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ABSTRACT
Ion channels are fundamental biological devices that act 
as gates in order to ensure selective ion transport across 
cellular membranes; their operation constitutes the mole
cular mechanism through which basic biological func
tions, such as nerve signal transmission and muscle 
contraction, are carried out. Here, we review recent results 
in the field of computational research on ion channels, 
covering theoretical advances, state-of-the-art simulation 
approaches, and frontline modeling techniques. We also 
report on few selected applications of continuum and 
atomistic methods to characterize the mechanisms of 
permeation, selectivity, and gating in biological and 
model channels.
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1. Introduction

Ion channels are proteins delimiting pores that allow a regulated flow of 
water and ions across biological membranes. The first ion channel to be 
structurally characterized was, in 1998, KcsA, a potassium ion channel [1] 
(Figure 1, left panel). Ion channels are involved in key biological functions 
including control of homeostasis, muscle contraction, and the propagation 
of nerve signals [2]. The importance of ion channels cannot be overstated 
when considering that they represent the molecular basis of sensory percep
tion and human thought. Their biomedical relevance is related both to their 
role in channelopathies [3] and to their role as drug targets for a wide range 
of diseases.

Ion channels are characterized by three main features [2]: (i) high perme
ability, that allows conduction rates close to the free diffusion limit; (ii) high 
selectivity, that allows discrimination between ions with the same or differ
ent charge; (iii) pore gating, that is, the highly regulated opening and closing 
of the pore in response to specific stimuli. Most research on ion channels 
focuses on the clarification of the molecular basis of these properties or how 
they can be modulated by ligands. In this review, we present current 
theoretical and numerical approaches to address this challenge.

The high conduction rates of ion channels (107–108 ions/second for KcsA 
[4]) are somehow counterintuitive, given the narrow pore connecting the 
two sides of the membrane. The high complexity of the permeation 
mechanism which allows for this extraordinary efficiency is exemplified by 
the case of voltage-gated potassium channels (see [5]). The Selectivity Filter 
(SF) of K+ channels is formed by the interface of four subunits where the 
carbonyl groups of five or six residues point toward the center of the pore 
defining four binding sites (labeled S1 to S4 from the outermost to the 
innermost, see Figure 1, left panel), which can be occupied by potassium 
ions.

Traditionally the anomalous scattering data from the bacterial K+ chan
nels KcsA from Streptomyces lividans were interpreted [8] as a superposition 
of ion- and water-occupied states leading to a model of cotranslocations of 
ions and water. This model was further supported by numerous simulation 
studies [9–14]. However, this model has more recently been questioned 
[15,16], and an alternative view has been proposed, with ions passing 
through the selectivity filter in direct contact with each other without 
intervening water molecules. This interpretation directly challenged the 
classical view on permeation: the direct ion–ion interactions had been so 
far ruled out on account of an excessive electrostatic repulsion. While the 
issue is far from settled, this example simultaneously highlights the com
plexity of structural biology and electrophysiology data whose 
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interpretation is far from trivial, and the power of computational 
approaches, which serve as a bridge between the two, providing molecular- 
level dynamical information.

Ion channel selectivity is another area of active research. It is again 
instructive to consider the case of KcsA that conducts K+ and Na+ ions 
with a ratio 150:1 [17]. Again, this property is surprising since K+ ions are 
larger than Na+ and selection cannot be explained by simple sieving based 
on ion size. This pattern was originally explained with a snug fit model 
[1,18] according to which the channel was potassium-selective because the 
K+ ion perfectly fitted into the SF, but Na+ was too small to favourably 
interact with the pore walls. This model, however, became untenable when it 
was discovered that the SF of this channel was capable of fluctuations larger 
that the difference in radius between the potassium and sodium ions [19]. 
The model was thus updated with a more sophisticated one also accounting 
for the electrostatic repulsion between the carbonyls of the SF [20,21] and 
limitations on the number and motion of coordinating carbonyls [22–24] as 
well as the interactions between multiple ions in the pore [25]. The emer
ging modern view of ion selectivity was reviewed in Ref [26]. In general, the 
size-exclusion model does not explain the counter-intuitive evidence that 
often large channels are selective to small ions while small channels are 
selective to large ions [27]. This pattern emerges as a result of the hydration 

Figure 1. Left) Crystal structure of KcsA in the closed state (PDB ID: 1J95 [6],); two diagonally 
opposite monomers are shown for clarity, in cartoon representation. Potassium ions at the 
binding sites S1-S4 are represented as spheres using their van der Waals radius. Extracellular (EC) 
and intracellular (IC) boundaries of the lipid bilayer are also indicated. Protein sketch created 
using VMD [7]. Right) Cartoon illustrating the complex electrokinetic phenomenology occurring 
in a wide pore (biological or solid-state) under the effect of an external electric field. The walls of 
the pore can acquire surface charge, the field generates a current (j�) of positive and negative 
ions. The unbalanced flow of ions, in turn, can result in a net transport of water molecules, Q, 
(electroosmosis). The arrow profile in the middle of the pore, represents the presence of the 
electroosmotic flow, or any other flow generated, e.g. by external gradients.
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shell that surrounds the ions. A small ion can cross a large pore keeping its 
hydration shell almost intact. Conversely, both small and large ions are 
massively dehydrated when crossing narrow pores but the energy penalty 
paid by a large ion is normally smaller than that of a small ion that interacts 
more tightly with the surrounding water. The redistribution of water around 
an ion crossing a nanopore is thus a topic of great relevance in bio- and 
nano-technology and can be studied computationally using, for example, 
Kirkwood approximation [28] (see Section 2.4).

The high selectivity of ion channels is seemingly at odds with their high 
permeation rates, leading to the so-called conductivity-selectivity paradox. 
The traditional argument [29] relies on the scheme that, if the channel is 
selective to a given ion, there should be a strong ion-binding site, with 
a deep energy well. However, the deeper the well, the slower the release of 
the ion, which leads to the prediction of small permeation rates in disagree
ment with experimental data. Many research efforts via theoretical and 
simulation-based approaches are currently underway to try and reconcile 
selectivity and permeability of ion channels [4,30,31]. A possible solution to 
the paradox relies on the presence of two or more neighbouring binding 
sites [32], or small energy steps that allow an ion to escape the deep energy 
well [33]. More research efforts are required in order to understand which 
solution of the paradox applies to each of the different families of ion 
channels.

Another key characteristics of ion channels is their gating capability. 
Traditionally [2] ion channels were classified as ligand-gated and voltage- 
gated, according to whether their opening is triggered by the binding of 
a ligand or by a change in the membrane potential. Further complex fine- 
tuning mechanisms of control, including allosteric modulators, can partici
pate in the gating control. Recently, other gating mechanisms have been 
identified, based on channels sensitivity to pressure or temperature [34–37]. 
In general, how the information is transmitted to the pore gate and how 
gating can be influenced by a variety of other subtle factors remains unclear. 
Furthermore, there is growing interest to identify the physical means by 
which the pore blocks ion permeation: is steric occlusion the only one? For 
example, in the concept of hydrophobic gating [38], a pore with hydrophobic 
lining can be closed by the formation of a bubble that functionally occludes 
the pore even in the absence of steric block. This mechanism was originally 
observed in model nanopores [39,40] but it has been recently identified in 
an increasing number of biological channels [13,41–43]. Physically, it cor
responds to a process of evaporation in hydrophobic nanoconfinement 
[44,45] which gives rise to bubble formation, see Sections 2.5 and 6.6. 
Hydrophobic gating implies that the analysis of the radius profile is no 
longer sufficient to classify a channel structure as open or closed. New 
criteria for the annotation of newly resolved channel structures are called 
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for [46]. Both equilibrium and enhanced sampling simulations are proving 
to be efficient tools for the study of hydrophobic gating. A case study [47] of 
hydrophobic gating in artificial nanopores can be found in Section 6.6.

Even a well-established mechanism like voltage-gating is far from being 
fully understood. While the gating mechanism of domain-swapped K+ 

channels seems consolidated [48], the gating mechanism of non-domain- 
swapped channels is still the object of debate. Domain-swapped channels 
are characterized by a long linker helix (L45) that connects the Voltage 
Sensor domain (VSD) with the Pore domain (PD). It is currently accepted 
[48] that the displacement of the sensor helix S4 pushes down the L45 linker 
that acts as a mechanical lever on the pore helix S6, extending it and closing 
the pore. In non-domain-swapped channels, however, the linker element 
L45 is too short to act as a mechanical lever and the gating mechanism is still 
under investigation. Voltage-gated ion channels have recently been classi
fied as allosteric machines [48] since they are characterized by a long-range 
coupling between the VSD and PD. This suggested the opportunity to use 
network theoretical approaches already used in the study of allosteric 
enzymes [49,50]. These techniques allow one to identify pathways of motion 
propagation from the VSD to the PD. Recent studies [51,52] applying this 
methodology identified two main pathways, the former reminiscent of the 
mechanism operating in domain-swapped channels, and the latter corre
sponding to a new, non-canonical mechanism important not only for 
activation/deactivation, but possibly also for inactivation [53]. A case 
study can be found in Section 6.5.

Ion channels have not only a biomedical relevance but they are also 
extremely important in nanotechnology and engineering. Currently, it is 
possible to embed ion channels or other nanopores in natural or artificial 
bilayers and use them as devices for single-molecule manipulation. One of 
the most successful applications is the use of α-hemolysin for DNA sequen
cing [54] which is currently commercially exploited. Ion channels have also 
been engineered to respond to specific stimuli [55–57]. Unfortunately, ion 
channels are extremely fragile molecules that tend to unfold and lose their 
properties when placed outside their natural biological environment. This 
has motivated massive research efforts to develop artificial solid-state nano
pores [58,59]. Unfortunately, so far synthetic nanopores are much less 
performing than their biological counterparts; in particular, they typically 
lack two distinguishing properties of ion channels, that is, selectivity and 
gating. The goal of much research in the field is thus to design biomimetic 
artificial nanopores [60–62].

As an example, a promising material to realise biomimetic nanopores is 
represented by graphene [63]. The lithography and beam irradiation tech
niques allow the creation of nanoscale pores in graphene mono-layers, 
which opens the way to a wide range of applications, from wastewater 
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treatment to desalination [64,65]. In order to use graphene as a molecular 
sieve, it is necessary to enforce a uniformly small diameter of the pores. 
Small pores with a diameter up to 5.5 Å are naturally selective due to steric 
exclusion [66], but their fabrication is still a challenge [67]. Larger pores are 
easier to manufacture but they are not selective. However, even large 
nanopores can be made selective through an appropriate functionalization 
[62]. The quest for the ideal functionalization simultaneously allowing high 
selectivity and high permeation rates of the selected solute brings back to 
biological models. In a landmark study [68], Corry and coworkers created 
graphene nanopores functionalized with four carbonyl groups arranged so 
as to reproduce the geometry of the SF of the K+ channel KcsA: the synthetic 
pores indeed were potassium selective. The performance of biological chan
nels, however, does not only depend on the arrangement of the SF groups. 
Indeed, graphene nanopores with four carboxylate groups, engineered to 
mimic the SF of the Na+ channel NavAb, resulted in pores not selective to 
sodium [68]. However, a voltage-tunable ion selectivity could be enforced 
using only three carboxylate groups.

Computational modelling has always been an integral part of the research 
on ion channels. For instance, Hodgkin and Huxley [69] described the onset 
and propagation of the action potential modeling the membrane as a non- 
linear electric circuit. It is notable that Hodgkin and Huxley, who won the 
1963 Nobel Prize in Physiology or Medicine for this work, did not know 
about the existence of ion channels in the same way as Mendel did not know 
about the existence of genes when he discovered his laws of transmission 
and segregation of inherited traits. The discovery of specific proteins acting 
as pathways for ionic currents across the membranes dates back to the patch 
clamp studies by Sakmann and Neher [70] who were awarded the 1991 
Nobel Prize in Physiology or Medicine. The first structural resolution of an 
ion channel, however, had to wait until McKinnon (2003 Nobel laureate in 
Chemistry) determined the X-ray structure of the KcsA channel [1]. We are 
currently living in a particularly favourable historical period for the com
putational study of ion channels. On the one hand, cryo-electron micro
scopy is providing a large number of high-resolution structures of ion 
channels [71]. On the other hand, hardware improvements are providing 
the scientific community with increasing computing power [72]: as of 
November 2021 the computing speed of Fugaku, the fastest supercomputer, 
is ca. 442 petaflops [73], that is, more than 1017 floating point operations 
per second. Finally, researchers can now rely on a rich toolbox of advanced 
computing techniques that are the topic of this review together with theo
retical advancements in the field.

Notwithstanding the recent advancements, the characterization of ion 
channels still remains a theoretical and computational challenge; accord
ingly, the choice of the approach must be performed with care based on the 
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task at hand. The calculation of electrostatic potential profiles or ion flows 
highly benefits from continuum approaches where protein, water, and 
membrane are modeled as continuous dielectric media while ions are 
described by a continuous density distribution. This approach, traditionally 
relying on the Poisson-Boltzmann equation [74] and on Poisson-Nernst- 
Planck (PNP) equation [75], is computationally convenient and extremely 
flexible. Indeed, combination of PNP equation with the Navier-Stokes 
equation allows to include hydrodynamic effects yielding the system of 
electrokinetic equations [76] presented in Section 2. The continuum 
approach, however, does not account for fluctuations, ion correlations, 
polarization effects, and finite-size effects. When these effects become rele
vant, atomistic approaches are the tool of choice, see Section 6. In particular, 
Molecular Dynamics (MD) simulations can be considered as 
a computational microscope [77] with a time resolution of the order of 
the femto-second and a space resolution of the order of the hydrogen atom. 
The main limitation of MD is that, due to the constraint to use a femto- 
second time-scale, the simulations are normally limited to a few hundreds of 
nanoseconds (although the growing use of GPUs [78] or dedicated hard
ware like the Anton supercomputer [79] allow for longer simulations). This 
limitation is particularly serious because many phenomena of interest in 
biology can be classified as rare events [80], see Section 4.2. Rare events are 
processes associated with the overcoming of an energy barrier higher than 
the thermal energy kBT. As a result, the system lingers for a very long time in 
the pre-barrier minimum before a fluctuation endows it with sufficient 
kinetic energy to overcome the barrier. Rare events are thus characterized 
by long waiting times, but when they finally occur, the barrier crossing is 
very rapid and the sampling of the region near the barrier is very poor.

In order to overcome this limitation, one is forced to develop tools that 
enhance the sampling of MD simulations or bias them in a controllable way 
(see section 4.2), to focus on unlikely and yet important regions of the free- 
energy landscape. Methods like Replica Exchange Molecular Dynamics [81] 
do this by overcoming free-energy barriers thermally through exchanges 
with high-temperature replica simulations. These can suffer, however, from 
needing a very large number of replica simulations. Alternatively, biases can 
be applied to an appropriate set of collective variables, or CVs, to character
ize those regions and to define the corresponding free-energy landscape. 
Choosing appropriate CVs, is however, a non-trivial task. A clever approach 
is to create hybrid algorithms where the strengths of Replica Exchange and 
CV-based algorithms (e.g. metadynamics) can be combined [82,83]. As an 
alternative, if the goal is not the reconstruction of the whole free-energy 
landscape but just the calculation of the free energy profile along the 
transition of interest, it is possible to use methods like Transition Path 
Sampling [84] or the String Method [85]. Finally, Machine Learning is 
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disclosing the opportunity to train a deep neural network to automatically 
choose good CVs [86], for instance, those along the direction of maximal 
auto-correlation [87,88], see Section 7.

