

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Integrated characterization and risk management of marine sediments: The case study of the industrialized Bagnoli area (Naples, Italy)

This is the peer reviewd version of the followng article:

Original

Integrated characterization and risk management of marine sediments: The case study of the industrialized Bagnoli area (Naples, Italy) / Morroni, L.; D'Errico, G.; Sacchi, M.; Molisso, F.; Armiento, G.; Chiavarini, S.; Rimauro, J.; Guida, M.; Siciliano, A.; Ceparano, M.; Aliberti, F.; Tosti, E.; Gallo, A.; Libralato, G.; Patti, F. P.; Gorbi, S.; Fattorini, D.; Nardi, A.; Di Carlo, M.; Mezzelani, M.; Benedetti, M.; Pellegrini, D.; Musco, L.; Danovaro, R.; Dell'Anno, A.; Regoli, F.. - In: MARINE ENVIRONMENTAL RESEARCH. - ISSN 0141-1136. - STAMPA. - 160:(2020). [10.1016/j.marenvres.2020.104984]

This version is available at: 11566/277413 since: 2024-04-11T14:05:41Z

Publisher:

Published

DOI:10.1016/j.marenvres.2020.104984

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions.

This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

note finali coverpage

(Article begins on next page)

1 Integrated characterization and risk management of marine sediments: the case study of

2 the industrialized Bagnoli area (Naples, Italy)

3

- 4 Morroni L. 1±, d'Errico G. 2±, Sacchi M. 3, Molisso F. 3, Armiento G. 4, Chiavarini, S. 4, Rimauro, J. 5,
- 5 Guida M. ⁶, Siciliano A. ⁶, Ceparano M. ⁶, Aliberti F. ⁶, Tosti, E. ⁷, Gallo A. ⁷, Libralato G. ⁶, Patti
- 6 F.P.⁷, Gorbi S.², Fattorini D.², Nardi A.², Di Carlo M.², Mezzelani M²., Benedetti M.², Pellegrini
- 7 D.¹, Musco L.⁷, Danovaro R.^{2,7}, Dell'Anno A.², Regoli F.²
- 8 1: Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via del Cedro 38, 57122 Livorno, Italy.
- 9 2: Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche,
- 10 60131, Ancona (Italy)
- 11 3: Istituto di Scienze Marine CNR-ISMAR, Calata Porta di Massa 80, 80133, Napoli (Italy)
- 4: ENEA, Dipartimento Sostenibilità, CR Casaccia, via Anguillarese 301, 00123, Roma (Italy)
- 5: ENEA, Dipartimento Sostenibilità, CR Portici, P.le Enrico Fermi 1, 80055, Portici (Naples, Italy)
- 6: Department of Biology, Università di Napoli Federico II, via Cinthia, 80126 Naples (Italy)
- 7: Stazione Zoologica Anton Dohrn, 80121 Napoli (Italy)

16

- ±: equally contributed
- 18 Corresponding author: Lorenzo Morroni

19

- 20 Keywords: Ecological Risk Assessment; Weight Of Evidence (WOE); Sediments;
- 21 Contamination; Bioavailability; Bioassays; Biomarkers; Benthic Communities

2223 Abstract

- 24 The aim of the present work is to demonstrate the practical importance of a multidisciplinary
- approach and weighted criteria to synthesize and integrate different typologies of data (or lines of
- evidence, LOEs), including chemical levels in marine sediments, their bioavailability to specific
- 27 indicator species, ecotoxicological effects measured through subcellular biomarkers and batteries
- of bioassays, and potential impacts of pollution on local benthic communities. The area of
- 29 Bagnoli (Gulf of Naples, Southern Italy) was selected as a model case-study, as it is a coastal area
- 30 chronically impacted by massive industrial contamination (trace metals and hydrocarbons), and
- 31 dismissed decades ago without any subsequent remediation or habitat restoration. The results of
- each LOE were elaborated to provide specific hazard indices before their overall integration in a
- weight of evidence (WOE) evaluation. Levels of some trace metals and PAHs revealed a severe
- 34 contamination in the entire study area. Bioavailability of hydrocarbons was evident particularly
- 35 for high molecular weight PAHs, which also caused significant variations of cellular biomarkers,
- such as cytochrome P450 metabolization in fish, lysosomal membrane destabilization in mussels,

genotoxic effects both in fish and molluscs. The results of a battery of bioassays indicated less marked responses compared to those obtained from chemical and biomarkers analyses, with acute toxicity still present in sediments close to the source of contamination. The analysis of benthic assemblages showed limited evidence of impact in the whole area, indicating a good functioning of local ecosystems at chronic contamination. Overall, the results of this study confirm the need of combining chemical and biological data, the quantitative characterization of various typologies of hazard and the importance of assessing an integrated environmental WOE risk, to orientate specific and scientifically-supported management options in industrialized areas.

Since the first chemical factory built in 1854, the Bagnoli-Coroglio industrial area (Gulf of

1. Introduction

Naples, Italy) rapidly become a key site for Italian economic growth, with several industrial plants producing steel, cement and asbestos, using fossil coal, iron ores and limestone as raw materials, transported by vessels and processed on site. In the mid-80s, the environmental risk of such activities was recognized, leading to a progressive dismantling of the industrial area, which ended in the mid-90s. However, the drastic impact of industrial activities was never remediated after the plant dismission, with extremely high concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in sediments, especially close to the piers of the plant (Romano et al. 2004).

Nowadays it is widely recognized that the impact of chemical pollution should be evaluated by giving increasing importance to the assessment of biological effects of contaminants, and using an integrated approach with chemical data. The first example of integrated assessment was the Sediment Quality Triad (SQT), which considered chemical analyses, ecotoxicological testing and benthic communities as different Lines of Evidence (LOEs) to describe environmental quality of marine sediments (Chapman, 2007). Integrated strategies have also been proposed by various

international agencies, e.g. OSPAR, HELCOM, MEDPOL, ICES. An important advantage of these approaches is the added interpretative value derived from the integration of multiple typologies of studies, thus improving our ability to describe and interpret variations of environmental conditions (Regoli et al. 2019). The chemical approach by itself does not provide information on real bioavailability and biological risk of measured pollutants, often resulting in overestimated and costly management decisions (Bradham et al. 2006). Ecotoxicological batteries of bioassays have progressively been applied to quantify the potential biological hazard caused by bioavailable multi-factorial contamination, thus providing a more relevant response not restricted by a predetermined list of contaminants (Volpi Ghirardini et al. 2005). The benthic studies add information on the functioning of local communities and Ecological Quality Status Descriptors have been developed from these results (Dauvin 2015, Borja et al. 2016). In recent years, additional LOEs have been integrated in a weight of evidence (WOE) framework, such as bioaccumulation and biomarkers investigations. The bioaccumulation LOE quantifies the bioavailable fraction of contaminants, which can be transferred to aquatic organisms, being responsible for potential onset of adverse effects. Biomarkers reflect sub-lethal alterations at molecular and cellular level, representing a sensitive and early warning method to better understand the toxic effects and mechanism of action of environmental contaminants (Regoli & Giuliani 2014, Benedetti et al. 2015, Regoli et al. 2019). The WOE integration of chemical analysis, bioaccumulation, biomarkers, bioassays and analysis of benthic communities provides a more robust basis for environmental control and management in respect to the first SQT. In recent years this approach was synthesized in a quantitative model (Sediqualsoft), validated in several case studies for environmental risk assessment associated with polluted sediments, harbor areas, or complex natural and anthropic impacts on the marine environment (Piva et al. 2011, Benedetti et al. 2012, 2014, Regoli et al. 2014, 2019, Bebianno et al. 2015, Mestre et al. 2017, Pittura et al. 2018). In Sediqualsoft different LOEs are independently elaborated, using specific criteria for each data, which weight typology of chemical pollutants and toxicological relevance of measured

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

endpoints, as well as the number and magnitude of observed variations normalized toward specific thresholds. Synthetic and quantitative hazard indices are calculated for each LOE, before their overall integration in the WOE assessment: the calculated level of risk is assigned to 1 of 5 classes, ranging from absent to severe (Piva et al. 2011, Regoli et al. 2019), which is the basis for different management options associated to each class of environmental risk. Weighted criteria for elaboration of chemical data and ecotoxicological bioassays have been incorporated in the last Italian law for determining quality class and management options for dredged marine sediments, based on the weighted elaboration and integration of their chemical and ecotoxicological characteristics (DM 173/2016). As part of an extensive research project aimed to characterize the environmental quality and a possible remediation strategy of Bagnoli industrial site (ABBaCo 2018), the objective of the present work was to demonstrate the practical efficacy of the WOE approach to elaborate and integrate huge datasets of heterogeneous results. The combination of rigorous mathematical algorithms with the user-friendly outputs of the Sediqualsoft model was expected to represent an important tool to facilitate site-oriented and scientifically supported management options for sediments of such a polluted area.

105

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2. Materials and methods

107

110

111

112

113

114

106

108 2.1 Experimental design and sampling activities

The study area is located in the eastern part of the Bay of Pozzuoli, within the Gulf of Naples.

According to knowledge from previous studies (ISPRA-ICRAM 2005; Arienzo et al. 2017, 2019;

Romano et al. 2018; Trifuoggi et al. 2017, 2018), it was divided in 11 sub-areas, each containing

from 5 to 23 sampling points, depending on the distance from the industrial plant and the

expected level of contamination (Figure 1). According to requirements of Italian Ministry of

Environment and within "ABBaCo project", 118 sediments samples were collected in the study

and analyses of benthic communities. 116 Bioaccumulation and biomarker responses were carried out on mussels, Mytilus galloprovincialis, 117 118 and on the fish species, Mullus barbatus, Pagellus erythrinus and Diplodus vulgaris, sampled in December 2017. These fish species are commonly used in the biomonitoring of marine 119 environment (Regoli et al. 2002; Bonsignore et al. 2013), and they were selected to highlight the 120 potential influence of their different mobility, contact with sediments and feeding behavior on 121 bioaccumulation and responsiveness to chemical pollutants. Organisms were sampled from 122 different sites in the same period to avoid that comparisons of bioaccumulation and biomarkers 123 responses could be differently influenced by seasonal variations (Bocchetti et al. 2006; Fattorini 124 et al. 2014). Mussels (shell length 5.5 ± 0.5 cm) were collected in 3 points along the 2 industrial 125 piers (P2, PGT, PGP) and in additional 4 sites at different distances from the plant (Figure 1). 126 Fish were sampled by local fishermen both in area of Bagnoli (INSIN) and in a reference site 127 outside the bay (OUTSIN). Mean lengths were recorded both in fish from INSIN (M. barbatus: 128 17.5±1.4 cm; P. erythrinus: 15.7±1.5 cm; D. vulgaris: 18.7±2.1 cm) and from OUTSIN (M. 129 barbatus: 11.5±2.1 cm; P. erythrinus: 22.6±4.6 cm; D. vulgaris: 16.7±0.9 cm). Analyses on fish 130

area between May 2017 and December 2017 for chemical analyses, ecotoxicological bioassays

133

134

135

136

137

138

139

140

132

131

115

2.2 Chemical characterization of sediments

After collection, sediment samples for chemical analyses were stored at -20 °C, until analysed for grain-size distribution (gravel, sand, silt, and clay), organic matter (OM), trace metals and metalloids (Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, V, and Zn), hydrocarbons with C>12, polycyclic aromatic polyaromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), organotin compounds, organochlorine pesticides, dioxin (PCDDs) and furan (PCDFs). Measurements were carried out through validated methods by sieves and laser particle sizer, inductively coupled

samples (n=5) were performed using tissues of one individual for each replicate, while mussels

samples (n=5) were constituted each by pooling tissues of 3 individuals.

plasma-mass spectrometry (ICP-MS), inductively coupled plasma-optical emission spectroscopy (ICP-OES), Atomic Absorption Spectrophotometry, gas-chromatography with mass spectrometry and flame ionization detector (GC-MS, GC-FID), high resolution DFS mass spectrometer Dioxine B Thermo Fischer. For the determination of PCDDs and PCDFs the isotopic dilution procedures reported by USEPA 1613B (1994) were performed. Detailed analytical protocols, including QA/QC procedures, have been given elsewhere (Armiento et al., 2020; Molisso et al. 2020).

2.3 Bioaccumulation analyses

Bioaccumulation of trace elements (Al, As, Cd, Cu, Cr, Hg, Ni, Pb and Zn) and polycyclic aromatic hydrocarbons (PAHs) were carried out on the whole soft tissues of wild specimens of *M. galloprovincialis* and in the liver tissues of *M. barbatus*, *P. erythrinus* and *D. vulgaris*, following previously validated procedures based on atomic absorption spectrophotometry (AAS) and high performance liquid chromatography (HPLC) with diode array (DAD) and fluorimetric detection (Benedetti et al. 2014, Regoli et al. 2019). All the analytical determinations were performed by analysing five replicates, carefully checking for accuracy, precision and recovery by testing a series of blank solutions (reagents only), reference standards and selected certified standard materials.

2.4 Biomarkers analyses

Lysosomal membrane stability was measured in mussels hemocytes through the Neutral Red Retention Time (NRRT) assay, while metallothioneins (MTs) were determined in digestive glands by spectrophotometric analysis after acidic ethanol/chloroform fractionation using GSH as standard (Viarengo et al., 1997). Acetylcholinesterase enzymatic activity (AChE) was spectrophotometrically assayed in mussels haemolymph and fish brain using the Ellman's reaction (Gorbi et al. 2008). Ethoxyresorufin O-deethylase (EROD) was spectrofluorimetrically determined in individual fish livers measuring resorufin formation from 7-ethoxyresorufin

(Regoli et al. 2003). Aromatic metabolites in fish bile were measured by fixed fluorescence (FF) spectrofluorimetry and semi-quantitatively assessed as naphthalene-like, pyrene-like and benzo[a]pyrene-like metabolites (Gorbi and Regoli 2004). Micronuclei (MN) frequency was microscopically measured in mussels hemocytes and fish gills, observing 2000 cells with preserved cytoplasm: such genotoxic alterations were defined as round structures, smaller than 1/3 of the main nucleus diameter, on the same optical plan and clearly (Gorbi et al. 2008).

Detailed analytical procedure have been previously reported (Benedetti et al., 2014).

2.5 Ecotoxicological bioassays

A battery of ecotoxicological bioassays was applied to sediment samples following standardized procedures. The bioluminescence test with *Vibrio fischeri* (Doe et al. 2005) was selected for the solid phase, while the algal growth inhibition of *Skeletonema costatum* (ISO 10253: 2006) and the sea urchin embryotoxicity assay with *Paracentrotus lividus* (ISPRA, 2017) were used to test elutriates, prepared with standard procedure (USEPA 503/8-91/001: 1991). Detailed procedures for sediments treatment and ecotoxicological bioassays have been reported elsewhere (Morroni et al. 2018; Gallo et al. 2020).

