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Fault Diagnosis of Rotating Machinery based on
Wasserstein Distance and Feature Selection

Francesco Ferracuti, Member, IEEE, Alessandro Freddi, Member, IEEE, Andrea Monteriù, Member, IEEE,
and Luca Romeo

Abstract—This paper presents a fault diagnosis algorithm for
rotating machinery based on Wasserstein distance. Recently,
Wasserstein distance has been proposed as a new research
direction to find better distribution mapping when compared
with other popular statistical distances and divergences. In this
work, firstly, frequency and time-based features are extracted
by vibration signals and, secondly, the Wasserstein distance is
considered for the learning phase to discriminate the different
machine operating conditions. Specifically, the 1-dimensional (1D)
Wasserstein distance is taken into account thanks to its low
computational burden because it can be evaluated directly by the
order statistics of the extracted features. Furthermore, a distance
weighting stage based on neighborhood component features selec-
tion (NCFS) is exploited to achieve robust fault diagnosis at low
signal-to-noise ratio (SNR) conditions and with high-dimensional
features. In detail, the NCFS framework is here adapted to
weight 1D Wasserstein distances evaluated from time/frequency
features. Experiments are conducted on two benchmark datasets
to verify the effectiveness of the proposed fault diagnosis method
at different SNR conditions. The comparison with state-of-the-art
fault diagnosis algorithms shows promising results.

Note to Practitioners—This article was motivated by the prob-
lem of fault diagnosis of rotating machinery under low SNR and
different machine operating conditions. The algorithm employs a
statistical distance-based fault diagnosis technique, which permits
to obtain an estimation of the fault signature without the need
for training a classifier. The algorithm is computationally efficient
during the training and testing stages, and thus it can be used in
embedded hardware. Finally, the proposed methodology can be
applied to other application domains such as system monitoring
and prognostics which can help to schedule the maintenance of
rotating machinery.

Index Terms—Fault diagnosis, rotating machines, Wasserstein
Distance, statistical distances, neighborhood component features
selection.

I. INTRODUCTION

AS a consequence of the developments in the fields of
technology and materials science, industrial equipment

is increasing its functionality and complexity. Among them,
rotating machinery plays a fundamental role in modern indus-
trial applications, and fault diagnosis assumes utmost impor-
tance to ensure both availability and safety, prevent system
downtime, and save economic losses to the customers [1],
[2]. According to the types of data and how the data are
processed, fault diagnosis methods can be divided into three
main classes: model-based (or online data driven), signal-
based and knowledge-based (or historical data driven) [3],
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[4]. The main trend in fault diagnosis for rotating machinery is
to employ signal-based or knowledge-based methods, with the
adoption of model-based methods limited to specific classes
of rotating machinery and faults [5], [6]. Knowledge-based
methods mainly rely on artificial intelligent approaches, while
signal-based methods perform data processing for waveform
and multidimensional data. In this work, we will focus our
attention on the latter.

The most common waveform data in condition monitoring
of mechanical systems are vibration signals and acoustic
emissions. Moreover, motor currents and partial discharge are
used as well in the literature for electrical machines [7].
The waveform data can then be analyzed in different do-
mains, namely the time-domain, frequency-domain and time-
frequency-domain. In the first case, typically, different statis-
tical features of the signals in the time-domain are extracted
and then analyzed, whether in a 1D (e.g., cross-correlation
analysis) or 2D domain (e.g., by mapping the time signals into
images) [8]. In the frequency-domain, instead, the most used
methods rely on the fast Fourier transform (FFT); however,
the FFT analyzes the signal within a specific time-window,
thus returning an averaged frequency signal over time, which
makes transient features difficult to examine [9].

Time-frequency methods try to overcome the problem of
effective transient analysis. The most common time-frequency
methods in the literature are the short-time Fourier transform,
the empirical mode decomposition, the continuous wavelet
transform, and the discrete wavelet transform [10]–[13]. These
techniques, however, do not address the problem of quasi-
stationary processes which present different spectral profiles
during time. This is evident in condition monitoring of bear-
ings in rotating machines, where the presence of noise, the
quasi-stationary nature of bearing vibrations and the variation
of the operating conditions make the single-time-segment
spectrum of the healthy and faulty condition appear diverse
for different time-segments [14]. The same applies to many
common waveform data, e.g., motor currents [15].

In the last years, both frequency-based and time-frequency-
based methods have been investigated, in order to cope with
the above mentioned problem. Kurtogram methods are often
employed to diagnose bearing faults by using vibration data
in poor signal-to-noise ratio (SNR) conditions. The research
efforts to produce enhanced kurtograms mainly follow two
directions: to enhance the impulse signals produced by faults
or to find the frequency band which contains the strongest
impulse signals produced by faults [16], [17]. Recently, [14]
developed a frequency-based approach that uses several-time-
segment spectra of vibration signals to build a spectral image
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for the purpose of fault diagnosis. A similar approach was
investigated by the authors in [18] as well. Similarly, a
solution based on power spectrum density (PSD)-images in
combination with deep convolutional autoencoder for high-
level feature extraction is proposed in [19]. Feature extrac-
tion of the spectrum and deep learning-based algorithms are
proposed extensively for fault classification and degradation
prediction in the last years [20]–[24], whereas, in this context,
Wasserstein distance-based solutions for fault diagnosis are
still at the beginning of the investigation in the literature.