This Review ensues from the talks and the scientific discussions held in 
February 2021 at the conference ‘Frontiers in ion channels and nanopores: 
theory, experiments, and simulation’ [89]; while the overview of the 
approaches attempts to be general, the selection of applications reflects its 
origin. The Review has the following main organization. Section 2 is devoted 
to continuum methods and Section 3 to their applications; these Sections 
introduce a general physical framework, which is useful to understand the 
fundamental transport phenomena occurring in ion channels but also in 
synthetic nanopores; while the continuum approach is highly succinct and 
informative, it requires some formalism to be introduced. We propose 
a number of selected applications referring to the use of electrokinetic 
equations, the methods to compute hydration patterns, and the use of 
density functional theory. Section 4 of the review covers atomistic simula
tion approaches of ion channels which provide a detailed picture of the same 
phenomena and whose treatment benefits from a less formal introduction: 
after an overview, we introduce the different families of methods for the 
study of rare events and we review a hybrid continuum/atomistic approach: 
Brownian Dynamics. In Section 6, we discuss few selected applications of 
atomistic methods to characterize selectivity, permeation, and gating in 
biological and model channels. In Section 7, we discuss a number of fore
front techniques that are still in a development stage but have a potential to 
revolutionize the field. In particular, we focused on polarizable force fields, 
hybrid enhanced sampling algorithms, multi-resolution approaches, and 
machine learning. In the final section, we draw the conclusions of the work.

2. Continuum methods

The transport of solutes, including ions, across narrow pores is not only 
important for ion channel research, but is also at the core of many nano
technology applications in the field of nanopore sensing [90], nanofiltration 
[91], and nanoporous energy materials [92]. Two main computational 
approaches are useful to address this general problem: atomistic/coarse- 
grained simulations and continuum methods. While the former provides 
a detailed (atomistic) or approximated (coarse-grained) description of che
mical interactions occurring at relatively short-time scales, continuum the
ories, which neglect the granular nature of matter, allow to explore transport 
mechanisms on longer time scales, moreover yielding, in some cases, ana
lytical estimates of the relevant observables characterising transport. In the 
following, we provide a rather general continuum framework to study the 
said transport phenomena and we specialise them for ion channel research.
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2.1. Electrokinetic equations

In the continuum approach, the complexity of the confined electrolyte 
transport within artificial or biological nanopores, such as that in Figure 1, 
right panel, is drastically reduced by using local densities and fields asso
ciated to each component of the system shown in Figure 1, left panel. For 
instance, the solvent (e.g. water) is generally treated as a homogeneous 
medium with a constant electric permittivity �, the ion species are described 
by their local concentrations, and channel walls contribute with a surface 
charge density. Within this framework, the transport of ions is determined 
by electrokinetic equations [93,94], that for systems with axial symmetry, 
read [94] 

@ρ�

@t
¼ � Ñ � j� (1a) 

%
@v
@t
þ v � Ñv

� �

¼ � ÑPtot þ ηÑ2vþ Ftot (1b) 

Ñ � v ¼ 0 : (1c) 

Equation (1a) is the continuity equation specifying that the variation of the 
density, ρ�, of positive/negative ions in a volume is related to their fluxes 
across the surface of that volume. Equation (1b) is the Navier-Stokes 
equation governing the evolution of the velocity profile of a solution of 
density % and viscosity η, driven by external forces Ftot and, possibly, 
pressure gradients ÑPtot. Finally, Equation (1c) defines the incompressibility 
condition for the solution, an approximation usually well satisfied by com
mon salt solutions. The physical nature of the ion transport is assigned by 
specifying the constitutive equation of the ion fluxes in Equation (1a). 
A traditional approach employs the so-called Nernst-Planck current 

j�ðr; x; tÞ ¼ ρ�ðr; x; tÞ½vðr; x; tÞ � DβÑμ�ðr; x; tÞ�; (2) 

where x is the coordinate along the longitudinal axis of the channel (trans
port direction) and r ¼ ðy; zÞ indicates the radial coordinate, see Figure 1, 
right panel. Equation (2) expresses the ion currents j� in terms of advection 
by the velocity v, diffusion, and electromigration due to the gradient of the 
electrochemical potential, which includes ion concentration and charge 
effects 

μ�ðr; x; tÞ ¼ kBT ln½ρ�ðr; x; tÞ� � zeψðr; x; tÞ ; (3) 
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where D is the diffusivity of the ions, z denotes their valence, e is the 
elementary charge, and β;1=kBT, with kB the Boltzmann constant and T 
the absolute temperature. The electrostatic potential ψðr; xÞ in the channel is 
obtained by solving the Poisson equation 

�Ñ2ψ r; x; tð Þ ¼ � ze ρþ r; xð Þ � ρ� r; xð Þ½ � (4) 

relating ψðr; x; tÞ to the concentrations ρ�ðr; x; tÞ of two symmetric ion 
species; � is the permittivity of the solvent taken as an homogeneous 
medium. The typical size of ion channels leads to vanishing small values 
of the Reynolds number1 and hence the Navier-Stokes Equation (1b) 
reduces to the (steady-state) Stokes equation: 

ηÑ2vðr; xÞ ¼ � Ftotðr; xÞ þ ÑPtotðr; xÞ: (5) 

Equation (4) and (5) are subject to standard channel impermeability and no- 
slip boundary conditions for the flow (v ¼ 0 at the channel walls) as well as 
n � Ñψ ¼ σ or ψ ¼ ζ at the walls, which account for the dielectric (with 
surface charge density σ) or conductive (with ζ potential) nature of the walls 
[76], respectively, with n the normal to the wall surface.

Analytical insight into the steady-state solution of Equation (1a) and (4) 
can be obtained by assuming that, along the radial direction, the charge 
densities attain their equilibrium profile 

ρ�ðr; xÞ ¼ �ρ�ðxÞe�zeψðr;xÞ (6) 

and by linearising the charge density [76] 

qðr; xÞ ’ κ2
Dψðr; xÞ (7) 

where κD ¼ 1=λD is the inverse of the Debye length 

λD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

2β zeð Þ2ρ0

s

(8) 

which measures the length scale at which the re-distribution of mobile ions 
screens an electric field, with ρ0 the bulk concentration of the salt. In the case 
of smoothly-varying channel profile, a linear-response theory can be 
applied. In this regime, the total pressure varies solely along the pore axis, 
such that its gradient is ÑPtotðr; xÞ ¼ dPðxÞ=dxþ ΔP=L, where dP=dx is the 
x component of the geometrically induced local pressure gradient which is 
determined by the boundary conditions and by fluid incompressibility, 
while ΔP indicates the pressure drop across the channel length L. 
Moreover, within such a regime, Ftotðr; xÞ ¼ � zeqðr; xÞ@ψðr; xÞ=@x is the 
electrostatic driving force.
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Within the linear response approach, the fluxes are proportional to the 
generalized forces and the transport coefficient can be derived by the 
relaxation of equilibrium fluctuations, see Ref [94]. Within these approx
imations, the transport along the channel axis is captured by the following 
fluxes 

jþ � j� ¼ Jq electric current (9) 

jþ þ j� ¼ Jc solute current (10) 

Q solvent current; (11) 

which can be induced by different forcing. Clearly, an electric current Jq can 
be generated by an external electric field while a solvent current Q by 
a pressure drop. However, also cross phenomena may appear where, e.g. 
an electric current can be prompted by applying a pressure drop on the 
solvent. In order to capture these non-trivial couplings it is insightful to 
write down the linear system of equations governing the relevant currents in 
the following way: 

Jq
J0c
Q

0

@

1

A ¼

L11 L12 L13
L12 L22 0
L13 0 L33

0

@

1

A
zeΔV

Δ�μ
ΔP

0

@

1

A 1
L

(12) 

where Lij are the coefficients of the Onsager matrix [95] associated with the 
drops across the channel of electrostatic potential ΔV, chemical potential 
Δ�μ, and pressure ΔP and where we have introduced J0c ¼ Jc � Q in order to 
make the matrix symmetric. The symmetry of the Onsager matrix, that 
relies on the microscopic time reversibility of the underlying Hamiltonian 
dynamics [94], has a crucial practical outcome: the cross-terms, such as L12, 
can be computed in two ways: either measuring Jq upon applying a chemical 
potential drop Δ�μ or by measuring the excess solute flow J0c upon applying 
an electrostatic potential, ΔV. This approach is convenient in numerical 
simulations where applying chemical potential gradients requires to simu
late large reservoirs (hence raising the computational time) whereas elec
trostatic forcing can be simulated with (computationally more convenient) 
periodic boundary conditions. Finally, we remark that L23 ¼ 0 in Equation 
(12) is due to the Debye-Hückel assumption [76] and that one expects 
L23�0 for the case of the fully non-linear Poisson-Boltzmann equation.

In the case of smoothly varying channels, it is also possible to derive 
closed formulas for the coefficients elements of the Onsager matrix. 
Interestingly, the transport coefficients Lij are particularly sensitive to the 
geometry and the conductive properties of the channel walls when the 
Debye length is comparable to the channel width. In this regime, one pair 
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of off-diagonal Onsager matrix elements increases with the corrugation of 
the channel transport, in contrast to all other elements, which are either 
unaffected by or decrease with increasing corrugation [76].

2.2. Poisson-Nernst-Planck equations

A usual scenario is the one in which the flow of solvent is absent, Q ¼ v ¼ 0. 
Indeed, in such a regime the (Navier-)Stokes equations are trivially fulfilled 
and Equation (1) simplify much reducing to the so-called Poisson-Nernst- 
Planck electrodiffusion equation in three-dimensional space (3d-PNP) gov
erning the motion of positive and negative ions [96–98]: 

j�ðr; xÞ¼ � βDρ�ðr; xÞÑμ�ðr; xÞ

¼ � D Ñρ�ðr; xÞ � ρ�ðr; xÞβzeÑψðr; xÞ
� �

(13) 

where ψ is the solution of the Poisson Equation (4) with the Boltzmann 
assumption, Equation (6). At first, a one-dimensional reduced model was 
used to describe ion permeation (1d-PNP) [99], but eventually, treatments 
based on the full three-dimensional (3d-PNP) theory became possible 
[96,97]. In the absence of ion flux, the 3d-PNP theory reduces to the 
standard non-linear equilibrium Poisson-Boltzmann equation. As men
tioned in the previous section, the 3d-PNP equation is based on a mean- 
field approximation that overlooks non-electrostatic ion–ion interactions 
(e.g. excluded volume) as well as polarization and ion correlation effects. 
This is why this equation is not well suited to treat highly charged molecules 
(like DNA) at high ion concentration or single file diffusion along a narrow 
pore. However, due to the low charge density of membrane systems, the PB 
equation is often used to compute the electrostatic potential profile along 
the pore of ion channels. The equation, allowing the comparison of relative 
stabilities of protonated and unprotonated residues, is also used for pKa 
calculations.

In practice, PNP is based on several simplifications: rigid channel struc
ture, structureless dielectric solvent, and mean-field ion–ion interactions, 
which are of unknown validity in the context in which they are used. If one 
is to adopt a continuum electrodiffusion approach, such simplifications are 
necessary in order to have partial differential equations that can be solved 
numerically. The accuracy of the 3d-PNP approach for ion channels was 
discussed in a few studies [97,100,101], where 3d-PNP simulations were 
contrasted with Brownian dynamics. Results showed that 3d-PNP approach 
can predict the reversal potential for wide pores, but breaks down in narrow 
ion channels with radii smaller than the Debye length. Further extension of 
3d-PNP to finite ion sizes [102], multiple ion species [103], and including 
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dielectric repulsion terms [104] have been proposed, as well as 
a combination of one-dimensional (1d) PNP with classical density func
tional theory (see Section 2.5) [105]. However, depending on the situation, 
3d-PNP may, or may not, be sufficiently accurate. Ultimately, the signifi
cance of that picture should not be expected to exceed that of the physical 
approximations upon which it is built.

2.3. Capture process of suspended particles

In many biologically and technologically relevant applications, such as drug 
delivery of molecular therapies, nanopore sensing, testing the impact of 
anesthetics on ion channels, etc., it is fundamental to characterize the 
capture of small and large molecules (analytes) from their bulk solution to 
narrow paths (channels and nanopores). An efficient capture, for instance, is 
crucial to obtain a correct behaviour of nanopore-sensing devices [106,107] 
which work detecting the ion-current variation produced by the passage of 
analytes into channels [108–111]. In this case, Equation (1) should be 
complemented with the equations governing the evolution of the density 
of analytes. Clearly, the density of analytes is coupled to that of the electro
lyte and of the solute, hence the Onsager matrix will become a 4� 4 matrix 
including novel diagonal and cross terms.

If the analytes are highly diluted and weakly charged (or highly screened 
by the salt solution), their presence is assumed to mildly affect the electro
statics and the velocity profile, such that, they can be modelled as passive 
tracers. Accordingly, Equation (1) are solved and then the velocity profile 
and the electrostatic potential are used as external fields for the evolution of 
the density of analytes.

In the context of capture mechanism, Equation (1) are crucial to char
acterize and control the main electrokinetic effects that are known to drive 
the analytes to the capture regions [112–114]: electrophoresis (EP), dielec
trophoresis (DEP), and electroosmosis (EO). EP is the motion of charged 
molecules relative to a solvent induced by a uniform electric field. DEP is the 
transport of neutral particles carrying a permanent or induced dipole in 
inhomogeneous electric fields, in which dipoles not only undergo a torque, 
but also a translational force. EO is the flow of an electroneutral solvent (e.g. 
water) through a membrane triggered by the motion of ions in electric fields; 
this flow can drag even large macromolecules [111]. The deep entanglement 
and competition of these three effects can also be seen from the structure of 
the Onsager matrix in Equation (14).
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The continuum approach so far described allows deriving the depen
dence of the capture rates on the above effects. In the presence of an external 
electric field, the capture problem can be formulated in terms of a transport 
equation [115] for a diluted analyte concentration ρpðr; tÞ that is a function 
of the distance r from the center of the nanochannel entrance 

@ρpðr; tÞ
@t

¼ � Ñ � jðr; tÞ (14a) 

jðr; tÞ ¼ � DpÑρpðr; tÞ þ v ρpðr; tÞ þ βDp Fρpðr; tÞ (14b) 

where the molecule flux j, pointing to the pore, has three components: i) 
diffusive, ii) advective due to the solvent motion, v, for example, induced by 
electroosmosis, and iii) phoretic due to external fields. Dp denotes the 
molecule diffusivity. As compared to Equation (1), the presence of electro
lyte solution manifests only through an EO flux and the dielectric constant.

It is important to notice that Equation (1) focus directly on the dynamics 
of the electrolytes and of the solution while in Equation (14a)-(14b) the 
electrolyte solution is approximated just as a background fluid, with an 
assigned dielectric constant, where macromolecules are transported by 
external fields and flows. This justifies the absence of Poisson and Navier- 
Stokes equations.

According to the hemi-spherical electrode approximation [116], the 
external voltage generates, far from the electrodes, a radial electric field of 
modulus EðrÞ ¼ � I=ð2πr2Þ directed towards the pore center. I is the ion 
current due to the applied voltage. Thus, the problem Equation (14a)-(14b) 
acquires a radial symmetry with respect to the center of the pore entrance 
(origin).

The stationary solution ρpðrÞ of Equation. (14a)-(14b) in the shell 
between r ¼ re (entrance radius) and r!1 is determined by the boundary 
conditions, ρpð1Þ ¼ ρp;1, meaning that the molecule concentration is 
constant far from the channel, and jðreÞ ¼ � kρpðreÞ, indicating that the 
channel entrance is partially absorbing, that is, only a fraction of the 
incoming molecules actually enter.