2.6 Benthic communities

Sediment samples were sieved through a mesh net of 1 mm and sorted under the stereomicroscope. All taxa were identified and the main taxa classified to the species level or to the lower possible taxonomic level. For each species, whenever possible, the corresponding biocoenosis was identified. From the list of species, the WOE Sediqualsoft elaborated the available community descriptors, diversity indices and ecological indicators (including abundance, richness, Margalef, Shannon, Pielou, AMBI, BENTHIX, BOPA, BITS, mAMBI) which are reported in Table S4b. The results and the methodological details of these analyses have been reported in Hay Mele et al. (2020).

2.7 Statistical analyses and WOE elaboration

Analysis of variance (ANOVA) was applied to chemical data and biomarker responses of M. galloprovincialis, to test the significance of the differences between areas (level of significance at the 95% of confidence interval, α = 0.05); homogeneity of variance was tested by Cochran C, and post-hoc comparisons (Student-Newman-Keuls) were used to compare means of values. Student's t-test was used to test for statistical significance at the 95% of confidence interval (α =0.05) between INSIN and OUTSIN areas for chemical data and biomarker responses on each of the three fish species.

All results, for various typologies of data, have been elaborated within the quantitative WOE, Sediqualsoft model, which consists in various modules to summarize specific hazard indices for individual LOEs, before their overall integration in the final WOE assessment (Piva et al. 2011, Benedetti et al. 2012, Regoli et al. 2014, 2019). Logical flow charts, based on expert judgment and legislative constraints, were converted into algorithms for weighted elaboration of data from sediment chemistry, bioavailability of chemicals in bioindicator species, ecotoxicological effects measured at subcellular level (biomarkers), toxicity at organism level (laboratory bioassays) and at the community level (benthic communities): the individual LOEs have been finally integrated

LOE 1: Chemical characterization of sediments

for the WOE evaluation (see below).

The evaluation of chemical hazard (LOE-1) is initially based on the calculation for each pollutant of Ratio to Reference (RTR), i.e. the ratio between concentration measured in sediments and those indicated by a sediment quality guideline (SQG); in the present investigation, reference limits were those indicated by the SQG-L2 of the Italian decree for determining quality class and management options for dredged marine sediments (DM 173/2016). The RTR is corrected by a factor (w) which depend on the typology of chemicals (i.e. non priority w=1, priority w=1.1, priority and hazardous pollutants w=1.3). In the calculation of the specific Hazard Quotient

217 (HQ_C), an average RTRw is obtained for all of the parameters with $RTR \le 1$ (i.e. values below the SQG), while for those with RTR > 1, the RTRw are individually added into the summation Σ :

$$HQ_{C} = \frac{\sum_{j=1}^{N} RTR_{W}(j)_{RTR(j) \le 1}}{N} + \sum_{k=1}^{M} RTR_{W}(k)_{RTR(k) > 1}$$

Based on expert judgment, the values of HQ_C are assigned to one of six classes of chemical hazard, absent, negligible, slight, moderate, major and severe depending on the number, typology and magnitude of exceeding chemicals (Regoli et al., 2019).

223 LOE 2: Bioavailability of chemicals

The results on bioaccumulation of chemicals in tissues of mussels and fish (LOE2) are elaborated calculating, for each parameter, the increase of concentration compared to control organisms, corrected for the typology of pollutant and the statistical significance of the difference. The cumulative HQ_{BA} does not consider parameters with RTR_w <1.3, calculates the average for those with RTR_w ranging between 1.3 and 2.6, and adds the summation of all those with $RTR_w \ge 2.6$):

$$HQ_{BA} = \frac{\sum_{n=1}^{J} RTR_{W}(n)_{1.3 \le RTR_{W}(j) < 2.6}}{j} + \sum_{n=1}^{K} RTR_{W}(n)_{RTR(k) \ge 2.6}$$

The HQ_{BA} is assigned to one of five classes of hazard for bioavailability, from Absent to Severe (Regoli et al., 2019).

LOE 3: Sublethal effects: Biomarkers The module for the elaboration of biomarkers (LOE3) contains a wide battery of responses, each assigned with a weight (based on the relevance of biological endpoint) and a threshold indicative of changes of biological relevance. For each biomarker, the measured variation is compared to the threshold (Table S5), corrected for

statistical significance and importance of biomarker (weight), and assigned to 1 of 5 classes of effect which are then differently weighted in the calculation of cumulative HQ_{BM} .

$$HQ_{BM} = \begin{bmatrix} \sum_{j=1}^{N} Effect_{w}(j)_{1.5 < Effect(j) \le 2.5} \\ \sum_{i=1}^{M} Effect_{w}(k)_{1.5 < Effect(j) \le 2.5} \\ num \ biomarker_{1.5 < Effect(j) \le 2.5} \\ \end{bmatrix} + \sum_{k=1}^{M} Effect_{w}(k)_{Effect(j) > 2.5}$$

According to the % distribution of biomarkers in the 5 classes, the level of cumulative HQ_{BM} is assigned to 1 of 5 classes of hazard: all the more relevant information are given in the model output (Regoli et al., 2019).

LOE 4: Ecotoxicological Bioassays

Weighted criteria to elaborate results from standardized ecotoxicological bioassays (LOE-4) are based on specific thresholds and weights assigned to each bioassay depending on the biological endpoint, tested matrix, time of exposure, and the possibility of hormetic responses.

In the module for ecotoxicological bioassays, the cumulative hazard quotient (HQ_{Battery}) is obtained by the summation (Σ) of the weighted effects (Ew), i.e., the variations measured for each test compared to specific thresholds, corrected for the statistical significance of the difference (w), biological importance of the endpoint and exposure conditions (w_2):

$$HQ_{BATTERY} = \sum_{k=1}^{N} Effect_{w}(k) \cdot w_{2}$$

The HQ_{Battery} is normalized to a scale ranging from 0 to 10, where 1 is the battery threshold (when all the measured bioassays exhibit an effect equal to the threshold, 10 when all the assays exhibit 100% of effect); the HQ_{Battery} is then assigned to one of five classes of hazard, from Absent to Severe (Regoli et al., 2019).

255

256

239

243

247

248

249

250

251

252

253

254

LOE 5: Benthic Communities

Data on benthic communities are elaborated within a specific module (LOE-5), which converts the list of identified species in several available univariate and multivariate indices for the classification of ecological quality (Vincent 2002, Dauvin and Ruellet 2007, Muxika et al. 2007, Anderson et al. 2008, Mistri and Munari 2008, Sigovini et al. 2013). Such elaborated indices include total abundance (N), species richness (S), Shannon-Weaver Diversity Index (H'), Margalef index (D), Pielou's evenness index (J), AZTI' Marine Biotic Index (AMBI), multimetric-AZTI Marine Biotic Index (m-AMBI), Bentic Index (BENTIX), Benthic Index based on Taxonomic Sufficiency (BITS) and Benthic Opportunistic Polychaetes Amphipods (BOPA index) (Regoli et al., 2019). In this work, the AMBI index was chosen for the integration with other LOEs in the final WOE elaboration of ecological risk.

WOE integration

The huge datasets of results elaborated from the 5 LOEs have been finally integrated through a WOE approach based on the quantitative model Sediqualsoft. The quantitative hazard quotients (HQs) obtained for each LOEs are normalized to a common scale and given a different weight according to previously validated procedures (Piva et al., 2011; Lethonen et al., 2019; Regoli et al., 2019). LOE-2, summarizing bioavailability of chemicals in mussels and fish had a greater weight (w: 1.2) compared to LOE-1 assessing the presence of such compounds in the sediments (w: 1.0); at the biological level, a greater ecological relevance was assigned to LOE-5 on benthic communities (w: 1.3) compared to LOE-4 reflecting acute ecotoxicological effect at an organismal level (w: 1.2), or LOE-3 on sublethal effects at the cellular level (w: 1). An overall WOE level of risk is thus calculated and assigned to 1 of 5 classes of risk from Absent to Severe (Piva et al., 2011). Scientific criteria, validation of weights and thresholds, expert judgment evaluations and specific flow-charts of each LOE have been validated elsewhere (Piva et al., 2011; Benedetti et al., 2012, 2014; Lethonen et al., 2019; Regoli et al., 2019).

3. Results

3.1 Chemical characterization of sediments

Chemical analyses were performed on sediments from the 11 sub-areas (Figure 1) and measured values are reported by Armiento et al (2020). Several critical values were obtained, especially for PAHs and trace metals (As, Zn, Pb, V and to a lesser extent Cd Cu and Hg). The highest concentrations of \sum PAHs (approximately 2800 mg/kg) were measured in some samples collected within the sub-area 7.

When data were elaborated according to weighted criteria, 100 samples on 118 exhibited a "Severe" chemical Hazard Quotient (HQ) indicating a widespread contamination in the whole investigated area (Figure 2a).

292

293

283

284

285

286

287

288

289

290

291

3.2 Bioaccumulation in mussels and fish

Concentrations of trace metals and PAHs measured in whole tissues of mussels M. 294 galloprovincialis sampled from 7 sampling stations are shown in Supplementary Materials (Table 295 S1a). Among inorganic elements, concentrations of As, Cd, Fe, Mn, Pb and V were typically 296 297 higher in mussels sampled from the industrial piers (P2, PGT and PGP), exhibiting a gradual decrease in organisms collected at increasing distances from the industrial plant. . 298 Mussels from the piers (P2, PGT and PGP) were also characterized by elevated concentrations of 299 high molecular weight (HMW) PAHs, which confirm the industrial origin of such bioavailable 300 organic chemicals. In contrast, low molecular weight (LMW) PAHs did not exhibit significant 301 differences between organisms from the piers or the other sampling sites (BRM, BBM and BNF). 302 Results on bioaccumulation of chemicals in fish are given in the Supplementary Materials (Table 303 S1b). M. barbatus and D. vulgaris exhibited comparable concentrations of trace metals and PAHs 304 305 in specimens collected in the area of Bagnoli and in those from the reference site, while concentrations of HMW-PAHs (M. barbatus), LMW-PAHs and total PAHs (D. vulgaris) were 306 significantly higher in organisms from the industrial area (p<0.05). Bioaccumulation of chemicals 307

in *P. erythrinus* did not reveal significant variations for all the analysed parameters comparing the specimens collected in the industrial and reference areas (Table S1b).

The weighted elaboration of these results summarized as "Major" the HQ for bioavailability in *M. galloprovincialis* from sub-area 1, essentially due to concentrations of HMW-PAHs (supplementary Table S1), while "Moderate" in mussels collected from the sub-areas 7 and 9 (Figure 2b); a lower level of HQ was assigned to bioavailability for mussels in sub-areas 2, 6, 10, 11 (Figure 2b).

Considering results obtained in fish species, the higher bioavailability HQ was elaborated for *M. barbatus*, appearing as "Moderate" in fish collected within the industrial sub-areas 3, 4, 5 and 8.

3.3 Biomarkers responses in mussels and fish

Biomarkers analyzed in native mussels revealed a higher sensitivity of mussels collected in sites PGP and PGT (included in sub-areas 1, 7 and 9) which exhibited a decreased lysosomal membrane stability and increased micronuclei frequency compared to organisms from other areas (Supplementary Table S2a). No variations were observed for the enzymatic activity of acetylcholinesterase in hemolymph, nor for metallothioneins in digestive gland of mussels from various sites (Supplementary Table S2a).

Results on acetylcholinesterase in brain, EROD enzymatic activity in liver, aromatic bile metabolites and frequency of branchial micronuclei in fish species (*M. barbatus*, *P. erythrinus* and in *D. vulgaris*) are reported in supplementary Table S2b. Acetylcholinesterase enzymatic activity was not affected in *M. barbatus* sampled in the industrial area while a decrease of this biomarker was observed in *P. erythrinus* and *D. vulgaris*. The EROD enzymatic activity was significantly induced in *M. barbatus* (p<0.05) and *P. erythrinus* (p<0.05) sampled in the industrial area compared to specimens from the reference site, while the cytochrome P450 biotransformation pathway was unaffected in *D. vulgaris*. At the same time, all the fish species exhibited higher levels of aromatic metabolites, particularly B[a]P-like and pyrene-like, in

organisms sampled in the industrial compared to reference area. The frequency of micronuclei significantly (p<0.05) increased in gills of M. barbatus from the industrial area.

Combining the weighted elaboration of biomarker results obtained in mussels and fish, it was possible to assign a hazard index in all the investigated sub-areas: such HQ resulted as "Major" in sub-areas 1, 3, 4, 5 and 8, "Moderate" in 9, "Slight" or "Absent" in the remaining sub-areas (Figure 2c).

3.4 Ecotoxicological bioassays

Ecotoxicological characteristics of the sediments, evaluated through a battery of three bioassays (*V. fischeri*, *S. costatum* and *P. lividus*), are detailed in Supplementary Table S3. The weighted elaboration revealed a "Slight" or "Absent" toxicity for most samples; a "Moderate" HQ was summarized in sub-areas 1, 2 and 7, where some individual samples exhibited a "Major" level of hazard (Figure 2d). The embryotoxicity of *P. lividus* was the most sensitive bioassay, often in combination with the inhibition of the algal growth in *S. costatum* (Supplementary Table S3).

3.5 Benthic communities

The analyses of benthic communities carried out in 15 stations allowed to identify 1796 organisms belonging to 164 taxonomic groups (Supplementary Table S4). The AMBI index was selected as the most appropriate for the study area and the results indicated a "Slight" or "Absent" level of HQ at this level of biological organization (Table 1, Figure 2e).

3.6 Weight of evidence integration

The elaborated WOE risk indices were "Moderate" for the majority of sub-areas (1-5, 7-9 with calculated values between 40.48 and 54.61), and "Slight" in sub-areas 6, 10, 11 (WOE values between 29.61 and 37.03; Table 1 and Figure 3).

4. Discussion

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

The weight of evidence (WOE) approach, integrating individual lines of evidence through qualitative or quantitative methods, has been widely used in ecological and risk assessments to draw conclusions and justify selection of regulatory benchmarks (Linkov et al., 2009, 2015). Procedures for integration of different typologies of data must be quantitative and transparent for their acceptance in regulatory normative. As part of a decision-making process, various WOE methodologies have been recently formalized in different fields, e.g. by US-EPA (Linkov et al., 2009, 2011, 2015), European Food Safety Authority (Suter et al., 2017), or by the last Italian law on management of dredged sediments (DM 173/2016). The latter is based on the same weighting criteria for chemical analyses and ecotoxicological bioassays presented in this work. The combination of chemical and biological analyses, is recognized as an added value to the use of individual lines of evidence (LOEs), and in line with European Directives which recommend the use of multiple quality indicators for aquatic ecosystems (Lyons et al. 2010; Lethtoten et al. 2014). The application of quantitative weighted criteria to process and integrate huge amounts of heterogeneous data from different LOEs allowed to summarize complex scientific information for an easier interpretation by policymakers or environmental managers (Piva et al. 2011; Borja et al. 2017; Regoli et al. 2019). In the present study, a WOE assessment has been carried out in Bagnoli industrial site, chosen as model area to demonstrate the practical applicability in a complex environmental scenario of a model integrating chemical characterization of sediments, bioavailability of pollutants to key bioindicator species and the onset of effects at different levels of biological organization, from cellular responses to status of benthic communities. Concentrations of trace metals and especially PAHs in sediments revealed a severe chemical contamination still present in the entire study area (Armiento et al 2020), with concentrations extremely higher than baseline levels and maximum limits indicated by Italian legislation for harbor-dredged sediments (L2 values, DM 173/2016).