The Wasserstein distance is a true metric [25] and can
be traced back to the mass transport problem [26]. A more
detailed account of the history and description of this dis-
tance can be found in [27], [28]. In computer science, the
Wasserstein distance, in a special case, is better known as
the earth mover’s distance (EMD) [29]. Recently, Wasserstein
distance has taken much attention in deep learning, in partic-
ular in [30], in which the authors introduced a new algorithm
named Wasserstein-generative adversarial networks (WGAN),
an alternative to traditional generative adversarial networks
(GAN) training, allowing to prevent problems with vanishing
gradient. The exploitation of statistical distances/divergences
in the fault diagnosis framework has been widely investigated
in the literature [31]–[33]. The distances/divergences allow to
detect the fault, to identify the fault and, finally, to obtain
an estimation of its severity without the need for training a
classifier [34], [35].

Currently, in [30], [36], the authors demonstrated that
Wasserstein distance was a viable approach to find better dis-
tribution mapping. Moreover, in [30], the authors demonstrated
that Wasserstein distance is a more sensible cost function
compared with other popular probability distances and diver-
gences, such as Kullback-Leibler (KL) divergence and Jensen-
Shannon (JS) divergence when learning distributions supported
by low dimensional manifolds. Currently, in [18], the authors
proposed the exploitation of Wasserstein distance for fault
diagnosis in the frequency domain and in [37], the authors
expanded this topic by proposing the Wasserstein-Fourier
distance to measure the dissimilarity between time series by
quantifying the displacement of their energy across frequen-
cies. In this work, the Wasserstein distance is considered in the
learning phase to discriminate the different machine operating
conditions. Specifically, the 1-dimensional (1D) Wasserstein
distance is taken into account thanks to its low computational
burden since it can be evaluated directly by the order statistics
of the extracted features. These preliminary considerations
supported our motivation to include the Wasserstein distance
as loss function to be optimized in the neighborhood com-
ponent features selection (NCFS) procedure, with the aim to
improve the generalization performances in the presence of
low SNR conditions and high dimensional feature set. NCFS
is a supervised method that allows improving the interpretation
of the diagnosis stage thanks to the weighting of the rele-
vant frequencies involved in the fault process. In the present
work, the standard NCFS framework is adapted to weight 1D
Wasserstein distances evaluated from time/frequency features.

The rest of this paper is organized as follows. In Section
II the related methods are reviewed, and the proposed fault

diagnosis framework presented. The experimental setups of
two bearing benchmarks are described in Section III. Two
bearing benchmarks are separately analyzed using the pro-
posed method in Section IV. Finally, conclusions are drawn
in Section V.

II. MATERIAL AND METHODS

This section introduces the Wasserstein distance, the dis-
tance weighting method based on NCFS, and the proposed
fault diagnosis algorithm which combines both 1D Wasserstein
distance and NCFS.

A. Wasserstein distance

Wasserstein distance has been broadly used in the field of
statistics and probability theory as a distance measure between
probability distributions. Because Wasserstein distance can
measure the similarity between probability measures, we take
it as a measure of ability to classify different categories.

Let (M,D) be a Polish metric space and let p ∈ [1 ∞),
for any two probability measures µ and ν on M the
p-Wasserstein distance Wp (µ, ν) is defined as follows:

Wp (µ, ν) =

(
inf

π∈Γ(µ,ν)

∫
M×M

D(x, y)pdπ (x, y)

)1/p

(1)

where Γ (µ, ν) denotes the set of all joint probability measures
on M × M whose marginals are µ and ν, D(x, y) is a
distance on a Polish space M, and X ∼ µ and Y ∼ ν.
Normally, the Lp-norm is considered as a distance D(·) on
the Polish space, thus in the one-dimensional case it is simply
D(·) =

∑
| · |p. In the one-dimensional case, some works

define the 1D p-Wasserstein distance in terms of Mallows’
distance, i.e., as W p

p (µ, ν) [28], [38], [39]. In detail, the
Mallows’ Lp distance (equivalently the 1D p-Wasserstein
distance) can be expressed with a simple formula in terms of
the inverse of the cumulative distribution functions F−1

µ (q)
and G−1

ν (q) and often referred as quantile functions [39],
where F−1

µ (q) = inf{x : Fµ(x) ≥ q}, and Fµ(x) is the
cumulative distribution function (CDF).

In particular, the 1D p-Wasserstein distance (Mallows’ Lp
distance) between two probability measures µ and ν on R
with p-finite moments is:

W p
p (µ, ν) =

∫ 1

0

D
(
F−1
µ (q), G−1

ν (q)
)p
dq (2)

In the special case of p = 1 and D(·) =
∑
| · |, the 1D

1-Wasserstein (Mallows’ L1) distance can be evaluated as
the area between the two CDFs; in particular, the following
equivalence holds:

W 1
1 (µ, ν) =

∫ 1

0

|F−1
µ (q)−G−1

ν (q)|dq = (3)

=

∫
R
|Fµ(x)−Gν(x)|dx (4)

To formalize the discrete 1D p-Wasserstein distance, let define
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the empirical cumulative distribution function (ECDF) and the
empirical quantile function.
The empirical cumulative distribution function is defined as:

Fn(x) =
1

n

n∑
k=1

I(−∞,x] (xk) (5)

where I(−∞,x] (xk) is an indicator function assuming the
value 1 if xk ≤ x and 0 otherwise,

∑n
k=1 I(−∞,x] (xk),

which is the number of xk ≤ x, has a binomial distribution
with parameters n and Fµ(x). It is possible to prove that
Fn(x) is an unbiased estimator for the cumulative distribution
function Fµ(x) [40]. Given a time series of n real numbers,
the ECDF is a step function Fn(x) defined by increasing by
1/n at each data point. The ECDF, which is obtained after
sorting the data, is parameter free by definition. In the special
case of p = 1, the discrete 1D 1-Wasserstein distance can be
evaluated as the area between the two ECDFs. Note that in
the case of p > 1, the previous remark is not true. In the
literature, the parameter p = 2 and then the corresponding 1D
2-Wasserstein distance is considered to evaluate the distance
from normality [41], [42].

