
22 November 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

A p-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of Incompressible Transitional
Flows / Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Franciolini, M.; Ghidoni, A.; Noventa, G.. - In: FLOW
TURBULENCE AND COMBUSTION. - ISSN 1386-6184. - 105:2(2020), pp. 437-470. [10.1007/s10494-020-
00178-2]

Original

A p-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of Incompressible Transitional
Flows

Publisher:

Published
DOI:10.1007/s10494-020-00178-2

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/289800 since: 2024-09-21T11:52:58Z

This is the peer reviewd version of the followng article:



Noname manuscript No.
(will be inserted by the editor)

A p-adaptive matrix-free Discontinuous Galerkin
method for the Implicit LES of incompressible
transitional flows

F. Bassi · L. Botti · A. Colombo · A.
Crivellini · M. Franciolini · A. Ghidoni ·
G. Noventa

Received: date / Accepted: date

Abstract In recent years Computational Fluid Dynamics (CFD) has become
a widespread practice in industry. The growing need to simulate off-design
conditions, characterized by massively separated flows, strongly promoted re-
search on models and methods to improve the computational efficiency and to
bring the practice of Scale Resolving Simulations (SRS), like the Large Eddy
Simulation (LES), to an industrial level. Among the possible approaches to the
SRS, an appealing choice is to perform Implicit LES (ILES) via a high-order
Discontinuous Galerkin (DG) method, where the favourable numerical dissipa-
tion of the space discretization scheme plays directly the role of a subgrid-scale
model. To reduce the large CPU time for ILES, implicit time integrators, that
allows for larger time steps than explicit schemes, can be considered. The main
drawbacks of implicit time integration in a DG framework are represented by
the large memory footprint, the large CPU time for the operator assembly and
the difficulty to design highly scalable preconditioners for the linear solvers.
In this paper, which aims to significantly reduce the memory requirement and
CPU time without spoiling the high-order accuracy of the method, we rely on
a p-adaptive algorithm suited for the ILES of turbulent flows and an efficient
matrix-free iterative linear solver based on a cheap p-multigrid preconditioner
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and a Flexible GMRES method. The performance and accuracy of the method
have been assessed by considering the following test cases: i) the T3L test case
of the ERCOFTAC suite, a rounded leading edge flat plate at ReD = 3 450;
ii) the flow past a sphere at ReD = 300; iii) the flow past a circular cylinder
at ReD = 3 900.

Keywords Discontinuous Galerkin · ILES · incompressible flows ·
Rosenbrock-type schemes · matrix-free · p-multigrid preconditioner · p-
adaptation

1 Motivation

Many industrial applications, e.g., aircraft and turbomachinery, are charac-
terized by chaotic flow regimes, and are often simulated by using statistical
models. These models solve the set of the Navier-Stokes equations averaged
in time, i.e., the Reynolds averaged Navier-Stokes (RANS) equations. RANS
approach allows accurately simulating attached turbulent flows around com-
plex geometries but it usually fails the prediction of massively separated flows,
which is crucial for the off-design performance in engineering practice. To over-
come this limitation, Scale-Resolving Simulations (SRS) based on the Large
Eddy Simulation (LES) can be used. However, their computational cost is still
too large for a routine use in industry, and is promoting the research on inno-
vative physical models and numerical methods to enhance their computational
efficiency.

In this paper, some promising strategies are investigated and developed
to increase the computational efficiency of a discontinuous Galerkin (DG)
solver [7,9] for scale-resolving simulations based on the Implicit Large Eddy
Simulation (ILES), or under-resolved Direct Numerical Simulation (uDNS),
approach. In fact, high-order DG finite elements methods proved to be very
well suited [66,67,48,8,42,47,56,9,30] for ILES, where the unfiltered incom-
pressible Navier-Stokes equations are solved, and the numerical dissipation
introduced by the discretizaton itself, e.g., by the Riemann interface fluxes
and the viscous stabilization, plays the role of an explicit subgrid-scale (SGS)
model that dissipates the smallest scale eddies.

The incompressible DG solver adopted for this work is based on a pecu-
liar formulation for the inviscid interface numerical flux [15], computed as the
exact solution of the Riemann problem modified by an artificial compressibil-
ity perturbation, which provides the necessary coupling between the discrete
incompressibility constraint and the rest of the governing equations. The non
linear system of differential algebraic equations arising from the spatial dis-
cretization is advanced in time using an implicit high-order time integration
scheme [11], which allows to implicitly satisfy the incompressibility constraint
and increase the time step size with respect to semi-implicit or projection
methods, commonly employed for incompressible flows. However, the main
drawbacks of such schemes are a large memory footprint, high computational
time to assemble implicit operators, and the difficulty to design highly scalable
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preconditioners. To alleviate such disadvantages, the following strategies are
considered: i) the local adaptation of the polynomial degree of the solution
over the mesh, ii) a multi-constraint domain decomposition algorithm to en-
sure the computational balance over the processes, iii) the adaptation of the
degree of exactness for quadrature rules, and iv) a p-MG multilevel precondi-
tioner for the linear solver. Since DG methods represent the numerical solution
as polynomial functions inside the elements of a mesh with no continuity re-
quirements at the cells interfaces, one can locally vary the order of accuracy
very efficiently by using a different degree of the polynomial representation
according to some error indicator. This practice is known in the literature
as p-adaptation [49,50,14,65]. The accuracy is increased/reduced automati-
cally to capture the flow features only where needed, reducing dramatically
the memory cost and the CPU time for the operator assembly. Moreover, the
tedious task of the mesh generation is strongly simplified, as the local mesh re-
finements related to a priori assumptions on the flow features are avoided. This
strategy can be fruitfully exploited in a parallel computing environment by the
use of a balanced re-partitioning of the computational grid after each adapta-
tion cycle, to overcome the natural imbalance of floating point operations per
domain induced by the adaptation. In our implementation we also consider
that algorithms for high-order mesh generation can produce computational
grids made of both strongly curved- and (almost) straight-sided elements. The
linear elements within the mesh are often not known a-priori from the grid
format, e.g., in the case of agglomerated high-order meshes built on top of
block-structured grids, but their over-integration should be avoided to end up
with an efficient implementation of the DG method. To this purpose, in this
work we use an approach to locally adapt the degree of exactness of quadra-
ture rules according to the mesh characteristics with significant saving in the
operator assembly. Finally, we make use of a multilevel preconditioner recently
developed in [27], based on element-wise approximations of the implicit op-
erators obtained by neglecting off-diagonal blocks coupled with a matrix-free
(MF) [24,28] FGMRES iterative solver, to strongly reduce the memory re-
quirements and the operation count. However, due to the variable polynomial
degree over the mesh, we extend the original approach taking into account for
this peculiarity on the finest level, while coarser levels are assembled through
uniform-degree matrix-based operators.