Once ρpðrÞ is known, the flux density jðrÞ can be easily derived via 
Equation (14b) and the resulting capture frequency ν (number of molecules 
adsorbed per unit time) is nothing but 2πr2

e jðr ¼ reÞ, 

ν ¼
2πρp;1D

D
k r2

e
eϕðreÞ þ

ð1

re

dρ eϕðρÞ

ρ

(15) 
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where ϕðrÞ ¼ μvðrÞ=D is the dimensionless effective potential, which 
accounts for the radial EP and DEP effects as well as for the contribution 
of the EO flow [115]. Equation (15), written in the form 1=ν ¼ 1=νa þ 1=νe, 
shows that the capture frequency splits in two contributions, νa, accounting 
for the approach to the pore, and νe, associated with the molecules actually 
entering it. The entrance frequency reads νe ¼ 2πρp;1kr2

e exp½� ϕðreÞ�, and 
depends on the parameter k, whose precise determination requires an 
atomistic description of the system. Nevertheless, in the same approxima
tion of Equation (14a)-(14b), we can attempt an Eyring equation for the rate 

k ¼ κ
kBT

h
exp �

ΔF
kBT

� �

; (16) 

where κ is the transmission coefficient and h the Planck constant. ΔF
indicates the free-energy barrier, generally positive, which molecules need 
to cross to enter the pore, see Section 4 for methods to compute free-energy 
barriers of ion permeation and Section 6 for examples of atomistic calcula
tions of free-energy barriers. High values of ΔF reduce exponentially the 
adsorption rate.

The simple expression (15) shows how continuum approaches are useful 
to derive estimates of the capture frequency that can be used to establish the 
order of magnitude of the capture rates and their dependence on the 
experimental conditions. Moreover, the Smoluchowski theory allows an 
immediate assessment of the competition among electroosmosis and var
ious phoretic contributions involved in experiments [117]. Moreover, the 
approach allows to determine the Mean First Passage time [118] and the 
permeability [119] (see Section 3.2) in corrugated channels under the action 
of a chemical potential difference at the channel ends.

2.4. Kirkwood approximation: ionic hydration patterns in nanopores

Transport through nanopores is affected not only by ion-pore and ion–ion 
interactions, but also by the hydration barrier originating from the re- 
distribution of the water molecules when an ion traverses the nanopore. 
In addition, water distributions are also necessary to assess water-mediated 
ion-pore interactions. To address this issue Barabash et al. [28] extended an 
approach designed to characterize the DNA hydration [120,121] to analy
tically predict the ionic hydration patterns inside nanopores, using the 
radial distribution functions (RDFs) evaluated in the bulk electrolyte. 
Using a rigorous statistical mechanical correspondence between the poten
tial of mean force (PMF) and RDFs, the density ρwðrÞ of water-oxygen 
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atoms can be rewritten via the multi-particle distribution functions [122]. 
By truncating the PMF decomposition at the 2-particle terms, one arrives at 
the Kirkwood approximation [123] involving only a product of the RDFs 

ρwðrÞ
ρw;0

¼ giwðjr � rijÞ
YNp

j¼1
gpwðjr � rp

j jÞ: (17) 

Here, r is the position of interest, rp
j are the coordinates of the fixed atoms of 

the nanopore (Np in total), ri is the location of the ion, ρw;0 indicates the bulk 
water density, giw and gpw are the ion-oxygen and nanopore-oxygen free 
bulk RDFs, respectively.

Equation (17) shows that the complex water patterns originate from the 
interference between the ionic hydration shells (giw) and the hydration 
cloud around the nanopore (

Qgpw ). Since the method requires the bulk 
RDFs gðrÞ to be measured only once under given system structure and 
composition, a 102–104 speedup is achieved as compared to enhanced 
sampling all-atom MD simulations [28,120]. The truncation of the decom
position to 2-particle terms overlooks the interactions between the compo
nents of individual water molecules and their orientations, leading to 
overestimated densities near the pore walls. Nevertheless, the proposed 
analytical description generally agrees well with the results of molecular 
dynamics simulations for K+, Na+, and Cl – ions (see Figure 2) and predicts 
the locations of the trapped water molecules [28]. Hence, the method 
provides fundamental insights into the electrostatics, the dielectric proper
ties, and the dynamics of ions in nanopores. A tentative analytical way of 
connecting the hydration patterns and the single-ion equilibrium PMF is 
proposed as well [28].

Moreover, the approach allows to study the effects on the hydration 
patterns imposed by external strain (stretching, skewing, bending, twisting) 
and chemical features (pore isomers, type and charge of the rim atoms, 
numbers of lattice layers, layer offset eclipse). Such flexibility should prove 
useful in designing the hydration pattern via the multi-parameter optimisa
tion leading to pre-defined properties of the nanopores.

2.5. Classical density functional theory and ion channels

Classical density functional theory (C-DFT) [124] is a powerful approach, in 
the grand canonical ensemble, that allows, through a variational principle, 
to compute the structure and the energetics of a system in equilibrium and 
the evolution of the density distribution for systems out of equilibrium 
[125–127]. The starting point for C-DFT is the functional of the grand 
potential that, for a one-component system, takes the form 
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Ω½ρ� ¼ F½ρ� þ
ð

d3r ρðrÞ VextðrÞ � μð Þ; (18) 

where F ¼ F id þ F ex is the intrinsic Helmholtz free-energy functional, 
which can be split into an exactly known ideal gas part F id and an excess 
(over the ideal gas) contribution F ex, which contains all the information 
about the particle–particle interactions [124]. In Equation (18), VextðrÞ is the 
external and μ the chemical potential. For practically all systems of interest, 
F ex is unfortunately known only approximately. The equilibrium density 
profile ρ0ðrÞ can be calculated from the fact that Ω½ρ� is minimal in equili
brium [124], which can be expressed as 

δΩ
δρðrÞ

�
�
�
�

ρ¼ρ0

¼ 0: (19) 

Once the equilibrium density profile is known, the grand potential of the 
system follows immediately 

Figure 2. Three-dimensional ionic hydration patterns. Water distribution around a K+ ion 
(purple sphere) at 0.4 nm above the pore in a graphene lattice (black ball-and-stick representa
tion), obtained from (a) MD simulations and (b) theory, Equation (17). The layered structure of 
the hydration around the ion and the graphene lattice emerges due to the chosen isovalue of 
1.15. A 5-point smoothing window has been applied to the original data in both panels. 
Reproduced without changes from Ref [28]. under the Creative Commons CC BY 4.0 license.
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Ω ¼ Ω½ρ0ðtÞ�: (20) 

In the context of ion channels, C-DFT can be viewed as complementary to 
molecular dynamics, since it provides configurations that are averaged over 
the grand-ensemble rather than single frames. This can be important when 
system states are characterized by rare events or large fluctuations. C-DFT 
allows the exploration of larger time scales than those typically accessible to 
MD, even if the implementation of force fields is less obvious.

There are several studies of ion channels within the framework of C-DFT 
so far, related to gating, selectivity, and ion transport. In gating, the relation
ship between the gate configuration and the probability of a bubble forma
tion was studied in Refs. [44,128]. The gate configuration was accounted for 
by the external potential VextðrÞ and the bubble formation followed from the 
density profile ρðrÞ of a water-like simple fluid. In order to illustrate the 
application of C-DFT to gating in an ion channel, we show in Figure 3(a,c) 
the simplified geometry of a channel and its change from a closed config
uration in (a) to an open one in (c). This geometrical change of the channel 
geometry is employed as an external potential VextðrÞ in the DFT calcula
tion. A cut through the resulting density profiles of a closed and an open 
channel is also shown in (a) and (c) [128]. While in the open configuration 
the water density in the channel remains liquid-like (c), a clear bubble is 
formed in the narrow region of the closed configuration (a). In addition to 
the structure, one obtains information about the energetics of the channel. 
In this application, we used R2, the radius of the gate, as a control parameter 
to describe the geometrical configuration. For each value of R2, we can ask, 
on the one hand, what the structure of the equilibrium configuration of 
water in the channel or the gate is. On the other hand, we can ask what is the 
structure of an open and of a closed configuration for a given value of R2, 
that is, a density distribution with a liquid-like density, say ρopðr; R2Þ, and 
one with a bubble in the gate, say ρclðr; R2Þ. Once these density profiles are 
known, it is straightforward to compute the corresponding grand potentials 
Ωop ¼ Ω½ρopðr; R2Þ� and Ωcl ¼ Ω½ρclðr; R2Þ� and their difference 
ΔΩ ¼ Ωcl � Ωop. If ΔΩ> 0 then the open state of the gate is the equilibrium 
configuration and the closed one is meta-stable and vice versa. Assuming 
a two-state system with probability PopenðR2Þ for being in the open state and 
PclosedðR2Þ ¼ 1 � PopenðR2Þ for being in the closed state, we can easily calcu
late from PopenðR2Þ=PclosedðR2Þ ¼ expð� βΔΩÞ the probability of finding the 
channel open: 

PopenðR2Þ ¼
1

1þ e� βΔΩ : (21) 

The shape of this probability as function of R2 is shown in Figure 3(b).
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Here, the accurate knowledge of the state point of water in relation to the 
bulk-phase diagram has proven beneficial to study the formation of a bubble 
and the probability of opening and closing of the gate. The influence of 
hydrophobic gases and hydrostatic pressure was studied due to the relatively 
small computational costs [44]. Within this framework, a more complete 
model of an ion channel was formed that included voltage sensors and 
a hydrophobic gate [129].

Selectivity can be driven by specific (chemical) interactions or by physical 
mechanisms, such as a competition between the electrostatic interactions 
and entropy. In the latter case, C-DFT can help to understand the physics 
involved in selectivity by providing structure and energetics of the process 
[130–132]. Coupling classical dynamical DFT (C-DDFT)[125,127] and the 
electrochemical gradient across a membrane allows one to study the char
acteristics of ion flux through channels [105] adding microscopic details to 
the more macroscopic approaches described in the previous sections.

3. Continuum approaches: applications

Continuum methods, despite their limitations, lend themselves to a variety 
of applications owing to their flexibility. A complete survey of the possible 
applications to ion channels is impossible within the extent of this review, 
thus we will limit the discussion to a few selected examples without any 
claim to be exhaustive.

Figure 3. (a) The geometry of a simple model channel, that enters a C-DFT calculation as 
external potential and a cut through the corresponding equilibrium density profile of a closed 
configuration of the gate, that is blocked by a bubble. (b) The probability of finding the channel 
open as function of the gate radius R2. (c) The geometry and the corresponding equilibrium 
density profile of an open channel that is filled with a liquid-like water density. Reprinted 
(abstract/excerpt/figure) with permission from [128]. Copyright 2017 by the American Physical 
Society.
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3.1. Capture models

The continuum model for capture (Equation (14a)-(14b)) can be used to 
interpret some experiments in synthetic nanopores, for example, those of 
Larkin et al. [117] in which two globular proteins, ProK and RNase A, are 
captured by a solid-state hafnium dioxide (HfO2) pore immersed in a 1 M 
KCl solution at pH 8.1 at which the HfO2 pore is slightly negatively charged. 
The surface charge induces an EO flow, which superimposes to the EP of the 
external field. Equation (15) can be used to estimate the capture frequency of 
the two proteins in a wide range of voltages.

Figure 4, left panel shows the capture frequency when the entrance 
contribution was neglected, i.e. νe ¼ 0 and ν ¼ νa, for protein concentration 
ρp;1 ¼ 1 nM. The points refer to Equation (15) that includes EO, EP, and 
DEP, whereas lines indicate the case in which DEP is set to zero. The small 
displacement of symbols with respect to the solid lines suggests that, in the 
experiment, dielectrophoresis is negligible. Moreover, as the pore is nega
tively charged, for positive ΔV, EO is directed towards the pore so that it 
cooperates with EP. Theoretical capture frequencies are 4–5 times smaller 
than the ones observed in the experiments (see Figure 3 of Ref [117]), which 
is remarkable given that no fitting parameters were introduced.

The analytic capture model, based on the continuum equations of Section 
2.3, developed by Chinappi et al. [115] also allows the interpretation of an 
experiment of DEP capture into an hemolysin channel (aHL) of a β-hairpin 
engineered to carry a permanent dipole, while remaining electrically neutral 
at pH 7. In practice, the peptide is a dumbbell of length d ¼ 4 nm, with zero 
global charge, and dipole p ¼ 8 e � nm. Figure 4, right panel shows the 
capture frequency into the aHL obtained from the ion current traces, high
lighting that capture occurs independently of the voltage polarity. The figure 
shows that the experimental data are in agreement with the predictions of 
DEP capture model.

3.2. Channel permeability

Another application of the presented continuum theory, in particular, of 
Smoluchowski equation, deals with the computation of channel permeabil
ity when local inhomogeneity and chemical heterogeneity of the channel 
makes the assumptions of constant diffusion coefficient not viable. This is 
the typical case for ion channels. The passive transport of ions/molecules 
through a pore in the limit of dilute molecule concentration (as in the 
previous discussion) can be written in the simplest form as the Fick’s law 
(see Section 2.1 and Ref [94].): 

j ¼ � PΔρ (22) 
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where ρ is either the ion or molecule density and P is the permeability 
coefficient containing all geometrical and chemical channel properties but 
the dependence from the concentration. An expression for the permeability 
coefficient can be derived starting again from the Smoluchowski diffusion- 
drift equation with respect to the axial transport coordinate, the position of 
the particle along the pore axis x, and the Kramers relations [119,133] 

P ¼ 1=
ðL

0

exp βU xð Þ
D xð Þ

dx
� �� 1

(23) 

where L is the length of the pore, DðxÞ the local diffusion constant, UðxÞ the 
PMF characterizing the ion/molecule effective interactions with the pore. 
This expression is based on the assumption that the permanent ions/mole
cules crossing the membrane are uncorrelated and that there is no satura
tion of the occupancy of the pore. This assumption is reasonable at low 
concentrations, but may be violated if the pore is narrow and there are high- 
affinity binding sites along the pore.

Equation (23) shows two important features of transport inside 
a nanopore: its non-locality, due to the presence of an integral over the 
pore length L, and its statistical nature, due to the presence of the potential 
of mean force UðxÞ. This means that any local method, such as docking, 
would predict permeation only in a few limited cases, such as a single 

Figure 4. Left) Capture frequency for the experiment of Larkin et al. [117]. Circles and squares 
refer to the theoretical capture frequency calculated via Equation (15) for RNase A and Protein 
K. Lines refer to the capture frequency when DEP is neglected. In both cases, protein bulk 
concentration is ρp;1 ¼ 1 nM and complete adsorption is assumed (τe = 0 and ν ¼ νa, transport 
limited regime). The pore is slightly negatively charged at the experimental pH = 8.1 while both 
proteins are positive, i.e. EO and EP cooperate at ΔV > 0. Protein sketches are created using VMD 
[7]; blue and red colors identify to positively and negatively charged residues, respectively. 
Right) Experimentally observed capture frequency f , black points. The V-shaped plot indicates 
that capture occurs at both positive and negative voltages. The dashed line refers to the 
theoretical capture frequency estimated via Equation (15) with ΔF 0 ¼ 22kBT in the Arrhenius 
formula for the absorbing rate k (see text), reproducing the typical V-shaped behaviour. Figures 
are adapted with permission from [115]. Copyright 2020 American Chemical Society.
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binding site. Furthermore, one needs to thermodynamically average all 
other variables for a correct estimation of the UðxÞ profile. Reliable methods 
to evaluate UðxÞ to be used in Equation (23) are based on advanced 
sampling techniques combined with classical molecular dynamics (see 
Section 4.2). Equation (23) is valid only at dilute concentrations or far 
from saturation, presumably with the pore occupied by a single independent 
particle. In case of saturation conditions, there are additional methods that 
can be applied to correctly estimate the flux, such as the Markov state model 
[134,135].