The empirical quantile function is defined as follows:

F−1
n (q) = inf{x : Fn(x) ≥ q} = x

(s)
k (6)

where k−1
n ≤ q ≤ k

n and x(s)
1 ≤, . . . ,≤ x(s)

n is a sequence of
order statistics.
The 1D p-Wasserstein distance can be defined also in terms
of the empirical quantile function and then through its order
statistics.

Remark 1. Consider the i.i.d. (independent and identically
distributed) random variables X ∼ µ and Y ∼ ν with equal
sample size and the corresponding sequence of order statistics
x

(s)
k and y

(s)
k , in the discrete and one-dimensional case, the

1D p-Wasserstein distance can be evaluated as:

W p
p (µ, ν) =

1

n

n∑
k=1

D
(
x

(s)
k , y

(s)
k

)p
(7)

Thus, for the special case related to i.i.d. random variables,
the 1D p-Wasserstein distance can be approximated into order
statistics calculation (i.e., sorting problem) that can be solved
efficiently (O(n log n) in the worst case and O(n) in the best
case [43]) and calculating D

(
x

(s)
k , y

(s)
k

)p
.

The equivalence between the 1D p-Wasserstein distance and
the 1D Earth Mover’s distance EMD(xk, yk) [29], [44] can
be summarized as follows.

Remark 2. If µ = (xk, wx) ∈ R and ν = (yk, wy) ∈ R have
equal weight wx = wy and are i.i.d., then the optimization
problem of the Earth Mover’s distance can be solved explicitly
[38]:

EMD(xk, yk) = W p
p (µ, ν) =

1

n

n∑
k=1

D
(
x

(s)
k , y

(s)
k

)p
(8)

The previous remarks show as the discrete 1D p-Wasserstein
distance can be calculated explicitly by order statistics and
how, in the specific case of an equal sample size of the two
random variables, the distance is equivalent to the 1D Earth
Mover’s distance. The discrete 1D p-Wasserstein distance cal-
culation by order statistics will be considered in the proposed
fault diagnosis algorithm due to its efficient calculation.

B. Neighborhood Component Features Selection

In the Sections II-B and II-C, the following notation is
considered in order to formulate the classification problem:
• Let T = (X ,y) be a supervised training sample.
• Let X be a finite set of N observations of training

features {X1, . . . ,XN}, where Xi = {x[i]
1 , . . . ,x

[i]
d }

is a matrix of d-dimensional feature vectors of n values,
x

[i]
l = {x[i]

1l , . . . , x
[i]
nl}, l ∈ {1, . . . , d}, i ∈ {1, . . . , N}.

• x
(s)[i]
l denotes the order statistics of x[i]

l .
• Let y be a finite set of the corresponding class labels
{y1, . . . , yN}, with yi ∈ {1, . . . , C} where C is the
number of classes.

Feature weighting methods aim to weight features that
not only have maximum relevancy between each other, but
also have a strong ability to recognizing different classes
or categories. Neighborhood component feature selection is
a non-parametric and embedded method to select relevant
features for high-dimensional data in order to maximize the
expected leave-one-out classification accuracy [45]. We denote
the weighting vector ω = {ω2

1 , . . . , ω
2
d}, and a general

weighted distance between two samples matrices Xi and Xj

by:

Ξω(Xi,Xj) =

d∑
l=1

ω2
l D(x

[i]
l ,x

[j]
l ) (9)

where, in the standard NCFS algorithm, D(·) is the L1-norm
distance that is considered a sparsity measure [46], [47].

Defining the reference point as the number of nearest neigh-
bors to be selected on a k-NN classifier [45], the probability
that Xi selects Xj as its reference point is:

pij (ω) =
κ(Ξω(Xi,Xj))∑
k 6=i κ(Ξω(Xi,Xk))

(10)

where
κ(z) = e−z/σ (11)

The probability that the query point Xi is correctly classified
can be computed as:

pi (ω) =

N∑
j=1

tijpij (ω) (12)

where tij = 1 if and only if yi = yj , and tij = 0 otherwise.
In order to compute the weighting vector ω, the approximate
leave-one-out classification accuracy is considered, namely:

ψ(ω) =
1

N

N∑
i=1

pi (ω) =
1

N

N∑
i=1

N∑
j=1

tijpij (ω) (13)
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Adding a regularization term λ ≥ 0 the following objective
function is obtained:

ξ(ω) =
1

N

N∑
i=1

N∑
j=1

tijpij (ω)− λ
d∑
l=1

ω2
l (14)

The optimization problem is:

ω∗ =arg max
ω

1

N

N∑
i=1

N∑
j=1

tijpij (ω) (15)

subject to
d∑
l=1

ω2
l ≤ ε (16)

where ε ≥ 0. The objective function can be optimized using
the gradient descent method. The function ξ(ω) is differen-
tiable and then its derivative with respect to ωl is:

∂ξ (ω)

∂ωl
=

1

N

N∑
i=1

N∑
j=1

tij
∂pij (ω)

∂ωl
− 2λωl (17)

Defining:
• Sij (ω) = κ (Ξw(Xi,Xj)) = e−Ξw(Xi,Xj)/σ

• pij (ω) =
Sij(ω)∑

k 6=i Sik(ω)

•
∂Sij(ω)
∂ωl

=
−Sij(ω)

σ
∂Ξw(Xi,Xj)

∂ωl

the derivative with respect to ωl is calculated as:

