques. Ren et al. [45] investigated that though deep learning performs well in filling
high dynamic gaps, it struggles with reconstructing trends and seasonality-based gaps. On
the other hand, ARIMA, a traditional machine learning model, excels in capturing trends
and seasonality.

This suggests that traditional models, designed to handle time series with seasonal
effects and trends, may be more suitable for groundwater level forecasting tasks. While
RFs and SVMs lack built-in mechanisms to handle the temporal nature of groundwater
data and explicitly capture seasonality and holiday effects in groundwater-level time series,
ANNs require careful architecture design, training, and tuning for time series forecasting.
A pressing need exists for a fast, accurate, and tunable forecasting procedure that works
best with time series with strong seasonal effects due to the nature of groundwater level
oscillation during the hydrologic years. Further, it should also have an easy mechanism
of incorporation of exogenous variables while maintaining interpretability. Prophet is an
open-source machine learning model specifically designed for time series forecasting, with
a particular emphasis on capturing seasonality, trends, and holiday effects [46]. Prophet
is robust in automatically handling missing data and outliers, is flexible in incorporating
domain knowledge, and can capture seasonality and holiday effects with simplicity. More-
over, Prophet incorporates uncertainty estimation, which is crucial for decision-making
in groundwater management. Researchers have tested it for groundwater level estima-
tion, and it has been compared with other models like ARIMA, Multivariate Adaptive
Regression (MARS), and Error Trend and Seasonality (ETS) using satellite data to analyze
and forecast groundwater level in the Urmia Lake basin (Northwestern Iran) [47]. Prophet
consistently outperformed the other models, achieving higher coefficients of determination
(R2) ranging from 0.81 to 0.85, as well as lower Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). Aguilera [48] conducted a similar study at the Ramsar wetland
area of Doñana (Spain) and found that Prophet exhibited strong prediction capabilities for
groundwater level time series. The study compared Prophet with various statistical and
intelligent models commonly used in time series forecasting, suggesting that methods with
additive schemes, such as ARIMA and Prophet, are suitable for modeling groundwater
time series. Though it has demonstrated superior performance, the existing literature
only focuses on a simple implementation based on regressors such as air temperature and
precipitation, which are not the most robust representations of the actual groundwater
recharging mechanism.

As far as our best knowledge, no previous research aims to estimate future groundwa-
ter availability by combining a vadose zone monitoring system collecting data at different
depths into the soil and machine learning approaches. Only a few studies in the literature
exploit the Prophet forecasting method to estimate future groundwater levels by exploiting
just previously observed groundwater level data [47,48] or precipitation data [42]. To
fill this gap in the literature, this research explores the additive machine learning model
Prophet (not specifically developed for hydrological purposes) to predict the groundwater
level of an alluvial aquifer exploited for drinking purposes by using the vadose zone
monitored data. The study site is located in the Conero Mt. Regional Park (central Italy).
The monitoring strategy consists of a thermo-pluviometric station, three soil water content,
electric conductivity, soil temperature probes, and a piezometer instrumented by a water
depth probe. All the variables collected from the monitoring system are tested for their
influence on groundwater level prediction. Towards this approach, the proposed research
tries to address the following open-ended questions:

• How do unsaturated zone variables, like soil volumetric water content, bulk electric
conductivity, and soil temperature improve groundwater level predictions compared
to precipitation and air temperature data and previously observed groundwater levels?

• Can our proposed Prophet model accurately forecast groundwater levels in a shallow
aquifer by integrating high-resolution hydrological monitoring, both from meteoro-
logical data and both from the vadose zone data?
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• What is the impact of monitoring the vadose zone at different depths on groundwater
level predictions in the study area?

2. Materials and Methods

This section presents the materials and methods employed in the investigation of
advanced groundwater level prediction by applying the Prophet forecasting method, lever-
aging the capabilities of a high-resolution hydrological monitoring system. The subsections
encompass a comprehensive overview of our research, starting with a description of the
study area, the monitoring strategy, and the collected dataset. Subsequently, we delve into
the forecasting method and the choice of predictive regressors. Through these carefully
integrated methodologies, we aim to contribute to developing an accurate and originally
applied forecasting system for groundwater availability and management.