While for ions diffusing through specific channels the approximations of 
Equation (23) are quite severe due to strong correlations among ions and 
multiple occupancy, the method works well for small molecules diffusing 
through channels (weak molecule–pore interactions, single occupancy). 
Electrophysiology data provided a good test for Equation (23) in the case 
of a charged particle, the beta-lactam inhibitor avibactam. Its permeability 
through the general channel OmpF was measured with the reversal potential 
method and compared with that calculated via Equation (23). 
Metadynamics was used to quantify UðxÞ, and the agreement was remark
able [136].

3.3. Hydration patterns

The analytical approach to characterise the hydration patterns in nanopores 
[28] and based on Equation (17) opens an avenue for a number of potential 
applications. For example, one can hypothesise that the ionic transport rate 
and the permeation pathway can be tailored by iteratively choosing the pore 
geometry and the level of externally applied strain. First, such engineering of 
the selective and conductive properties appears of high demand in water 
desalination technologies, where the maximisation of the output water 
quality and energy efficiency have to meet the environmental sustainability 
criteria [137]. Secondly, the maximised energy-yield during blue energy 
harvesting has to exceed 5 Watt/m2 to be economically viable while mini
mising Joule heating [138,139]. Thirdly, next-generation fast DNA sequen
cing would benefit by applying the same logic of optimisation to slow down 
and guide the DNA during its translocation through a nanopore [140,141]. 
In that regard, the classical Coulter-principle-based nucleobase detection 
could be improved by maximising the current blockage optimising the 
geometrical features of the nanopore. Fourthly, the Materials Genome 
Initiative would benefit from cataloguing 2D and 3D nanopore isomers 
[142]. Finally, transverse (corrugated) waves, travelling along a carbon 
nanotube (CNT), would invoke the ionic motion against the applied elec
trochemical gradient, thus realising a nanoscale ionic pump [143]. Thus, the 
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method supports the design and optimization of controllable nanoionic 
devices with on-demand selective and conductive properties, finding its 
applications in biophysics, industry, and nanotechnology.

4. Atomistic approaches

4.1. Overview of the methods

Intrinsic to the continuum approaches introduced in Section 2 is the mean 
field approximation, which neglects all fluctuations and correlations which 
might be relevant at the scale of ion channels. In particular, ion–ion 
correlations beyond the mean-field approach of Poisson-Boltzmann (see 
Section 2.1) are particularly important in narrow channels: a notable exam
ple is the selectivity filter of potassium channels discussed in the 
Introduction. Although, in principle, the geometrically and chemically 
complex molecular structure of proteins may be accounted for in 
a continuum model, it is generally preferred to directly resort to particle- 
based approaches, which more naturally encompass both fluctuations and 
the atomic structure. The modelling at the atomistic level of ion channels is 
the most refined available description, providing all the biochemical details 
necessary to understand complex phenomena such as gating [144], hydro
phobic control [145], effect of mutations [146], protein–membrane inter
action [147], and the pivotal role of water molecules through H-bonds 
network formation and local dielectric screening [145].

Atomistic methods explicitly including all atoms and all inter-atomic 
interactions allow a spatial resolution of a single hydrogen atom and the 
time-resolution of a single femto-second, so that Molecular Dynamics (MD) 
simulations [148] can be considered as an atomic resolution microscope 
[77,149,150]. Of particular interest is the capability of MD to bridge struc
tural information on ion channels with their dynamics and, with some 
challenges, to their function, with spatial and temporal resolution which is 
yet unmatched in experimental approaches [151]. In the following, we 
describe the conceptual framework of MD, showing the equations of 
motion, the definition of the force field, which prescribes the interactions 
between atoms, and the challenges specific to ion channel simulations.

Three main ingredients are contributing to the success of MD as extre
mely refined and powerful tool to investigate conformational structure and 
changes and the relationship between structure and function in proteins. 
First, the development of highly parallelized and optimized hardware and 
software tools allows the simulation of systems of increasing dimensions 
and with increasing trajectory lengths. The second ingredient is the devel
opment and refinement of dedicated force fields, including not only amino 
acid groups but also lipids, solvent molecules, and specific substances as 
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glycans, whose fundamental role has emerged clearly, for example, in the 
case of the glycosylate spike Covid-19 protein [152]. Last, but not least, the 
development and improvement of a wealth of methods and algorithms to 
improve the statistical sampling of the conformational space (see 
Section 4.2).

The mathematical framework of MD is conceptually simple: for each of 
the atoms (the same holds in the case of coarse grained models), MD 
trajectories are generated by integrating Newton’s equations of motion2: 

miaiðtÞ ¼ �
@VðxðtÞÞ
@xiðtÞ

(24) 

relating the mass and acceleration of the i-th particle to the force acting on 
it, with x the vector of the 3N cartesian atomic coordinates and V a classical 
empirical potential function. In this representation, interactions are estab
lished between atom nuclei, while the electronic degrees of freedom are 
averaged out. A typical analytical expression of the interaction potential V 
reads 
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where the first four terms represent bonded interactions due to covalent 
bonds, which enforce chain connectivity as well as the secondary structure, 
while the latter two, the Lennard-Jones and Coulomb potentials, quantify 
non-bonded interactions of van der Waals and electrostatic nature. In 
particular, the first two terms are harmonic potentials allowing only small 
oscillations around the specified equilibrium values (l0;i, α0;i) of bond 
lengths and bond angles, respectively. The intensity of these restraining 
potentials is quantified by the force constants kl;i and kα;i. In the third 
term, the torsional potential, Vik and nik represent the barrier height and 
the multiplicity, respectively, while θik and θ0;ik are the current and equili
brium value of the torsional angles. In the Lennard-Jones potential, εij 

represents the depth of the energy well whose minimum is located at 
rij ¼ r0;ij. Finally, in the Coulomb term, qi and qj are the atom charges, 
while �r and �0 are the local and vacuum dielectric constants, respectively.
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The sets of parameters of the empirical potential in Equation (25) are 
referred to as force field. Some of them are computed through quantum 
simulations of small organic molecules exploiting the concept of transfer
ability, while others are estimated so as to match thermodynamic measure
ments. The most popular force fields for biomolecular simulation include 
AMBER [153], CHARMM [154], OPLS [155], and GROMOS [156] and, 
along with amino acids, they also include parameters for nucleic acids, 
lipids, carbohydrates, and ions. The parameterization of small organic 
compounds, for example, molecules of pharmaceutical interest, is more 
challenging, but the task has been simplified thanks to generalized force 
fields (GAFF [157], CGenFF [158]) and toolkits like Antechamber [159], 
Paramfit [160], and GAAMP [161] with global optimization of parameters 
[162]. MD atomistic force fields are continuously revised and assessed [163]. 
Even water models are of pivotal relevance for a proper description of 
mechanisms based on hydrophobicity [164].

The integration of Equation (24) can be performed with a variety of 
schemes [148]. For instance, the velocity Verlet algorithm updates positions 
and velocities according to: 

xiðt þ δtÞ � xiðtÞ þ viðtÞδt þ
1
2

aiðtÞδt2 (26a) 

viðt þ δtÞ � viðtÞ þ
1
2
½aiðtÞ þ aiðt þ δtÞ�δt: (26b) 

The timestep δt plays a key role, since, to keep the integration stable, it has 
to be tuned to the period of the fastest oscillating modes in the system. 
Typically, in biological system, these are associated with the covalent bonds, 
with δt of 1 or 2 femtoseconds. Fixing the most rapidly vibrating bonds 
[165], or reassigning the mass of hydrogens to the associated heavy atoms 
[166] can allow for δt up to 5 femtoseconds. δt thus limits the achievable 
length of the simulated trajectories of biological systems which, currently, is 
of the order of few microseconds on high-performance supercomputers.

In order to evolve Equation (24), initial conditions for the atomic posi
tions and velocities need to be specified. For the latter, a Maxwell- 
Boltzmann distribution is typically used. For the atomic coordinates and 
the additional information on the protein topology needed to setup the 
bonded potentials in Equation (25), one typically resorts to structural data 
deposited in databases such as the Protein Data Bank [167]. The provided 
structures also include information on atom types, which is required to 
setup the non-bonded interactions. Typically, even when the entire 
sequence of the ion channel is resolved, structural data need to be comple
mented with appropriate information for (a portion of) the cellular mem
brane and the surrounding aqueous solution. Initial ‘equilibration’ runs are 

ADVANCES IN PHYSICS: X 25



needed in order to relax the structure in simulated conditions as close to the 
physiological ones as possible. During these runs, hydration and relaxation 
of the structures to the locally stable structure are achieved. In principle, 
equilibrium simulations for timescales comparable to experimentally rele
vant ones (milliseconds) should yield information on the dynamics of the 
protein and on its function, for example, the gating process of an ion 
channel, starting solely from structural information. Such brute force 
approach, however, is computationally inapproachable, except using ad- 
hoc supercomputer architectures discussed in Section 8. In addition, ato
mistic trajectories spend most of the time in well-defined regions of the 
phase space, only rarely jumping to another basin, which makes brute-force 
sampling extremely inefficient; the problem of rare events and enhanced 
sampling techniques are discussed in Section 4.2.

A typical issue in ion channel simulation is the calculation of ion currents 
and conductances. The importance of performing all-atom simulations is 
related to the pivotal role that the details of the chemical structure play in 
determining the behaviour of ion channels, gated by voltage, ions concen
tration, or ligand binding. Even a point-like mutation, or a residue chain 
rotation can be able to significantly change the channel conductance, by 
tuning or even impeding ion passage. In simulations, ions can be driven 
through the channel with a constant electric field E perpendicular to the 
membrane plane that generates a membrane potential across the channel 
driving ion movement (as in Figure 5, left panel). In this method, the 
potential applied to the membrane is V ¼ ELz, where E is the constant 
field and Lz is the length of the simulation box in the direction of the 
membrane normal [168,169]. The constant electric field acts on all charged 
particles throughout the simulated system and affects their spatial distribu
tion–especially in the bulk solution. This distribution results in a nontrivial 
transmembrane potential in the region of the pore that differs from V. The 
usage of periodic boundary conditions means that there is a single compart
ment because ions passing through the channel can be recycled avoiding 
charge build-up on either side of the membrane. However, it is also possible 
to impose appropriate conditions at the edge of the periodic box to maintain 
asymmetric ionic concentrations, allowing the simulation of the reversal 
potential yielding zero ionic current [170].

An alternative method consists in simulating a system with two mem
branes, dividing the system into two compartments (as in Figure 5, right 
panel). By adjusting the ion concentrations in each compartment a net 
charge imbalance can be created directly to model the desired electroche
mical gradient [171–173]. In this method, the potential applied to the 
membrane is V ¼ Q=C, where Q is the charge imbalance and C is the 
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membrane capacitance. In this case, ions must be swapped between com
partments after passing through the channel to maintain the desired poten
tial through the charge imbalance.

The membrane potential V and the charge imbalance Q are conjugated 
thermodynamic variables [168]. In the constant field method, V is under 
control and Q can fluctuate, whereas in the compartment method, Q is 
under control and V can fluctuate. Provided they are appropriately applied, 
using an external electric field or a charge imbalance can yield very similar 
results [174]. Although early simulations examined only one or two per
meation events [12], increases in computational power now allow for many 
permeation events to be captured in multi-ms simulations, see for example 
[13,16,175]. Agreement with experimentally measured currents cannot be 
guaranteed, due to many reasons, including the state and condition in which 
the channel structure was obtained as well as limitations in the MD force 
fields themselves.

One limit of the atomic description is that its high level of detail 
currently precludes, for computational limitations, the simulation of 
mesoscopic biological systems like whole organelles, vesicles, or viral 
particles. For instance, the simulation of an action potential would 
require the explicit simulation of a large stretch of membrane hosting 
a population of many different types of ion channels. This system is way 
too large for classical atomistic force fields. One possible approach to 
the problem is Brownian Dynamics, which is, in a way, a hybrid 
between mean field and atomistic approaches, see Section 4.3. 
A different approach more akin to the atomistic one, is that of coarse- 
grained force fields where the number of interaction centers (and thus 

Figure 5. Two typical simulation setups in computational electrophysiology: applying an 
electrical field (left) and using two reservoirs with different concentrations. Adapted from 
[173], Copyright 2020, with permission from Elsevier.
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the number of interactions) is reduced by lumping several atoms in 
a single Coarse-Grained (CG) particle (see for example, [176–178]). 
A particularly successful CG tool for the study of protein/lipid systems 
is the MARTINI model [179] which combines the speed-up benefits of 
simplified models with the resolution obtained for atomically detailed 
models. Indeed, the MARTINI model allows the simulation of very 
large membrane systems, for example, an entire viral envelope with 29 
millions of CG particles [180], allowing to access much larger time 
scales than atomistic simulations. Despite this high speed-up the 
MARTINI modeling retains a significant amount of molecular detail. 
In the MARTINI model on average four heavy atoms plus associated 
hydrogens are represented by a single interaction center. Mapping of 
water is consistent with this choice, with four real water molecules 
mapped to a CG water particle, while ions are modelled as a single 
particle, which represents both the ion and its first hydration shell. The 
MARTINI model has four main types of particles: polar, non-polar, 
apolar, and charged. Within each type, there are sub-types based on 
hydrogen-bonding capabilities or the degree of polarity, giving a total of 
18 particle types or building blocks. These CG particles interact with 
one another through classical bonded potentials, Lennard-Jones inter
actions, and Coulomb interactions. The force field parameters have 
been tuned to reproduce a number of experimental thermodynamic 
data, in particular, the water/oil partitioning behaviour of a variety of 
compounds. The MARTINI model has been successfully used in a wide 
range of lipid-centered applications including the characterization of 
lipid membrane properties, lipid polymorphism, protein-lipid interplay 
and membrane protein oligomerization (see [179,181] and references 
therein), and lipid nanoemulsions [182]. The MARTINI model assumes 
rigid protein secondary structures. However, recent refinements extends 
its applicability to cases where large conformational changes are 
involved, for example, ion channel gating [183], where the Martini 3 
force field was used [184] in combination with a Go-like model for 
proteins [185].

It should be noted that both all-atom and coarse-grained approaches 
encompass some degree of empiricity; for both methods this is true for 
the force fields which need to be tuned with some ‘first principle’ data. 
However, moving away from the atomic description inherently requires 
additional assumptions on the location, interactions, and dynamics of the 
CG particles. In other words, improvements in the accessible time and 
length scales come at the price of an additional level of empiricity, which 
should be assessed on a case-by-case basis.
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4.2. Rare events in ion channels

As introduced in Section 4.1, the requirement of a small timestep in the 
integration of the equations of motion limits the length of the simulated 
trajectories to a few microseconds. This limitation is particularly proble
matic in the case of biomolecular systems, such as ion channels, where many 
important functional processes (such as gating or ligand binding) take place 
on much longer timescales.