The performance and accuracy of the method have been assessed by con-
sidering the following test cases: i) the T3L ERCOFTAC case with different
levels of inlet turbulence, ii) the flow past a sphere at ReD = 300, and iii)
the flow past a circular cylinder at ReD = 3 900. The T3L case has been used
to show how a p-multigrid preconditioner for the linear systems solution can
improve the solver efficiency. Moreover, this test case has been also used to
demonstrate for different turbulence intensity values the good properties of
the present DG method for the ILES approach. After demonstrating the com-
putational efficiency of the underlying DG method, the effect of the p-adaptive
strategy on the solver performance was evaluated by computing the unsteady
laminar flow past a sphere at ReD = 300. In particular, the p-adaptive sim-
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ulation shows better performance for a given target accuracy with respect to
uniform-degree simulations, both in terms of the overall number of DOFs and
CPU time. Finally, as a proof of concept, the p-adaptive ILES of the turbulent
flow past a circular cylinder at Reynolds number ReD = 3 900 is considered.

2 The numerical framework

In this section the spatial and temporal discretizations will be presented with
special emphasis on: i) a linear systems solution strategy via a Flexible GM-
RES method preconditioned with a p-multigrid strategy; ii) a p-adaptation
algorithm suited for scale-resolving simulation of turbulent flows.

2.1 DG spatial discretization

The set of governing equations for the DNS and Implicit LES (ILES) is sim-
ply the set of the discretized Navier-Stokes equations. In compact form the
incompressible Navier-Stokes (INS) equations can be written as

P
∂w

∂t
+∇ · Fc (w) +∇ · Fv (w,∇w) = 0, (1)

where m is the number of variables, d the number of dimensions, w = [p, ui]
T ∈

Rm the unknown solution vector, Fc,Fv ∈ Rm⊗Rd the convective and viscous
flux functions. P = I−J11 is the difference between the identity and a single-
entry matrix, J11, defined as the matrix with 1 at the (1, 1) entry and zero
elsewhere.

The governing equations are spatially discretized according to the DG
method [9], where the weak form of the equations is obtained by multiply-
ing Eq. (1) by an arbitrary test function and integrating by parts. The solu-
tion and the test function are then replaced with a finite element approxima-
tion and a discrete test function, which belong to Vh := [Pkd(Kh)]m, where
Pkd(Kh) := {vh ∈ L2(Ω) | vh|K ∈ Pkd(K), ∀K ∈ Kh} is the discrete polynomial

space in physical coordinates. Pkd(K) denotes the restriction of the polynomial
functions of d variables and degree at most k to the element K, part of the
discretization Kh = {K} of the flow domain Ω ∈ Rd. In case of adaptive com-
putations, the polynomial space will be denoted as Pkm→kMd , where km and
kM are the minimum and maximum polynomial degree over the discretization,
respectively. kK denotes the polynomial degree local to any element K ∈ Kh.

In this work we use a set of hierarchical and orthonormal basis functions.
For all the K ∈ Kh the basis ΦkK =

{
φKi
}

, where i ∈ {1, . . . , NK
dof}, is obtained

by applying the modified Gram–Schmidt (MGS) orthogonalization algorithm
to a set of monomials defined in a reference frame centered in the element
barycenter and aligned with the principal axes of inertia of the element. The
orthonormalization procedure can be expressed as the “composition” of the
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monomial basis with a set of coefficients for the MGS algorithm, see for details
Bassi et al. [10].

Each component j = 1, . . . ,m of the numerical solution wh over any ele-
ment K can be expressed, in terms of the elements of the global vector W of
unknown degrees of freedom, as wK

h,j = φKl W
K
j,l where WK is the local part

of the global vector storing the degrees of freedom of the element K and the
repeated index l implies summation over the l = 1, . . . , NK

dof . According to
this notation, the DG spatial discretization of the system in Eq. (1) consists
in seeking, for j = 1, . . . ,m, the elements of W such that

∑
K∈Th

∫
K

φKi Pj,k φ
K
l

dWK
k,l

dt
dx−

∑
K∈Th

∫
K

∂φKi
∂xn

Fj,n (wh,∇hwh + r ([[wh]])) dx

+
∑
F∈Fh

∫
F

[[
φKi
]]
n
F̂j,n

(
w±h , (∇hwh + ηF rF ([[wh]]))

±
)
dσ = 0, (2)

for i = 1, . . . , NK
dof , where F is the sum of the convective and viscous flux func-

tions, n is the unit vector normal to the boundary, [[·]] and {·} are the jump
and average trace operators [9], respectively. In Eq. (2) repeated indices imply
summation over the ranges k = 1, . . . ,m, l = 1, . . . , NK

dof , n = 1, . . . , d. As the
solution is discontinuous at mesh faces, the convective and viscous fluxes are
not uniquely defined and need to be replaced with numerical flux functions,
F̂. For the convective part, the approach proposed in [15] is used, whereby the
numerical flux is computed from the exact solution of local Riemann prob-
lems suitably modified by means of an artificial compressibility perturbation.
Viscous fluxes are discretized according to the BR2 method, proposed in [16]
and theoretically analyzed in [20,3]. The operators rF and r are the local and
global lifting operators arising from the BR2 scheme [16]. The numerical dis-
sipation associated to the Riemann fluxes and viscous stabilization replace in
the ILES context the subgrid scale model of LES.