2.1. Hydrogeological Features of the Study Site

The study site is located in the central Mediterranean basin. The research is focused
on a sub-catchment (about 5 km2) of the Aspio watershed, situated within the Conero
Mt. Regional Park (central Italy) (Figure 1a). The Conero Mt. hydrostructure has been
the objective of several studies during past years [49]. Fronzi et al., 2022 [50] identified
two main aquifers in the area. The first one, named Scaglia Calcarea aquifer is hosted
in the Scaglia Rossa and Scaglia Bianca geological Formations (Fms.), while the second
one is hosted in the terraced and alluvial deposits of the Quaternary age (Figure 1b).
The Scaglia Calcarea represents the main aquifer and is constituted by stratified mycritic
limestones, marly, and flinty limestones [49]. Its hydraulic conductivity is regulated by the
presence of fissures and microkarst features, typical of such carbonate geological Fms. [51].
The Scaglia Calcarea aquifer is inferiorly confined by the marly units of the Marne a
Fucoidi Fm., (not outcropping in the analyzed basin). At the top, the Scaglia Calcarea
aquifer is semi-confined by the presence of a low permeability complex of the Scaglia
Variegata Fm., Scaglia Cinerea Fm., the Bisciaro Fm. and the Schlier Fm., which constitute a
single aquiclude. This hydrogeological complex, together with Pliocene and Pleistocene
clay layers, hydraulically separates the Scaglia Calcarea aquifer from the shallow alluvial
aquifer mainly comped by silty-sands, sandy-silts and gravels with sand layers. The alluvial
aquifer is responsible for the presence of perennial surface water in the tributaries of the
Aspio River and feeds the watercourses through a well-explored groundwater-surface
water interaction [50]. As a result, the groundwater body hosted in the alluvial aquifer
is responsible for sustaining the aquatic ecosystem of the Regional natural park. The
aquifers’ recharge is entirely due to meteoric precipitation which accounts for an average
precipitation of about 900 mm/year [49]. Both aquifers play an important role in the
drinking water supply. Indeed, they are tapped by the local water management company,
providing good quality water in the small towns nearby. However, the meteoric regime of
the years 2019, 2020, and 2021 has impacted the groundwater resources in the area with
severe groundwater depletion effects and a concomitant drying up of the water course for
a prolonged period [50]. This aspect provided the impetus for an in-depth assessment of
future groundwater availability by characterizing the infiltration processes and the water
movement in the vadose zone towards the alluvial aquifer to support local management
companies and authorities. For this reason, starting in January 2022, a high-resolution
hydrogeological monitoring system has been set up in the basin. The following chapter
describes the implemented monitoring system and the data collection strategy.
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Figure 1. Location of the study area with a (a) simplified geological map of the analyzed basin and
(b) schematic hydrogeologic cross-section. Modified from [50].

2.2. Monitoring System and Data Collection

Starting from November 2021, field operations have been made to implement the
monitoring site. Three holes of diameter 0.1 m were manually drilled at a distance of
2 m from each other and inclined 45 degrees to the horizontal. The holes were drilled
at 0.6, 0.9, and 1.7 m depth, respectively, into the soil deposits of the alluvial aquifer in
the proximity of the wells field employed for drinking water supply (Figure 1b). In the
holes, the advanced soil moisture, temperature, and electric conductivity (EC) sensors
TEROS 12 (Meter Group Inc., Pullman, WA, USA) were installed at the bottom, taking care
to refill and compact the soil previously extracted from the hole over the sensors. This
procedure, together with the drilling orientation (45°), was made to minimize the impact
of the hole on preferential infiltration flow paths into the soil toward the sensors. The
TEROS 12 are advanced sensors that exploit the TDR principle to monitor the vadose zone
hydro-physical properties. The soil moisture is expressed as volumetric water content
(VWC), measured in m3/m3, with a resolution of 0.001 m3/m3 and accuracy ±0.03 m3/m3.
The soil temperature (Tsoil) operational range is −10 to +60 °C, with resolution of 0.1 °C,
and accuracy ±0.5 °C from −10 to 0 °C and ±0.3 °C from 0 to 60 °C. The Bulk electrical
conductivity (EC) range is 0–20 mS/cm with 0.001 mS/cm resolution and ±5 percent accu-
racy. The precipitation (P) regime and the air temperature (Tair) in the area are monitored
through a thermo-pluviometric station, while a standpipe piezometer located in the alluvial
aquifer (about 200 m downstream from the vadose zone monitoring point) was equipped
with a hydrometric pressure transducer (TD-Diver Eijkelkamp, accuracy ±0.5 cmH2O and
resolution 0.2 cmH2O) compensated by atmospheric pressure, for continuously monitoring
groundwater level fluctuation (Figure 1b). The monitored period effectively started on 1
January 2022, and all the hydrological parameters were recorded every fifteen minutes
for more than one hydrologic year until 30 April 2023, except for the GWL, which was
recorded every day at noon. We utilize IoT technology to automatically collect data on the
cloud robustly and efficiently, as demonstrated by Galdelli et al., 2019; Galdelli et al., 2021
and Tassetti et al., 2022 [52–54]. The obtained high spatial and temporal resolution dataset
was used to develop the GWL prediction model, as shown in the next chapter.
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2.3. Groundwater Level Forecasting

The implementation of the forecasting algorithm was preceded by a schematic simpli-
fication of the natural conditions, according to which the system was divided into three
virtual boxes: Box 1 = Atmosphere (and related variables), Box 2 = Vadose zone (and
related variables collected at different depths), and Box 3 = Saturated zone (and related
variables), following the scheme proposed in Figure 2. The implementation is split into four
distinct scenarios that comprehensively assess the model’s predictive capabilities. Initially,
variables from Box 1, encapsulating atmospheric conditions, were employed to predict the
GWL in Box 3. Subsequently, three additional tests were conducted using variables from
Box 2 at depths of 0.6 m, 0.9 m, and 1.7 m, independently to forecast the GWL in Box 3.
Each of these scenarios provides valuable insights into the relationships between specific
environmental variables and groundwater levels, contributing to an understanding and
optimization of the forecasting model for diverse conditions within the system.