If we associate the different functional states of a channel to distinct 
minima in an energy landscape, in a standard MD simulation, the trajectory 
spends most of the time close to the local minimum in which it was 
initialised, and, only seldom, jumps to a different local minimum owing to 
sufficiently large thermal fluctuations (see Figure 6). If the thermal energy of 
the system is lower than the energy barrier separating the minima, the 
activated process happens very infrequently. However, when it occurs, it is 
quite fast. Sampling such rare events is thus a major challenge for MD 
simulations, which motivated the development of several specific methods 
to speed up such events and enhance conformational sampling [80]. The 
crux is that, according to Eyring Equation (16), the waiting time k� 1 

between rare events scales exponentially with the height of the free-energy 
barriers ΔF measured in thermal units kBT. As a result, the trajectories 
spend most of the time close to minima, while a comparatively short one in 
the transition state (on top of the barrier). Because of the temporal limita
tions of MD, normally very few barrier-crossing events can be observed and 
the sampling of the transition state is very poor.

In the specific case of ion channels, there are three main classes of 
thermally activated processes of paramount interest: i) structural changes, 
which switch between the functional states of the channel: open, closed, or 
inactivated (gating), ii) ion conduction, in which each ion has to overcome 
a free-energy barrier in order to translocate through the channel, and iii) 
binding of ligands or drugs to the channel. In the following, we will describe 
few enhanced sampling techniques developed to overcome the rare event 
problem and cite some examples on i) and ii). Problem iii), instead, is 
common to different kinds of proteins and is reviewed elsewhere [188].

Enhanced sampling techniques can be broadly classified into three cate
gories [189]: (i) Techniques that do not focus on specific reaction coordi
nates; (ii) Techniques that aim to determine the path between known end 
points; and (iii) Techniques that enhance sampling or reconstruct the free 
energy along one or more selected reaction coordinates. While not truly an 
enhanced sampling technique, a final approach that has extensive use in ion 
channel simulations is that of alchemical perturbation discussed below. The 
actual implementation of enhanced sampling techniques is currently man
aged either by built-in modules to common MD codes or by specific 
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packages, such as Plumed [190], which works together with some of the 
most popular MD engines, as Amber [191], NAMD [192], and 
Gromacs [193].

4.2.1. Techniques that do not focus on specific reaction coordinates
The first group includes techniques that do not focus on specific reaction 
coordinates (also referred to as Collective Variables, CVs) but simulta
neously heat all the degrees of freedom of the system to increase the 
frequency of barrier crossing. These approaches have the advantage that 
they do not require predefined knowledge of the system to define reaction 
coordinates of interest.

The archetypal techniques of this group are Temperature and 
Hamiltonian Replica Exchange Molecular Dynamics (T-REMD and 
H-REMD) [81,194]. In T-REMD [81] a number of replicas are run in 
parallel at different temperatures, and exchanges are accepted or rejected 
according to a Metropolis-like criterion (Pacc ¼ min½1; expð� ΔβΔEÞ�). 
A replica can thus easily evade from a kinetic trap when it is warmed up 
due to an exchange of atomic coordinates with a neighbouring replica. This 
method thus addresses the multiple-minima problem arising from the 
ruggedness of the free-energy landscape that threats the ergodicity of MD 
simulations. The most important limit of T-REMD simulations is their poor 
scaling with the size of the system, as the number of replicas is proportional 
to the square root of the number of atoms. This occurs because energy is an 
extensive property so that for large systems, the energy difference between 
neighbouring replicas will be large imposing a small temperature difference 
in order to have a sufficiently high overlap in energies of each replica to 
obtain a high enough acceptance probability. This, however, increases the 

Figure 6. Left) Illustration of the problem of rare events in biophysical simulations via a cartoon 
of the protein free-energy landscape: during typical simulations only local barriers can be 
overcome, while a number of configurational changes or conduction events lies beyond the 
current computer capabilities. Reproduced from [186], under creative commons licence CC BY 
4.0. Right) Conformational changes giving rise to opening and closing of the CRAC channel, see 
Ref [187].

30 C. GUARDIANI ET AL.



number of replicas and thus the computational cost of the simulation. 
Heating only some parts of a system, such as the protein but not the solvent 
as in replica exchange with solute tempering (REST), can help alleviate this 
issue but can reduce the enhancement of conformational sampling [195].

This kind of problems can be avoided in Hamiltonian Replica 
Exchange [194] where replicas are simulated at the same temperature 
but with different energy functions. The different energy functions can 
be attained by splitting the energy function in different terms weighted 
by different scaling coefficients. The terms with unitary weights cancel 
out in the expression of the acceptance probability that therefore will 
depend only on the energy of a subset of degrees of freedom. Despite 
this improvement, H-REMD is computationally demanding for the 
simulation of membrane proteins and not frequently used in this 
field. Indeed, this technique has been mainly used for the simulation 
of peptides and small organic molecules [196–198].

An alternative to running multiple simulations is to alter the potential 
energy function of the entire system so as to speed up transitions as in 
accelerated MD (aMD) [199] or Gaussian accelerated MD (GaMD) [200]. In 
these, the potential energy of wells below a certain threshold value are 
increased, while those above are not. This speeds up transitions between 
energy wells. In theory, re-weighting of the simulation trajectories can be 
achieved to reproduce the unbiased results. Re-weighting is prone to noise, 
something that is reduced in GaMD.

4.2.2. Techniques to determine the path between known end points
The most known of these approaches is transition path sampling (TPS) [84]. 
In TPS, a statistical description of reactive trajectories is introduced via the 
definition of the transition path ensemble as the set of trajectories connect
ing the end states of a transition. Based on this description, reactive trajec
tories are directly obtained via specifically designed sampling procedures, 
and analyzed together to obtain information on the reactive process.

A key quantity in the approach is the reactive path probability, that is, the 
probability that a dynamical trajectory xðτÞ started in a metastable set (A) at 
time zero will end up in a different metastable set (B) at a successive time τ, 
defined as 

PAB½xðτÞ� ¼ hAðx0ÞP½xðτÞ�hBðxτÞ=ZABðτÞ : (27) 

In (27) P½xðτÞ] is the probability of the dynamical path, hA and hB are the 
characteristic functions of the corresponding regions (i.e. hM = 1 if x 2 M 
and hM = 0 otherwise), x0 and xτ are the states of the trajectory at times 0 
and τ, respectively, and ZAB is a normalization factor.
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Various deterministic and stochastic methods have been proposed over 
the years to sample this probability and, thus, the reactive path ensemble. 
The most commonly used rely on a Monte Carlo importance sampling 
procedure in the space of paths: starting from a given transition path, 
a new one is generated and accepted or rejected according to a Metropolis 
rule based on the reactive path probability. In practice, it is of relevance how 
the new paths are generated, since the acceptance rate, and thus the effi
ciency of a transition path sampling, will depend on how this is done. The 
most widely used is the so-called shooting algorithm, whose basic idea is to 
randomly pick a point along the old path, perturb the momenta of the 
system and propagate it forward and backward in time until it reaches the 
reactant or product state.

Another set of approaches to directly generate reactive trajectories is that 
of the string method and its variants, a class of algorithms based on the 
Transition Path Theory developed by E and Vanden-Eijnden [201]. The 
zero-temperature string method [202,203] allows to identify the minimum 
energy path (MEP) in the potential landscape VðxÞ of a system, that is, the 
curve ϕ that connects two minima of VðxÞ via a saddle point and whose 
tangent is everywhere parallel to the force, that is 

ðÑVÞ?ðϕÞ ¼ 0: (28) 

An efficient procedure to obtain the MEP is to discretize an initial path (the 
string) into a number of points (called images) and evolve them according 
to steepest descent dynamics, while enforcing a chosen parametrization of 
the whole curve. Examples of commonly used parametrization schemes are 
by equal or energy-weighted arc-length.

A different algorithm, named finite-temperature string method [204,205], 
was designed to calculate the so-called principal curve, that is, the curve 
joining the mean positions of the system on the hyperplanes perpendicular 
to the curve itself. Because of its definition, the location of this curve 
depends on specific features of the underlying energy landscapes, and is 
thus appropriate to be used when the landscape is rugged, or variations in 
the width of the reaction channel are relevant. The curve can be obtained via 
successive iterations of i) constrained sampling in the orthogonal hyper
planes, as in the original formulation [204], or sampling in the Voronoi 
tessellation of the space generated by the discretized images along the curve 
itself [205], ii) update of the images to the new centers of the distributions, 
and iii) a reparametrization step.

While the zero- and the finite-temperature string methods were first 
formulated in the space of the Cartesian coordinates of the system xÞ, 
versions using CVs have also been developed [85,205]. These allow to 
calculate the minimum free-energy path (MFEP), or the principal curve, 
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in free-energy space, and permit the use of a large number of CVs, being 
thus useful for applications involving complex systems with many degrees of 
freedom such as ion channels.

Over the years, variants of the string method in CVs have been developed, 
such as the on-the-fly [206], the swarms of trajectories [207], or the dyna
mical string method [208]. From a theoretical perspective, these algorithms 
calculate different paths [201,209,210], and as a consequence, they also differ 
on the technique used to evolve the images. Concerning ion channels, 
applications of the string methods include the conformational transition 
of a potassium channel voltage sensor domain [211] and the gating of the 
bacterial GLIC channel [42,212].

4.2.3. Techniques that employ selected reaction coordinates
Perhaps, the most commonly applied category of enhanced sampling tech
niques in ion channel simulations are those that aim to enhance sampling or 
reconstruct the free-energy (or Potential of Mean Force, PMF) landscape of 
the system with respect to a selected set of CVs, defined as 

WðzÞ ¼ � kBT ln

ð

e� βUðxÞ�n
i¼1δ½θiðxÞ � zi�dNx
ð

e� βUðxÞdNx
; (29) 

where fθ1ðxÞ; ::; θnðxÞg are n CVs and z ¼ fz1; ::; zng is a set of their values.
These techniques can be further classified into equilibrium (like Umbrella 

Sampling [213] or the Blue Moon Ensemble technique [214]), out-of- 
equilibrium (like Steered Molecular Dynamics [215] and Targeted 
Molecular Dynamics [216]), and close-to-equilibrium techniques (where 
the bias is small and incremental), like Metadynamics [217] or Adaptive 
Biasing Force [218] to cite but a few. In the last two techniques, the biasing 
potential is history-dependent, and favours the exploration of previously 
unvisited regions of the conformational space.

Good CVs should be low-dimensional descriptors of the functional 
dynamics of the system (often captured by the slow modes) [86]. If 
a system is biased to explore the whole range of values of the CV, it will 
perform a uniform sampling of all relevant metastable states as well as the 
Transition State Ensembles separating them. Given the structural complex
ity of biomolecular systems, as membrane-embedded ion channels, the 
choice of the most appropriate CV is not trivial at all. A direct solution 
would be to bias a huge number of CVs to make sure to include the relevant 
ones. Unfortunately, the volume of the space of CVs that the simulation 
needs to explore grows exponentially with the number of CVs so that, for 
practical purposes no more than 2–3 CVs can be simultaneously biased. To 
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properly identify the CVs, knowledge is required of the system degrees of 
freedom that are relevant for the free-energy barrier separating the minima. 
In complex biochemical systems, this choice is typically performed in 
a system-dependent manner. Yet, these approaches are widely used for the 
study of conformational transitions in proteins. For the specific case of ion 
channels, they are useful both to investigate conformational transitions and 
to evaluate the PMF for ion translocation.

Umbrella Sampling and Metadynamics have proven to be particularly 
useful in the field of ion channel research. In the first approach, the interval 
of CVs values to be explored is discretized, and several copies of the system 
are simulated, each restrained via biasing potentials to the different values. 
In this way, equally accurate sampling can be obtained across the whole CV 
range, including high-free energy regions. The CV distributions obtained 
from the restrained simulations are then unbiased and combined together to 
yield the proper full distribution, and hence the free energy as a function of 
the CV, for example, using the Weighted Histogram Analysis Method 
(WHAM) [219]. Umbrella sampling has been frequently used to study ion 
permeation and selectivity [10,25,220–222] and ligand binding [223,224], 
for example.

In metadynamics, the energy function is supplemented with an history- 
dependent biasing potential composed by a sum of Gaussian functions 
centered in the visited regions of the CV space. In this way, the biasing 
potential discourages the visit of regions already explored and pushes the 
simulation towards unexplored areas of the conformational space. In the 
limit of a very long simulation, the biasing potential fills all energy minima 
and the free-energy profile can be simply attained by reversing the sign of 
the biasing potential. Ideally, a metadynamics simulation should be stopped 
when all energy minima have been filled. Since it is difficult to identify this 
moment, there may be problems of overfilling that limit the accuracy of the 
free energy calculation. This kind of problems can be avoided by using well- 
tempered metadynamics [225] where the height of the energy Gaussians 
decreases exponentially during the simulation and it is possible to tune the 
fraction of the energy basins that will be filled. Metadynamics has found 
multiple applications in ion channel research, for example, in studying 
permeation [226,227], gating related conformational changes [228], and 
ligand binding [229,230]

Collective Variables (CVs) allow for a reduced and physically meaningful 
representation of the process under investigation. If few CVs satisfactorily 
describe a process it is possible to use them to reconstruct a low- 
dimensional free-energy landscape, for example, via umbrella sampling or 
metadynamics, or to drive an accelerated exploration of the phase-space 
[231,232]. For ion channels, this approach can be pursued only in some 
special cases, for example, ion permeation [233] or inactivation [234]. 
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Unfortunately, in the general case of gating, it is not easy to find simple 
descriptors for the complex structural rearrangements undergone by ion 
channels. High-dimensional CVs, however, preclude the reconstruction of 
large portions of their free-energy space. In those cases, path methods, such 
as the string method in collective variables [85] and related ones mentioned 
above, are more efficient because they entail a local optimization of the path. 
This efficiency, on the other hand, comes at the cost of exploring only 
a region close to the initial guess path. Overall, determination of CVs in 
gating problems is still an open challenge: in Section 6 we make some 
examples, which explore several rare event problems in ion channel research 
and discuss the choice of suitable descriptors.

4.2.4. Techniques that employ alchemical perturbations
Alchemical perturbations, such as the addition or removal of atoms, or the 
mutation of one amino acid residue to another during a simulation can be 
considered as an example of techniques that exploit the knowledge of end 
states to compute the free-energy difference between them. The most 
commonly employed approaches for this are the related methods of Free- 
Energy Perturbation (FEP) [235] and Thermodynamic Integration (TI) 
[236]. The approach exploits the fact that free energy is a state function so 
that the free-energy difference between end states can be attained as the sum 
of the free energies of a number of reactions arranged so as to close 
a thermodynamic cycle. Moreover, since the path is of no interest here, 
some or all of these steps may be un-physical which justifies the name of 
alchemical methods. In practice, the transition is broken into multiple steps 
(characterised by the parameter λ that varies from 0 to 1), each of which is 
run as a separate stage of the simulation or as separate simulations (i.e. 
atoms slowly appear or disappear across this transition). The total free- 
energy change can be summed from the individual steps.

A typical application of alchemical methods is drug design, in which a key 
parameter is either the absolute free energy of binding of a ligand to 
a protein, or the relative-binding free energy of two different ligands 
[224,237]. In the former case, the reaction of interest is the migration of 
the ligand from bulk to the protein-binding site, which can be calculated 
from summing the free energy of ligand annihilation in bulk and ligand 
creation in the site. For relative free energies, the annihilation of one ligand 
in the binding site can be done simultaneously with the creation of the 
other. This approach has also found significant value in understanding the 
basis of ion selectivity, where the free energy to swap one ion type to another 
is computed at different points in the permeation pathway or in model- 
binding sites [20,238].
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For the sake of completeness, we will cite an alternative method for the 
computation of free energies of binding, MM-PBSA or MM-GBSA [239]. In 
these methods, molecular mechanics energies (representing binding ener
gies in vacuo) are combined with solvationfree energies (of ligand, receptor, 
and complex) computed by solving the linearized Poisson-Boltzmann or 
generalized Born equation. Using these contributions it is possible to build 
a thermodynamic cycle to compute binding free energies in solution. Of 
note, the direct calculation of the binding free energy of solvated reactants 
would be highly inaccurate because energy would be dominated by solvent– 
solvent interactions and the fluctuations of the total energy would be an 
order of magnitude larger than the binding energy. MM-PBSA and MM- 
GBSA can be considered intermediate in both accuracy and computational 
effort between empirical scoring and strict alchemical perturbation meth
ods. In the last years, these approaches have been applied to a large number 
of systems with varying success [240–242].