The integrative approach of this study showed that toxicity of sediments, measured through standardized batteries of ecotoxicological bioassays, was often not in accordance with chemical characterization. In fact, despite an evident contamination, sediments from the area of Bagnoli inlet as well as those from the southern and the northern stations, showed low levels of acute toxicity; only some samples, particularly those collected close to the industrial plant, revealed evidence of a major acute toxicity, but the overall HQ for ecotoxicological bioassays resulted as "Moderate" in these sub-areas. Despite the lack of an elevated acute toxicity, the bioavailability of contaminants was evident in terms of bioaccumulation of PAHs, and of HMW hydrocarbons, both in mussels and fish from the industrialized area. For this reason, the level of hazard for bioavailability was calculated as "Moderate" in the greatest part of the study area, with major effects in proximity of industrial piers. The significant accumulation of HMW-PAHs confirmed a pyrolytic origin of such pollution, related to combustion processes of the plant. A significant accumulation of these PAHs was observed also in liver of the benthic M. barbatus, indicating sediments as a still active source of these chemical contaminants to local biota. Bioavailability of PAHs was further confirmed by biotransformation-related biomarkers, such as the induction of EROD enzymatic activity and the accumulation of aromatic metabolites in the bile of M. barbatus and P. erythrinus. The latter species confirmed the higher sensitivity of these biomarkers compared to tissue concentrations, in revealing bioavailability and metabolism of PAHs in fish. The comparison of the three fish species highlighted M. barbatus as the most affected by PAHs, both in terms of accumulation and of cellular responses related to their biotransformation; in P. erythrinus the lack of PAHs accumulation did not reflect a lack of exposure but the active metabolization and excretion of these chemicals, as indicated by the significant EROD induction and accumulation of aromatic bile metabolites. Finally, the slight PAHs effects in the more pelagic D. vulgaris further confirm the significant role of sediments in direct transfer of chemicals to benthic biota and, indirectly, to trophic webs.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

Additional adverse effects of PAHs were revealed by lysosomal membrane destabilization in 412 mussels, and the onset of genotoxic effects in both fish and mussels. The enhancement of 413 micronuclei frequency is a well-known effect of PAHs, partly related to increased formation of 414 415 oxyradicals during their metabolization pathway (Benedetti et al., 2015). The overall biological significance of observed biomarkers responses in biota corresponded to a 416 "Major" level of subcellular hazard in organisms collected from the industrial sub-areas. 417 Concerning the ecological effects on benthic communities, the application of AMBI index (Borja 418 et al. 2000) allowed to classify as "Absent" the hazard in the samples collected in the majority of 419 study area, except in sub-areas 4, 5, 10 and 7, located near the plant, where the impact was 420 summarized as "Slight". Such evaluation is in accordance with Fasciglione et al. (2016), who 421 reported an unexpected evidence of biodiversity in this area, indicating a good functioning of 422 local ecosystems at high levels of chemical contamination. 423 The overall integration of hazard quotients elaborated from sediment chemistry, bioassays, 424 bioaccumulation, biomarkers and benthic communities provided a more holistic assessment of the 425 426 environmental quality in the investigated area. The results indicate a clear pollution, especially near the piers. Beside a "Slight" level of hazard summarized in sub-areas 6, 10 and 11, the WOE 427 elaboration increased to a "Moderate" level in all the other zones: interestingly the highest hazard 428 coefficients were obtained near the plant: values close to the limit between "Moderate" and 429 "Major" level of risk were obtained in sub-areas 1 and 7 (Table 1), further confirming the impact 430 of discharged material from the industrial activities. 431 The possibility of converting complex scientific information into simple hazard indices easily 432 understandable from policy makers and environmental managers could facilitate and orientate 433 434 site-specific decisions on environmental sediment management. This study confirm the need of performing multidisciplinary approaches to assess the health status of marine ecosystems. In this perspective the use of the WOE integration, which combine and weight different kinds of data 436

and analyses allows to better discriminate the presence of contaminants and their short or long-

435

term consequences. The importance of WOE models is particularly evident in complex environmental scenarios where apparently contrasting results are provided by various LOEs. The present study also highlights that different conclusions (with consequent different management scenarios) can be made on the basis of the analyses chosen: from a severe hazard derived from the use of the sediment contamination alone to the lack of hazard if we consider only the data from the analyses of the benthic assemblages. The multidisciplinary approach used here confirms that different typologies of pollutants are bioavailable and selectively transferred from sediments to local biota; such chemicals do not always exert acute toxicological effects, but can induce cellular responses that, being highly sensitive, might be prognostic of future adverse effects. Although the analysis of local sentinel organisms confirms that the contaminants of the sediments are still transferred to biota, the results of the WOE approach suggests that the management of the sediments from the industrial area of Bagnoli should not be based only on its chemical characterization.

Acknowledgments

This study was supported by the project ABBaCo funded by the Italian Ministry for Education, University and Research (grant number C62F16000170001) and by the project MERCES (Marine Ecosystem Restoration in Changing European Seas), funded by the European Union's Horizon

2020 research and innovation program (grant agreement no. 689518).

6. References

ABBaCo project: "Sperimentazioni pilota finalizzate al restauro ambientale e balneabilità del SIN Bagnoli-Coroglio" (2018)..Italian Ministry for Education, University and Research Grant number C62F16000170001. http://www.szn.it/index.php/en/research/integrative-marine-ecology/research-projects-emi/abbaco.

- 464 Anderson MJ., Gorley RN., Clarke KR. (2008). PERMANOVA for PRIMER: guide to software
- and statistical methods. PRIMER-E Ltd., Plymouth, United Kingdom: 214 pp.
- 466 Armiento G., Caprioli R., Cerbone A., Chiavarini S., Crovato C., De Cassan M., De Rosa L.,
- Montereali M.R., Nardi E, Nardi L., Pezza M., Proposito M., Rimauro J., Salerno A.,
- Salluzzo A. Spaziani F. (2020). Current status of coastal sediments contamination in the
- former industrial area of Bagnoli-Coroglio (Naples, Italy), G. Budillon, R. Delfanti and D.
- 470 Vicinanza eds. Special Issue of Chemistry and Ecology: Multidisciplinary Approach to the
- Characterization of Marine Coastal Areas Subjected to Chronic Industrial Contamination.
- 472 Submitted.
- 473 Arienzo M., Donadio C., Mangoni O., Bolinesi F., Stanislao C., Trifuoggi M., Toscanesi M., Di
- Natale G., Ferrara L. (2017). Characterization and source apportionment of polycyclic
- aromatic hydrocarbons (PAHs) in the sediments of gulf of Pozzuoli (Campania, Italy). Mar
- 476 Poll Bull, 124:480–487.
- 477 Arienzo M., Toscanesi M., Trifuoggi M., Ferrara L., Stanislao C., Donadio C., Villari G., De
- 478 Vico G., Carella F. (2019). Contaminants bioaccumulation and pathological assessment in
- 479 Mytilus galloprovincialis in coastal waters facing the brownfield site of Bagnoli, Italy. Mar
- 480 Poll Bull 140:341-352.
- 481 Bebianno MJ, Pereira CG, Rey F, Cravo A, Duarte D, D'Errico G, Regoli F. (2015). Integrated
- approach to assess ecosystem health in harbor areas. Sci Total Environ 514:92–107.
- Benedetti, M., Bocchetti, R., Di Mento, R., Fattorini, D., Gorbi, S., Machella, N., Moltedo, G.,
- Notti, A., Scarpato, A., Virno-Lamberti, C., Cicero, A.M., Regoli, F. (2006). Multimaker
- approach with caged mussels Mytilus galloprovincialis, for monitoring the impact of
- produced waters in the Adriatic sea. Mar Environ Res, 62: S377-S378.
- Benedetti, M., Ciaprini, F., Piva, F., Onorati, F., Fattorini, D., Notti, A., Ausili, A., Regoli, F.
- 488 (2012). A multidisciplinary weight of evidence approach for classifying polluted sediments:

- Integrating sediment chemistry, bioavailability, biomarkers responses and bioassays.
- 490 Environ Int 38:17–28.
- Benedetti, M., Giuliani, M.E., Regoli, F. (2015). Oxidative metabolism of chemical pollutants in
- 492 marine organisms: Molecular and biochemical biomarkers in environmental toxicology.
- 493 Ann N Y Acad Sci 1340:8–19.
- Benedetti, M., Gorbi, S., Fattorini, D., D'Errico, G., Piva, F., Pacitti, D., Regoli, F. (2014).
- Environmental hazards from natural hydrocarbons seepage: Integrated classification of risk
- from sediment chemistry, bioavailability and biomarkers responses in sentinel species.
- 497 Environ Pollut 185:116–126.
- 498 Bocchetti, R., Regoli, F. (2006). Seasonal variability of oxidative biomarkers, lysosomal
- 499 parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel
- Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65, 913–921.
- Bonsignore, M., Salvagio Manta, D., Oliveri, E., Sprovieri, M., Basilone, G., Bonanno, A., Falco,
- F., Traina, A., Mazzola, S. (2013). Mercury in fish from Augusta Bay (southern Italy): risk
- assessment and health implication. Food Chem. Toxicol. 56, 184-194.
- Borja, A., Franco, J., and Pérez, V. (2000). A marine Biotic Index to establish the ecological
- quality of soft-bottom benthos within European estuarine and coastal environments. Mar
- 506 Pollut Bull 40:1100–1114.
- Borja, A., Elliott, M., Andersen, J.H., Berg, T., Carstensen, J., Halpern, B.S., Heiskanen, A.S.,
- Korpinen, S., Stewart Lowndes, J.S., Martin, G., Rodriguez-Ezpeleta, N. (2016). Overview
- of integrative assessment of marine systems: The ecosystem approach in practice. Front
- 510 Mar Sci 3:1–20.
- Borja, A., Elliott, M., Uyarra, M.C., Carstensen, J., Mea, M. (2017). Editorial: Bridging the gap
- between policy and science in assessing the health status of marine ecosystems. Front Mar
- 513 Sci 4:1–3.

- Bradham, C., Foltz, K.R., Beane, W.S., Arnone, M.I., Rizzo, F., Coffman, J., Mushegian, A.,
- Goel, M., Morales, J., Geneviere, A.M., Lapraz, F., Robertson, A.J., Kelkar, H., Loza-Coll,
- M., Townley, I.K., Raisch, M, Roux, M.M., Lepage, T., Gache, C., McClay, D.R.,
- Manning, G. (2006). The sea urchin kinome: a first look. Dev Biol 300:180–93.
- 518 Chapman, P.M. (2007). Determining when contamination is pollution Weight of evidence
- determinations for sediments and effluents. Environ Int 33:492–501.
- 520 Dauvin, J. C., and Ruellet, T. (2007) Polychaete/amphipod ratio revisited. Mar Pollut Bull
- 521 55:215–224.
- Dauvin, J.C. (2015). History of benthic research in the English Channel: From general patterns of
- 523 communities to habitat mosaic description. J Sea Res 100:32–45.
- 524 DM 173/2016. Ministero dell'Ambiente e della Tutela del Territorio e del Mare, Supplemento
- ordinario alla Gazzetta Ufficiale, n. 208 del 6 settembre 2016-Serie generale. Regolamento
- recante modalità e criteri tecnici per l'autorizzazione all'immersione in mare dei materiali di
- 527 escavo di fondali marini.
- Doe, K., Jackman, P., Scroggins, R., McLeay, D., Wohlgeschaffen, G. (2005). Solid-Phase Test for
- Sediment Toxicity Using the Luminescent Bacterium, Vibrio Fischeri. In: Blaise C., Férard
- JF. (eds) Small-scale Freshwater Toxicity Investigations. Springer, Dordrecht.
- Fasciglione, P., Barra, M., Santucci, A., Ciancimino, S., Mazzola, S., Passaro, S. (2016).
- Macrobenthic community status in highly polluted area: a case study from Bagnoli,
- Naples Bay, Italy. Rend. Fis. Acc. Lincei 27:229-239.
- Fattorini, D, Sarkar, S.K., Regoli, F, Bhattacharya, B.D., Rakshit, D. et al. (2013). Levels and
- chemical speciation of arsenic in representative biota and sediments of a tropical mangrove
- wetland, India. Environ Sci Process Impacts 15: 773-782.
- 537 Gallo, A., Guida, M., Armiento, G., Siciliano, A., Carraturo, F, Mormile, N, Pellegrini, D,
- Morroni, L, Tosti, E., Ferrante, M., Montresor, M., Molisso, F., Sacchi, M., Danovaro, R.,

- Libralato, G. (2020). Species-specific sensitivity of three microalgae to sediment elutriates.
- Mar Environ Res, this issue.
- 541 Gorbi, S., Regoli, F. (2004). Induction of cytochrome P4501A and biliary PAH metabolites in
- European eel Anguilla anguilla: Seasonal, dose- and time-response variability in field and
- laboratory conditions. Mar Environ Res 58 (2-5):511-515.
- Gorbi, S., Virno Lamberti, C., Notti, A., Benedetti, M., Fattorini, D., Moltedo, G., Regoli, F.
- 545 (2008). An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for
- monitoring the impact of an offshore platform in the Adriatic sea. Mar Environ Res 65
- 547 (1):34-49.
- Hay Mele, B., Russo, B., Crocetta, F., Gambi, C., Dell'Anno, A., Danovaro, R., Guglielmo, R.,
- Musco, L., Patti, F.P., Riginella, E., Tangherlini, M., Ribera d'Alcala', M., D'Alelio, D.
- 550 (2020). Ecological assessment of anthropogenic impact in marine ecosystems: the case of
- Bagnoli Bay. Mar Environ Res, this issue.
- ISO, 2006. Water quality Marine algal growth inhibition test with Skeletonema sp. and
- *Phaeodactylum tricornutum.* ISO 10253:2006.
- ISPRA-ICRAM (2005). Caratterizzazione ambientale dei fondali e degli arenili inclusi nella
- perimetrazione del sito di bonifica di Bagnoli–Coroglio. BoI-Pr-CA-BA-relazione-02.04.
- ISPRA (2011). Procedura per la determinazione degli idrocarburi con C>12 nei suoli contaminati.
- 557 Manuali e linee guida, 75/2011.
- ISPRA (2017). Saggio di fecondazione e saggio di sviluppo embrionale con il riccio di mare
- Paracentrotus lividus (Lamarck) (Echinodermata: Echinoidea). Rome: ISPRA.
- Lehtonen, K. K., Sundelin, B., Lang, T., and Strand, J. (2014). Development of tools for
- integrated monitoring and assessment of hazardous substances and their biological effects
- in the Baltic Sea. AMBIO 43:69–81.