Figure 2. Supporting scheme of natural conditions with related collected variables, input for the
Prophet method.

Considering the state of the art across the literature we designed a Prophet-based
system for forecasting purposes [46]. Prophet is a time series forecasting model developed
by the core data science team at Facebook and is an open-source project for analyzing and
forecasting time series. Prophet offers numerous strengths, including the robustness of the
model in the case of missing data, frequent trend changes, and promising performance
even in the presence of outliers. The convenient methods to add additional regressors
and robust cross-validation process make it a promising forecasting mechanism in our
case study. Prophet represents the time series as the sum of three components: (i) trend,
(ii) seasonality, and (iii) holidays, as seen below:

y(t) = g(t) + s(t) + h(t) + ϵt (1)

where:

• g(t): trend function, models non-periodic changes, it can be logarithmic;
• s(t): seasonality function, relying on the Fourier series, provides a flexible model of pe-

riodic effects to model changes that are repeated at regular time intervals (e.g., weekly
and yearly seasonality); it is also possible to have more than one seasonality in the
same series;

• h(t): holidays, models irregular events that temporarily alter the time series;
• ϵt: error term, represents changes in the time series that the model does not capture,

ϵt is regarded as a normal distribution.

Prophet adopts a unique approach to forecasting, treating it as a curve-fitting problem
in contrast to other methods like ARIMA [55]. Unlike ARIMA or SARIMAX, which relies
on autocorrelation and partial autocorrelation to capture temporal dependencies, Prophet
decomposes the input time series into additive components. It models trends using a
piecewise linear logistic growth curve and incorporates seasonality through Fourier series
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expansion. The data needs to be converted to a proper time series format to facilitate
effective utilization, as the model relies on a structured temporal sequence for accurate
trend and seasonality identification. Due to the disparity in temporal resolution between the
hydrological variables recorded at fifteen-minute intervals (i.e., P, Tair, VWC, Tsoil and EC)
and the GWL observations, collected at daily scale, a data treatment has deemed necessary.
Specifically, the hydrological variables of Box 1 and Box 2 were resampled at the daily scale
as follows. The daily mean Tair and daily cumulative P were computed. Similarly, the daily
mean VWC, Tsoil and EC were computed for all different depths, (i.e., 0.6 m, 0.9 m, and
1.7 m). Consequently, the method ensured that all the collected hydrological variables were
converted into a consistent daily format, aligning them temporally with the observed GWL.

Training the model involves a combination strategy utilizing grid search for hyper-
parameter tuning and cross-validation for predictive error assessment on validation data,
as depicted in Figure 3. The grid search algorithm systematically explores a range of
hyperparameter values, as detailed in Table 1, exhaustively testing all possible combina-
tions for optimization. Hyperparameters such as prior_scale_temperature, prior_scale_rain
for the atmosphere, prior_scale_soil_temperature, prior_scale_water_content, and prior_scale_
electric_conductivity and were optimized for this investigation. Moreover, depending on
the specific forecasting scenario, weights for exogenous variables acting as regressors
were introduced. Such exogenous variables are not directly influenced by the ground-
water level, but are important factors affecting it. Introducing these exogenous variables
as regressors and assigning weights through hyperparameter tuning, our model can ac-
count for external influences, providing a more comprehensive and accurate prediction
of GWL. Therefore, to incorporate these variables, depending on the forecasting scenario,
hyperparameters such as prior_scale_temperature, prior_scale_rain for the atmosphere (Box 1),
prior_scale_soil_temperature, prior_scale_water_content, and prior_scale_electric_conductivity for
the vadose zone (Box 2) were defined and custom integrated into the model. These weights
allow the model to assign varying degrees of importance to different exogenous variables,
enhancing its adaptability to the specific dynamics of the saturated zone (Box 3) namely the
GWL prediction task. The systematic selection of optimal hyperparameters, combined with
the introduction of these weights, ensures the model’s robust performance and facilitates
accurate forecasts for different scenarios.

P H

Input Validated forecast windowTimeseries data fed to Prophet

Testing

HorizonPeriod

7 days 14 days

Training  Validation

P H

P H

Error

Error

Error

Average 

crossvalidation error

.  .  .  .  .  .  .  .

.  .  .  . 

.  . 

Figure 3. Rolling cross-validation strategy applied towards hyperparameter tuning.
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Table 1. Hyperparameters grid optimized using rolling cross-validation strategy for different sce-
narios: Atmosphere to Saturated zone (Box 1 to Box 3) and Vadose zone to Saturated zone (Box 2 to
Box 3).