4.3. Hybrid methods: Brownian Dynamics

Brownian Dynamics can be considered as a compromise between the 
computational efficiency of continuum methods and the molecular accuracy 
of atomistic ones. Finite size and ion–ion correlation effects are recovered in 
Brownian Dynamics (BD) [243], a technique where ions are explicitly 
modeled as particles while water, lipids, and proteins are still treated as 
continuous dielectric media. BD allows to observe statistically relevant 
numbers of permeation events in a time range from the microsecond to 
the millisecond and it thus represents the method of election for the 
computation of ion currents. Ion trajectories are computed integrating 
Langevin equation [244]: 

mi€xiðtÞ ¼ �
@WðxðtÞÞ
@xiðtÞ

� γix
:

iðtÞ þ f iðtÞ: (30) 

The right-hand side of Equation (30) represents the forces acting on particle 
i. The term W is an effective potential, whose negative gradient with respect 
to xi is the force stemming from the interaction with other particles, with the 
fixed charge distribution of the protein and membrane, and with the reac
tion field. The role of the solvent is implicitly accounted for by the friction 
term � γix

:

iðtÞ and the gaussian fluctuating force f iðtÞ, which models ran
dom collisions.

The dynamics of ions in water is well approximated by the over-damped 
regime where the inertial term can be neglected and the Langevin equation 
reduces to 
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:

iðtÞ ¼ �
Di

kBT
@WðxðtÞÞ
@xiðtÞ

þ ζiðtÞ (31) 

where Di is the ion diffusion coefficient and ζiðtÞ is a Gaussian random 
noise. In principle, the diffusion coefficient should be position-dependent 
but most simulation works employ a single position-independent diffusion 
coefficient for all atoms of the same species. The effective potential W is split 
in a number of contributions that account for ion–ion interactions as well as 
the interactions of the ion with the pore, solution, and other biomolecules 
[97,245]: 

W xð Þ ¼
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j�i
uij xi � xj
�
�

�
�

� �
þ
P

i
Ucore xið Þ

þ
P

i
qi ϕsf xið Þ þ ϕrf xið Þ
� � (32) 

where the first contribution on the RHS models ion–ion interactions and 
includes a Lennard-Jones and a Coulomb term, the second contribution is 
a confinement potential that models the geometry of the pore representing 
the ion-accessible region, ϕsf represents the static field, that is, the electro
static potential generated by the fixed charge distribution of proteins and 
lipids, and ϕrf is the reaction field, that is, the electrostatic potential gener
ated by the polarization of the dielectric boundaries [246]. Notable exten
sions of the basic BD algorithm include that of Roux and coworkers 
[97,247], who designed a Grand Canonical Monte Carlo/Brownian 
Dynamics scheme that allows to model a variable number of ions and 
asymmetric ion concentrations, and that of Chung and colleagues [248], 
who included mobile protein elements.

5. Brownian Dynamics: applications

The accuracy of Brownian Dynamics can be enhanced if the effective 
potential is computed from fully atomistic Molecular Dynamics simula
tions. Using this approach Berneche and Roux [249] analyzed the conduc
tion mechanism in the KcsA potassium channel. In this work, the effective 
potential was considered as a function of the axial coordinates of the three 
ions occupying the selectivity filter and it was decomposed as 

Wtðx1; x2; x3Þ ¼Weqðx1; x2; x3Þ þ
X3

i¼1
qϕmpðxiÞ (33) 

where Weq is the equilibrium potential that was derived from all-atom 
umbrella sampling simulations and ϕmpðxÞ is the transmembrane potential 
profile that was computed with Poisson-Boltzmann equation. In particular, 
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the Brownian simulation was implemented as a continuous-time Markov 
chain with discrete states corresponding to the ions positions. Forward and 
backward transition rates were computed as 

kðz1;z2;z3Þ!ðz1�δz;z2;z3Þ ¼
Dðz1ÞþDðz1�δzÞ

2δz2

� �
exp � Wtðz1�δz;z2;z3Þ� Wtðz1;z2;z3Þ

2kBT

� �

Using this approach the authors measured a maximal conductance of the 
channel in excellent agreement with experimental data [17] (550 and 360 pS 
for outward and inward fluxes, respectively). More importantly, the large 
statistics of crossing events, accrued during the long BD simulations, 
enabled the authors to clarify the mechanism of outward permeation 
which proceeds along the sequence of states 
½S3; S1� ! ½S4; S3; S1� ! ½S4; S2; S0� ! ½S4; S2� ! ½S3; S1�, where Si with i ¼
0; � � � ; 4 identifies the binding sites inside the selectivity filter of KcsA. 
Inward permeation was found to occur in the reverse order. When this 
information was integrated with the free energy maps it became clear that 
the key step of the process was the ½S4; S3; S1� ! ½S4; S2; S0� transition 
because configuration ½S4; S3; S1� was less stable than ½S4; S2; S0�. This finding 
thus justified the difference between the outward and inward conductance, 
challenging the traditional view of isoenergetic states and barrierless 
conduction.

The use of ion channels and nanopores for DNA sequencing is another 
application where the use of MD simulations to tune the parameters of 
Brownian Dynamics can lead to invaluable results. The idea to sequence 
DNA exploiting the signature currents of the four nucleotides as the chain is 
electrophoretically pulled through a nanopore, dates from the beginning of 
the 2000s [250,251]. However, it soon became clear that the current cannot 
depend on a single base but more likely a stretch of a few nucleotides whose 
sequence varies in time in a sequence-dependent manner. Since no experi
mental device can currently image the conformation of a DNA chain as it is 
pulled through a nanopore, Molecular Dynamics algorithms have become 
the tool of election. Unfortunately, the computational measurement of the 
small currents flowing through ion channels requires prohibitively long 
simulations. For instance, a typical 100 pA ion current corresponds to the 
observation of approximately 104 ion crossing events which requires a 16 
μs MD simulation. Simulations of this length can be routinely run using 
Brownian Dynamics but the accuracy of the simulation requires a careful 
tuning of the effective potential using information deriving from atomistic 
MD. In the protocol designed by Comer and Aksimentiev [252] (named 
Atomic Resolution Brownian Dynamics – ARBD) the effective potential is 
decomposed in an ion–ion interaction term and a term of interaction of the 
ions with nanopore and DNA: 
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Wðx1; x2; � � �Þ ¼
X

ij
Wion� ion

ij ðjxi � xjjÞ þ
X

i
Wsys� ion

i ðxiÞ (34) 

The Wion� ion term was computed through three sets of Umbrella Sampling 
simulations that determined the PMF of the K+-K+, K+-Cl – and Cl–-Cl – 

pairs as a function of the distance between the two ions. The Wsys� ion
i were 

also computed from Umbrella sampling simulations where a single potas
sium or chloride ion was restrained to the center of the cells of a hexagonal 
lattice surrounding a single nucleotide restrained to the typical B-form of 
DNA and immersed in a water box. Comer and Aksimentiev showed that 
the 3D-PMFs generated from isolated nucleotides can be combined together 
to generate the PMF of large systems like oligonucleotides and base pairs. As 
an example, the reconstructed PMF of the A � T base-pair, wAT , can be 
computed from the PMF of the isolated A and B nucleotides (WA and WB 
respectively) as: 

wATðXÞ ¼WAðT� 1
A XÞ þWBðT� 1

B XÞ (35) 

where TA and TB are the rigid-body transformations that map the coordi
nates xA

i and xB
i of the isolated A and B nucleotides to the coordinates Xi of 

the same nucleotides in the A � T base-pair. In a similar fashion, Comer and 
Aksimentiev showed that the PMF of a single-stranded DNA chain (ssDNA) 
can be attained by summing the PMF of the individual component nucleo
tides (with appropriate geometric transformations). Moreover, if 
a nucleotide is replaced with another one, the PMF of the ssDNA can be 
updated by appropriately replacing the PMF of the mutated base. The limit 
of this approach is that it cannot be used to build the PMF of double- 
stranded DNA (dsDNA) because the interaction of potassium ions for the 
minor groove is significantly under-estimated. The PMF of dsDNA must 
therefore be computed through atomistic umbrella sampling simulations. 
Mutations, however, can then be applied just as with ssDNA. It is important 
to stress that the computational efficiency of the method by Comer and 
Aksimentiev is critically reliant on the ability to combine elementary PMFs 
to generate the PMF of larger systems. Indeed, despite the power of 
Brownian Dynamics, there will be no computational saving if for each 
new system an expensive umbrella sampling simulation must be run to 
produce the effective potential. The accuracy test showed that ARBD gen
erates ion distributions consistent with those predicted by atomistic simula
tions. Moreover, at low salt concentrations, ARBD computes currents in 
quantitative and qualitative agreement with those of atomistic MD. Finally, 
at higher concentrations, the agreement between ARBD and atomistic 
simulations is only qualitative. The authors, however, observed that the 
currents computed by ARBD in bulk solution are in better agreement 
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with experimental data than the currents predicted by atomistic simulations. 
It remains to be tested whether this better agreement is also preserved in the 
confined environment of nanopores partially occluded by nucleotide chains.

6. Atomistic approaches: applications

The most notable properties of ion channels are ion selectivity, high per
meation rates, and gating which allow them to orchestrate complex biolo
gical functions, such as neuron firing and muscle contraction. Because of the 
problem of rare events explained in Section 4.2, the characterisation of each 
of these properties requires enhanced sampling techniques. In the following 
we review few selected examples in which different techniques were used to 
assess permeability, selectivity, and gating in ion channels or models thereof. 
These examples are by no means exhaustive and reflect the authors’ 
expertise.

6.1. Permeability and selectivity of NaChBac

Guardiani et al. [253] used metadynamics to study the permeability of 
a bacterial voltage-gated sodium channel, NaChBac. Interestingly, while 
a PMF derived from a long equilibrium simulation exhibited four minima 
(in agreement with a study by Catterall and coworkers on NavAb [254]), the 
PMF derived from a metadynamics simulation biasing a single Na+ ion to 
explore the Selectivity Filter (SF) featured a single minimum so deep that the 
ion would remain trapped inside. The mismatch turned out to be due to an 
energy barrier in the middle of the SF that an ion could overcome only after 
receiving an electrostatic kick from a second incoming ion. Indeed, this 
knock-on mechanism was clearly identified when the metadynamics simu
lation was repeated biasing two ions instead of one. These results clearly 
highlight a requirement common to metadynamics and all collective- 
variable driven methods, including umbrella sampling [213], i.e., these 
approaches need some preliminary knowledge of the number and kind of 
collective variables relevant to describe the process at hand; in this case, this 
meant that some rough idea of the permeation mechanism had to be known 
a priori.

Metadynamics is a powerful tool also for the study of selectivity. Indeed, 
equilibrium and metadynamics simulations [255] revealed that a single 
calcium ion could access the SF of NaChBac but then remained stuck inside. 
This is due to the larger binding free energy of Ca2+ as compared to Na+ and 
to the unlikelihood of a Ca2+/Ca2+ knock-on mechanism. Indeed, in meta
dynamics calculations with a fixed and a mobile ion, the free-energy profile 
experienced by the incoming ion featured a very high barrier due to the 
electrostatic repulsion of the resident ion.
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6.2. Bias exchange metadynamics simulations of NavAb

The NaChBac simulation study reported in Section 6.1 highlights a limit of 
metadynamics that is shared by many other enhanced sampling techniques: 
the necessity of a preliminary knowledge of the type and number of ions 
involved in the permeation mechanism. As also mentioned in Section 7, in 
Bias Exchange (BE) metadynamics several replicas of the system are run in 
parallel. Each replica runs a metadynamics simulation with bias on different 
collective variables, and structural exchanges are attempted at regular time 
intervals. The exchanges are accepted with probability pacc ¼

min½1; exp βΔV� where ΔV ¼ ½V1ðx1Þ þ V2ðx2Þ� � ½V1ðx2Þ þ V2ðx1Þ�. This 
technique naturally lends itself to the study of multi-ion permeation pro
cesses. Indeed, if Nmax is the maximal number of ions that are expected to be 
involved in permeation, it is sufficient to use Nmax replicas each biasing the 
axial position of a single ion (plus a neutral replica where no biasing 
potential is applied). Since ions are free to leave or remain inside the pore, 
the number of ions taking part in conduction will also vary. Moreover, while 
each replica enhances the dynamics along the single biased CV, the 
exchanges between replicas enhance the sampling along the whole set of 
CVs biased in all the replicas. Domene et al [256] applied the method to the 
study of a simplified model of the NavAb sodium channel. Indeed BE- 
metadynamics yielded 1D- and 2D-PMF in excellent agreement with 
those generated by umbrella sampling at a fraction of the computational 
cost of the latter technique: while fullfree energy convergence took 300 ns in 
BE-metadynamics, more than 1 μs was required by umbrella sampling. 
Furthermore, in BE-metadynamics, the number and type of ions involved 
in conduction events did not need to be predefined, and conduction events 
where different numbers of ions are involved could be analyzed and com
pared using a single simulation.

6.3. Structure of claudin-based paracellular channels

Recently, computational studies on claudins, transmembrane proteins that 
are part of tight-junctions between adjacent epithelial or endothelial cells, 
have been reported. Using structural modelling and all-atoms molecular 
dynamics simulations Alberini et al [257] refined the channel architecture 
proposed by Suzuki et al [258,259]. To validate the model, the authors 
verified its experimentally known selectivity properties for cations [260] 
by employing the Voronoi-tessellated Markovian Milestoning method for 
free energy and kinetics calculations [205,261]. Milestoning allows recon
structing the long-time dynamics of a system from the crossing statistics of 
its trajectory through a set of hypersurfaces (the milestones) placed along 
the reaction coordinate [262,263]. It can be employed to obtain mean-first- 
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passage-times and in turn permeability coefficients (compare with Section 
3.2) across membranes or channels, even without relying on the so-called 
inhomogeneous solubility-diffusion model [264]. Voronoi-tessellated 
Markovian Milestoning is a version of the method that leverages indepen
dent simulations confined within a set of cells spanning the reaction coor
dinate. Transition path theory [265] is then used to obtain the kinetic 
properties of the full reaction from hitting statistics at the cell boundaries, 
identified as milestones.

6.4. Structures and permeability of nAChR

Enhanced sampling techniques are also very important for the functional 
annotation of Ligand Gated Ion channels (LGIC) that requires the investi
gation of the ion translocation through the pore crossing high free-energy 
barriers. Within this framework Chiodo et al [266–269] investigated the α7 
nicotinic acetylcholine receptor (nAChR), a widely expressed LGIC of the 
brain related to schizofrenia and Alzheimer’s disease [270,271]. Performing 
analysis of the profile and hydration in extensive molecular dynamics 
simulations of a homology model, the authors were able to associate differ
ent conformations to four different functional states: the open active state 
[266], a desensitized state [267], a closed-locked, non-conductive state [268] 
and the apo-resting state [268]. A comparison with the recent experimental 
structures of the channels in different states [272,273] confirms the accuracy 
of the models.