∂ξ (ω)

∂ωl
=

1

N

N∑
i=1

N∑
j=1

tij ·

·

pij (ω)

σ

∑
k 6=i

pik (ω)
∂Ξw(Xi,Xk)

∂ωl
−
∂Ξw(Xi,Xj)

∂ωl

− 2λωl

(18)

C. Fault Diagnosis via Wasserstein distance

The proposed methodology is based on two main steps,
the 1D p-Wasserstein distance calculation, and the distance
weighting. The first step consists of creating a random set
of time-segments from the signal to classify (i.e., diagnose).
The signal is divided randomly (i.e., i.i.d. data) into time-
segments using a fixed periodic window. In this work, the
Hamming window is considered as its periodic extension
is useful for DFT/FFT purposes. For each time-segment, a
feature is extracted, then the obtained feature values are sorted.
Note that the specified order, i.e., ascending or descending
order, does not affect the dignostic accuracy as long as the
specified order is the same both for training and testing. Then,
the 1D p-Wasserstein distance is calculated directly from order
statistics (see Eq. (7)).

Without the distance weighting strategy, the distance be-
tween a training/reference experiment can be evaluated as the
sum of all the distances of the domain (e.g., time and/or
frequency). This leads to consider irrelevant features which
decrease the generalization performance of the algorithm.
Considering the feature matrix Xi composed of features, then,
the distance between two experiments is given by:

Ξ(Xi,Xj) =

d∑
l=1

D(x
(s)[i]
l ,x

(s)[j]
l ) (19)

where D represents the statistical distance or metric used for
fault diagnosis such as Euclidean distance, Kullback-Leibler
divergence, Jensen-Shannon divergence, Bhattacharyya dis-
tance, Chernoff distance, Hellinger distance, Total variation
distance, Kolmogorov distance, and more [18]. Given a test-
ing matrix Xtest, the prediction is given by ytest, where
ytest = yj and:

j∗ = arg min
j

d∑
l=1

D(x
(s)[test]
l ,x

(s)[j]
l ) (20)

x
(s)[test]
l is the l-th vector of order statistics of the testing ex-

periment and x
(s)[j]
l is the l-th vector of order statistics related

to each j-th observation (i.e., faulty or faultless machines),
j ∈ {1, . . . , N}.

Considering the distance weighting strategy, once 1D p-
Wasserstein distances have been calculated, the distances are
weighted in order to maximize the detection of different
classes or categories. In this work, differently from the stan-
dard NCFS, features are described by matrices of distances
instead of vectors, so the NCFS has been adapted to deal
with matrices and to exploit the 1D p-Wasserstein distances
as discriminative information. Thus, the distance considered
in Eq. (9) is:

D(x
(s)[i]
l ,x

(s)[j]
l ) =

1

n

n∑
k=1

|x(s)[i]
kl − x(s)[j]

kl |p (21)

Considering the 1D p-Wasserstein distance in the NCFS
framework, the gradient of Eq. (9) with respect to ωl, that
is used for the optimization strategy through gradient descent,
is:

∂Ξω(Xi,Xj)

∂ωl
=

2ωl
n

n∑
k=1

|x(s)[i]
kl − x(s)[j]

kl |p (22)

Differently from the standard NCFS algorithm, we considered
only one nearest neighbor as a reference point (i.e., 1-NN)
for each faulty condition as highlighted in Eq. (23). Although
this assumption may reduce the generalization performance,
it appears to be realistic since in fault diagnosis different
observations of faulty cases are difficult to obtain, and often
only one observation is available for each faulty condition, thus
leading to a small number of faulty training points. Thus, the
selection of only one nearest neighbor in our task represents
a good compromise in terms of bias-variance trade-off.

The distance weighting algorithm is applied in order to
weigh the most discriminative 1D p-Wasserstein distances.
Given a testing observation Xtest, the prediction is given by
ytest, where ytest = yj and:

j∗ =arg min
j

d∑
l=1

ω∗
2

l D(x
(s)[test]
l ,x

(s)[j]
l ) =

= arg min
j

1

n

d∑
l=1

ω∗
2

l

n∑
k=1

|x(s)[test]
kl − x(s)[j]

kl |p (23)

where the optimal weight vector ω∗ = {ω∗21 , . . . , ω∗
2

d } is
found by the distance weighting algorithm as previously
described in Section II-B.
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III. EXPERIMENTAL SETUPS

This section describes the experimental results carried out
on two benchmarks proposed in the literature. The first bench-
mark regards the Case Western Reserve University (CWRU)
Bearing Data Center [48], whereas the second benchmark
regards the Prognostic Health Management (PHM) 2009 Data
Challenge [49].

A. Datasets

1) Case Western Reserve University: The CWRU dataset
has become a standard reference used to test different di-
agnostic algorithms, allowing to make an objective and fair
comparison of our solution with respect to others [50]. A
detailed description of the benchmark can be found in [48].
The acquisition time of the waveforms is 10 s and in this
work: the first 5 seconds are used to extract randomly the time-
segments during the training stage, and the last 5 seconds are
used for the testing stage. In this way no overlapped windows
are used both for training and testing. The considered time
window durations are TW = [0.02, 0.05, 0.0854, 0.1, 0.5] s
(i.e., 240, 600, 1024, 1200 and 6000 samples, and 256, 1024,
2048, 4096 and 8192 DFT points), whereas the number of
time-segments are n = [10, 20, 50, 100, 200]. In order to
test the proposed fault diagnosis algorithm over different
conditions and compare it with related works, two different
datasets are considered. The first dataset has a total of 10 faults
(i.e., 11 classes are considered as shown in Table I), and all
fault classes refer to a fault severity of 0.007. The vibration
signals of the second dataset were collected from the drive end
of the motor in the test rig for a total of 9 faults (i.e., 10 classes
are considered as shown in Table I). For each experiment, the
algorithm performances are obtained varying the number of
time-segments and the length of the time windows. Moreover,
in order to evaluate the robustness of the algorithm, different
low SNR values are considered: +∞ dB, −5 dB, −10 dB,
−15 dB, −20 dB and −25 dB. SNR is defined as:

SNR dB = 10 log10(Psignal/Pnoise) (24)

where Psignal and Pnoise denote the power of the original
signal and the power of the additive white Gaussian noise
(AWGN), respectively. Considering Eq. (24), +∞ dB means
the original vibration signals is not corrupted by additional
Gaussian noise.