Scenario Hyperparameters Values

Box 1 to Box 3 changepoint_prior_scale [0.01, 0.05, 0.1, 0.7, 0.9]

seasonality_mode [’additive’, ’multiplicative’]

seasonality_prior_scale [0.01, 2.0, 12.0, 15.0, 75.0]

prior_scale_temperature [0.000001, 0.01, 0.5, 0.7, 1.0]

prior_scale_rain [0.000001, 0.01, 0.5, 0.7, 1.0]

changepoint_range [0.70, 0.85, 0.90, 0.95]

daily_seasonality [’True’, ’False’]

weekly_seasonality [’True’, ’False’]

yearly_seasonality [’True’, ’False’]

Box 2 to Box 3 changepoint_prior_scale [0.01, 0.05, 0.1, 0.7, 0.9]

seasonality_mode [’additive’, ’multiplicative’]

seasonality_prior_scale [0.01, 2.0, 12.0, 15.0, 75.0]

prior_scale_water_content [0.000001, 0.01, 0.5, 0.7, 1.0]

prior_scale_soil_temperature [0.000001, 0.01, 0.5, 0.7, 1.0]

prior_scale_electric_conductivity [0.000001, 0.01, 0.5, 0.7, 1.0]

changepoint_range [0.70, 0.85, 0.90, 0.95]

daily_seasonality [’True’, ’False’]

weekly_seasonality [’True’, ’False’]

yearly_seasonality [’True’, ’False’]

Cross-validation evaluates the model’s performance across multiple training and
validation sets based on forecasting requirements. The determination of the training data,
which is used for cross-validation, is guided by key parameters: initial, period, and horizon.
These parameters are built into the Prophet and play a crucial role in defining the size of
the initial training period and the duration of the forecast window. The period parameter
specifies the length of a seasonal cycle, and the horizon parameter defines the duration
for which future predictions are made. The initial parameter determines the size of the
initial training period. During each cross-validation fold, the model is trained on this initial
period, allowing it to learn from historical data. The process iterates across the entire time
series, providing a robust assessment of the model’s performance across different data
segments. Specifically, our cross-validation approach involves dividing the time series
into segments, each equivalent to roughly 10% of the total time series into validation and
testing. In the validation process, a timeframe of 2 months was established, mirroring the
identified seasonal patterns and effectively capturing the recurring nature of the observed
data. Additionally, the test dataset spans 2 months, ensuring a comprehensive evaluation
of the model’s performance.

A period of 7 days was deemed appropriate in line with the identified seasonal patterns,
and this duration captures the recurring nature of the observed data and aligns with the
underlying cyclicality. Additionally, a horizon of 14 days was chosen to represent the forecast
window. This window length meets the local groundwater management company’s request
to operate in time to ensure the availability of drinking water for the population living
nearby. Furthermore, the selection of 14 days ensures that each cross-validation fold covers
a significant portion of the time series while allowing for a robust assessment of the model’s
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performance. This choice allows for a two-week projection, providing a meaningful time
frame for anticipating near-future trends and variations without significant loss in forecast
accuracy. Therefore, in case of a predicted significant groundwater level decrease the
management company can locate water pumps at different depths within the wells, or
integrate the amount of extracted groundwater from emergency well fields or different
water plants.

2.4. RAPS Method

The Rescaled Adjusted Partial Sums (RAPS) method is a fundamental analytical
technique within the realm of hydrogeological time series since it can discern nuanced fluc-
tuations within collected data, making it an essential tool for groundwater studies [56,57].
RAPS works by aggregating the deviations from a specified mean level of hydrologi-
cal variables and adjusting them against the data’s standard deviation, as reported in
Equation (2).

RAPSN =
N

∑
i=1

Yi − Ȳ
SY

(2)

where:
• N: the amount of data in the time series;
• Yi: the value of an individual sample i = 1, 2, . . . , N;
• Ȳ: average value of the observed sample;
• SY: the value of the standard deviation of the time series.

The RAPS method was used to analyze observed GWL and the predicted ones at a
daily scale by using two time-series lengths. The first one considers the duration of the
whole monitoring period, while the second one considers only the testing dataset. This
approach was employed to compare trends, periodicities, and fluctuations [58] on observed
vs. predicted GWL.

3. Results
3.1. Hydrological Characterization and Collected Dataset

The collected hydrological variables during the monitoring period (1 January 2022–30
April 2023) are reported in the graphs of Figure 4. When examining the graphs, it is possible
to observe that the precipitation regime in the area is characterized by wet periods during
winter and spring and less rainer periods during summer and early autumn. The summer
is marked by sporadic but heavy rainfall events that frequently exceed 10 mm/15 min,
while the wet periods are characterized by more continuous rainfall events persisting for
several hours to days. The most intense rainfall event can be depicted on 15 September
2022 (12 mm/15 min), recognized also by other authors to be one of the most intense
precipitation events affecting the northern Marche Region during the last century [59–61].