To provide a refined description of the process, the ion permeation across 
the all-atoms full-length (TMD+LBD) human α7 channel model, was stu
died both in native and in the E-1’A mutant [274]. The single-ion PMF (i.e. 
the PMF of one ion while no other ions are present in the pore, see UðxÞ in 
Equation (23)) and the ion translocation kinetics were reconstructed for 
sodium and chloride by using the milestoning method with Voronoi tessel
lation [205,261].

The 1D PMF profiles shown in Figure 7 allowed to identify the structural 
determinants of ion translocation, i.e. the key residues responsible for the 
formation of energy barriers and kinetic traps, along the protein structure 
represented in background in Figure 7. The mean first passage time to 
traverse the full channel is smaller for sodium than chloride consistent 
with the experimentally determined cationic nature of wild type α7. 
Moreover, results indicate that the free-energy barriers in the transmem
brane domain play the major role in ion permeation, in agreement with 
results from simulations on GLIC [275].
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6.5. Gating of hERG

So far examples focused on permeation and selectivity but ion channels 
exhibit another key property, gating, i.e. the ability to open and close in 
response to specific stimuli. A particularly interesting case is represented by 
hERG, a potassium channel involved in the repolarization of cardiomyo
cytes [276], whose mutations and nonspecific interactions with a wide range 
of drugs leads to the Long QT Syndrome [277,278]. In order to limit the 
incidence of this disease, the FDA has promoted the Comprehensive in vitro 
proarrhytmia assay [279], a screening program to exclude from the phar
maceutical development pipeline drugs exhibiting unintended interactions 
with hERG.

From the structural point of view hERG is formed by four identical 
subunits each comprising a Voltage Sensor Domain (VSD), a Pore 
Domain (PD), and a carboxy-terminal domain [280], see Figure 8(a,b). 
hERG responds to changes in the membrane potential with a movement 
of helix S4 of the VSD. This motion is somehow transduced to the PD where 
the gate is located. In order to clarify the mechanism of electro-mechanical 
coupling Costa et al [52] used a network theoretical approach already 
applied to the study of allosteric enzymes [49,50] and ion channels 
[51,281,282]. The channel is modeled as a network where each node corre
sponds to a residue, arcs correspond to interactions between residues and 
edge weights quantify the efficacy of motion propagation. Once the network 
is built, the minimal paths connecting all residues of a source and a sink 
region are computed using Dijkstra’s algorithm. Using this approach two 
families of VSD-PD pathways were identified, see Figure 8(c). Interestingly, 

Figure 7. PMF for the permeation of sodium (black) and chloride (red) ions through the full α7 
native channel. The curves are shifted along the y axis so that their values match at the 
intracellular end (on the left). On the background: two protein subunits are shown, represented 
in cartoon, for the sake of clarity. Lipids are in line representation; water represented with 
points. Dots indicate the centers of the Voronoi cells. Figure reproduced with permission from 
[274]. Copyright 2020 American Chemical Society.
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several mutations known to affect hERG gating could be mapped on the 
discovered paths suggesting that mutations act by interrupting the electro- 
mechanical coupling between VSD and PD.

6.6. Hydrophobic gating in model channels

While hERG exhibits the typical voltage-gated steric occlusion of the chan
nel, in other channels ion currents are blocked by hydrophobic gating 
[38,44,283,284]. Hydrophobic gating involves the formation of a vapour 
phase – a bubble – nucleating from the liquid phase inside the hydrophobic 
portion of the cavity of the biological channel [268]. Bubble formation in 
confinement has been shown to be deeply dependent on several character
istics of the nanopore, such as hydrophobicity, geometry, and size [45].

Simplified models of ion channels are a useful tool to disentangle the 
competing factors affecting the energetics of bubble formation in ion channels 
[44,283] and to provide microscopic interpretations of experimental results 
on nanoporous materials [285]. An example of this physical approach to 
hydrophobic gating is the study of the drying mechanism of model nanopores 
in the presence of an hydrophobic solute dissolved in water [47]. A cylindrical 
nanopore with the typical hydrophobicity of nonpolar aminoacids was stu
died by means of a rare event method, Restrained Molecular Dynamics [231], 
in order to characterize the kinetics of drying. Two collective variables were 
used: one controlling the water filling of the pore and the other the axial 
position of the gas. The bubble gating process was shown to be crucially 
modified by the physical presence of the hydrophobic solute inside the 

Figure 8. Structure of the hERG channel (b) with definition of the VSD, PD, and CTD (a). 
Pathways connecting the VSD and the PD (c) identified for a representative subunit by 
a network theoretical approach, which considers the residues as the nodes and the distances 
related to their correlations. Figures reproduced with permission from [52] under CC BY 4.0 
license.
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channel, see Figure 9. In particular, a single atom of argon was enough to 
abate the drying free-energy barrier between the wet and the dry state of the 
hydrophobic nanopore, causing the instantaneous drying of the whole nano
pore for sizes comparable to the inner section of biological channels. 
Moreover, it was shown that the gas particle stabilizes the dry state of the 
nanopore and that the most probable mechanism of drying for this system 
corresponds to the infiltration of the gas particle inside the wet nanopore 
followed by the drying event. Such mechanism becomes relevant in connec
tion to the context of general anesthetics, and in particular of volatile anes
thetics, such as noble gases [286] and to the hypothesis that bubble formation 
may be involved in general anesthetics [44].

6.7. Identification of functional states of Kv and Nav channels

Voltage-gated ion channels undergo conformational changes in response to 
membrane potential, cycling between closed and open states. While X-ray 
crystallographic structures of Kv1.2, Kv1.2/Kv2.1 chimera and NavAb chan
nels [254,287,288] in the active state became available already in the early 
2000s, the resting state structure of the VSD resisted for very long to 
experimental determination. As of 2022 the situation has not particularly 
improved. In 2014, the VSD of Ciona intestinalis was crystallized in both the 
active and resting states [289], but the resting states of most other Kv and 
Nav channels are still unknown.

This experimental bottleneck prompted massive computational efforts to 
predict the resting state. Early models were obtained using the Rosetta 
program [290] and refined through atomistic simulations [291]. Other 
models were generated through restrained MD simulations enforcing 
a wide array of constraints deriving from experiments of mutagenesis, cross- 
linking, fluorescence, and resonance-energy transfer. These techniques 
indeed identify residue–residue interactions that can be readily translated 
into distance constraints. A notable work in this field was performed by 
Vargas et al [292] who computationally engineered metal bridges between 
pairs of residues experimentally predicted to be in close proximity. An 
alternative approach is based on simulations incorporating the effect of 
the membrane potential. In this case, the ambition is not only to predict 
the resting state of the VSD but also to reconstruct the complete sequence of 
events of the active ! resting conformational transition induced by 
membrane hyperpolarization. A particularly important contribution was 
given by Jensen et al [14] who ran hundreds of microseconds of MD 
simulations using a non-physiological potential (−750 mV) to accelerate 
the transition.
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Remarkably, despite the wide variety of computational methods used by 
these investigators, the research results were largely in agreement with each 
other, yielding a ‘low-resolution’ consensus model [293] (see Figure 10) that 
can be used as a benchmark to discuss the idealized gating mechanisms 
proposed in the literature [294–297]. The consensus model [293] of the 
resting state of the VSD lends strong support to the helical-screw/sliding- 
helix model [294,295]. Indeed, all the resting state models show a significant 
roto-translation of helix S4 that undergoes a helical displacement of , 10 Å. 
This displacement is significantly smaller than that predicted by the paddle 
model (20–25 Å) [296], but larger than that implied by the transporter-like 
model [297]. Even if extreme caution should always be exercised when 
dealing with computational predictions, the consensus model clearly 
shows the power of computational modeling and MD simulations in the 
solution of key problems of membrane physiology.

7. Outlook and perspectives

The possibility to perform biomolecular simulations critically relies on the 
availability of good-quality structures. This necessity can be summarized in 
the statement: no structure, no simulation. This problem is particularly 
serious in the case of membrane proteins that are too large and hydrophobic 
to be resolved through NMR spectroscopy and are notoriously difficult to 
crystallize [298]. Indeed, membrane proteins represent between 20 and 30% 
of the proteome of most organisms, yet, to date, less than 1% of the entries of 
the Protein Data Bank are membrane proteins, and only a small fraction of 
these are eukaryotic. Eukaryotic membrane proteins cannot be expressed in 

Figure 9. Illustration of the effect of a single hydrophobic particle on the dewetting of a model 
nanopore: the dewetting barrier is abated when an Argon atom enters the water-filled pore, 
thus accelerating the process of hydrophobic gating. Reproduced with permission from [47]. 
Copyright 2020 American Chemical Society.
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prokaryotic systems because they require specific eukaryotic machinery for 
post-translational modifications and to be trafficked to the membrane. This 
is why eukaryotic membrane proteins cannot be produced recombinantly 
through standard genetic engineering techniques but they need to be pur
ified from native sources. This, however, leads to another problem, because 
membrane proteins are unstable [299] even when treated with the mildest 
detergents needed for their extraction. The necessity to use detergents leads 
to high-volume crystals containing large amounts of solvent. These crystals 
are fragile, diffract at low resolution and suffer from irradiation damage. 
Over the last few years, cryo-electron microscopy (cryo-EM) has emerged as 
a powerful alternative to X-ray diffraction for the structural resolution of 
membrane proteins [71]. Indeed, cryo-EM requires small volumes and 
lower concentrations so that it can be applied to samples purified from 
natural sources. Moreover, cryo-EM does not require removal of flexible 
loops or the addition of stabilizing substrates to induce crystallization. 
Finally, while X-ray structures may suffer from artifacts due to crystal 
packing forces, the rapid quenching to the temperature of liquid nitrogen 
required by cryo-EM freezes the protein in a set of conformations more 
likely to represent functional states [300].

Figure 10. Main elements of secondary structure of the VSD in the active and resting state. (a) 
The VSD in the active conformation (taken from the x-ray structure; PDB accession no. 3LUT). (b) 
A superposition of different models of the resting- state configuration of the VSD obtained by 
independent research teams using different constraints and methodologies. The four helices, S1 
(gray), S2 (yellow), S3 (red), and S4 (blue), are displayed. The spheres correspond to the Cα 
atoms of E1 (Glu226) and E2 (Glu236) along S2, and R1 (Arg294) along S4. ©(2012) Vargas et al. 
Originally published in Journal of General Physiology [293].
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Although the overall number of available ion channel structures is still 
underrepresented as compared to other protein families, the improvement 
in the experimental techniques provided in the past five years has led to 
a remarkable increase in their availability. This is, for example, the case of 
human nicotinic receptors and voltage gated sodium channels for which 
a wealth of eukaryotic structures have been very recently deposited 
[272,273,301–309].

The scarcity of experimental ion channel structures prompted in the 
years the development of a series of computational tools to predict ion 
channels directly from protein sequences. Homology modeling combined 
with atomistic simulations provides a valuable approach to investigate the 
structure-dynamics-function relationship in several ion channels [310,311]. 
Methods based on machine learning algorithms have been recently devel
oped in ion channel research, from sequence-based predictions to the 
topology of the transmembrane region, including structure-activity rela
tionship [312–314]. Moreover, machine learning shows further promise for 
structure prediction, see the AlphaFold [315] successes at CASP13 and 
CASP14.

Nowadays the most popular technique for the computational study of 
membrane proteins is represented by Molecular Dynamics simulations. 
Despite impressive improvements over the last few years, MD simulations 
still suffer from a number of limitations that in 1990 were highlighted by 
Karplus and Petsko [316] in a sentence that still holds true today: ‘Two 
limitations in existing simulations are the approximations in the potential 
energy functions and the lengths of the simulations. The first introduces 
systematic errors and the second statistical errors’.

In order to overcome the approximations of the potential energy func
tions, massive efforts are being performed in the development of more 
accurate force fields. A major limitation of most currently used force fields 
is that they employ fixed atomic charges corresponding to the electrostatic 
environment of bulk solvent. This assumption is not always correct. For 
instance, non-polarizable force fields under-estimate by a factor of 2 the 
dielectric constant of the lipid bilayer [317] doubling the energy barrier of 
an ion crossing the membrane. The lack of lipid polarization is reflected in 
the free-energy profile of an ion crossing the gramicidin A channel [318– 
320]. Non-polarizable force fields also lack accuracy in the modelling of 
divalent cations like Ca2+ and Mg2+ [321] that, owing to their high charge 
density, tend to polarize the surrounding water shell. At the moment, the 
most commonly used polarizable force fields are the Drude oscillator 
[322,323] and the AMOEBA force field [324]. Even if promising results 
have been reported, the development of these force fields is still a work in 
progress hampered by the limited availability of model parameters and the 
increased computational cost [325]. For instance, using NAMD the 
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computational cost of a simulation with a polarizable force field is twice that 
of the non-polarizable counterpart [326,327]. The increasing use of GPU 
cards for biomolecular simulations will likely provide new momentum to 
the development of polarizable force fields [328]. Besides the issue of 
computational cost, the modeling of electrostatic interactions also needs 
further refinement. Polarizable force fields are more accurate than classical 
force fields in the simulation of heterogeneous environments featuring 
regions with different dielectric constants or different hydrophobicity.

The problem of the short length of MD trajectories, already highlighted 
by Karplus and Pesko [316], lies at the heart of any simulation method. 
Indeed, MD simulations have the ambition to connect structure with func
tion through dynamics but, while current trajectories routinely cover hun
dreds of nanoseconds, relevant biological phenomena occurs in 
milliseconds to seconds. For instance, this is the case of electrophysiological 
recordings that are measured over several milliseconds. In order to ratio
nalize at the molecular level the experimental patterns, MD simulations 
need to reach longer time-scales. A brute force approach to overcome this 
limitation is to increase computing power. While in the 1980s supercom
puters contained just a few powerful Central Processing Units (CPUs) in the 
1990s the trend emerged to combine several CPUs into a cluster [72]. 
Nowadays supercomputers of top high-performance computing centres 
may contain hundreds of thousands to millions of CPU cores. Another 
trend involves the use of Graphical Processing Units (GPUs) originally 
designed for gaming [78]. This hardware is particularly well suited for 
highly repetitive operations like the force calculations that represent the 
most demanding part of MD simulations. The bottleneck here is the neces
sity to translate MD codes from Fortran or C to a more appropriate 
programming language like CUDA. However, given the small cost of 
GPUs it can be foreseen that in the near future ordinary researchers will 
afford to buy multi-GPU workstations providing the opportunity to do 
high-performance computing at their desk. An interesting alternative to 
CPU- and GPU-based general purpose computers is the design of a special 
purpose machine with an architecture tailored for MD simulations like the 
Anton supercomputer [79]. Anton was named after the early microscopist 
Anton van Leeuwenhoek with the declared ambition to develop 
a computational microscope with a resolution unattainable by any experi
mental method. Anton, that owes part of its high performance to a parallel 
architecture and optimized inter-node communications, has led to several 
important discoveries. For instance, Anton has helped to clarify the 
mechanism of transition between open and closed states in voltage gated 
potassium channels [13] and has allowed simulations of drug-binding in 
G-protein coupled receptors [329]. Moreover, the long simulations allowed 
by Anton revealed the flaws of a force field that would remain latent in 

ADVANCES IN PHYSICS: X 49



shorter simulations. The third generation of Anton supercomputers has 
been announced in 2021 [330], which claims to perform on 512 nodes 
100μs per day for a million-atoms system.