2.2 Linearly-implicit time discretization

Numerical integration of Eq. (2) via Gauss quadrature rules leads to a system
of nonlinear Differential Algebraic Equations (DAEs) that can be written as

MP
dW

dt
+ R (W) = 0, (3)

where R (W) is the vector of residuals of the spatial discretization and MP is
a global block diagonal matrix arising from the discretization of the first term
in Eq. (2). The choice of orthonormal basis functions defined in the mesh space
allows reducing MP to a modified identity matrix with zeros in the diagonal
positions corresponding to the pressure degrees of freedom.
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In this work accurate time integration is performed via linearly-implicit
Rosenbrock-type Runge-Kutta schemes as follows

Wn+1 = Wn +

s∑
j=1

mjYj , (4)

[
MP

γ∆t
+
∂R(Wn)

∂W

]
Yi = −R

Wn +

i−1∑
j=1

aijYj

+
MP

∆t

i−1∑
j=1

cijYj ,

i = 1, . . . , s, (5)

where mj , γ, aij and cij are real coefficients, and s is the number of stages.
Among the Rosenbrock schemes available in the literature [11,45], we rely on
the ROS3P (third order, three stages) scheme of Lang and Verwer [40] or the
ROSI2PW (third order, four stages) scheme of Rang and Angermann [60].

The PETSc library [4,5,6] is used for linear solvers, here preconditioned
Generalized Minimal RESidual (GMRES) methods, and to devise a pure MPI
parallel implementation for arrays, matrices and the communication among
them.

2.3 The matrix-free iterative linear solver

The solution of the linear system through the GMRES iterative method re-
quires only the evaluation of a matrix-vector product at each linear iteration.
The Matrix-based (MB) GMRES approach calculates and stores both the
complete implicit operator matrix and its preconditioner, while its matrix-free
(MF) version approximates the matrix-vector products in Eq. (5) [36] as[

MP

γ∆t
+
∂R(Wn)

∂W

]
∆W ' G(Wn + h∆W)−G(Wn)

h
, (6)

where

h = ε

√
1 + ‖Wn‖L2

‖∆W‖L2

(7)

is a numerical perturbation [58], ε an user defined parameter here set to ε =
10−9, and

G(W) =
MP

γ∆t
W + R(W). (8)

The finite differentiation error can show up, decreasing the efficiency of the
solution process, only for small tolerances of the linear system solution when
its residuals norm gets close to h [28]. However, such tight tolerances are not
necessary for practical simulations [11,28] and the MF or MB GMRES need
the same number of iterations to satisfy the target convergence.

The implicit operator assembly could be completely avoided in MF-GMRES
approach, but the Jacobian evaluation may still be required for precondition-
ing in order to speed up the solution process on real applications. One of the
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main advantages of a matrix-free implementation is that the computational
cost for the matrix assembly can be reduced by approximating and/or “freez-
ing” (lagging) the preconditioner for a given number of consecutive iterations
without affecting the formal accuracy of the time integration scheme. This
strategy can be exploited with some confidence when dealing with flow prob-
lems characterized by high-order polynomial approximation and small time
steps, as in the case of the SRS of turbulent flows, see [28].

Widely used preconditioners for GMRES based on the factorization of the
Jacobian matrix are: i) ASM(i,ILU(j)) - the Additive Schwarz domain de-
composition Method (ASM) preconditioner with i levels of overlap between
sub-domains and a block ILU decomposition for each sub-domain matrix with
j levels of fill; ii) the Block Jacobi (BJ) - a block ILU decomposition for each
sub-domain matrix with same fill level of the original matrix without overlap-
ping elements; iii) EWBJ - the Element-wise Block Jacobi, a BJ preconditioner
obtained by neglecting the off-diagonal blocks from the global matrix and ap-
plying the LU factorization of the diagonal blocks local to each element. Unfor-
tunately, iterative solvers coupled with these standard preconditioners are not
able to efficiently reduce the linear system solution error when applied to the
incompressible Navier–Stokes equations, as a large number of iterations are
typically required. The error can be expressed as a combination of “modes”,
and standard solvers are able to damp efficiently, in few iterations, only the
oscillatory part, while smooth modes are damped very slowly. This behaviour
results in a stall of the convergence as thoroughly discussed in Franciolini et
al. [27] and summarized by the numerical results in Sec. 3.1.

2.4 The p-multigrid preconditioner

To speed up the linear system convergence, linear multigrid (MG) strategies
can be exploited for the preconditioning [17,18,27,29]. The basic idea of multi-
grid methods is to use coarser problems to smooth separately all the modes
of the error. Indeed, low-frequency modes when transferred to coarser spaces
become part of the high-frequency range and can be damped by standard iter-
ative solvers (smoothers) [46,32,61,26]. In multigrid methods the solution of
the fine space problem can be accelerated by computing corrections on coarser
spaces and then projecting them back to the finest space. The algorithm need
proper operators to transfer functions from the fine to the coarse space (re-
striction) and vice versa (prolongation). In the p-multigrid context, coarser
levels are defined by lower polynomial degree discretizations, see Ref. [27] for
details.

Let L denote the number of multigrid levels, spanned by index l = 1, . . . , L;
where l = 1 and l = L represent the finest and coarsest levels, respectively.
Any coarse problem of Eq. (5) can be written in compact form as

AlWl = bl, (9)
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Algorithm 1 V-cycle p-MG algorithm, W̆l = MGV (l,bl,Wl)
1: if l = L then
2: SOLVE AlW̆l = bl
3: else
4: W̆l=SMOOTH(Wl,Al,bl,ν1)

5: rl = bl −AlW̆`

6: rl+1 = Il+1
l rl

7: el+1=MGV (l + 1, rl+1,0)

8: Ŵl = W̆l + Ill+1el+1

9: W̆l=SMOOTH(Ŵl,Al,bl,ν2)
10: end if
11: return W̆l

Algorithm 2 Full V-cycle p-MG algorithm
1: for l = L, 1,−1 do
2: if l = L then
3: bl = Il1b1

4: SOLVE AlW
FMG
l = bl

5: else
6: bl = Il1b1

7: W̃l = Ill+1W
FMG
l+1

8: WFMG
l = MGV (l,bl,W̃l)

9: end if
10: end for
11: return WFMG

l

where Al is the restriction to level l of the finest level matrix (A1=MP/γ∆t+
∂R/∂W), Wl is the vector of the coefficients of the unknown polynomial
functions on the coarse level l and bl is the restriction of the finest level right
hand side (RHS). In this work we adopted an inherited multigrid strategy,
where coarse level operators are obtained by means of projection operators
to avoid the explicit assembly of the residual and Jacobian operators on the
coarse levels.