Concerning the air temperature, it ranges between 0 and 35 °C during the hydrologic
year. The higher values are observed during the summer (in July), and the lower are
recorded during the winter periods between January and February. The soil temperature
mimics the trend of the air temperature at all the monitored depths with a time lag between
Tair and Tsoil increasing as the depth increases. Three thermal stationary periods can be
observed in April and October 2022 and between March and April 2023. During the other
months, the soil temperature is higher at 0.6 m and lower at 1.7 m during summer. On the
contrary, during winter, an inverse temperature gradient is observed, as expected. Indeed,
the Tsoil at 0.6 m reflects changes in Tair faster, while deeper down, the thermal inertia of
the soil becomes more sizeable, smoothing temperature variations. Tsoil at 0.6 m ranges
between 6.7 and 25.5 °C, Tsoil at 0.9 m ranges between 8.3 and 23.4 °C, while Tsoil at 1.7 m
ranges from 10 °C to 20.8 °C (Table 2). A peculiar thermal response to the rainfall events is
observed at 0.6 and 0.9 m where precipitation falling in winter tends to increase the soil
temperature. In contrast, an opposite trend can be observed after the precipitation events
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occurring in summer, producing a decrease in soil temperature at both depths. The thermal
influence of infiltrating water into the soil is lost at 1.7 m both in the summer and winter
periods, as well. As regards the VWC, an increase in its values is observed after rainfall
events between January and February 2022, when the vadose zone is near the saturated
conditions. Starting from March, the soil progressively dries until September in all the
monitored depths. The rainfall events occurring between March and September 2022 do
not produce any increase in VWC, and starting from September 2022 the VWC starts to
increase at the shallow soils’ layers (0.6 m) and only in October 2022 the infiltration process
involve the soil at 0.9 m. Starting from December, the soil at 0.6 and 0.9 m behaves similarly
under the effect of precipitation events with a fast increase of the VWC. Only in January
2023, the three monitored depths reach the complete saturated conditions. VWC at 0.6 m
ranges between 0.22 and 0.4 m3/m3, VWC at 0.9 m ranges between 0.24 and 0.4 m3/m3,
while VWC at 1.7 m ranges from 0.24 to 0.36 m3/m3 (Table 2). Regarding the bulk EC, it
mimics the VWC behavior at all the monitored depths, with an increase in its values as the
VWC increases, except for the depth 1.7 m in which sporadic infiltration events are marked
by a decrease in EC values. EC at 0.6 m ranges between 0.22 and 0.64 mS/cm, EC at 0.9 m
ranges between 0.31 and 0.79 mS/cm, while EC at 1.7 m ranges from 0.24 to 1.05 mS/cm
(Table 2). Eventually, the GWL reach its maximum values during winter (January, February)
and early spring (March), and then a depletion phase can be observed starting from April
2022, with sparse recharge effects on May 2022.

Figure 4. Collected hydrological variables for the monitoring period.
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Table 2. Basic statistics of the considered time-series.

Box n° Hydrological Variable Measurement Unit Mean Min 25th Median 75th Max

1 P mm/15min 0.02 0 0 0 0 12
Tair °C 14.1 0 7.12 12.53 19.61 35

2 Tsoil 0.6 m °C 14.6 6.7 9.7 12.7 19.2 25.5
VWC 0.6 m m3/m3 0.31 0.22 0.27 0.33 0.35 0.4

EC 0.6 m mS/cm 0.4 0.22 0.29 0.46 0.49 0.64
Tsoil 0.9 m °C 14.5 8.3 10.1 12.7 18.8 23.4

VWC 0.9 m m3/m3 0.32 0.24 0.28 0.33 0.35 0.4
EC 0.9 m mS/cm 0.51 0.31 0.42 0.55 0.58 0.79

Tsoil 1.7 m °C 14.5 10 11.4 13.3 18.1 20.8
VWC 1.7 m m3/m3 0.29 0.24 0.25 0.3 0.32 0.36

EC 1.7 m mS/cm 0.51 0.24 0.26 0.46 0.65 1.05

3 GWL m −6.39 −9.7 −9.2 −6.42 −4.19 −2.5

The GWL reaches its minimum values during the summer and stands at about −9.7 m
below ground level until the beginning of November. Then an increase in GWL is observed
until February 2023, under the influence of the rainfall events at different stages, when the
vadose zone is completely saturated. The GWL ranges between −2.5 and −9.7 m below
ground level during the monitored period. Basic statistics for the monitored hydrological
variables are reported in Table 2.