In many cases, even the use of high-performance hardware does not 
enable sufficient sampling – anyway not efficient – calling for advanced 
enhanced sampling techniques. In section 4.2 we described several 
enhanced sampling approaches. Two of them, Metadynamics and Replica 
Exchange Molecular Dynamics have proven to be particularly effective, but 
they still present a number of limitations. The most critical problem of 
metadynamics is represented by hidden degrees of freedom, which may not 
be accurately described by the chosen CVs and can frustrate the exploration 
of the phase space, sometimes limiting the extent of convergence and 
accuracy of results, see, for example, the rightmost panel in Figure 11 in 
which biasing along a single CV, say S1, does not allow the correct recon
struction of the free-energy landscape. REMD simulations, on the other 
hand, do not need any preliminary choice of CVs and they enhance the 
sampling of all degrees of freedom through high temperatures. 
Unfortunately, the necessity to use a number of replicas proportional to 
the square root of the number of atoms, makes the technique too compu
tationally demanding for the simulation of large systems as a membrane- 
embedded ion channel. It is thus clear that the strengths and weaknesses of 
CV-based methods and REMD are complementary and their combination 
generates a new class of promising methods, see also [331,332]. A first 
combination of the two techniques is represented by Parallel Tempering 
Metadynamics [82]. In this algorithm, a number of metadynamics simula
tions biasing the same CV are run in parallel at different temperatures and 
exchanges between neighbouring replicas are performed with the 
Metropolis rule as in REMD. In this scheme, metadynamics ensures an 
effective sampling along the chosen CV while the exchanges with high- 
temperature replicas allow sampling along orthogonal CVs. Another hybrid 
algorithm combining metadynamics and REMD is Bias Exchange 
Metadynamics [83] where a number of replicas are run in parallel with 
bias on different CVs and exchanges are performed at regular time interval 
with the Metropolis criterium.

Powerful hybrid techniques arise not only from the combination of 
different enhanced sampling techniques but also from the combination of 
simulation methods with different resolutions. These methods are particu
larly important when a part of the system needs to be treated with atomistic 
detail while the rest of the system is very large and just acts as the environ
ment of the relevant part, so that it is more convenient to treat it at a coarse- 
grained level. This situation is particularly relevant for the study of ion 
channels. For instance, the simulation of a whole vesicle is computationally 
very expensive so that membrane lipids could be described using a CG 
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model while the ion channel or the few membrane proteins of interest could 
be described at atomistic level. This would also account for the fact that the 
MARTINI force field currently models lipids more accurately than proteins. 
Such a framework is provided, e.g., by the adaptive resolution scheme 
(AdResS) in its different flavours [333–335] where the atomistic and coarse 
grained domains are connected by an intermediate region that allows for 
a continuous transition between the two domains. The passage between 
regions modeled at different resolutions is described by a sigmoid transition 
function λðxÞ that grows monotonically from zero (CG region) to one 
(atomistic region) taking values 0< λ< 1 in the hybrid region. Assuming 
a mono-dimensional case, the transition function allows the calculation of 
the force acting on residue α: 

FαðxαÞ ¼
X

β�α
½λðxαÞλðxβÞFAA

αβ þ ð1 � λðxαÞλðxβÞÞFCG
αβ � þ FthðxαÞ (36) 

where the atomistic FAA
αβ and coarse grained force FCG

αβ are just the negative 
gradients of the corresponding potentials 

VAA
α ¼

1
2

XN

β�α

Xn

ij
VAAðjxαi � xβjjÞ (37a) 

Figure 11. Illustration of machine learning applications to the analysis and enhancement of MD 
simulations. High dimensional data, e.g. the protein trajectory, is used as the input of an 
artificial neural network (ANN). The ANN is trained to project the input to a low dimensional 
space minimising a loss function. Depending on the structure of the ANN and on the loss 
function, the low dimensional representation captures different features that are considered to 
be important, such as slow modes. In some methods, the features learnt are used to further 
enhance the sampling of MD simulation as shown by the arrow in the bottom. Reproduced 
from [340], Copyright 2020, with permission from Elsevier.
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VCG
α ¼

1
2

X

β�α
VCGðjXα � XβjÞ (37b) 

with xαi and xβj the position vectors of atom i of residue α and atom j of 
residue β while Xα and Xβ are the position vectors of the center of mass of 
residues α and β. It is important to note that the equations of state of the 
atomistic and coarse grained systems are very different so that a given value 
of the density corresponds to different values of the pressure. Therefore, in 
order to simulate the multiscale system at uniform density without dissipat
ing the pressure gradient between the atomistic and coarse grained domains, 
it is necessary to add a thermodynamic force (the term FthðxαÞ in Equation 
(36)). This force is determined iteratively starting from the initial choice 
F0

th ¼ M=ρ ÑpðxÞ. The method has been initially used [336] for the calcula
tion of chemical potentials and solvation-free energies of molecular systems. 
For instance, a characterization of the solvation shell of fullerenes revealed 
that surface-induced structuring of water does not go beyond the second 
hydration layer. The AdResS method, however, is extremely flexible and 
recent applications include quantum-classical coupling [337], non- 
equilibrium systems [338], and advanced free-energy calculations [339].

A class of techniques that is finding increasing application in the arena of 
biomolecular simulation is represented by Machine Learning (ML). ML is 
leading a revolution in all fields of science and technology with applications 
ranging from image and speech recognition to the prediction of drug action. 
In particular, we will discuss the application of deep feedforward neural 
networks [341]. A neural network is just a set of activating functions called 
neurons and organized in layers (Figure 11). A neuron in a layer receives as 
input the weighted sum of the outputs of the previous layer, transforms this 
total input through a non-linear function, and passes the output to the next 
layer. The most important feature of deep neural networks is that, through 
a training stage, they can automatically ‘learn’, that is, adjust their weights to 
fit any function of interest. Indeed, the error function, quantifying the 
distance between the solution proposed by the machine and the correct 
one, can be seen as a multidimensional function of the weights and can be 
minimized through an algorithm similar to steepest descent called stochastic 
gradient descent [342]. In order to apply machine learning to biomolecular 
calculations the neural network must be fed with inputs respecting the 
physical constraints [343]. For instance, if we consider an oxygen molecule 
in vacuo with a six-dimensional coordinate vector x, the energy will be 
invariant to roto-translation, while the force will be equivariant: 

UðRxþ TÞ ¼ UðxÞ (38a) 

52 C. GUARDIANI ET AL.



� ÑUðRxþ TÞ ¼ � RÑUðxÞ (38b) 

where T is a translation vector and R is a rotation matrix. In order to 
retain the invariances and equivariances, the network should not be fed with 
a vector of cartesian coordinates but with a set of distances and angles which 
significantly reduces the dimensionality of the problem. Other restraints 
that should be accounted for are: permutational invariance, for example, of 
solvent molecules, probability conservation, and detailed balance. ML can 
be applied to a wide range of problems of interest for biomolecular simula
tion. The list we provide below has no claim to be exhaustive.

(1) Calculation of potential energy surfaces. A number of classical meth
ods already exists [344,345] to fit energy values derived from quan
tum mechanical calculations, but these often suffer from poor 
transferability. A viable alternative is to train a deep neural network 
to minimize an energy or a force loss function [346,347]:

Lene ¼
X

i
½Ûðxi; θÞ � Ui�

2 (39a) 

Lforce ¼
X

i
jÑÛðxi; θÞ þ f ij

2 (39b) 

where Ûðxi; θÞ is the energy predicted by the network for configuration xi 
using parameter vector θ, while Ui is the energy computed ab initio for the 
same conformation. In a similar way, � ÑÛðxiÞ is the force predicted by the 
neural network and f i is the force computed through quantum mechanics. 
This approach can be used to optimize the parameters of a force field.

(2) Calculation of free-energy surfaces. This problem is formally similar to 
the estimate of Potential Energy Surfaces, but the training is done on 
classical MD trajectories of the rare event of interest. Indeed, the neural 
network [348] must be trained to minimize the free-energy loss

Lfree� ene ¼
X

i
jF i � F̂ ðyi; θÞj2 (40) 

where F̂ ðyi; θÞ is the free energy predicted by the network using para
meter vector θ at point yi in the space of collective variables while F i is the 
free energy of the same configuration computed with a method able to 
sample the equilibrium distribution μðyÞ: FðyÞ ¼ � log μðyÞ þ const.

(3) Coarse graining. ML can be used to learn the effective energy of a coarse 
grained molecular model [349,350]. Let us consider a transformation 
y ¼ Ex that associates a vector of cartesian coordinates x 2 R3N to 
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a vector of coordinates of the coarse grained particles y 2 R3n with 
n<N. The transformation is assumed to be linear because normally 
the CG coordinates are a subset of the atomistic ones. For instance the 
CG particle representing a residue is normally placed in the position of 
the Cα atom of that residue. The effective energy of the CG model is 
given by the free energy as a function of variables y: 
FðyÞ ¼ � log μðyÞ þ const. If the coarse grained model is to be ther
modynamically consistent with the atomistic one, the force predicted 
by the neural network � ÑyF̂ ðEx; θÞ must match the force on CG 
particles f yðxÞ computed from the atomistic forces f ðxÞ. The loss 
function that the network must learn to minimize is thus

X

t
jÑyF̂ ðExt; θÞ þ f yðxtÞj

2 (41) 

where the sum runs over all conformations t of a training set.

(4) Automatic discovery of Collective Variables. As discussed, many 
enhanced sampling methods critically rely on the appropriate choice 
of CVs. It is thus important to clarify what is meant by ‘good’ collective 
variables [86]. Good CVs should correspond to the important dyna
mical motions of the system so that a simulation biased along these 
CVs should overcome the free-energy barriers (rarely sampled in 
unbiased simulations) separating the relevant functional states. Given 
the complexity of biomolecular systems, identifying the good CVs 
through chemical intuition is often a daunting task. This is why 
a number of numerical techniques have been designed for the auto
matic identification of good CVs. A first group of techniques seeks to 
project a MD trajectory in a lower dimensional space spanned by base 
vectors aligned along the directions of maximal variance. This is the 
case, for example, of the popular Principal Component Analysis (PCA) 
technique [351]. A second class of methods looks for a low- 
dimensional CV space spanned by vectors aligned along the directions 
of maximal auto-correlation. These directions correspond to the slow
est molecular motions most likely capturing the functional dynamics of 
the protein. A typical representative of this class of techniques is the 
Time-lagged Independent Component Analysis (TICA) [352]. Both 
families of techniques can benefit from the fitting power of deep neural 
networks.

An example of application of neural networks to the discovery of high- 
variance CVs is the Molecular Enhanced Sampling with Autoencoders 
(MESA) [353]. The MESA method requires a neural network with 
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a special architecture including an encoder that maps the 3N-dimensional 
vector of cartesian coordinates ξ to a lower dimensional vector of CVs, x, 
and a decoder that approximates the reverse mapping from ξ to x̂. The 
network is trained to reconstruct its input, that is, the weights are tuned so 
that x̂ ffi x. The algorithm performs cycles of CV identification and biased 
simulations using the discovered CVs until the value of the CVs remains 
stable. The method was successfully applied to the alanine dipeptide and 
Trp-cage systems [353,354].

We now provide an example of discovery of maximally autocorrelated 
CVs. This approach was originally developed by Ferguson and coworkers 
[87] who named it State-free Reversible Variational Approach to Markov 
Processes Networks, and further improved by Parrinello’s group 
(deepTICA) [88]. The approach is based on the observation that 
a Molecular Dynamics simulation can be considered as a dynamical process 
that evolves a density distribution ptðxÞ at time t towards the Boltzmann 
distribution μðxÞ. Mathematically, the evolution of the density distribution 
is performed by the transfer operator T τ. The eigenfunctions associated to 
the largest eigenvalues of the transfer operator are characterized by the 
slowest relaxation to equilibrium and are thus good CV candidates. In 
complex biomolecular systems, the analytical diagonalization of the transfer 
operator is not possible. However, exploiting a variational approach, it is 
possible to compute lower bound approximations ~λi of the true eigenvalues 
λi and the corresponding approximate eigenfunctions ~ψi. To further sim
plify the calculation, the variational eigenfunctions ~ψi are expressed as 
a linear combination of trial descriptors djðxÞ

~ψi ¼
X

j
αijdjðxÞ (42) 

and the set of parameters fαijg is sought that maximizes their autocorrela
tion (thus also maximizing ~λi). This leads to a generalized eigenvalue 
problem 

CðτÞαi ¼ ~λiCð0Þαi (43) 

where 

CijðτÞ ¼ hdiðxtÞdjðxtþτÞi (44a) 

Cijð0Þ ¼ hdiðxtÞdjðxtÞi (44b) 

The neural network is fed with pairs of time-lagged descriptors dðxtÞ, 
dðxtþτÞ that are mapped to their latent space counterparts hθðdðxtÞÞ and 
hθðdðxtþτÞÞ, where θ is a set of parameters. The solution of the generalized 

ADVANCES IN PHYSICS: X 55



eigenvalue problem using the latent space variables leads to an estimate of 
the ~λi parameters. The network is then trained to minimize the loss function 
L ¼ �

P
i
~λ2

i ðθÞ. Once the loss function is optimized, the deep-TICA col
lective variables can be computed as si ¼

P
j αijhθ

j and an enhanced sam
pling simulation can be run biasing these CVs.

8. Conclusions

The discussion in this review shows that simulation methods are powerful 
tools for the analysis of biomolecular systems and, in particular, for ion 
channels. Specifically, molecular dynamics simulations just need three 
ingredients: an initial state, a reliable force field, and suitable algorithms 
for the numerical integration of Newton’s equations of motion. In principle, 
these few elements should suffice to fully reproduce the dynamical beha
viour of biomolecules and their function, in agreement with the 1812 
statement by Pierre Simon de Laplace [355]:

. . . an intelligence which could comprehend all the forces by which nature is animated 
and the respective positions of the beings which compose it, if moreover this intelli
gence were vast enough to submit these data to analysis . . . to it nothing would be 
uncertain, and the future as the past would be present to its eyes.

Unfortunately, as discussed above, both continuum and atomistic methods 
suffer from a number of limitations and Laplace’s optimism ought to give 
way to a more cautious attitude along the lines of the 1929 statement by 
Dirac [356]:

The underlying physical laws necessary for the mathematical theory of a large part of 
physics and the whole of chemistry are thus completely known, and the difficulty is 
only that the exact application of these laws leads to equations much too complicated 
to be soluble. It therefore becomes desirable that approximate practical methods of 
applying quantum mechanics should be developed, which can lead to an explanation 
of the main features of complex atomic systems without too much computation.

What Dirac said about quantum mechanics also applies to classical 
molecular simulations and still resists the test of time, with the notable 
exception that much computer power seems always in high demand. This 
review, highlighting strengths and weaknesses of the different methods in 
computational ion channels research, can guide the reader in the choice of 
the most appropriate approach to the problem of interest. Moreover, we 
selected a few rapidly developing research lines ranging from hybrid 
enhanced sampling methods to multi-scale algorithms and machine learn
ing that will enable to by-pass the problem of ‘too much computation’. 
While a perfect knowledge of ‘the future as the past’ is still precluded to 
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mankind even in the restricted area of quantitative sciences, a clever appli
cation of the approaches discussed here will certainly push forward the 
boundary of our quantitative understanding of biology.

Notes

1. We recall that the Reynolds number Re ¼ ρvL=η quantifies the relative magnitude of 
inertial to viscous forces.

2. These equations refer to a system with constant number of particles, volume, and 
energy. Interactions of the (small) simulated system with external thermal baths 
(constant temperature), pistons (constant pressure), mass exchange, etc. can be 
accounted for by suitably modifying the equations of motion such that the correct 
probability distribution is sampled [357].
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