During the solution process the various levels can be used according to
different paths. A common choice is the so called V-cycle described by the
Algorithm 1. Starting from the finest level, a number ν1 of pre-smoothing
iterations is performed at each level prior to restricting the solution to the next
coarser level. Once reached the coarsest level L, the problem is solved with a
larger residual drop. On the way back to the finest level, a number ν2 of post-
smoothing iterations is performed at each level after updating the solution
with the prolongated correction. In Algorithm 1, Ill+1 and Il+1

l denote the
prolongation and restriction operators, and el+1 is the coarse grid correction.

While satisfactory multigrid performance can be obtained by the use of
standard V-Cycle, we observed a substantial improvement of the performance
when the full multigrid (FMG) strategy is employed. As described in the Al-
gorithm 2, in the FMG algorithm a V-Cycle is called in each level starting
from the coarsest. At the end of each cycle, the solution is prolongated and
used as initial guess in the next fine level V-Cycle. The process is terminated
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when the convergence on the finest level is reached. We remark that the use of
an orthonormal and hierarchical basis greatly simplify the transfer operators.
In particular, the restriction consists in discarding the high-frequency modes
of the solution that exceed those of the coarse space representation, while the
prolongation consists in adding null high-order components to the low-order
functions [27]. In this work multigrid is used as a preconditioner for a flexi-
ble GMRES (FGMRES) solver applied to the numerical solution of the linear
systems arising from the temporal integration of the DG discretized INS equa-
tions. The use of FGMRES is mandatory since the action of the preconditioner
changes at each time step and it needs to be stored in memory to compute
accurately the final solution using Krylov subspaces. Several parameters of the
implemented algorithms can be set by the user, such as the number of multi-
grid levels, L, and the degree of the polynomial approximation of the coarse
levels, kl, with l = {2, . . . , L}. For each level a different type of smoother and
preconditioner can be chosen, as well as different tolerances. As suggested by
previous numerical experiments [27], the following configuration is adopted,
as it optimizes the computational efficiency of the p-MG algorithm:

– matrix-free GMRES smoother coupled with a EWBJ preconditioner on the
finest space to reduce the memory footprint;

– matrix-based GMRES smoother on each coarse level;
– BJ or ASM preconditioners on the coarser levels to ensure a good enough

convergence rate;
– lag all the matrix-based operators over some time step.

This approach allows computing the off-diagonal blocks of the Jacobian ma-
trix, not required by the finest-level EWBJ preconditioner, at the lower order
corresponding to the coarse l = 2 level, thus saving CPU time in the expensive
task of the operator assembly.

2.5 Adaptation of the degree of exactness for quadrature rules

Algorithms for high-order mesh generation can produce computational grids
where both curved- and straight-sided cells coexist. The linear elements within
the mesh are often not known a priori from the grid format, as, for exam-
ple, in the case of agglomerated high-order meshes built on top of block-
structured grids. In some cases, cells are marked as curved although they are
(almost) straight-sided. For an efficient implementation of the DG method,
over-integration of linear elements should be avoided. Indeed, on curved ele-
ments the number of points needed for an accurate integration dramatically
increases when dealing with high-order approximations of the solution.

In this work, inspired by Refs. [64,10], we locally adapt the degree of exact-
ness (DOE) of quadrature rules according to the mesh characteristics. To this
end, an estimate for the integration error of quadrature rules with a “reduced”
number of points with respect to that formally needed to exactly integrate the
mass matrix, is introduced. For an i-th diagonal entry of the mass matrix mii,
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we define

εi,K =
|m∗ii −mex

ii |
|mex

ii |
, ∀K ∈ Kh, (10)

where mex
ii and m∗ii are the integral values computed using quadrature rules

with an “exact” and a reduced DOE, respectively.
According to this definition, we can take into account of the actual cur-

vature of cells and avoid over-integrating during operator assembly, with sig-
nificant CPU time saving. In practice, for each element K ∈ Kh, we pick an
integration rule with the minimum degree of exactness that satisfies

max
i∈1,...,NKdof

εi,K ≤ tolq, ∀K ∈ Kh, (11)

where tolq is a user-defined tolerance. A similar procedure is used for surface
integrals over each mesh face. The value formally needed to exactly integrate
the mass matrix in case of straight-sided cells is set as a lower bound for the
DOE.

Numerical tests on the L2-projection of a given function on the polyno-
mial space were performed to give some insight about the tolerance value.
In particular, the projection error obtained with different sets of quadrature
points, corresponding to different values for tolq, shows a safe value around
10−10, which allows reducing significantly the number of Gauss points without
spoiling the quadrature accuracy.

Since in the present numerical framework, the system matrix accuracy is
guaranteed by the matrix-free implementation of the linear solver, hence two
different values for the tolerance can be considered. The former, tolq,RHS ,
is used for the assembly of the system’s RHS, while the latter, tolq,pre, is
employed for the assembly of the preconditioner matrices. According to the
numerical experiments, the tolerance for the RHS has been set to tolq,RHS =
10−10 while a more aggressive value for the preconditioner, here tolq,pre =
10−2, has been used to further speed up the assembly operations. Notice that
the DOE adaptation process is accomplished only once during pre-processing
and after each p-adaptation cycle.

In this work the reduction algorithm has been only used for the compu-
tations of the flow past a sphere and the flow around a circular cylinder, in
Secs. 3.2 and 3.3, respectively.

2.6 The p-adaptive algorithm

An order-adaptive (p-adaptation) strategy identifies, according to an error es-
timator, the elements where the local polynomial degree of the approximation
need to be refined or coarsened. The present strategy has been borrowed from
the compressible version of the solver, see Bassi et al. [14,22]. Since we are
interested in statistically stationary unsteady flow problems, the estimator is
computed from the time-averaged solution and combines two contributions: i)
a measure of the solution jumps at grid cells interfaces [38,31]; ii) the decay
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rate of the modal coefficients of the polynomial expansion [59]. Both indicators
aim at revealing a lack/excess of spatial accuracy in the numerical discretiza-
tion and are here applied to the pressure variable.