3.2. Forecasting Scenarios

The implementation, which is split into four distinct scenarios as described earlier, is
considered for prediction purposes, ensuring a robust comparison against atmospheric and
vadose zone variables at different depths. Each scenario utilizes the optimized Prophet-
based model, which includes components for trend, seasonality, and additional regressors
chosen from the specific to three virtual boxes to capture the particular influences of the
chosen input variables at a given depth. The testing period is set from the start of March
2023 to the end of April 2023, and therefore, the model makes 61 prediction intervals (days)
representing the GWL into the future. The forecasted groundwater level is then compared
with actual values to calculate performance metrics. The forecasting performance was
evaluated through the following reported metrics:

• Mean Absolute Error (MAE), which is the absolute value of the difference between
paired accurate and predicted data;

• Mean Absolute Percentage Error (MAPE), which is the percentage expression of MAE
obtained through the normalization by the real data;

• Root Mean Squared Error (RMSE) is the average difference between predicted and
real data;

• Correlation is the strength and direction of the linear relationship between predicted
and actual values.

The quantitative results for all the scenarios are presented in Table 3.

Table 3. Performance metrics of the model in different scenarios.

Scenario Depth Additive Regressors MAE MAPE RMSE Correlation

Box 1 to Box 3 Surface P, Tair 0.299 0.101 0.356 0.857

Box 2 to Box 3 Depth 0.6 m Tsoil 0.6 m, VWC 0.6 m, EC 0.6 m 0.255 0.086 0.270 0.850

Box 2 to Box 3 Depth 0.9 m Tsoil 0.9 m, VWC 0.9 m, EC 0.9 m 0.274 0.090 0.374 0.833

Box 2 to Box 3 Depth 1.7 m Tsoil 1.7 m, VWC 1.7 m, EC 1.7 m 0.189 0.062 0.244 0.923

These independent scenarios offer a comprehensive approach to understanding and
predicting groundwater levels under different conditions. We ran a total of four tests, and
the results of each scenario will be presented as the virtual boxes defined earlier.
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3.2.1. From Atmosphere (Box 1) to Saurated Zone (Box 3)

The regressors used in this scenario are Tair and P. The resulting plot is observed
in Figure 5, and the observed values of MAE, MAPE, RMSE, and correlation are 0.299,
0.101, 0.356, and 0.857. As determined by cross-validation, the best hyperparameters were
a changepoint prior scale of 0.05, a changepoint range of 0.9, daily seasonality enabled,
a prior scale for precipitation of 0.1, and a prior scale for temperature (air) of 0.01. The
seasonality mode was set to ’multiplicative’ with a seasonality prior scale of 12.0, and both
weekly and yearly seasonality enabled. There is a positive correlation between observed
and predicted values, and considering the errors, the results are promising.

Figure 5. Prediction scenario of Box 1 to Box 3 using surface level variables.

3.2.2. From Vadose Zone (Box 2) to Saurated Zone (Box 3)

• Depth 0.6 m: The regressors used in this scenario are Tsoil 0.6 m, VWC 0.6 m and EC
0.6 m. The resulting plot is observed in Figure 6, and the observed values of MAE,
MAPE, RMSE, and correlation are 0.255, 0.086, 0.270, and 0.850, where the errors
are lesser than the atmospheric variables. The optimal hyperparameters marked a
changepoint prior scale of 0.9, a changepoint range of 0.9, a prior scale for electric
conductivity of 0.5, a prior scale for soil temperature of 0.000001, a prior scale for water
content of 1.0, a seasonality mode set to ‘multiplicative’ a seasonality prior scale of 15.0.
The daily, weekly, and yearly seasonality are set to ’True’. On visually observing, the
forecasted values follow a very similar trend to the observed data points.

Figure 6. Prediction scenario of Box 2 to Box 3 at a depth of 0.6 m.
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• Depth 0.9 m: Further increasing the depth till 0.9 m, we use the regressors as Tsoil
0.9 m, VWC 0.9 m and EC 0.9 m, respectively. The resulting plot is observed in
Figure 7, and the observed values of MAE, MAPE, RMSE, and correlation are 0.274,
0.090, 0.374, and 0.833. The overall performance has been depreciated compared
to 0.6 m depth; however, the performance is slightly better than the atmospheric
variables. The optimal hyperparameters marked a changepoint prior scale of 0.9, a
changepoint range of 0.95, a prior scale for electric conductivity of 0.7, a prior scale
for soil temperature of 0.000001, a prior scale for water content of 1.0, a seasonality
mode set to ‘additive’ a seasonality prior scale of 0.01. The daily, weekly, and yearly
seasonality are set to ’True’.

Figure 7. Prediction scenario of Box 2 to Box 3 at a depth of 0.9 m.

• Depth 1.7 m: The final scenario is implemented at 1.7 m, and here we utilize the
regressors Tsoil 1.7 m, VWC 1.7 m, and EC 1.7 m. The resulting plot is observed
in Figure 8. The observed values of MAPE, MAE, and correlation are 0.189, 0.062,
0.244 and 0.923. The calculated errors are considerably lower and offer the most
efficient performance when compared between different depths of the vadose zone.
The hyperparameters used to produce the forecast included a changepoint prior scale
of 0.7, a changepoint range of 0.95, a prior scale for electric conductivity of 0.000001, a
prior scale for soil temperature of 0.5, a prior scale for water content of 0.5, a seasonality
mode set to ‘additive’ a seasonality prior scale of 0.01. The daily, weekly, and yearly
seasonality are set to ’True’.