TABLE I
CLASSES DEFINITION, WHERE 3OC, 6OC AND 12OC MEAN 3 O’CLOCK, 6 O’CLOCK

AND 12 O’CLOCK, RESPECTIVELY.

Class Label dataset 1 Label dataset 2
1 Faultless Faultless
2 Ball 007 DE Ball 007 DE
3 Ball 007 FE Ball 014 DE
4 InnerRaceway 007 DE Ball 021 DE
5 InnerRaceway 007 FE InnerRaceway 007 DE
6 OuterRaceway 6oc 007 DE InnerRaceway 014 DE
7 OuterRaceway 6oc 007 FE InnerRaceway 021 DE
8 OuterRaceway 3oc 007 DE OuterRaceway 6oc 007 DE
9 OuterRaceway 3oc 007 FE OuterRaceway 6oc 014 DE

10 OuterRaceway 12oc 007 DE OuterRaceway 6oc 021 DE
11 OuterRaceway 12oc 007 FE –

2) Prognostic Health Management Data Challenge 2009:
In this benchmark, data were acquired from three measuring
points of a gearbox; in particular, channel 1 is the input side
accelerometer, channel 2 is the output side accelerometer, and
channel 3 is the tachometer signal. Two geometries are used,
one using spur gears, the other using spiral cut (i.e., helical)
gears. In this paper, only the accelerometer signals and data
related to helical gears are considered. The accelerations are
measured by Endevco sensors with the following specs: 10
mv/g, ±1% error, resonance > 45 kHz and sample rate of
200/3 kHz. Data were collected at 30, 35, 40, 45 and 50 Hz
shaft speed, under high and low loading. In order to test the
proposed fault diagnosis algorithm over different conditions
and compare it with related works, a total of 5 faults are
considered in this benchmark (i.e., 6 classes are considered
as shown in Table II). PHM 2009 dataset provides two
acquisitions for each condition, i.e., shaft speeds and loading
conditions. The first dataset is considered for the training stage
and the second dataset is used for the testing stage. For each
experiment, the algorithm performances are obtained varying
the number of time-segments, n = [10, 20, 50, 100, 200], and
the length of the time windows, TW = [0.05, 0.1, 0.15, 0.2] s
(i.e., 3333, 6666, 10000 and 13333 samples, and 8192, 16384,
32768 DFT points). Moreover, in order to evaluate the ro-
bustness of the algorithm, different low SNR conditions are
considered: +∞ dB, −5 dB, −10 dB, −15 dB, −20 dB, and
−25 dB.

TABLE II
CLASSES DEFINITION OF PHM 2009 DATASET.

Class Faults (location)
1 Healthy
2 Chipped (gear 24T)
3 Broken (gear 24T), Combination (bearing IS:OS),

Inner (bearing ID:OS) and Bent Shaft (shaft IS)
4 Combination (bearing IS:OS), ball (ID:OS),

Imbalance (shaft IS)
5 Broken (gear 24T) and Inner (bearing ID:OS)
6 Bent Shaft (shaft IS)

B. Performance criteria and hyperparameters setting

The proposed method is compared with related works using
both classification accuracy and macro F1-score; the latter
is the unweighted mean of the F1-score for each label, and
then, it does not take label imbalance into account. F1-score
is a commonly used criterion measuring the performance of a
classification method [51]. The optimization of the algorithm
hyperparameters (i.e., kernel scale σ and regularization term
λ) was performed by the implementation of a grid search
and the optimization of the macro F1-score in nested 10-
fold cross-validation on the training dataset. In Section IV-A,
the optimization of the hyperparameters returns the optimal
regularization term to be 0.05 and the best kernel width 1,
whereas, in Section IV-B, the optimization of the hyperpa-
rameters returns the optimal regularization term to be 0.05
and the best kernel width 0.01. In the Section IV-C, all the
experimental test was performed setting the regularization
term λ to 0.05 and the kernel width σ to 1. The step size
of the gradient descent is computed iteratively by a line
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search strategy based on weak Wolfe condition. The results
reported in Sections IV-A and IV-B are carried out by 220 and
120 labeled observations for CWRU and PHM 2009 bearing
dataset, respectively, where 50% of the observations are used
for training and the remaining for testing. The results reported
in Section IV-C are carried out by 40 labeled observations
for the training stage, and 300 labeled observations for the
testing stage. In order to evaluate the effectiveness of the im-
provements in terms of macro F1-score caused by the distance
weighting strategy with respect to the case without distance
weighting, the independent two-sample t-test is considered. In
particular, the alternative hypothesis that the population mean
without distance weighting is less than the population mean
with distance weighting is tested, and it was assumed that the
null and alternative hypothesis come from normal distributions
with unknown and unequal variances. The hyperparameter p
of the 1D p-Wasserstein distance has been set empirically by
the optimization of the macro F1-score, namely p = 1 for
SNR≤ −15, and p = 2 for SNR> −15.