The jump indicator is calculated as the maximum normalized pressure
difference at the interfaces of the element K

ηJMP
K = max

if
max
j

∣∣∣∣∣∣∣
(
p (xj)− p (xj)

+
)
if(

p (xj) + p (xj)
+
)
if

∣∣∣∣∣∣∣ , (12)

where p(xj) is the pressure value at the j-th surface quadrature point xj on
the if -th element’s interface and computed with the degrees of freedom of
the solution belonging to the cell K, while p(xj)

+ is the pressure value at
the same location but computed with the degrees of freedom belonging to the
cell sharing the face if with K. Our numerical experiments revealed that this
indicator, probably due to its stencil, marks for adaptation large regions of
the domain, especially when dealing with low-order solutions.

The Spectral Decay Indicator (SDI) correlates the amplitudes of highest
modes of the solution to the amplitude of the total modes, and is defined as

ηSDIK =

∫
K

(pK − p̃K)2dx∫
K

(pK)2dx
, (13)

pK(x) =

NKdof∑
l=1

Wp,lφ
K
l (x), p̃K(x) =

LKdof∑
l=1

Wp,lφ
K
l (x), (14)

where Wp,l are the coefficients of the modal expansion related to the pressure
variable, NK

dof the number of degrees of freedom associated to the local poly-

nomial degree kK , and LKdof the number of degrees of freedom associated to
the polynomial degree kK − 1.

Unlike the jump indicator, the SDI does not involve in its definition the
solution on the neighbouring cells. Moreover, while the jump indicator can
be computed for any polynomial degree, the SDI definition is not suited for
piece-wise constant approximations, i.e., kK = 0.

The error estimator, inspired by [31], has been implemented by combining
the two indicators as

ηTOTK = ηSDIK +
1

max (1, kK)
ηJMP
K , ∀K ∈ Kh, (15)

where, according to its definition and our numerical experiments, ηSDIK is set
to 0 for kK = {0, 1}. Before the coupling, both the indicators ηJMP and ηSDI

are normalized over the domain according to their maximum and minimum
values.

The adaptation process is triggered by a simple indicator, trg, defined as
the norm of the relative increment, computed at each time step, of the vector
of the degrees of freedom of the run-time time-averaged solution W.
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The pseudo code for the p-adaptation strategy is reported in the Algo-
rithm 3, where ` is the index denoting the `-th adaptive cycle. The user-defined
parameters for the process are:

– kini, the value for the uniform initialization of the polynomial degree over
the mesh;

– nadp, the maximum number of adaptation cycles;
– toltrg, a threshold tolerance for the activation of the adaptation process;
– Nadp, the minimum number of time steps, icyc, between two adaptation

cycles;
– kmax, the maximum allowable polynomial degree;
– kK , the polynomial degree on element K;
– Gr, the percentage of elements with the higher estimated error that are

marked for refinement at each adaptation cycle;
– Gc, the percentage of elements with the lower estimated error that are

marked for coarsening at each adaptation cycle (coarsening);
– POSK , the position of the element K in an array numbered from zero and

sorted in increasing order according to the estimator ηTOTK value.
– Ncyc, the total number of time step.

Algorithm 3 p-adaptation algorithm
1: ` = 0
2: jcyc = 1
3: kK = kini ∀K ∈ Kh
4: for icyc = 1 to Ncyc do
5: advance the solution in time
6: evaluate the run-time time-averaged solution, W
7: compute trg: the relative increment of W
8: if (jcyc ≥ Nadp and trg ≤ toltrg and ` ≤ nadp) then
9: `← `+ 1

10: if (` = 1 and kini = 0) then
11: for K ∈ Kh do
12: kK ← 1
13: end for
14: else
15: compute and normalize the estimators ηTOTK ∀K ∈ Kh
16: for K ∈ Kh do
17: if POSK ≥ (1− Gr)card(Kh) then
18: kK ← min(kK + 1, kmax)
19: else if POSK < (Gc)card(Kh) then
20: kK ← max(kK − 1, 1)
21: end if
22: end for
23: balance the load among processors via re-partitioning
24: end if
25: L2 projection of the solution on the new polynomial space
26: jcyc = 0
27: end if
28: jcyc ← jcyc + 1
29: end for
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The algorithm has been written in a general form, as we consider both refining
and coarsening. However, all the simulations performed in this papers uses
very coarse meshes, where polynomial degree coarsening is not necessary, i.e.,
Gc = 0. As suggested by numerical experiments, the following initialization
strategy has been adopted to optimize the effectiveness and the computational
efficiency of the algorithm: the computations start from a piece-wise free-
stream solution (kini = 0) and the polynomial degree is increased uniformly
to kK = 1,∀K ∈ Th, during the first adaptation cycle (` = 1).

Adaptation leads to a variable order distribution over the mesh, and, as
a consequence, the finest level implicit operator is a partitioned matrix with
blocks of variable size. In the adaptive framework different possibilities arise
for the definition of the coarse levels for the p-MG preconditioner. In this work
the coarse operators are made of equal-order approximations over the mesh,
where the polynomial degree of the levels is set by the end user. Since the
p-adaptation process can generate elements with a degree which can be low-
er/equal than the ones set for the intermediate/coarse levels by the user, some
ad-hoc strategy needs to be devised. In particular, for the elements K where
kK < kl, with l = {2, . . . , L}, the coarse levels are locally set to min(kK , kl).

Parallel implementation The use of a p-adaptation strategy for parallel simu-
lations induces an imbalance of the load per partition and a drastic reduction
of the parallel efficiency. To overcome this issue, a balanced re-partitioning
of the computational grids is implemented, which is used after every poly-
nomial adaptation. The strategy exploits the Metis [35] library to optimize
the decomposed mesh by enforcing multiple constraints on a weighted graph.
Different weights are associated to the vertices of the graph, corresponding to
the mesh elements. These weights are computed to balance the computational
cost of the residual, the Jacobian assembly, and matrix-vector products of the
(F)GMRES. The definition of the weights can be found in the Appendix of [13].
As in the present work we rely on an adaptation strategy for quadrature rules
that can lead to a different set of integration points for the evaluation of the
RHS and preconditioner, respectively, the overall local number of points is
used in the weights definition.