Figure 8. Prediction scenario of Box 2 to Box 3 at a depth of 1.7 m.
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3.2.3. RAPS Method and Trend Analysis

The analysis of the time series of RAPS data for observed GWL vs. predicted ones for
the entire dataset (Figure 9) indicates the existence of three sub-periods. The first sub-period
is characterized by an upward trend until May 2022, the second sub-period is marked by a
downward trend until December 2022, while the last sub-period is characterized again by
an upward trend.

2022-02 2022-04 2022-06 2022-08 2022-10 2022-12 2023-02 2023-04
Date (yyyy-mm)

150
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50
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GWL Box 1 to Box 3
GWL Box 2 to Box 3 (at 0.6 m depth)
GWL Box 2 to Box 3 (at 0.9 m depth)
GWL Box 2 to Box 3 (at 1.7 m depth)

Figure 9. Time series of RAPS data of observed GWL (black line) and predicted GWL data span of
the entire dataset across each forecast scenario, encompassing Box 1 to Box 3 and Box 2 (at 0.6 m,
0.9 m, and 1.7 m depths) to Box 3.

The RAPS data for all the analyzed time series follow the same trend, periodicity, and
oscillation along the entire timespan. When analyzing the time series of RAPS data of
the observed GWL vs. forecasted ones for the testing period (Figure 10) it is possible to
observe a general congruence between the obtained graphs with an upward trend until
March 2023 and a decreasing trend in all the analyzed time series starting from the second
half of March 2023. However, even if marked by the same trends, the periodicity and the
oscillation of the RAPS data obtained from the analysis display different results between
the analyzed variables. The periodicity and the oscillation of RAPS for the predicted GWL
obtained by exploiting Box 2 at 1.7 m (dashed green line) seem to be the most correlated
with the observed one (black line). On the contrary, the RAPS for the predicted GWL,
obtained by exploiting Box 1 and Box 2 at 0.9 m depth (dashed red line and dashed blue line
respectively), display a shift of about 10 days in their peak if compared to the RAPS of the
observed GWL. Eventually, the RAPS data for the predicted GWL, obtained by exploiting
Box 2 at 0.6 m depth (dashed pink line), deviates more from the RAPS data of observed
GWL especially in the first two weeks (i.e., until 15 March 2023).
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Figure 10. Time series of RAPS data of observed GWL (black line) and predicted GWL data span of
the testing dataset for each predicted scenario, including Box 1 to Box 3 and Box 2 (at 0.6 m, 0.9 m,
and 1.7 m depths) to Box 3.
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4. Discussion

The present work shows an AI-based application to GWL prediction focused on the
Prophet forecasting method. Interestingly, the best prediction is obtained by using the
sensor placed in the vadose zone (Box 2) at 1.7 m. Indeed, as reported in Table 3 this
scenario is characterized by maximum correlation values (0.923) and minimum associated
errors. On the other hand, the prediction obtained by exploiting the regressors collected
from Box 1 (P and Tair) and Box 2 (VWC, EC, and Tsoil at 0.6 and 0.9 m) are comparable
if considering only the correlation values, and slightly better for the Box 2 regressors’ if
considering the associated errors. The obtained results match the observed hydrological
processes. In fact, if using Box 1 regressors (P and Tair) to forecast the GWL, the effective
infiltration processes through the unsaturated layers towards the aquifer are not taken into
account. By exploiting the surface data the prediction (even if accurate) is not as accurate
as the ones obtained by exploiting Box 2 collected hydrological variables, supporting the
fact that not all the precipitation events are correlated by effective recharge processes, due
to the evapotranspiration occurring between April and October in our study site. On
the other hand the prediction increases by observing the relationship between Box 2 and
Box 3, as the probes installed in the vadose zone can catch the effective infiltration patterns
occurring in the saturated zone. However, considering Box 2 at 0.6 and 0.9 m two different
processes can be observed: (1) the shallower portion of the soil is still influenced by the
evapotranspiration effects, with a decreasing influence as the depth increases; (2) Tsoil acts
as a nonlinear regressor during the hydrologic year (i.e., increasing after rainfall events in
winter and decreasing with the same magnitude under the effect of similar rainfall events
occurring in summer). This aspect supports the prior scale for Tsoil automatically obtained
by the forecasting method equal to 0.000001 proving that the Tsoil at 0.6 and 0.9 m impact
on GWL prediction is lower, or in other terms, it generates noise. The best prediction is
obtained by using all the regressors (VWC, EC, and Tsoil) of Box 2 at 1.7 m. At this depth,
the Tsoil variations under the effect of single rainfall events are not caught by the TDR
due to the fact that the temperature is recognized as a non-conservative tracer and the
Tsoil variations are smoothed during the infiltration processes [62,63]. At this depth, only
the seasonal thermal effect can be observed and those are much more correlated to the
seasonal GWL oscillation. In fact, the last scenario (Box 2 to Box 3 at 1.7 m) is characterized
by a prior scale for Tsoil automatically obtained by the forecasting method equal to 0.5,
higher than the ones obtained for the other depths, strengthening the fact that the seasonal
GWL oscillation is linked to the seasonal temperature of the soil recorded at 1.7 m. On
the contrary, the VWC at 1.7 m impact on the prediction is lower (0.5) with respect to the
other depths because the VWC variations at lower depths are slow, and once the saturated
conditions are reached the VWC still remains high and constant for a prolonged period.
The opposite behavior is observed during summer when the VWC still remains low for
a prolonged period and no sudden variations of VWC are recorded under the effect of
rainfall events. The EC affects the prediction at all depths in a non-conservative way. This
outcome can be related to the heterogeneous dissolution processes occurring in the soil at
different depths when the percolation occurs. In fact, when the water infiltrates into the
soil it can produce an effective solute transport whose magnitude is related to the rainfall
intensity and duration, the soil’s granulometric size, and the bio-geochemical processes
occurring during the monitored period, resulting in a non-linear behavior of the EC under
the effect of each single precipitation event at different depth.