- Linkov, I., Long, E.B., Cormier, S.M., Satterstrom, F.K, Bridges, T. (2009). Weightof-evidence
- evaluation in environmental assessment: Review of qualitative and quantitative approaches.
- Sci Total Environ 497:5199–5205.
- Linkov, I., Welle, P., Loney, D., Tkachuk, A., Canis, L., Kim, J.B., Bridges, T. (2011). Use of
- multicriteria decision analysis to support weight of evidence evaluation. Risk Anal
- doi:10.1111/j.1539-6924.2011.01585.
- Linkov, I., Massey, O., Keisler, J., Rusyn, I., Hartung, T. (2015). From "weight of evidence to
- quantitative data integration using multicriteria decision analysis and Bayesian methods".
- 571 Altex 32:3–8.
- Lyons, B.P., Thain, J.E., Stentiford, G.D., Hylland, K., Davies, I.M., Vethaak, A.D. (2010). Using
- 573 biological effects tools to define Good Environmental Status under the European Union
- Marine Strategy Framework Directive. Mar Pollut Bull 60:1647-1651.
- Lowe, D.M., Pipe, R.K. (1994). Contaminant induced lysosomal membrane damage in marine
- 576 mussel digestive cells: an in vitro study. Aquat Toxicol, 30(4):357-365.
- Mestre, N.C., Rocha, T.L., Canals, M., Cardoso, C., Danovaro, R., Dell'Anno, A., Gambi, C.,
- Regoli, F., Sanchez-Vidal, A., Bebianno, M.J. (2017). Environmental hazard assessment of
- a marine mine tailings deposit site and potential implications for deep-sea mining. Environ
- 580 Pollut 228:169–178.
- Mistri, M., and Munari, C. (2008). BITS: a SMART indicator for soft-bottom, nontidal lagoons.
- 582 Mar Pollut Bull 56:587–599.
- Molisso, F., Capodanno, M., Di Gregorio, C., Gilardi, M., Guarino, A., Oliveri, E., Tamburrino
- S., Sacchi, M. (2020). Sedimentological analysis of marine deposits off the Bagnoli-
- Coroglio Site of National Interest (SNI), Pozzuoli (Napoli) Bay. G. Budillon, R. Delfanti
- and D. Vicinanza eds. Special Issue of Chemistry and Ecology: Multidisciplinary Approach
- to the Characterization of Marine Coasta Areas Subjected to Chronic Industrial
- 588 Contamination. Submitted.

- 589 Morroni, L., Pinsino, A., Pellegrini, D., Regoli, F. (2018). Reversibility of metal induced
- malformations in sea urchin embryos. Ecotoxicol Environ Saf 148:923-929.
- 591 Muxika, I., Borja, Á., and Bald, J. (2007). Using historical data, expert judgement and
- multivariate analysis in assessing reference conditions and benthic ecological status,
- according to the European Water Framework Directive. Mar Pollut Bull 55:16–29.
- Pittura, L., Avio, C.G., Giuliani, M.E., D'Errico, G., Keiter, S.H., Cormier, B., Gorbi, S., Regol,
- F. (2018). Microplastics as vehicles of environmental PAHs to marine organisms:
- Combined chemical and physical hazards to the mediterranean mussels, Mytilus
- 597 *galloprovincialis*. Front Mar Sci 5(103).
- 598 Piva, F., Ciaprini, F., Onorati, F., Benedetti, M., Fattorini, D., Ausili, A., Regoli, F. (2011).
- Assessing sediment hazard through a weight of evidence approach with bioindicator
- organisms: A practical model to elaborate data from sediment chemistry, bioavailability,
- biomarkers and ecotoxicological bioassays. Chemosphere 83:475–485.
- Regoli, F., Pellegrini, D., Winston, G.W., Gorbi, S., Giuliani, S., Virno-Lamberti, C., Bompadre,
- S.,ì (2002). Application of biomarkers for assessing the biological impact of dredged
- materials in the Mediterranean: the relationship between antioxidant responses and
- susceptibility to oxidative stress in the red mullet (*Mullus barbatus*). Mar. Pollut. Bull. 44,
- 606 912–922
- Regoli, F., Winston, G.W., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S. (2003).
- Integrating enzymatic responses to organic chemical exposure with total oxyradical
- absorbing capacity and DNA damage in the European eel Anguilla anguilla. Environ
- 610 Toxicol Chem 22 (9):2120-2129.
- Regoli, F. and Giuliani, M.E. (2014). Oxidative pathways of chemical toxicity and oxidative
- stress biomarkers in marine organisms. Mar Environ Res 93:106–117.
- Regoli, F., Pellegrini, D., Cicero, A.M., Nigro, M., Benedetti, M., Gorbi, S., Fattorini, D.,
- D'Errico, G., Di Carlo, M., Nardi, A., Gaion, A., Scuderi, A., Giuliani, S., Romanelli, G.,

- Berto, D., Trabucco, B., Guidi, P., Bernardeschi, M., Scarcelli, V., Frenzilli, G. (2014). A
- multidisciplinary weight of evidence approach for environmental risk assessment at the
- 617 Costa Concordia wreck: Integrative indices from Mussel Watch. Mar Environ Res 96:92–
- 618 104.
- Regoli, F., D'Errico, G., Nardi, A., Mezzelani, M., Fattorini, D., Benedetti, M., Di Carlo, M.,
- Pellegrini, D., Gorbi, S. (2019). Application of a Weight of Evidence Approach for
- Monitoring Complex Environmental Scenarios: the Case-Study of Off-Shore Platforms.
- 622 Front Mar Sci 6:1–15.
- Romano, E., Ausili, A., Zharova, N., Celia Magno, M., Pavoni, B., Gabellini, M. (2004). Marine
- sediment contamination of an industrial site at Port of Bagnoli, Gulf of Naples, Southern
- 625 Italy. Mar Pollut Bull 49:487–495.
- Romano E., Bergamin L., Pierfranceschi G., Ausili A. (2018). Temporal changes of metal and
- trace element contamination in marine sediments due to a steel plant: The case study of
- Bagnoli (Naples, Italy). Appl Geochem 88:85-94.
- 629 Sigovini, M., Keppel, E., and Tagliapietra, D. (2013). M-AMBI revisited: looking inside a
- widely-used benthic index. Hydrobiologia 717:41–50.
- 631 Suter, G.W., Cormier, S.M., Barron, M.G. (2017). A weight of evidence framework for
- environmental assessments: Inferring qualities. Integr Environ Assess Manag 13:1038–
- 633 1044.
- 634 Trifuoggi M., Donadio C., Ferrara L., Stanislao C., Toscanesi M., Arienzo M. (2018). Levels of
- pollution of rare earth elements in the surface sediments from the Gulf of Pozzuoli
- 636 (Campania, Italy). Mar Poll Bull 136:374–384.
- 637 Trifuoggi M., Donadio C., Mangoni O., Ferrara L., Bolinesi F., Nastro R.A., Stanislao C.,
- Toscanesi M., Di Natale G., Arienzo M. (2017). Distribution and enrichment of trace metals
- in surface marine sediments in the Gulf of Pozzuoli and off the coast of the brownfield
- metallurgical site of Ilva of Bagnoli (Campania, Italy). Mar Poll Bull 124:502–511.

641	USEPA (1991). Evaluation of dredged material proposed for ocean disposal testing manual. EPA
642	503/8-91/001.
643	USEPA (1994). Tetra-through Octa-Chlorinated Dioxins and Furans by Isotope Dilution
644	HRGC/HRMS. 1613.
645	Viarengo, A., Ponzano, E., Dondero, F., Fabbri, R. (1997). A simple spectrophotometric method
646	for metallothionein evaluation in marine organisms: An application to Mediterranean and
647	Antarctic molluscs. Mar Environ Res 44 (1):69-84.
648	Vincent, C., Heinrich, H., Edwards, A., Nygaard, K., Haythornthwarite, J. (2002). Guidance on
649	typology, reference conditions and classification systems for transitional and costal waters,
650	CIS Working Group 2.4(Coast) Common Implementation Strategy of the Water
651	FrameworkDirective, European Commission.
652	Volpi Ghirardini, A, Arizzi Novelli, A., Tagliapietra, D. (2005). Sediment toxicity assessment in
653	the Lagoon of Venice (Italy) using Paracentrotus lividus (Echinodermata: Echinoidea)
654	fertilization and embryo bioassays. Environ Int 31:1065–77.

Tables

Table 1 - Classification of sub-areas within Bagnoli-Coroglio industrial site, according to the weight of evidence elaboration. Levels of hazard are reported for each LOE and for their overall WOE integration.

Area	LOE1 (Level of chemical hazard)	LOE2 (Level of hazard for bioavailability)	LOE3 (Level of hazard for biomarkers)	LOE4 (Level of hazard for bioassays)	LOE5 (Level of hazard for Benthic Communities)	(Weight o	OE f Evidence ration)
Area 1	SEVERE	MAJOR	MAJOR	MODERATE	ABSENT	ABSENT MODERATE (54.61)	
Area 2	SEVERE	SLIGHT	SLIGHT	MODERATE	ABSENT	MODERATE (40.48)	
Area 3	SEVERE	MODERATE	MAJOR	ABSENT	ABSENT	MODERATE (43.40)	
Area 4	SEVERE	MODERATE	MAJOR	ABSENT	SLIGHT	MODERATE (45.36)	
Area 5	SEVERE	MODERATE	MAJOR	ABSENT	SLIGHT	MODERATE (46.54)	
Area 6	SEVERE	ABSENT	ABSENT	ABSENT	ABSENT	SLIGHT (29.61)	
Area 7	SEVERE	MODERATE	MAJOR	MODERATE	SLIGHT	MODERATE (53.56)	
Area 8	SEVERE	MODERATE	MAJOR	ABSENT	ABSENT	MODERATE (41.30)	
Area 9	SEVERE	MODERATE	MODERATE	ABSENT	ABSENT	MODERATE (41.73)	
Area 10	SEVERE	SLIGHT	SLIGHT	ABSENT	ABSENT	SLIGHT (34.83)	
Area 11	SEVERE	ABSENT	ABSENT	SLIGHT	ABSENT	SLIGHT (37.03)	

670 Legends of Figures

- Figure 1 Localization of sampling sites in the Bagnoli-Coroglio industrial area. In each sub-area were performed: chemical characterization of sediments; bioavailability of trace metals and organic pollutants in mussels and fish, biomarkers in mussels and fish, benthic communities
- analysis; ecotoxicological bioassays.

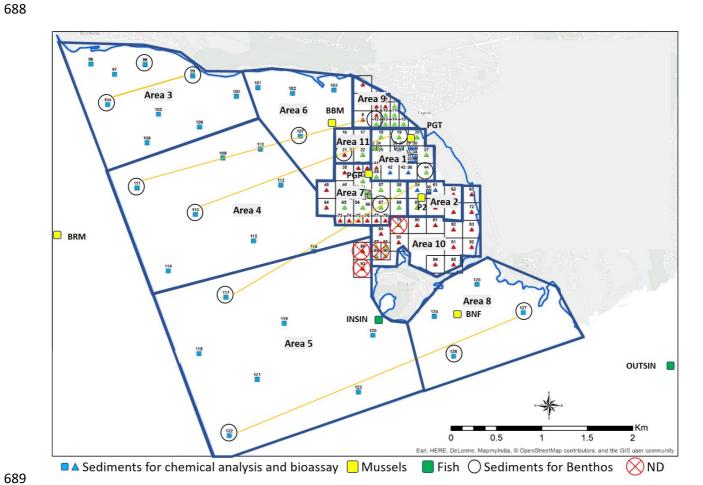
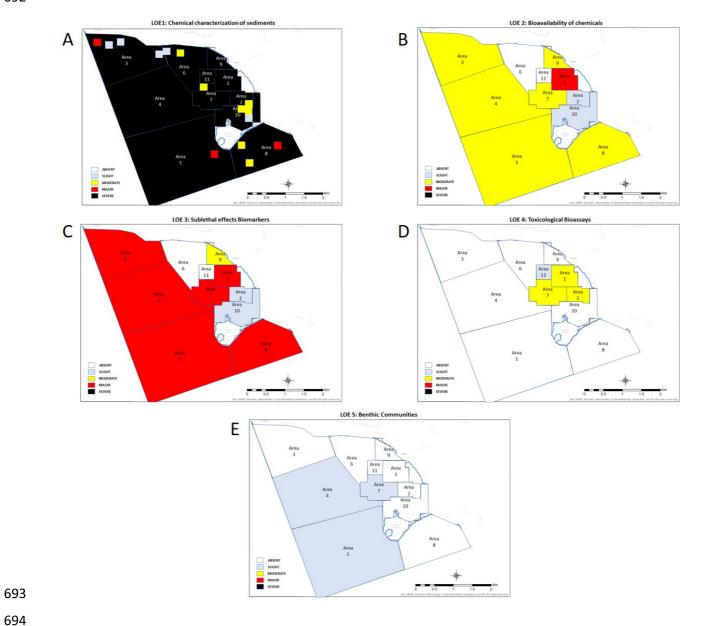
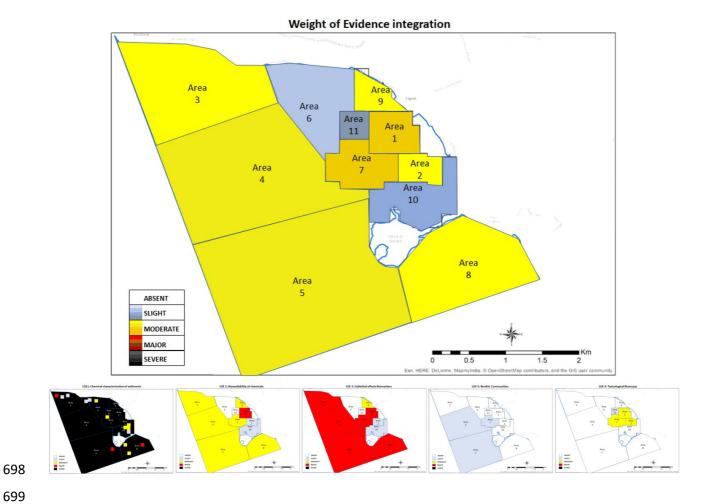

675

Figure 2 - Classification of sub-areas within Bagnoli-Coroglio industrial area for each LOE according to the weight of evidence elaboration. Levels of hazard are reported in different colors on the areas, as detailed in the legend, considering as LOE: chemical characterization of sediments (A); bioavailability of trace metals and organic pollutants in mussels and fish (B), biomarkers in mussels and fish (C); ecotoxicological bioassays (D); benthic communities analysis (E).