IV. RESULTS

In this section, the experimental results carried out with
the CWRU and PHM 2009 benchmarks and the comparison
with the state-of-the-art are described. The Fault Diagnosis via
Wasserstein distance algorithm has been applied as described
in Section II-C, with the following considerations:

1) The spectral contents of each time-segment are calculated
by using FFT, then adapted into a 2D matrix, which
reports the frequencies along one dimension and the
amplitudes on the other dimension.

2) Each feature vector has a dimension of n, namely the
number of time-segments.

3) The amplitudes of each frequency are sorted: the sort
operation is needed to obtain the statistical information of
the amplitude distribution of each frequency; indeed, this
operation implicitly allows to obtain the order statistics
of the amplitude.

A. CWRU results

Fig. 1 shows the comparison of fault classification by 1D p-
Wasserstein distance without distance weighting (label W) and
with distance weighting (label WNCFS) in terms of macro F1-
score at different n, time window TW and SNR values for the
CWRU benchmark. In particular, Fig. 1(a) shows the macro
F1-scores of all experiments based on 1D p-Wasserstein dis-
tance without distance weighting, whereas Fig. 1(b) shows the
macro F1-scores of all experiments based on 1D p-Wasserstein
distance with distance weighting. For CWRU benchmark, it is
worth noting that the distance weighting improves significantly
in terms of macro F1-score the performance of classification at
high level of noise as also confirmed by Figs. 3(a) and 4(a). In
particular, Fig. 3(a) shows the macro F1-score at different SNR
conditions evaluated considering all experimental conditions,
whereas, Fig. 4(a) shows the boxplot of all macro F1-scores at
different SNR conditions evaluated at different n, time window
TW and speed values. As results, WNCFS improvement in
terms of macro F1-score reached statistical significance for

SNR=−20 dB (t185.5739 = −3.3445, pvalue < .001) and
SNR=−25 dB (t197.7441 = −5.1233, pvalue < .001) as can
be seen in the Figs. 1, 3(a) and 4(a).

(a) W

(b) WNCFS

Fig. 1. Macro F1-scores of the CWRU bearing benchmark evaluated at
different n, time window TW and SNR conditions.

B. PHM 2009 results

Fig. 2 shows the comparison of fault classification by 1D
p-Wasserstein distance without distance weighting (label W)
and with distance weighting (label WNCFS) in terms of macro
F1-score at different n, time window TW and SNR values
for the PHM 2009 benchmark. In particular, Figs. 2(a) and
2(c) show the macro F1-scores of all experiments based on
1D p-Wasserstein distance without distance weighting in the
cases of low and high loading, respectively, whereas Figs.
2(b) and 2(d) show the macro F1-scores of all experiments
based on 1D p-Wasserstein distance with distance weighting.
For PHM 2009 benchmark, it is worth to note that the
distance weighting improves significantly the performances
of classification from medium-low level of noise as also
confirmed by Figs. 3(b), 3(c), 4(b) and 4(c). In particular,
Figs. 3(b) and 3(c) show the macro F1-score at different SNR
conditions evaluated considering all experimental conditions,
whereas, Figs. 4(b) and 4(c) show the boxplots of all macro
F1-scores at different SNR conditions evaluated at different
n, time window TW and speed values. WNCFS improvement
in terms of macro F1-score reached statistical significance
for low loading at SNR=−10 dB (t162.6453 = −5.4978,
pvalue < .001), −15 dB (t196.2169 = −9.4108, pvalue < .001),
−20 dB (t135.1572 = −10.3941, pvalue < .001) and −25 dB
(t103.2548 = −5.7559, pvalue < .001), as can be seen in the
Figs. 2(a), 2(b), 3(b) and 4(b). Whereas, WNCFS improvement
in terms of macro F1-score reached statistical significance
for high loading at SNR=−5 dB (t148.7976 = −3.7931,
pvalue < .001), SNR=−10 dB (t179.3559 = −7.5835, pvalue <
.001), −15 dB (t181.1723 = −10.2911, pvalue < .001), −20
dB (t112.5063 = −9.3165, pvalue < .001) and −25 dB



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

(a) W (low loading) (b) WNCFS (low loading)

(c) W (high loading) (d) WNCFS (high loading)

Fig. 2. Macro F1-scores of the PHM 2009 bearing benchmark evaluated at different n, time window TW and SNR conditions.

(t102.4642 = −5.1762, pvalue < .001), as can be seen in the
Figs. 2(c), 2(d), 3(c) and 4(c). A noteworthy aspect is that the
algorithm is able to run with 32768 features in the case of
TW = 0.2 s.

C. Comparison with state-of-the-art

In order to compare the performance of the proposed
algorithm with others presented in the literature, in this section,
the results are reported in terms of classification accuracy. In
[52], the authors have reported the classification accuracy at
an SNR of −10 dB, as the worst case scenario, whereas in
[14], the authors have reported the classification accuracy at
a SNR of −15 dB. In [22], the authors have reported the
classification accuracy at an SNR of −8 dB as the worst
case scenario, whereas in [53], the authors have reported the
classification accuracy at a SNR of −4 dB. The proposed
method is compared using the same experimental settings
with those proposed in [14], [22], [53]–[59]; the settings,
considered to compare different approaches, provides for a
window length of 1024 samples, same machine conditions for
the cases of 10 labels and 11 labels and additive noise of
Gaussian distribution. The detailed comparison results with the
related works are presented in Table III. The table shows the
results of diagnosis bearing health condition using the training
and testing data from the same domain (i.e., 0,1,2,3→0,1,2,3)
and the results with the variation of working condition (e.g.,
0→3). It is seen that the proposed method outperforms the
other approaches in different scenarios of about 10% - 15%. In
addition, only the proposed solution is tested up to SNR=−25
dB and only a few works tested their algorithms over SNR=−8
dB.