Generally, in our study site, the water infiltrating into the soil produces an increase
in EC at all the monitored depths except at 1.7 m where the EC sometimes decreases
after the precipitation. Eventually, we exploited two “virtual boxes” (Box 1 and Box 2)
with their collected hydrological variables fetched as a time series and used to predict
GWL. The findings underscore the significance of hydrological variables from the vadose
zone, revealing their capacity to enhance prediction accuracy when compared to the
thermo-pluviometric variables. This observation highlights the added value of vadose
zone variables in refining GWL forecasting. Our analysis indicates that the optimum
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performance within the vadose zone is achieved at a depth of 1.7 m, emphasizing the
critical influence of this specific depth on the predictive accuracy of GWL models in our
study site. The RAPS method applied to the entire dataset (Figure 9) demonstrates the
efficiency of the exploited forecasted method highlighting a general correlation both in
trends, periodicities, and oscillations along the training, validation, and testing periods. If
focusing on the testing dataset (Figure 10) the best correlation of RAPS data for observed
GWL is obtained with the TDR placed at 1.7 m depth into the vadose zone, highlighting and
strengthening how this specific depth affects the predictive accuracy of the GWL in our case
study. While this research has provided valuable insights by concentrating on a singular
model and employing grid search optimization, it is essential to acknowledge its limitations.
Future remarks may lay in a more comprehensive understanding of the forecasting that
can be achieved by exploring different approaches to hyperparameter tuning. This implies
that the study could be extended to investigate alternative methods beyond grid search,
such as Bayesian optimization [64], to identify the most effective configuration for the
Prophet model.

Future developments may lie in comparing the obtained results with other state-of-
the-art time series models like ARIMA and SARIMAX, and obtain benchmarks for the
selected site [42]. Additionally, incorporating emerging deep learning techniques like
NeuralProphet or transformer-based models would contribute to a more comprehensive
evaluation [65–67]. These models have garnered global attention for their ability to capture
complex temporal dependencies and patterns, potentially offering alternative solutions to
time series forecasting challenges. The suggested benchmarking across various models may
enhance a broader perspective on the strengths and weaknesses of different approaches.
Another limitation of the study lies in the duration of the monitoring period. Indeed,
since the exploited time series is 16 months long, they cannot catch year seasonality on the
observed hydrological processes. This aspect may infer the forecasting process and limit
the forecasting time period. Further development of the study can be done only if two
or more complete hydrologic years of data are collected. Eventually, a further approach
may involve the use of effective precipitation as a regressor of Box 1 by excluding the
contribution of evapotranspiration, which can be calculated at a daily scale exploiting the
Hargreaves and Samani method [68], starting from the collected P and Tair data. However,
it has to be pointed out that at this stage, the characterization of the aquifer recharge
processes occurring in the study area is out of the scope of the present research, which aims
to improve and explore the Prophet forecasting method by using hydrological variables
collected in the vadose zone.

5. Conclusions

The implemented high-resolution monitoring system coupled with the Prophet fore-
casting method, allows for the early detection of changes and trends in groundwater level,
offering a proactive approach to managing this valuable resource. This capability is vital in
promptly identifying and addressing declining water levels and groundwater availability,
facilitating more effective and sustainable groundwater resource management practices.
Indeed, water management companies can proactively respond by strategically placing
water pumps at increased depths within wells or by supplementing the aqueduct system
through integrated or emergency water plants. Besides, in this study, a high-resolution
hydrogeological monitoring system has been demonstrated imperative because it provided
precise and quantitative data on crucial hydrological processes. Such monitoring offers
unparalleled accuracy in predicting groundwater levels. The ultimate goal of this study is
to highlight the importance of combining continuous field monitoring of the unsaturated
zone to understand the recharge mechanisms occurring in heterogeneous media in a contin-
uously changing climatic context characterized by an increase in hydrogeological extremes.
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