682


Figure 3 – Classification of areas within Bagnoli-Coroglio industrial area considering the overall weight of evidence integration. Levels of hazard are reported in different colors on the areas as detailed in the legend.

687 Figure 1



691 Figure 2

Figure 3

SUPPLEMENTARY MATERIAL

Table S1a. Bioaccumulation of trace metals and polycyclic aromatic hydrocarbons (PAHs) concentrations in tissues of mussels sampled. Data expressed as mean \pm standard deviation. Different letters (a, b, c) indicate significant differences (p < 0.05) between sites, as determined by one way analyses of variance (ANOVA) and Student Newman Keuls post-hoc test.

		PGT	PGP	P2	ВВМ	BNF	BRM	Sig.
		(Area 1;9)	(Area 1;7)	(Area 2;10)	(Area 6;9;11)	(Area 8)	(Reference area)	
Al	μg/g (dw)	85 ± 15.4	61.6 ± 5.48	52.6 ± 15.4	58.2 ± 17	49.2 ± 47.5	46.5 ± 14.7	n.s <u>.</u>
As		22.4 ± 5.87 bc	25.6 ± 2.29 <i>c</i>	22.2 ± 0.783 bc	17.1 ± 1.81 ab	11.9 ± 1.86 a	19.8 ± 0.827 bc	p < 0.0001
Cd		0.873 ± 0.031 <i>c</i>	0.83 ± 0.0943 <i>c</i>	0.671 ± 0.0924 b	0.579 ± 0.107 b	0.394 ± 0.0692 a	0.519 ± 0.014 ab	p < 0.0001
Cr		2.08 ± 0.315 <i>c</i>	1.65 ± 0.263 b	1.17 ± 0.0242 a	1.17 ± 0.127 a	1.1 ± 0.221 a	0.944 ± 0.0518 a	p < 0.0001
Cu		6.88 ± 0.872 bc	4.07 ± 1.95 ab	7.88 ± 2.89 bc	6.93 ± 1 <i>c</i>	1.19 ± 0.712 a	8.68 ± 1.16 <i>c</i>	p < 0.005
Fe		626 ± 174 b	604 ± 96.5 b	362 ± 95.5 a	340 ± 103 a	230 ± 118 a	218 ± 43.4 a	p < 0.005
Hg		0.171 ± 0.011 b	0.17 ± 0.00796 b	0.157 ± 0.0326 b	0.146 ± 0.0123 b	0.11 ± 0.0115 a	0.139 ± 0.0112 b	p < 0.005
Mn		68.1 ± 11.7 <i>c</i>	62 ± 9 <i>c</i>	42.2 ± 12.2 b	33.7 ± 1.83 ab	14.8 ± 4.53 a	31.7 ± 4.04 ab	p < 0.0001
Ni		1.1 ± 0.0932 b	0.997 ± 0.0895 ab	0.718 ± 0.0991 a	1.32 ± 0.259 b	0.725 ± 0.164 a	1.22 ± 0.0497 b	p < 0.0001
Pb		10.4 ± 0.585 <i>c</i>	10.5 ± 0.484 <i>c</i>	6.16 ± 0.655 b	4.1 ± 0.705 a	3.57 ± 2.32 a	2.9 ± 0.569 a	p < 0.0001
V		2.65 ± 0.531 c	2.42 ± 0.218 bc	1.68 ± 0.326 ab	1.52 ± 0.472 a	1.33 ± 0.387 a	1.43 ± 0.259 a	p < 0.005
Zn		53.2 ± 11	90.7 ± 74.5	41.1 ± 6.91	123 ± 116	38.7 ± 5.54	42.2 ± 20.4	n.s.

n.s. = not significant

Table S1a. Continues.

		PGT	PGP	P2	BBM	BNF	BRM	Sig.
		(Area 1;9)	(Area 1;7)	(Area 2;10)	(Area 6;9;11)	(Area 8)	(Reference area)	
Naphthalene	ng/g (dw)	18.7 ± 3.19	35.5 ± 24.1	18.2 ± 5.99	14.1 ± 0.932	16.1 ± 0.508	16.6 ± 0.965	n.s.
Acenapthylene		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	33.8 ± 58.5	n.s.
1-methylnaphthalene		< 0.05	< 0.05	1.96 ± 3.3 a	16 ± 1.88 b	17.3 ± 1.94 b	18.4 ± 2.57 b	<i>p</i> < 0.0001
2-methylnaphthalene		< 0.05	< 0.05	2.58 ± 4.38 a	10.8 ± 1.67 b	8.14 ± 0.336 b	9.42 ± 0.391 b	<i>p</i> < 0.0001
Acenaphthene		< 0.01	< 0.01	< 0.01	< 0.01	0.981 ± 0.0632 b	< 0.01	p < 0.005
Fluorene		$0.778 \pm 0.138~ab$	0.832 ± 0.186 ab	1.13 ± 0.229 b	0.596 ± 0.136 a	0.68 ± 0.204 ab	0.684 ± 0.206 ab	p < 0.05
Phenanthrene		< 0.01	< 0.01	4.31 ± 4.51	4.04 ± 0.723	4.46 ± 0.689	4.18 ± 0.381	n.s.
Anthracene		2.74 ± 2.67	0.775 ± 1.32	0.768 ± 0.694	0.057 ± 0.0567	< 0.01	< 0.01	n.s.
Fluoranthene		10 ± 17.3	4.63 ± 8.01	0.225 ± 0.372	< 0.01	< 0.01	< 0.01	n.s.
Pyrene		34.5 ± 28.6	10 ± 16.2	7.11 ± 6.13	1.39 ± 0.433	0.379 ± 0.082	0.342 ± 0.291	n.s.
Benzo(a)anthracene		13.2 ± 9.95 b	4.02 ± 6.95 a	1.64 ± 2.71 a	< 0.01	0.016 ± 0.0103 a	0.0766 ± 0.115 a	p < 0.05
Chrysene		9.93 ± 7.03 b	2.95 ± 5.1 a	< 0.01	< 0.01	< 0.01	0.354 ± 0.119 a	p < 0.05
7,12-dimethylbenzo(a)anthracene		10.9 ± 15.7	4.88 ± 8.38	2.29 ± 1.95	3.68 ± 4.02	1.59 ± 0.779	1.21 ± 1.04	n.s.
Benzo(b)fluoranthene		13.6 ± 9.71	10.1 ± 9.37	0.0446 ± 0.0756	0.306 ± 0.0459	0.179 ± 0.01	0.321 ± 0.106	n.s.
Benzo(k)fluoranthene		8.78 ± 9.5	7.05 ± 6.11	0.0273 ± 0.0275	0.401 ± 0.316	0.0706 ± 0.0366	0.307 ± 0.0646	n.s.
Benzo(a)pyrene		5.99 ± 3.88 b	2.66 ± 2.36 a	1.13 ± 0.893 a	0.321 ± 0.0481 a	0.0946 ± 0.0465 a	0.142 ± 0.0989 a	p < 0.05
Dibenzo(ah)anthracene		0.677 ± 0.391	14 ± 18.8	0.454 ± 0.327	0.094 ± 0.161	0.189 ± 0.0267	0.236 ± 0.0669	n.s.
Benzo(ghi)perylene		0.227 ± 0.0937	0.158 ± 0.271	0.105 ± 0.0136	0.032 ± 0.0536	0.0346 ± 0.0583	< 0.001	n.s.
Indeno(123cd)pyrene		1.09 ± 1.8	0.043 ± 0.00608	< 0.05	0.0426 ± 0.0234	0.0393 ± 0.0184	< 0.05	n.s.
Low MW PAHs		43.5 ± 9.17 a	72.1 ± 47.4 a	57.8 ± 24.1 a	99.3 ± 5.56 a	99.4 ± 5.76 a	170 ± 113 b	p < 0.05
High MW PAHs		172 ± 123 b	121 ± 30.5 b	32.7 ± 10.5 a	13.3 ± 8.24 a	5.31 ± 1.67 a	6.07 ± 2.23 a	p < 0.05
Total PAHs		216 ± 129	194 ± 67.6	90.5 ± 27	112 ± 11.4	104 ± 6.33	176 ± 115	n.s.

n.s. = not significant

Table S1b. Bioaccumulation of trace metals and polycyclic aromatic hydrocarbons (PAHs) concentrations in tissues of fish sampled. Data expressed as mean \pm standard deviation. Different letters (a, b, c) indicate significant differences (p<0.05) between sites, as determined by one way analyses of variance (ANOVA) and Student Newman Keuls post-hoc test. Significant differences between areas and reference area (p<0.05), as determined by t-student test.

		Mullus barbatus			Diplo	dus vulgaris	Pagellus sp.			
		OUTSIN	INSIN	Sig.	OUTSIN	INSIN	Sig.	OUTSIN	INSIN	Sig.
Al	μg/g (dw)	n/a	22.3 ± 14.4	n.t.	12.6 ± 7.34	18 ± 7.43	n.s.	24.7 ± 26.9	36.6 ± 32.5	n.s.
As		61.1 ± 8.3	58.6 ± 15.9	n.s.	17.2 ± 0.936	20.6 ± 6.46	n.s.	13.7 ± 3.74	9.05 ± 1.48	p < 0.05
Cd		0.272 ± 0.156	0.4 ± 0.161	n.s.	0.313 ± 0.0418	1.23 ± 0.617	p < 0.05	0.657 ± 0.302	0.671 ± 0.571	n.s.
Cr		0.0573 ± 0.0279	0.647 ± 0.323	p < 0.05	1.39 ± 0.808	0.674 ± 0.45	p < 0.05	0.585 ± 0.274	0.633 ± 0.324	n.s.
Cu		16.9 ± 3.11	9.89 ± 2.61	p < 0.05	25.7 ± 6.17	32.1 ± 7.42	n.s.	25.6 ± 11.9	26.1 ± 13	n.s.
Fe		366 ± 150	646 ± 223	p < 0.05	1148 ± 357	1069 ± 328	n.s.	536 ± 111	538 ± 255	n.s.
Hg		n/a	0.372 ± 0.216	n.t.	0.611 ± 0.215	0.9 ± 0.552	n.s.	0.725 ± 0.208	0.62 ± 0.335	n.s.
Mn		n/a	13.3 ± 2.25	n.t.	10.1 ± 2.2	18.1 ± 7.1	p < 0.05	15.3 ± 3.89	13.1 ± 5.2	n.s.
Ni		n/a	0.533 ± 0.39	n.t.	0.392 ± 0.235	0.744 ± 0.379	p < 0.05	0.417 ± 0.147	0.386 ± 0.0409	n.s.
Pb		0.786 ± 0.376	2.28 ± 2.27	p < 0.05	1.56 ± 0.47	4.19 ± 0.852	p < 0.05	4.68 ± 1.22	7.14 ± 3.21	n.s.
V		n/a	0.315 ± 0.194	n.t.	0.166 ± 0.0422	6.92 ± 3.63	p < 0.05	0.292 ± 0.184	0.497 ± 0.244	p < 0.05
Zn		61 ± 7.58	98.3 ± 13.6	p < 0.05	142 ± 0.473	171 ± 48	p < 0.05	129 ± 12	126 ± 13.9	n.s.

n.s. = not significant

n.t. = not tested

Table S1b. Continues.

		М	ullus barbatus		Di	olodus vulgaris			Pagellus sp.	
		OUTSIN	INSIN	Sig.	OUTSIN	INSIN	Sig.	OUTSIN	INSIN	Sig.
Naphthalene	ng/g (dw)	88.7 ± 36.1	89.1 ± 32.8	n.s.	196 ± 42.9	65.8 ± 13.7	p < 0.05	92.5 ± 44.3	129 ± 42.7	n.s.
Acenapthylene		< 0.05	< 0.05	n.t.	< 0.05	< 0.05	n.t.	< 0.05	< 0.05	n.t.
1-methylnaphthalene		80.7 ± 20.7	50.7 ± 10.6	n.s.	115 ± 18.7	38.4 ± 7.8	p < 0.05	66.6 ± 35.1	79.9 ± 33	n.s.
2-methylnaphthalene		62.8 ± 16.1	39.3 ± 11.9	n.s.	105 ± 6.69	40.2 ± 9.11	p < 0.05	42.4 ± 22.3	59.5 ± 21.9	n.s.
Acenaphthene		3.79 ± 1.15	9.77 ± 1.36	p < 0.05	< 0.01	12.7 ± 1.58	n.t.	< 0.01	8.35 ± 3.23	n.t.
Fluorene		13 ± 2.8	6.11 ± 0.385	p < 0.05	7.68 ± 0.0539	6.47 ± 0.81	n.s.	5.83 ± 1.87	6.46 ± 1.62	n.s.
Phenanthrene		36.6 ± 9.98	23.5 ± 18.4	n.s.	31.2 ± 26.7	3.16 ± 1.18	p < 0.05	27 ± 21.8	38.4 ± 18.8	n.s.
Anthracene		0.38 ± 0.489	0.728 ± 0.121	p < 0.05	< 0.01	1.08 ± 0.0569	n.t.	0.473 ± 0.329	0.52 ± 0.079	n.s.
Fluoranthene		4.05 ± 1.76	< 0.01	n.t.	< 0.01	< 0.01	n.t.	< 0.01	7.96 ± 2.82	n.t.
Pyrene		1.81 ± 0.858	2.32 ± 1.54	n.s.	6.77 ± 1.12	3.26 ± 1.67	n.s.	9.23 ± 12.4	2.69 ± 1.58	p < 0.05
Benzo(a)anthracene		< 0.01	< 0.01	n.t.	< 0.01	< 0.01	n.t.	< 0.01	< 0.01	n.t.
Chrysene		< 0.05	0.795 ± 0.722	n.t.	< 0.01	0.456 ± 0.4	n.t.	4.18 ± 6.44	0.473 ± 0.287	p < 0.05
7,12-dimethylbenzo(a)anthracene		< 1	20.8 ± 11.2	n.t.	< 0.05	16.2 ± 12.3	n.t.	< 0.05	7.91 ± 2.05	n.t.
Benzo(b)fluoranthene		0.944 ± 0.765	2.07 ± 2.27	n.s.	2.76 ± 0.342	0.85 ± 0.299	p < 0.05	5.13 ± 7.96	1.12 ± 0.84	n.s.
Benzo(k)fluoranthene		0.611 ± 0.684	1.71 ± 1.99	n.s.	1.48 ± 1.75	1.66 ± 0.849	n.s.	2.69 ± 3.95	0.789 ± 0.657	n.s.
Benzo(a)pyrene		0.872 ± 0.627	1.06 ± 1.01	n.s.	1.27 ± 0.00229	1.02 ± 0.459	n.s.	2.3 ± 3.67	0.73 ± 0.461	n.s.
Dibenzo(ah)anthracene		< 0.001	2,391	n.t.	2.92 ± 0.00591	< 0.001	n.t.	1.12 ± 0.749	1.79 ± 1.33	n.s.
Benzo(ghi)perylene		0.631 ± 0.297	2,648	n.t.	0.513 ± 0.725	0.376 ± 0.0947	n.s.	0.858 ± 0.464	0.251 ± 0.434	p < 0.05
Indeno(123cd)pyrene		< 0.001	0,084	n.t.	< 0.05	< 0.05	n.t.	< 0.05	0.192 ± 0.333	n.t.
Low MW PAHs		286 ± 79.1	219 ± 71.2	n.s.	456 ± 41.7	167 ± 28.9	p < 0.05	234 ± 120	319 ± 119	n.s.
High MW PAHs		8.39 ± 0.742	30.1 ± 16.1	p < 0.05	15.7 ± 2.5	23.3 ± 15.9	n.s.	25 ± 34.3	23.3 ± 8.57	n.s.
Total PAHs		294 ± 79.4	249 ± 86.6	n.s.	472 ± 44.2	190 ± 44.8	p < 0.05	259 ± 125	343 ± 127	n.s.

n.s. = not significant

n.t. = not tested

Table S2a. Results of biomarkers analyzed in mussels sampled. Data expressed as mean \pm standard deviation (n=5). Asterisks (*) indicate significant differences between areas and reference area (p < 0.05), as determined by t-student test.