3 Numerical results

The performance of the proposed algorithms has been demonstrated by com-
puting the following test cases: (i) the flow over a rounded leading edge flat
plate at ReD = 3 450 under different levels of free-stream turbulence (the T3L
test case of the ERCOFTAC test case suite), (ii) the laminar flow past a
sphere at ReD = 300, and (ii) the flow around a circular cylinder at Reynolds
number ReD = 3 900.

The scope of the T3L case is twofold: assess the improvement of the solver
efficiency due to the use of the p-multigrid preconditioner and demonstrate
the suitability of the underlying DG method for the ILES.
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The flow past a sphere at ReD = 300 test case is used to investigate the
improvement in terms of performance due to the p-adaptive strategy with
respect to the original uniform degree spatial discretizations. Although this
test case can be considered as a simple problem, it allowed to clearly assess
the performance enhancement provided by the adaptive method, and to give
confidence for its use in more complex flow problems.

Finally, as a proof of concept, the p-adaptive ILES of the turbulent flow
past a circular cylinder at ReD = 3 900 was considered to demonstrate the
potential of our promising adaptive DG method.

3.1 Flow around the T3L plate at ReD = 3 450

The first test case is the transitional flow over a rounded leading edge flat plate,
the T3L test case of the ERCOFTAC suite [23], at ReD = 3 450 based on the
leading edge diameter D and the free-stream velocity uref . This flow problem
is used to demonstrate the potential of our DG discretization in the ILES of
incompressible flows as well as the performance of the preconditioning strategy
for the linear solver regardless of any p-adaptation strategy. The simulations
have been performed in parallel using 540 cores on a hybrid mesh of 38 320
elements with quadratic edges and a uniform P6 solution approximation. The
first cell height is 10−2D and the mesh is refined near the reattachment region,
where the minimum dimension along x axis is 2·10−2D. The domain extension
on the x − y plane is 28D × 17D, and it is extruded using 10 elements along
the spanwise direction z, assuming spanwise periodicity equal to 2D.

The numerical resolution of this simulation (DOFs= 3 218 880) is compara-
ble to the LES with dynamic Smagorinsky model and second-order discretiza-
tion of Yang and Voke [69] and Langari and Yang [41]. For the same test
case, Lamballais et al. [39] perform a marginally-resolved DNS using a sixth-
order finite difference scheme. The number of DoFs of such simulation is much
larger, i.e. roughly 64 times those of the present DG solution on a domain 3.9
times smaller, due to the use of a symmetry boundary condition at y = 0.
Although obtained for a slightly higher Reynolds number, i.e. ReD = 4 000,
we consider the results from Lamballais et al. as a good reference to highlights
the computational savings of our approach with respect to a DNS.

An implicit time integration scheme, here the ROSI2PW, has been used
that, in general, overcomes the strict explicit stability limit of a high-order DG
discretization, which scales, for a model problem, as ∆t ∼ h/k2, where h is
the element size and k is the polynomial degree [34]. This choice allows using
a time step for the Tu = 0.2% case that is 16 and 8 times larger than those
reported in [69] and [41], respectively. Unfortunately, details on the time step
size are not available for the DNS of Lamballais et al. [39].

The flowfield is very sensitive to the free-stream turbulence intensity at the
inlet (Tu) and the choice of the way to inject the turbulence is of paramount
importance. The generation of a free-stream turbulence at inlet has not been
considered because it would be probably damped before reaching the leading
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edge of the plate, as the mesh at the farfield is very coarse. As a consequence,
the turbulent fluctuations have been synthetically injected, via a spatially-
supported random forcing term [27], in regions where the mesh is fine enough
to avoid the dissipation of small scales. The following turbulence intensity
values have been considered: Tu = {0.0%, 0.2%, 0.65%, 2.3%, 5.6%}.

The forcing term is a vector fh added as a source term to the discrete
momentum equations (2). This approach, instead of perturbing the flow ve-
locity directly, guarantees a divergence-free perturbation, consistent with the
incompressibility constrain. The vector is obtained by multiplying a random
three-dimensional discrete vector rh to a function of the spatial coordinates
x, y, z. This function is chosen to be a gaussian distribution in the x direction
and homogeneous in y−z such that∑

K∈Th

∫
K

φKi fh,jdx =
∑
K∈Th

∫
K

φKi

(
Ae−( x−x2α )

2)
rh,jdx, (16)

where A, x and α are the amplitude coefficient, the location of the forcing
plane, and the amplitude of the gaussian support. The random vector rh,j
is computed at each Gauss-quadrature point separately during the residual
assembly, and normalized such that ‖rh‖ = 1. It is worth pointing out that
the discrete forcing vector changes not only in space, but also in time, but
it has been verified that the results are insensitive with respect to temporal
refinements. In our computations, the gaussian function was centered in x/D =
−3, and the constants A, α were adjusted, via a trial and error approach, to
meet the experimental Tu value within the proximity of the leading edge of
the plate. We avoided a fine control algorithm of the turbulent length-scale
since the reattachment length is pretty insensitive to this value, see [33,51].

The performance of the different strategies to solve the linear system arising
from the temporal discretization, see Secs. 2.3 and 2.4, has been first assessed
over 6 time steps. In particular the flowfield at Tu = 0.2% has been computed
using the p-MG MF-FGMRES, the MB- and MF-GMRES approaches, assem-
bling the preconditioner every time step or every 3 time steps. For this test
case no adaptive strategy for the selection of the DOE of the quadrature rules
over the grid was used. For all the cases the relative tolerance for convergence
is tolr = 10−5, while the p-MG preconditioner settings are summarized in the
following:

– full multigrid V-cycle;
– number of levels L = 3;
– coarse level: kc = 1, GMRES smoother with ASM(1) preconditioner, max-

imum number of GMRES iterations nmaxit = 60;
– intermediate levels: k1 = 2, GMRES smoother with EWBJ preconditioner,

maximum number of GMRES iterations nmaxit = 8;
– fine level: kK = 6, ∀K ∈ Kh, GMRES smoother with EWBJ precondi-

tioner, maximum number of GMRES iterations nmaxit = 8.