D. Time- and frequency-domain based features

The proposed methodology can be generalized to all kinds
of features, such as frequency-domain, time-domain or both

time- and frequency-domain features. In this section, the
experimental results carried out by using the frequency-domain
features, defined in the previous experiments, and 12 time-
domain features are shown. In detail, the time-domain features
considered are: standard deviation, skewness, kurtosis, peak,
peak-to-peak value, root mean square, square mean root, crest
factor, clearance factor/margin factor, shape factor, impact
factor/impulse factor, kurtosis factor [60]. In this case, the al-
gorithm has to process features of different scales, so a feature
scaling operation is needed to handle the features of different
scales. The feature scaling to unit length is considered, and the
features are scaled by their L1-norms, then x = x/‖x‖1. The
experimental results for PHM 2009 (high loading) benchmark
are shown in Fig. 5. As shown in Figs. 5(a) and 5(b), in this test
case, similar results are obtained in terms of macro F1-score.
Considering a significance level of 0.05, the two-sample t-test
discloses that the macro F1-score related to frequency-domain
features is statistically lower than the macro F1-score related
to both time- and frequency-domain features for the case
SNR=−25 dB (t189.4309 = −1.8386, pvalue < .05), whereas
the macro F1-score related to frequency-domain features, is
not statistically greater than the macro F1-score mean related
to both time- and frequency-domain features, this means that in
this experimental results, the addition of time-domain features
does not make the classification accuracy worse. In conclusion,
the proposed algorithm based on 1D p-Wasserstein distance
can handle features of different scales.

E. Analysis of computational time

The settings considered to analyze the algorithm computa-
tional time are the following: CWRU benchmark, 11 labels,
220 labeled observations for training, σ = 1, λ = 0.05,
SNR=−15 dB, 20 Monte Carlo runs. The training time is the
average of the Monte Carlo runs. The simulations are reported
varying TW = [0.02, 0.05, 0.0854, 0.1, 0.5] s (i.e., 240, 600,
1024, 1200 and 6000 samples, and 256, 1024, 2048, 4096
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Fig. 3. Fault classification by 1D p-Wasserstein distance without (label W) and with (label WNCFS) distance weighting: macro F1-scores of CWRU and
PHM 2009 bearing benchmark.
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Fig. 4. Fault classification by 1D p-Wasserstein distance without (label W) and with (label WNCFS) distance weighting: boxplots of macro F1-scores of
CWRU and PHM 2009 bearing benchmark.

PHM 2009 benchmark (High loading)

+ -5 -10 -15 -20 -25

SNR [dB]

0

0.2

0.4

0.6

0.8

1

M
a
c
ro

 F
1
-s

c
o

re

Frequency-domain features

Frequency and time-domain

features

(a) PHM 2009 (high loading): macro F1-scores

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
a

c
ro

 F
1

-s
c

o
re

PHM 2009 benchmark (High loading)

+ + -5 -5 -10 -10 -15 -15 -20 -20 -25 -25
Freq. Freq./

Time

Freq. Freq./

Time

Freq. Freq./

Time

Freq. Freq./

Time

Freq. Freq./

Time

Freq. Freq./

Time

(b) PHM 2009 (high loading): boxplots of macro F1-scores

Fig. 5. Fault classification using WNCFS and frequency-domain and both
time- and frequency-domain features: mean of macro F1-scores and boxplots
of macro F1-scores.

and 8192 DFT points) and n = [10, 20, 50, 100, 200]. The
analysis includes also the 10-fold CV for the hyperparameters
optimization. The platform used to compute the training time
is a laptop with CPU Intel 7700HQ, 16GB RAM, Matlab
2019a.

Fig. 6 shows the training time in seconds varying TW and n.
In the case of CWRU benchmark, fairly high testing diagnosis
accuracy is achieved by the proposed method with 8192
samples and n = 200, and the average training time is around

Fig. 6. Training time related to the CWRU bearing benchmark evaluated at
different n and time window TW

216 s. The computing burden of the training algorithm is
considered low, at the same time, outperforming deep learning
approaches in terms of classification accuracy [22].

For the sake of completeness, in Fig. 7 the sparsity per-
centage considering a threshold of 10−4 is reported. The
sparsity measure was evaluated according to [46] by counting
the number of zero weights of the model (l0 measure). It is
worth noting as the sparsity depends on the number of features
related to TW and it is almost independent of the number of
time segments n.

Finally, considering the aforementioned settings, the testing
time varies from 10−5 s in the best scenario to 0.03 s in the
worst scenario with n = 200 and TW = 0.5 s as shown in
Fig. 8.