		PGT (Area 1;9)	PGP (Area 1;7)	P2 (Area 2;10)	BB (Area 6;9;11)	BNF (Area 8)	BRM (Reference area)	Sig.
Lysosomal membranes stability	(min)	53.1 ± 8.0		55.2 ± 19.8	76.8 ± 5.0	61.8 ± 15.5	73.5 ± 28.9	n.s.
Acetylcholinesterase enzyme activity	(nmol/min/mg prt)	88.1 ± 10.1	94.5 ± 21.7	99.9 ± 23.8	82.7 ± 19.4	99.1 ± 30.5	105.1 ± 25.1	n.s.
Metallothioneins	(nmol eq.(G)SH/mg prt)	3.2 ± 1.7	1.7 ± 0.5	2.4 ± 0.6	2.00 ± 1.2	2.8 ± 0.5	2.3 ± 0.7	n.s.
Micronuclei frequency	(‰)	1.3 ± 0.3	0.8 ± 0.1	0.5 ± 0.3	0.4 ± 0.2	0.3 ± 0.3	0.3 ± 0.1	n.s.

n.s. = not significant

Table S2b. Results of biomarkers analyzed in fish species. Data expressed as mean \pm standard deviation (n=5). Asterisks (*) indicate significant differences between areas and reference area (p < 0.05), as determined by t-student test.

		Mul	Mullus barbatus		Diplodus vulgaris		Pagellus sp.			
		OUTSIN (Reference area)	INSIN (Area 3;4;5;8)	Sig.	OUTSIN (Reference area)	INSIN (Area 3;4;5;8)	Sig.	OUTSIN (Reference area)	INSIN (Area 3;4;5;8)	Sig.
Acetylcholinesterase enzyme activity	(nmol/min/m g prt)	63.3 ± 14.3	64.9 ± 13.1	n.s.	85.5 ± 10.6	61.2 ± 12.9	n.s.	91.4 ± 16.3	66.5 ± 11.8	n.s.
EROD enzyme activity	(pmol/min/m g prt)	85.3 ± 23.4	162.6 ± 47	p < 0.05	7.3 ± 4.1	4.3 ± 2.6	n.s.	27.2 ± 20.1	67.7 ± 15.3	p < 0.05
Pyrene-like metabolites	(μg/μmol biliverdina)	0.4 ± 0.3	6.7 ± 2.3	p < 0.01	1.3 ± 1.0	5.4 ± 5.9	n.s.	0.1 ± 0.1	3.8 ± 2.7	p < 0.05
B[a]P-like metabolites	(μg/μmol biliverdina)	3.6 ± 1.7	20.2 ± 4.7	p < 0.01	7.1 ± 3.9	10.5 ± 7.8	n.s.	0.6 ± 0.5	11.8 ± 3.6	p < 0.01
Naphtalene-like metabolites	(mg/µmol biliverdina)	9.0 ± 5.9	8.6 ± 1.8	n.s.	3.9 ± 2.0	8.2 ± 3.4	n.s.	1.1 ± 0.6	6.5 ± 4.0	p < 0.05
Micronuclei frequency	(‰)	6.3 ± 0.5	10.6 ± 1.8	p < 0.05	4.8 ± 0.6	5.3 ± 1.1	n.s.	5.5 ± 0.8	6.3 ± 0.8	n.s.

n.s. = not significant

Table S3a. Result of the bioassay with *Vibrio fischeri*. Data are expressed in toxic units (TU), reporting mean \pm standard deviation.

Area	Sample	CONTROL	TREATED
		T.U.	T.U.
	18	100	100
	19	100	100
	20	100	100
	23	100	100
	24	100	100
	25	100	100
	26	81 .2 ± 1 .1	240 .8 ± 18 .6
	27	63 ± 0 .9	36 .7 ± 4 .7
	28	108 .8 ± 2 .5	118 .6 ± 41 .4
	29	100	100
	30	100	100
Area 1	31	100	100
	32	100	100
	33	92 .2 ± 2	4799 .1 ± 824 .1
	34	100	100
	35	67 .8 ± 3 .9	108 .2 ± 12
	36	100	100
	37	100	100
	41	100	100
	42	117 .5 ± 2 .6	3006 .3 ± 4338 .4
	43	130 ± 7 .5	366 .3 ± 77
	44	100	100
	48	71 .5 ± 8	172 .9 ± 14 .5
	59	100	100
	60	63 .8 ± 4 .8	93 .4 ± 22 .8
	61	100	100
Area 2	62	100	100
7.1. CG 2	69	100	100
	70	100	100
	71	100	100
	96	96 ± 1 .9	69 .8 ± 3 .5
	97	96 ± 1 .9	80 .3 ± 2
	98	96 ± 1 .9	74 ± 11 .3
	99	96 ± 1 .9	64 .2 ± 1 .5
Area 3	100	96 ± 1 .9	86 .8 ± 1 .4
All Ca 3	104	96 ± 1 .9	37 .6 ± 0 .2
	105	96 ± 1 .9	52 .8 ± 1 .7
	106	96 ± 1 .9	37 ± 0 .4
	108	96 ± 1 .9	17 .9 ± 3
	109	93 .9 ± 1 .4	67 .7 ± 0 .9
	110	93 .9 ± 1 .4 93 .9 ± 1 .4	78 .8 ± 1 .5
	111	96 ± 1 .9	10 .6 ± 0 .2
	111	91 .5 ± 2 .1	7 .5 ± 0 .7
Area 4	113	91 .5 ± 2 .1	7 .5 ± 0 .7 2 .5 ± 0 .7
	113	91.3 ± 2.1 106 ± 8.4	58 ± 4 .2
	115	91 .5 ± 2 .1	7 ± 2 .8
	116	91 .5 ± 2 .1 91 .5 ± 0 .7	7 ± 2 .8 12 .5 ± 3 .5
	110	31.J I U ./	12.3 ± 3.3

Table S3a. Continues.

Area	Sample	CONTROL	TREATED
		T.U.	T.U.
	117	99 ± 1 .4	34 .5 ± 6 .3
	118	99 ± 1 .4	21 .5 ± 0 .7
	119	91 .5 ± 0 .7	5 .5 ± 0 .7
Area 5	120	94 .5 ± 0 .7	56 ± 1 .4
	121	95	15 .5 ± 0 .7
	122	94 .5 ± 0 .7	14 ± 1 .4
	123	94 .5 ± 0 .7	25 ± 1 .4
	101	96 ± 1 .9	65 .5 ± 2 .9
A	102	96 ± 1 .9	83 ± 1 .9
Area 6	103	96 ± 1 .9	83 ± 2 .1
	107	96 ± 1 .9	61 .8 ± 2 .7
	38	100	100
	39	100	100
	40	100	100
	45	216 .2 ± 20 .5	293 .3 ± 45 .2
	46	100	100
	47	75 .9 ± 8 .5	78 .8 ± 8 .7
	49	138 .6 ± 1	1269 .7 ± 358 .7
	50	158 .4 ± 1 .2	6641 .8 ± 1243 .6
	51	151 .3 ± 0	9510 .6 ± 1182 .3
	52	199 .9 ± 22 .8	3434 .2 ± 663 .3
	53	209 .7 ± 7 .7	1263 ± 426 .4
	54	239 .3 ± 19 .4	228 .7 ± 20 .3
A 7		2444165	18384 .7 ± 1613
Area 7	55	214 .4 ± 6 .5	.5
	56	165 .5 ± 2 .4	335 .3 ± 35
	57	100	100
	58	197 .7 ± 10 .4	1058 .7 ± 323 .1
	64	216 .6 ± 15 .7	77 .2 ± 4 .7
	65	220 .7 ± 13 .2	2401 .4 ± 563 .3
	66	243 .7 ± 14 .6	168 .4 ± 11 .2
	67	100	100
	68	100	100
	73	217 .1 ± 12 .7	1866 .9 ± 688 .8
	74	171 .9 ± 7 .5	881 .5 ± 166 .7
	75	156 .2 ± 12 .7	298 .9 ± 62 .1
	77	100	100
	124	94 .5 ± 0 .7	50 ± 1 .4
Aros 9	125	94 .5 ± 0 .7	65 ± 2 .8
Area 8	126	94 .5 ± 0 .7	47 ± 2 .8
	127	94 .5 ± 0 .7	41 ± 1 .4

 Table S3a. Continues.

Area	Sample	CONTROL	TREATED
		T.U.	T.U.
	1	100	100
	2	100	100
	3	100	100
	4	100	100
	5	100	100
	6	100	100
	7	100	100
Area 9	8	100	100
	9	100	100
	10	100	100
	11	100	100
	12	100	100
	13	100	100
	14	100	100
	15	100	100
	63	100	100
	72	100	100
	80	92 .4 ± 0 .6	133 .9 ± 13 .7
	81	100	100
	82	100	100
Area 10	83	100	100
Aled 10	84	100	100
	85	100	100
	91	100	100
	92	100	100
	94	71 .3 ± 2 .6	109 .1 ± 17 .1
	95	101 .2 ± 3 .7	108 .3 ± 6 .1
	16	100	100
Area 11	17	100	100
AIEd II	21	100	100
	22	100	100

Table S3b. Result of the bioassay with *Skeletonema costatum*. Algal growth values are expressed as mean cell density (cells/mL) ± standard deviation.

Area	Sample	CONTROL	TREATED
	•	cell/ml	cell/ml
	18	19563 .4 ± 247849 .7	27307 .3 ± 68014 .5
	19	14653 .7 ± 210384 .1	15619 .4 ± 98947 .7
	20	19971 ± 226955 .4	1222 .7 ± 166722 .2
	23	19971 ± 226955 .4	5909 .8 ± 165425 .3
	24	33828 .5 ± 222488 .4	4483 .2 ± 45343
	25	14653 .7 ± 210384 .1	8312 .8 ± 87900 .2
	26	14653 .7 ± 210384 .1	815 .1 ± 213266
	27	8359 .3 ± 189441 .7	8287 .3 ± 312406
	28	19563 .4 ± 247849 .7	10153 .9 ± 74162 .8
	29	23948 .7 ± 169844 .3	4991 .7 ± 65709
	30	14653 .7 ± 210384 .1	29751 .8 ± 193572 .6
Area 1	31	19971 ± 226955 .4	3750 .2 ± 110975 .2
711 Cu 1	32	19971 ± 226955 .4	27307 .3 ± 245928 .4
	33	23948 .7 ± 169844 .3	11699 .5 ± 132955
	34	14653 .7 ± 210384 .1	53828 .4 ± 153705 .2
	35	2512 .4 ± 182601 .8	8438 .4 ± 176146 .2
	36	19563 .4 ± 247849 .7	14471 .2 ± 350832 .3
	30 37	19563 .4 ± 247849 .7	4075 .7 ± 141793 .1
	37 41		3668 .1 ± 244391 .4
		2512 .4 ± 182601 .8	
	42	19563 .4 ± 247849 .7	12763 .3 ± 121811 .4
	43	13042 .3 ± 212497 .5	13449 .8 ± 136413 .4
	44	13042 .3 ± 212497 .5	25946 .3 ± 458041 .7
	48	2512 .4 ± 182601 .8	10049 .7 ± 135568
	59	33828 .5 ± 222488 .4	6647 .3 ± 55333 .9
	60	19563 .4 ± 247849 .7	14547 .5 ± 401170 .8
	61	6349 ± 174455 .5	9246 .3 ± 136413 .4
Area 2	62	2512 .4 ± 182601 .8	3260 .5 ± 229635 .7
	69	33828 .5 ± 222488 .4	1199 .8 ± 39963 .3
	70	2512 .4 ± 182601 .8	8823 .4 ± 212113 .3
	71	6349 ± 174455 .5	18650 .6 ± 216724 .4
	96	4890 .8 ± 204966	10316 .2 ± 199048 .4
	97	4890 .8 ± 204966	11412 ± 232863 .5
	98	4890 .8 ± 204966	5598 .2 ± 172534 .2
	99	4890 .8 ± 204966	8671 .5 ± 201353 .9
Area 3	100	4890 .8 ± 204966	4048 .4 ± 181948 .6
	104	4890 .8 ± 204966	20760 .8 ± 221527 .8
	105	4890 .8 ± 204966	6113 .5 ± 204043 .8
	106	4890 .8 ± 204966	18748 .3 ± 205580 .8
	108	4890 .8 ± 204966	14986 .2 ± 205773
	109	4890 .8 ± 204966	17862 ± 188289
	110	4890 .8 ± 204966	17118 ± 242278
	111	4890 .8 ± 204966	10596 .8 ± 186137 .1
A A	112	4890 .8 ± 204966	7743 .8 ± 189518 .6
Area 4	113	4890 .8 ± 204966	2512 .4 ± 130649 .5
	114	4890 .8 ± 204966	15935 .3 ± 202276 .2
	115	4890 .8 ± 204966	9046 .5 ± 235553 .4
	116	4890 .8 ± 204966	15690 .2 ± 190786 .7

Table S3b. Continues.