The results of the comparison are summarized in Tab. 1, and, as ex-
pected [27], the p-MG strategy reduces the CPU time by ∼50% with respect
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Table 1 T3L case – Assessment of different strategies [MB, MF and p-MG MF-FGMRE
(operator assembly at each time step)] for the linear system solution in terms of non di-
mensional CPU time, memory footprint of the solution process, average number of GMRES
iterations, and the percentage ratio timemat/time% of the CPU time needed for the operator
assembly with respect to the overall simulation time.

BJ-MB ASM(1)-MB BJ-MF EWBJ-MF p-MG

CPU [%] 100 111 95 101 47

Memory [%] 100 160 60 21 15

GMRES iterations 115 72 115 229 3

timemat/time% 18.8 17.5 21.0 5.5 35.1

to a standard matrix-based method, and the memory footprint by 85%. No-
tice that, since the simple EWBJ is not a very effective preconditioner, a
large number of linear iteration is required to reach a given convergence level,
thus resulting in the allocation of large GMRES Krylov subspacs, which com-
promise, at least partially, the strong memory saving proper of the EWBJ
operator. The superior effectiveness of the p-MG preconditioner allows main-
taining a small number of GMRES iterations even when the matrix operator
is lagged over some time steps, without any significant influence on the mem-
ory allocation. In particular, when the assembly is lagged over lg = 3 time
steps, the number of linear iterations increases by ∼10% only. This behaviour
can be related to one of the main advantages of the matrix-free algorithm,
which automatically maintains the finest level operator always updated also
within the lagged p-MG preconditioner. Indeed, the re-assembly of the p-MG
preconditioner over some time steps is avoided by lagging the iteration matrix
and the preconditioner of the coarse levels smoothers, while the finest level
smoother uses the same (block-diagonal) preconditioner together with an al-
ways updated matrix-free operator. In practice, a p-MG preconditioner in a
MF-GMRES framework automatically keeps trace in its structure of the solu-
tion changes even when the operator assembly is lagged. For this flow problem,
the lag of the operator assembly allows further improving the saving in terms
of CPU time, which is 69% lower than the value measured for a standard
BJ-MB algorithm. However, the other preconditioners when coupled with the
matrix-free algorithm have different performance. The BJ-MF strategy with
lg = 3 shows an increase of the GMRES iterations, ∼ +25%, with a slight
performance degradation. In an unsteady context, the lag of the operator as-
sembly for a MB solution algorithm can not be always exploited, since the
accuracy of some classes of temporal schemes, e.g., the linearly-implicit meth-
ods [11,28], can be guaranteed only by computing the iteration matrix at each
time step.

Concerning the time needed for the assembly of the Jacobian matrix, it is
worth noting that, even if the p-MG shows a larger relative value, timemat/time,
the absolute value is slightly smaller than that of the BJ operator thanks to
the direct assembly of the off-diagonal blocks at the (lower) polynomial degree
of the coarse levels.
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The T3L case shows smaller relative time for the assembly of the oper-
ator compared to the values reported in the next Section for the laminar
unsteady flow past a sphere, cfr. Tab. 4. This behaviour is motivated by the
very few curved elements within the mesh, located close to leading-edge, that
use quadrature rules as if they were straight-sided cells, with a significant re-
duction of the assembly cost for the Jacobian matrix. All the computations
presented in the rest of this Section have been performed using the p-MG
MF-FGMRES approach.

Figure 1 shows the time-averaged x-component velocity ux/uref and the
velocity fluctuations u′xu

′
xrms/uref for increasing Tu values. The main flow fea-

ture that characterizes this testcase is the laminar separation bubble, i.e., the
laminar flow detaches at the plate leading edge, and reattaches after becoming
turbulent. As the turbulence intensity increases, the extent of the separation
bubble decreases, as shown by the x-component velocity, and the reattachment
point moves towards the leading edge. The turbulent transition of the flow is
marked by the increasing velocity fluctuations.

The instantaneous flowfield, see Fig 2, shows some differences for Tu =
0.0% (left) and Tu = 5.6% (right). At Tu = 0%, the quasi two-dimensional
Kelvin-Helmholtz instabilities in the shear-layer region above the separation
bubble and their convection downstream are observed. Differently, at the high-
est turbulence level, streaky like structures streamwise oriented are visible close
to the leading edge. The development of hairpin vortices after the reattach-
ment and the breakdown to turbulence are similar for both cases.

The pressure, cp, (left) and skin friction, cf , (right) coefficients distributions
along the plate are depicted in Fig. 3. The plateau along the cp distribution and
the zone where cf is negative represent the extent of the laminar separation
bubble. The length of the laminar separation bubbles for the different Tu
is reported in Tab. 2, and compared with the experimental data, explicitly
available only for Tu = 0.2%. The solver predicts a value of 2.69D, which is in
good agreement with the experiment (2.75D), while it is slightly different in
comparison to reference LES results, i.e. 2.6D [69] and 3.0D [41]. Predicted
values are reported in Fig. 4, where the DNS data of Lamballais et al. [39]
at ReD = 4 000, the experimental data from Coupland reported as personal
communication in Yang and Voke [69], and the experimental data available in
Palikaras et al. [55] (same geometry with a slightly different flow configuration,
i.e., Tu = 7% and ReD = 3 330) have been also added.

The computed curve is similar to the DNS curve for low value of Tu,
even if shifted upward for the lower Reynolds number. The experimental data
at Tu = 7% confirms the trend of the computed curve for higher values of
Tu and the greater accuracy of the computed bubble length for Tu = 5.6%,
i.e. l/D = 1.08, with respect to the value reported in the LES of Langari and
Yang [41], i.e. l/D = 1.8.