V. CONCLUSION

In this work, a fault diagnosis algorithm for rotating
machinery based on Wasserstein distance is proposed. The
Wasserstein distance is considered for the learning phase
to discriminate the different machine operating conditions.
Specifically, the 1D Wasserstein distance is taken into account
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TABLE III
COMPARISONS OF RELATED RESEARCHES ON THE CWRU ROLLING BEARING DATASET. THE COMPARISON CONSIDERS THE DEFAULT EXPERIMENTAL SETTING WITH SAMPLE

LENGTH OF 1024 SAMPLES (TW = 0.0854 S)

Method # Classes Testing accuracy (%) Motor loads SNR (dB)
(Training→Testing)

[57] 4 95.8 0,1,2,3→0,1,2,3 +∞
[59] 10 88.9 0,1,2,3→0,1,2,3 +∞
[56] 10 92.5 0,1,2,3→0,1,2,3 +∞
[58] 11 97.91 0,1,2,3→0,1,2,3 +∞
[55] 10 99.66 0,1,2,3→0,1,2,3 +∞
[22] 10 100.0 0,1,2,3→0,1,2,3 +∞

Proposed 10 100.0 0,1,2,3→0,1,2,3 +∞
Proposed 11 100.0 0,1,2,3→0,1,2,3 +∞
[53] 10 82.05 1,2,3→1,2,3 -4
[22] 10 96.53 0,1,2,3→0,1,2,3 -4
[22] 10 74.90 0,1,2,3→0,1,2,3 -8
[14] 4 85.15 2→2 -15

Proposed 10 100.0, 100.0, 99.69, 83.21, 50.20 0,1,2,3→0,1,2,3 -5, -10, -15, -20, -25
Proposed 11 100.0, 100.0, 99.76, 87.29, 56.83 0,1,2,3→0,1,2,3 -5, -10, -15, -20, -25
[54] 4 94.73 0→3 +∞
[53] 10 91.10 1→3 +∞
[53] 10 90.20 3→1 +∞
[22] 10 99.43 0→3 +∞
[22] 10 97.82 3→0 +∞
[22] 10 84.82 0→3 -4
[22] 10 84.45 3→0 -4

Proposed 10 99.87, 99.77, 96.20, 71.78, 44.64 0→3 -5, -10, -15, -20, -25
Proposed 10 99.78, 99.41, 99.66, 85.18, 47.47 0→2 -5, -10, -15, -20, -25
Proposed 10 100.0, 100.0, 99.82, 71.53, 46.08 0→1 -5, -10, -15, -20, -25
Proposed 10 99.66, 99.93, 99.30, 83.97, 46.24 1→0 -5, -10, -15, -20, -25
Proposed 10 100.0, 100.0, 99.90, 78.90, 47.68 1→2 -5, -10, -15, -20, -25
Proposed 10 99.93, 99.80, 99.01, 79.53, 46.67 1→3 -5, -10, -15, -20, -25
Proposed 10 100.0, 100.0, 99.44, 71.77, 45.44 2→0 -5, -10, -15, -20, -25
Proposed 10 99.83, 99.55, 97.85, 71.13, 45.40 2→1 -5, -10, -15, -20, -25
Proposed 10 100.0, 100.0, 99.87, 78.55, 45.79 2→3 -5, -10, -15, -20, -25
Proposed 10 99.93, 99.41, 96.57, 72.43, 43.09 3→0 -5, -10, -15, -20, -25
Proposed 10 100.0, 100.0, 99.98, 83.25, 47.36 3→1 -5, -10, -15, -20, -25
Proposed 10 100.0, 100.0, 99.44, 68.97, 45.97 3→2 -5, -10, -15, -20, -25
Proposed 11 100.0, 100.0, 98.55, 74.04, 40.78 0→1 -5, -10, -15, -20, -25
Proposed 11 100.0, 99.86, 97.08, 75.50, 44.57 1→0 -5, -10, -15, -20, -25
Proposed 11 99.97, 100.0, 98.93, 77.18, 40.87 0→2 -5, -10, -15, -20, -25
Proposed 11 99.99, 99.74, 97.67, 74.91, 43.13 2→0 -5, -10, -15, -20, -25
Proposed 11 99.78, 100.0, 99.59, 85.71, 44.10 0→3 -5, -10, -15, -20, -25
Proposed 11 99.96, 99.79, 97.82, 74.61, 42.74 3→0 -5, -10, -15, -20, -25
Proposed 11 100.0, 99.98, 99.52, 79.53, 43.80 1→2 -5, -10, -15, -20, -25
Proposed 11 100.0, 100.0, 98.59, 73.56, 41.85 2→1 -5, -10, -15, -20, -25
Proposed 11 100.0, 100.0, 99.73, 86.28, 44.09 1→3 -5, -10, -15, -20, -25
Proposed 11 100.0, 100.0, 98.89, 72.97, 42.03 3→1 -5, -10, -15, -20, -25
Proposed 11 99.86, 100.0, 99.97, 87.66, 47.88 2→3 -5, -10, -15, -20, -25
Proposed 11 100.0, 100.0, 99.55, 74.97, 43.56 3→2 -5, -10, -15, -20, -25

Fig. 7. Sparsity related to the CWRU bearing benchmark evaluated at different
n and time window TW

thanks to its low computational burden, due to the fact that
it can be evaluated directly by the order statistics. The 1D
Wasserstein distance has been exploited as the loss function
to be optimized in the NCFS framework, to improve the
generalization performances in the presence of low SNR
conditions and high dimensional features set. Experiments are
conducted on two benchmark datasets, CWRU bearing dataset
and PHM 2009 dataset, to verify the effectiveness of the

Fig. 8. Testing time related to the CWRU bearing benchmark evaluated at
different n and time window TW

proposed fault diagnosis method at different SNR conditions.
Results have shown that the proposed fault diagnosis method
is effective to learn the complex known and unknown patterns
with low SNR conditions, many classes and different operating
conditions. The authors are currently considering two possible
future developments for the proposed fault diagnosis strategy.
The former is related to the extension of the proposed approach
to deal with nonstationary conditions. Since the assumption of
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the algorithm is to process quasi-stationary vibration signals,
the performance of the algorithm in the case of nonstationary
conditions could be not satisfying. The latter is related to the
setting of the parameter p of the 1D p-Wasserstein distance.
The parameter could also be regulated by the gradient descent
optimization method.
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