Area	Sample	CONTROL	TREATED
		cell/ml	cell/ml
	117	4890 .8 ± 204966	13449 .9 ± 221912
	118	4890 .8 ± 204966	9374 .1 ± 231518 .6
	119	4890 .8 ± 204966	10507 .6 ± 176569
Area 5	120	4890 .8 ± 204966	5763 .9 ± 192515 .9
	121	4890 .8 ± 204966	16152 .7 ± 205580 .8
	122	4890 .8 ± 204966	4075 .7 ± 180699 .8
	123	4890 .8 ± 204966	16387 .6 ± 218645 .8
	101	4890 .8 ± 204966	13857 .4 ± 186944 .1
	102	4890 .8 ± 204966	17933 .2 ± 181948 .6
Area 6	103	4890 .8 ± 204966	14494 .1 ± 172918 .5
	107	4890 .8 ± 204966	4924 .7 ± 180988
	38	8359 .3 ± 189441 .7	18528 .5 ± 301646 .6
	39	2512 .4 ± 182601 .8	7321 .1 ± 178912 .9
	40	2512 .4 ± 182601 .8	2853 ± 127267 .9
	45	19563 .4 ± 247849 .7	5706 ± 300109 .5
	46	8359 .3 ± 189441 .7	9719 .2 ± 307410 .5
	47	19563 .4 ± 247849 .7	58690 .4 ± 236321 .8
	49	23948 .7 ± 169844 .3	14721 .5 ± 258609 .1
	50	19971 ± 226955 .4	40443 .7 ± 77813 .3
	51	6349 ± 174455 .5	38311 .8 ± 264373 .1
	52	14653 .7 ± 210384 .1	24454 .3 ± 271385 .9
	53	14653 .7 ± 210384 .1	25946 .3 ± 402707 .8
	54	13042 .3 ± 212497 .5	7043 .6 ± 208270 .6
Area 7	55	8359 .3 ± 189441 .7	8559 ± 169844 .3
	56	14653 .7 ± 210384 .1	3174 .5 ± 127767 .5
	57	14653 .7 ± 210384 .1	47278 .4 ± 340553 .2
	58	14653 .7 ± 210384 .1	4483 .2 ± 181564 .3
	64	6349 ± 174455 .5	5198 .2 ± 209807 .7
	65	33828 .5 ± 222488 .4	1222 .7 ± 6916 .7
	66	6349 ± 174455 .5	7411 .4 ± 294345 .6
	67	2512 .4 ± 182601 .8	4483 .2 ± 262836
	68	13042 .3 ± 212497 .5	6099 .9 ± 504921 .8
	73	13042 .3 ± 212497 .5	25946 .3 ± 402707 .8
	74	2512 .4 ± 182601 .8	18340 .7 ± 209346 .6
	75	6349 ± 174455 .5	8372 .6 ± 396559 .6
	77	2512 .4 ± 182601 .8	9374 .1 ± 177760 .1
	124	4890 .8 ± 204966	15487 .7 ± 174455 .5
A r	125	4890 .8 ± 204966	15487 .7 ± 177913 .9
Area 8	126	4890 .8 ± 204966	14744 .1 ± 182332 .9
	127	4890 .8 ± 204966	20378 .6 ± 173610 .1

Table S3b. Continues.

Area	Sample	CONTROL	TREATED
		cell/ml	cell/ml
	1	13042 .3 ± 212497 .5	8873 .4 ± 397328 .1
	2	23948 .7 ± 169844 .3	33417 .6 ± 269368 .5
	3	19563 .4 ± 247849 .7	2445 .4 ± 152168 .2
	4	6349 ± 174455 .5	3049 .9 ± 175224
	5	14653 .7 ± 210384 .1	9228 .3 ± 191170 .9
	6	19563 .4 ± 247849 .7	18492 .6 ± 157547 .9
	7	6349 ± 174455 .5	37806 .9 ± 199048 .3
Area 9	8	8359 .3 ± 189441 .7	15640 .7 ± 143714 .4
	9	6349 ± 174455 .5	7500 .5 ± 174455 .5
	10	23948 .7 ± 169844 .3	40660 .6 ± 278975 .1
	11	19563 .4 ± 247849 .7	45847 .8 ± 141793 .1
	12	14653 .7 ± 210384 .1	6555 ± 249194 .7
	13	8359 .3 ± 189441 .7	6730 ± 309716 .1
	14	19971 ± 226955 .4	20582 .4 ± 205556 .8
	15	13042 .3 ± 212497 .5	14944 .3 ± 428069 .2
	63	2512 .4 ± 182601 .8	1729 .1 ± 196435 .3
	72	6349 ± 174455 .5	6754 .7 ± 142945 .9
	80	6349 ± 174455 .5	14270 .8 ± 230557 .9
	81	2512 .4 ± 182601 .8	3260 .5 ± 202890 .9
	82	6349 ± 174455 .5	2641 .3 ± 262836
Area 10	83	2512 .4 ± 182601 .8	2037 .8 ± 172918 .4
Area 10	84	2512 .4 ± 182601 .8	20378 .6 ± 269291 .6
	85	6349 ± 174455 .5	22303 .8 ± 389642 .9
	91	6349 ± 174455 .5	21661 .5 ± 185983 .4
	92	6349 ± 174455 .5	16475 .2 ± 319322 .7
	94	6349 ± 174455 .5	9922 .2 ± 219030
	95	6349 ± 174455 .5	23472 .3 ± 276669 .5
	16	14653 .7 ± 210384 .1	12789 .3 ± 76852 .6
A 4 4	17	19971 ± 226955 .4	8966 .5 ± 213611 .9
Area 11	21	33828 .5 ± 222488 .4	11819 .6 ± 192285 .3
	22	33828 .5 ± 222488 .4	3923 .4 ± 226715 .3

Table S3c. Result of bioassay with *Paracentrotus lividus.* Values are expressed as mean % of normal embryos ± standard deviation.

Area	Sample	CONTROL	TREATED
		%	%
	18	84 .6 ± 1 .5	82 .6 ± 2 .5
	19	84 .6 ± 1 .5	3 .3 ± 1 .5
	20	84 .6 ± 1 .5	68 ± 2
	23	84 .6 ± 0 .5	84 .6 ± 0 .5
	24	84 .6 ± 1 .5	82 .3 ± 0 .5
	25	81 .3 ± 1 .5	59 .6 ± 1 .5
	26	81 .3 ± 1 .5	18 .6 ± 2
	27	81 .3 ± 1 .5	70 .3 ± 0 .5
	28	84 .6 ± 0 .5	70 ± 2 .6
	29	84 .6 ± 0 .5	85 .3 ± 2 .5
	30	84 .6 ± 0 .5	9 ± 1
Area 1	31	81 .3 ± 1 .5	80 .6 ± 1 .1
	32	81 .3 ± 1 .5	62 .3 ± 2 .5
	33	84 .6 ± 0 .5	61 .6 ± 1 .5
	34	84 .6 ± 0 .5	38 .3 ± 3 .5
	35	79 .6 ± 3	79 .6 ± 3 .5
	36	84 .6 ± 0 .5	83 .3 ± 2 .8
	37	79 .6 ± 3	79 .3 ± 1 .1
	41	84 .6 ± 0 .5	16 .6 ± 2 .8
	42	81 .3 ± 1 .5	0
	43	81 .3 ± 1 .5	0 .6 ± 0 .5
	44	79 .6 ± 3	80 .3 ± 3 .5
	48	84 .6 ± 0 .5	5 .3 ± 0 .5
	59	84 .6 ± 0 .5	23 ± 1
	60	84 .6 ± 1 .5	32 .6 ± 2
	61	84 .6 ± 0 .5	84 .3 ± 0 .5
Area 2	62	84 .6 ± 0 .5	61 .6 ± 2 .8
	69	81 .3 ± 1 .5	80 .6 ± 1 .1
	70	79 .6 ± 3	78 .6 ± 1 .1
	71	79 .6 ± 3	61 ± 3 .6
	96	89 ± 2	0 .6 ± 1 .1
	97	89 ± 2	82 ± 2 .6
	98	89 ± 2	88 .6 ± 0 .5
	99	89 ± 2	0
Area 3	100	89 ± 2	0
	104	89 ± 2	73 ± 2 .6
	105	89 ± 2	23 ± 5 .2
	106	89 ± 2	89 ± 1
	108	89 ± 2	89 .3 ± 0 .5
	109	89 ± 2	17 .3 ± 6 .8
	110	89 ± 2	88 .3 ± 1 .5
	111	89 ± 2	89 ± 1
	112	89 ± 2	88 .3 ± 2
Area 4	113	89 ± 2	46 .3 ± 1 .5
	114	89 ± 2	88 .6 ± 0 .5
	115	89 ± 2	89 .3 ± 0 .5
	116	89 ± 2	87 .6 ± 0 .5

 Table S3c.
 Continues.

Area	Sample	CONTROL	TREATED
		%	%
	117	89 ± 2	88 .3 ± 2 .5
	118	89 ± 2	0
	119	89 ± 2	88 ± 1
Area 5	120	89 ± 2	21 .3 ± 11 .7
	121	89 ± 2	77 .3 ± 2 .5
	122	89 ± 2	89 ± 1
	123	89 ± 2	15 .3 ± 0 .5
	101	89 ± 2	82 .3 ± 2 .5
A 500 C	102	89 ± 2	80 .6 ± 1 .1
Area 6	103	89 ± 2	87 ± 1 .7
	107	89 ± 2	89 .6 ± 1 .1
	38	84 .6 ± 0 .5	84 .6 ± 0 .5
	39	84 .6 ± 0 .5	73 .3 ± 2 .8
	40	79 .6 ± 3	79 .6 ± 1 .5
	45	79 .6 ± 3	74 ± 5 .2
	46	79 .6 ± 3	79 .3 ± 2
	47	84 .6 ± 1 .5	65 ± 3
	49	84 .6 ± 1 .5	0
	50	81 .3 ± 1 .5	0
	51	84 .6 ± 1 .5	17 .6 ± 2 .5
	52	84 .6 ± 0 .5	7 .3 ± 1 .5
	53	81 .3 ± 1 .5	0 .6 ± 0 .5
	54	79 .6 ± 3	0
Area 7	55	79 .6 ± 3	0
	56	84 .6 ± 0 .5	52 .3 ± 2 .5
	57	81 .3 ± 1 .5	70 .6 ± 1 .1
	58	81 .3 ± 1 .5	72 ± 2 .6
	64	84 .6 ± 0 .5	84 .6 ± 0 .5
	65	84 .6 ± 0 .5	53 .6 ± 1 .5
	66	84 .6 ± 1 .5	0
	67	84 .6 ± 0 .5	36 ± 1 .7
	68	81 .3 ± 1 .5	81 .3 ± 1 .1
	73	84 .6 ± 1 .5	77 .6 ± 2 .5
	74	84 .6 ± 1 .5	86 .6 ± 1 .5
	75	84 .6 ± 1 .5	84 .6 ± 0 .5
	77	79 .6 ± 3	81 .3 ± 3 .2
	124	89 ± 2	58 .6 ± 4
Aros O	125	89 ± 2	0
Area 8	126	89 ± 2	89 .3 ± 1 .1
	127	89 ± 2	88 .3 ± 1 .1

Table S3c. Continues.

Area	Sample	Area	CONTROL	TREATED
			%	%
	1	Area 9	84 .6 ± 0 .5	84 .6 ± 1 .5
	2	Area 9	84 .6 ± 0 .5	84 .6 ± 1 .5
	3	Area 9	84 .6 ± 0 .5	84 .3 ± 0 .5
	4	Area 9	84 .6 ± 0 .5	84 .6 ± 0 .5
	5	Area 9	84 .6 ± 0 .5	84 .6 ± 1 .1
	6	Area 9	84 .6 ± 0 .5	84 .6 ± 0 .5
	7	Area 9	84 .6 ± 0 .5	84 .3 ± 3
Area 9	8	Area 9	84 .6 ± 0 .5	85 .3 ± 1 .5
	9	Area 9	84 .6 ± 0 .5	84 .6 ± 0 .5
	10	Area 9	84 .6 ± 1 .5	83 .6 ± 1 .1
	11	Area 9	84 .6 ± 0 .5	84 .6 ± 0 .5
	12	Area 9	84 .6 ± 0 .5	84 .6 ± 4 .1
	13	Area 9	84 .6 ± 0 .5	80 .3 ± 1 .5
	14	Area 9	84 .6 ± 0 .5	84 .6 ± 0 .5
	15	Area 9	84 .6 ± 1 .5	54 .6 ± 2 .5
	63	Area 10	79 .6 ± 3	68 .6 ± 1 .5
	72	Area 10	79 .6 ± 3	62 .6 ± 4 .6
	80	Area 10	81 .3 ± 1 .5	80 .6 ± 1 .1
	81	Area 10	79 .6 ± 3	80 .6 ± 4
	82	Area 10	79 .6 ± 3	78 .6 ± 4 .1
Area 10	83	Area 10	79 .6 ± 3	79 .3 ± 0 .5
Alea 10	84	Area 10	84 .6 ± 1 .5	87 ± 1 .7
	85	Area 10	79 .6 ± 3	6 .3 ± 1 .5
	91	Area 10	79 .6 ± 3	63 .6 ± 3 .2
	92	Area 10	79 .6 ± 3	80 .6 ± 1 .1
	94	Area 10	79 .6 ± 3	79 .6 ± 2 .5
	95	Area 10	79 .6 ± 3	80 .6 ± 1 .1
	16	Area 11	84 .6 ± 0 .5	60 .3 ± 0 .5
Aron 11	17	Area 11	84 .6 ± 0 .5	84 .6 ± 3 .5
Area 11	21	Area 11	84 .6 ± 0 .5	84 .6 ± 0 .5
	22	Area 11	84 .6 ± 1 .5	0

 Table S4a. List of observed species in benthic communities analyses.

Phylum	Class	Order	Family	Species
Annelida	Polychaeta	Eunicida	Dorvilleidae	Protodorvillea kefersteini (McIntosh, 1869)
			Eunicidae	Eunice vittata (Delle Chiaje, 1828)
			Eunicidae	Lysidice unicornis (Grube, 1840)
			Eunicidae	Marphysa bellii (Audouin & Milne-Edwards, 1833)
			Lumbrineridae	Lumbrineris latreilli Audouin & Milne-Edwards, 1834
			Lumbrineridae	Ninoe armoricana Glémarec, 1968
			Oenonidae	Drilonereis filum (Claparède, 1868)
			Onuphidae	Aponuphis bilineata (Baird, 1870)
			Onuphidae	Hyalinoecia tubicola (O.F. Müller, 1776)
			Onuphidae	Onuphis eremita Audouin & Milne Edwards, 1833
		Phyllodocida	Aphroditidae	Pontogenia chrysocoma (Baird, 1865)
			Glyceridae	Glycera tridactyla Schmarda, 1861
			Glyceridae	Glycera unicornis Lamarck, 1818
			Goniadidae	Goniada maculata Örsted, 1843
			Hesionidae	Psamathe fusca Johnston, 1836
			Nephtyidae	Nephtys hombergii Savigny in Lamarck, 1818
			Nereididae	Nereis rava Ehlers, 1868
			Paralacydoniidae	Paralacydonia paradoxa Fauvel, 1913
			Phyllodocidae	Mysta picta (Quatrefages, 1866)
			Phyllodocidae	Nereiphylla rubiginosa (Saint-Joseph, 1888)
			Phyllodocidae	Phyllodoce lineata (Claparède, 1870)
			Phyllodocidae	Phyllodocidae indet.
			Pilargidae	Sigambra tentaculata (Treadwell, 1941)
			Polynoidae	Harmothoe antilopes McIntosh, 1876
			Polynoidae	Harmothoe longisetis (Grube, 1863)
			Polynoidae	Harmothoe sp.
			Polynoidae	Polynoidae indet.
			Sigalionidae	Sigalion mathildae Audouin & Milne Edwards in Cuvier, 1830
			Sigalionidae	Sthenelais boa (Johnston, 1833)
			Syllidae	Exogone sp.
			Syllidae	Syllidae indet.
		Sabellida	Oweniidae	Owenia fusiformis Delle Chiaje, 1844
			Sabellidae	Acromegalomma claparedei (Gravier, 1906)
			Sabellidae	Dialychone acustica Claparède, 1870
			Sabellidae	Dialychone arenicola (Langerhans, 1881)
			Serpulidae	Ditrupa arietina (O. F. Müller, 1776)
		Spionida	Magelonidae	Magelona alleni Wilson, 1958
			Magelonidae	Magelona johnstoni Fiege, Licher & Mackie, 2000
			Poecilochaetidae	Poecilochaetus serpens Allen, 1904
			Spionidae	Dipolydora coeca (Örsted, 1843)
			Spionidae	Paraprionospio pinnata (Ehlers, 1901)
			Spionidae	Prionospio ehlersi Fauvel, 1928
			Spionidae	Prionospio fallax Soderstrom, 1920
			Spionidae	Pseudopolydora antennata (Claparède, 1869)
			Spionidae	Scolelepis (Scolelepis) squamata (O.F. Muller, 1806)
			Spionidae	Spio filicornis (Müller, 1776)

Table S4a. Continues.

Phylum	Class	Order	Family	Species		
Annelida	Polychaeta	Spionida	Spionidae	Spio multioculata (Rioja, 1918)		
			Spionidae	Spiophanes reyssi Laubier, 1964		
		Terebellida	Ampharetidae	Adercodon pleijeli Mackie, 1994		
			Ampharetidae	Adercodon pleijeli Mackie, 1994		
			Ampharetidae	Ampharete acutifrons (Grube, 1860)		
			Ampharetidae	Melinna palmata Grube, 1870		
			Cirratulidae	Aphelochaeta marioni (Saint-Joseph, 1894)		
			Cirratulidae	Chaetozone caputesocis (Saint-Joseph, 1894)		
			Cirratulidae	Cirratulidae indet.		
			Cirratulidae	Kirkegaardia dorsobranchialis (Kirkegaard, 1959)		
			Flabelligeridae	Diplocirrus glaucus (Malmgren, 1867)		
			Sternaspidae	Sternaspis scutata (Ranzani, 1817)		
			Terebellidae	Pista cretacea (Grube, 1860)		
			Trichobranchidae	Terebellides stroemii Sars, 1835		
			Capitellidae	Leiocapitella dollfusi (Fauvel, 1936)		
			Capitellidae	Notomastus latericeus Sars, 1851		
			Capitellidae	Pseudoleiocapitella fauveli Harmelin, 1964		
			Chaetopteridae	Phyllochaetopterus socialis Claparède, 1868		
			Cossuridae	Cossura soyeri Laubier, 1962		
			Maldanidae	Chirimia biceps (M. Sars, 1861)		
			Maldanidae	Euclymene lombricoides (Quatrefages, 1866)		
			Maldanidae	Euclymene oerstedi (Claparède, 1863)		
			Maldanidae	Leiochone leiopygos (Grube, 1860)		
			Maldanidae	Metasychis gotoi (Izuka, 1902)		
			Maldanidae	Praxillella sp.		
			Ophelidae	Armandia cirrhosa Filippi, 1861		
			Opheliidae	Ophelia sp.		
			Orbiniidae	Phylo foetida ligustica (Orlandi, 1896)		
			Paraonidae	Aricidea (Acmira) catherinae Laubier, 1967		
			Paraonidae	Levinsenia gracilis (Tauber, 1879)		
Arthropoda	Hexanauplia	Sessilia	Balanidae	Balanus trigonus Darwin, 1854		
	Malacostraca	Amphipoda	Ampeliscidae	Ampelisca brevicornis (Costa, 1853)		
	a.accot. aca	,ppodd	Ampeliscidae	Ampelisca ledoyeri Bellan-Santini & Kaim-Malka, 1977		
			Ampeliscidae	Ampelisca ruffoi Bellan-Santini & Kaim-Malka, 1977		
			Ampeliscidae	Ampelisca sp.		
			Ampeliscidae	Ampelisca spinifer Reid, 1951		
			Ampeliscidae	Ampelisca typica (Spence Bate, 1856)		
			Aoridae	Autonoe spiniventris Della Valle, 1893		
			Aoridae	Microdeutopus versiculatus (Spence Bate, 1857)		
			Bathyporeiidae	Bathyporeia lindstromi Stebbing, 1906		
			Cheirocratidae	Cheirocratus sundevallii (Rathke, 1843)		
			Dexaminidae	Dexamine spinosa (Montagu, 1813)		
			Dexaminidae	, , ,		
				Guernea (Guernea) coalita (Norman, 1868)		
			Leucothoidae	Leucothoe pachycera Della Valle, 1893		
			Maeridae Oedicerotidae	Othomaera schmidti (Stephensen, 1915) Deflexilodes qibbosus (Chevreux, 1888)		

Table S4a. Continues.

Phylum	Class	Order	Family	Species
Arthropoda	Malacostraca	Amphipoda	Oedicerotidae	Kroyera carinata Spence Bate, 1857
			Oedicerotidae	Perioculodes longimanus (Spence Bate & Westwood, 1868)
			Oedicerotidae	Synchelidium haplocheles (Grube, 1864)
			Photidae	Photis longicaudata (Spence Bate & Westwood, 1862)
			Phoxocephalidae	Harpinia antennaria Meinert, 1890
			Phoxocephalidae	Harpinia truncata Sars, 1891
			Phoxocephalidae	Metaphoxus gruneri Karaman, 1986
			Tryphosidae	Hippomedon ambiguus Ruffo, 1946
			Tryphosidae	Hippomedon massiliensis Bellan-Santini, 1965
			Urothoidae	Urothoe elegans (Spence Bate, 1857)
		Cumacea	Bodotriidae	Bodotria scorpioides (Montagu, 1804)
			Bodotriidae	Iphinoe serrata Norman, 1867
		Decapoda	Alpheidae	Alpheus glaber (Olivi, 1792)
			Callianassidae	Callianassa sp.
			Carcinidae	Xaiva biguttata (Risso, 1816)
			Diogenidae	Diogenes pugilator (Roux, 1829)
			Solenoceridae	Solenocera membranacea (Risso, 1816)
				Decapoda indet.
		Isopoda	Sphaeromatidae	Cymodoce tuberculata Costa in Hope, 1851
		Mysida		Mysida indet.
		Stomatopoda	Nannosquillidae	Platysquilla eusebia (Risso, 1816)
		Tanaidacea	Apseudidae	Apseudopsis latreillii (Milne Edwards, 1828)
			Leptocheliidae	Chondrochelia savignyi (Kroyer, 1842)
Echinodermata	Echinoidea	Clypeasteroida	Echinocyamidae	Echinocyamus pusillus (O.F. Müller, 1776)
	Ophiuroidea	Ophiurida	Amphiuridae	Amphipholis squamata (Delle Chiaje, 1828)
			Amphiuridae	Amphiura chiajei Forbes, 1843
			Amphiuridae	Amphiura filiformis (O.F. Müller, 1776)
			Ophiotrichidae	Ophiothrix sp.
			Ophiuridae	Ophiura ophiura (Linnaeus, 1758)
	Echinoidea	Spatangoida	Loveniidae	Echinocardium cordatum (Pennant, 1777)
Mollusca	Bivalvia	Arcida	Glycymerididae	Glycymeris bimaculata (Poli, 1795)
			Noetiidae	Striarca lactea (Linnaeus, 1758)
		Cardiida	Cardiidae	Acanthocardia echinata (Linnaeus, 1758)
			Cardiidae	Fulvia australis (G. B. Sowerby II, 1834)
			Cardiidae	Laevicardium oblongum (Gmelin, 1791)
			Cardiidae	Papillicardium papillosum (Poli, 1791)
			Cardiidae	Parvicardium exiguum (Gmelin, 1791)
			Donacidae	Donax venustus Poli, 1795
			Tellinidae	Fabulina fabula (Gmelin, 1791)
			Tellinidae	Moerella pulchella (Lamarck, 1818)
			Astartidae	Astarte fusca (Poli, 1791)
		Littorinimorpha	Naticidae	Neverita josephinia Risso, 1826
		Lucinida	Lucinidae	Lucinella divaricata (Linnaeus, 1758)
			Thyasiridae	Thyasira biplicata (Philippi, 1836)
		Myida	Corbulidae	Corbula gibba (Olivi, 1792)
		Nuculanida	Nuculanidae	Saccella commutata (Philippi, 1844)

Table S4a. Continues.

Phylum	Class	Order	Family	Species
Mollusca	Bivalvia	Nuculida	Nuculidae	Nucula nitidosa Winckworth, 1930
		Venerida	Veneridae	Callista chione (Linnaeus, 1758)
			Veneridae	Chamelea gallina (Linnaeus, 1758)
			Veneridae	Chamelea striatula (da Costa, 1778)
			Veneridae	Clausinella fasciata (da Costa, 1778)
			Veneridae	Dosinia lupinus (Linnaeus, 1758)
			Veneridae	Pitar rudis (Poli, 1795)
			Mactridae	Spisula subtruncata (da Costa, 1778)
			Thraciidae	Thracia phaseolina (Lamarck, 1818)
			Ungulinidae	Diplodonta trigona (Scacchi, 1835)
	Gastropoda	Cephalaspidea	Philinidae	Philine sp.
		Littorinimorpha	Naticidae	Naticarius hebraeus (Martyn, 1786)
		Neogastropoda	Mangeliidae	Mangelia costata (Pennant, 1777)
			Muricidae	Hexaplex trunculus (Linnaeus, 1758)
			Nassariidae	Tritia mutabilis (Linnaeus, 1758)
			Nassariidae	Tritia pygmaea (Lamarck, 1822)
			Ringiculidae	Ringicula auriculata (Ménard de la Groye, 1811)
	Polyplacophora			Polyplacophora indet.
	Scaphopoda Dentaliida		Dentaliidae	Antalis inaequicostata (Dautzenberg, 1891)
	Bivalvia	Arcida	Arcidae	Anadara gibbosa (Reeve, 1844)
		Cardiida	Tellinidae	Peronidia albicans (Gmelin, 1791)
		Lucinida	Lucinidae	Loripinus fragilis (Philippi, 1836)
			Mactridae	Lutraria lutraria (Linnaeus, 1758)
Sipuncula	Phascolosomatidea	Aspidosiphonida	Aspidosiphonidae	Aspidosiphon (Aspidosiphon) muelleri muelleri Diesing, 1851
	Sipunculidea	Golfingiida	Golfingiidae	Golfingia (Golfingia) elongata (Keferstein, 1862)
			Phascolionidae	Phascolion (Phascolion) strombus strombus (Montagu, 1804)

Table S4b. Ecological quality indices values: organisms abundance (N), speces richness (S), Margalef index (d), Shannon index (H'), Pielou index (J'), AMBI index, BENTHIX index, BOPA index, BITS index, m AMBI index, HQ and level of hazard for Benthic Communities. Quality classes of AMBI index are expressed through conventional colours (blu: elevated; green: good; yellow: sufficient; orange: scarce; red: bad)

Area	Sample	N	H'	S	D	J'	АМВІ	BENTIX	ВОРА	BITS	m-AMBI	HQ	Level of hazard
Area 1	19	37.7	3.2	13.3	3.4	1.3	0.8	2.6	0.1	1.1	0.7	13.2	Absent
Area 1 - 2 - 10	44	42.3	3.1	14.3	3.6	1.2	0.6	2.9	0.1	1.3	0.7	10.5	Absent
Area 3	98	23	3.1	10.7	3.1	1.3	0.6	3.9	0.2	1.2	0.7	10.8	Absent
Area 3	99	51.3	3.7	21.3	5.2	1.2	0.8	3.8	0.2	1.2	0.9	12.7	Absent
Area 3	104	57	3.9	22	5.2	1.3	0.8	2.5	0.2	1.1	0.9	13.7	Absent
Area 4	111	24	3.7	15.7	4.6	1.4	1.6	2.5	0.3	0.6	0.7	23.6	Slight
Area 4	113	42	3.5	17.7	4.5	1.2	2.6	2.6	0.3	0.6	0.7	32.9	Slight
Area 5	117	17.7	3.4	12	3.8	1.4	1.6	3.7	0.3	0.9	0.7	23.7	Slight
Area 5	122	18.7	2.7	9.3	2.9	1.2	3	2.7	0.2	0.6	0.5	36.8	Slight
Area 6	107	43.7	3.3	17.7	4.5	1.2	0.5	3.6	0.2	0.8	0.8	8.5	Absent
Area 7 - 10	67	51	3.9	21	5.1	1.3	1.2	3.1	0.2	1.1	0.8	20.3	Slight
Area 8	126	74	3.4	25	5.6	1.1	0.5	4	0.2	1	0.9	8.7	Absent
Area 8	127	49.3	3.5	15.7	3.8	1.3	0.4	4.1	0.1	1.2	0.8	6.8	Absent
Area 9	12	34.7	3.5	13.7	3.6	1.3	0.9	2.8	0.2	0.9	0.7	15.5	Absent
Area 11	21	32.3	3.6	17	4.6	1.3	1.1	3.1	0.2	0.8	0.8	18.1	Absent

Biomarkers	Species	Weig ht	Inhibition threshold	Induction threshold
Lysosomal membranes stability	M. galloprovincialis	1.2	25	
Acetylcholinesterase enzyme activity		1.5	25	60
Metallothioneins		1		40
Micronuclei frequency		1.9		50
Acetylcholinesterase enzyme activity	Fish species	1.5	25	60
EROD enzyme activity		1.5		200
Pyrene-like metabolites		1		150
B[a]P-like metabolites		1		100
Naphtalene-like metabolites		1		200
Micronuclei frequency		1.9		50