Figures 5 and 6 compare the computed velocity profiles with the experi-
mental data. The mean stream-wise velocity ux/umax, and the velocity fluc-
tuation (or velocity RMS), u′xu

′
x
+
rms/umax, are reported as a function of the

normal direction for different stations. The velocity is normalized by the local
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Fig. 1 T3L case – Spanwise- and time-averaged x-component velocity ux/uref and velocity
fluctuations u′xu

′
xrms/uref with Tu = 0% (top left), Tu = 0.2% (top right), Tu = 2.3%

(bottom left) and Tu = 5.6% (bottom right), P6 solution

Fig. 2 T3L case – Iso-contour with λ2 = −1 and periodic plane coloured by the x-
component velocity ux/uref with Tu = 0% (left) and Tu = 5.6% (right), P6 solution

Table 2 T3L case – Length of the laminar separation bubble as a function of the free-stream
turbulence intensity. Comparison of the computed results with available experimental data

T3L0 T3L1 T3L2 T3L3 T3L4

Tu 0.00% 0.20% 0.65% 2.30% 5.60%

l/D 3.90 2.69 2.00 1.49 1.08

l/Dexp - 2.75 - - -
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Fig. 3 T3L case – Spanwise- and time-averaged pressure cp (left) and skin friction cf (right)
coefficients distribution on the wall, P6 solution
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Fig. 4 T3L case – Length of the laminar separation bubble as a function of the free-
stream turbulence intensity in comparison with available numerical and experimental data,
P6 solution. DG-P6, Yang and Voke LES [69], Langari and Yang LES [41],
Lamballais et al. DNS ReD = 4000 [39], Copland Exp. reported in Yang and Voke [69],
Palikaras et al. Exp. [55].

maximum velocity umax for each station, as suggested in literature [69,41]. In
general, a good agreement is observed with the experimental data, especially
for mean velocity profiles, which suggests that the bubble length is correctly
captured for all turbulence intensities. The fact that our results match with
experimental data near the plate stagnation point confirms the effectiveness
of the random forcing term, even if a fine tuning of the turbulent length-scale
was not performed. The result confirms that the length-scale value does not
influence the reattachment length, as conjectured by [33,51].

Figure 7 shows the averaged velocity profiles expressed in wall units com-
puted at the station x/D = 12.1 for Tu = 5.6%, where the momentum thick-
ness Reynolds number Reθ is 295. The non dimensional stream-wise velocity
profiles compare fairly well with the law of the wall, while both stream-wise
velocity and velocity fluctuations are in good agreement with the Reθ = 300
boundary layer DNS results of Spalart [63]. We remark that for y+ > 100 the
fluctuations show some differences due to a different value of the free-stream
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Fig. 5 T3L case – Spanwise- and time-averaged x-component velocity ux/umax at different
locations with Tu = {0%, 0.2%, 0.65%, 2.3%, 5.6%} from top to bottom
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to bottom
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Fig. 7 T3L case – Non dimensional x-component velocity profile (left) and x-, y-, z-
component velocity fluctuations profile (right) in the boundary layer at x/D = 12.1 with
Tu = 5.6%, P6 solution. DG-P6, Spalart Reθ = 300 DNS [63]

turbulent kinetic energy. These differences reduce for lower values of Tu, whose
results are here not reported for the sake of compactness. Nevertheless, the
values of u′xu

′
y
+

rms
agree very well with the reference boundary layer data and

suggest that the free-stream turbulence is isotropic. The agreement points out
that at about 10 bubble lengths downstream the reattachment the boundary
layer recovers an almost standard shape, somehow “forgetting” the separation
induced transition. This behaviour confirms the finding of Alam and Sand-
ham [2], who stated that the logarithmic law of the wall is re-established after
about 7 bubble lengths.

As stated by Castro and Epik [21], a distance greater than 70 boundary
layer thickness, evaluated at the flow reattachment, is required to perfectly
form the standard wake-law structure of the outer layer. The value extrapo-
lated from the simulations is slightly smaller (roughly 55). However, we con-
sider this behaviour acceptable since the current Reθ is lower than the value
reported in [21], as well as what is usually considered an equilibrium turbulent
boundary layer.

Figure 8 shows the kinetic energy spectra evaluated for Tu = {0.65%, 2.3%, 5.6%}
at two probe points: (x, y) = (0.9D, 0.71D) that is above the bubble, and
(x, y) = (6.92D, 0.65D) that is well behind the reattachment zone. For the
first point a peak at St = fD/uref ' 1.3 is observed mainly for the lower Tu
values, due to the Kelvin-Helmholtz instability. For the second probe point,
located roughly at y+ = 35, the peak is absent and all the spectra collapse
in one curve. These results confirms the flow visualization of Fig. 2 and the
by-pass of the Kelvin–Helmholtz instability for Tu values sufficiently high.

3.2 Laminar flow past a sphere at ReD = 300 – A performance assessment

In this paragraph the performance improvement of the p-adaptive strategy
over the uniform degree spatial discretizations is assessed by computing the
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Fig. 8 T3L case – The kinetic energy spectra evaluated for Tu = {0.65%, 2.3%, 5.6%} at
(x, y) = (0.9D, 0.71D) (left) and (x, y) = (6.92D, 0.65D) (right), P6 solution.

unsteady laminar flow past a sphere at ReD = 300. This test case exhibits
a periodic behaviour, with the flow maintaining a plane of symmetry [25].
The computational mesh is made of 3 560 hexahedral elements with quadratic
edges and we apply a symmetry condition to simulate half of the sphere. So-
lutions are computed for uniform polynomial degree discretizations, P3 up to
P5, and compared with the results from a p-adaptation process with kini = 0,
kmax = 5, Gr = 0.2 , Gc = 0 (coarsening disabled), Nadp = 1 000 and nadp = 9.
The toltrg parameter was deliberately set to a large value to force adapta-
tion to be activated only when the Nadp criteria is satisfied, and to monitor
the force coefficients over roughly 10 shedding periods between two subse-
quent adaptations. For all the simulations, ROS3P time integration scheme
was adopted with a constant time step size ∆t = 0.125D/U∞. For the linear
system solution the MF-FGMRES method is used with a relative tolerance
tolr = 10−3. Differently from the T3L case (see Sec. 3.1), for low-Reynolds
flow problems the viscous effects are dominating. As the diffusive terms are
linear, the Jacobian is exact even when the evaluation of the matrix is lagged,
see [28]. As a consequence, the number of GMRES iterations does not signif-
icantly increase with the size of the lagging window and the relatively large
lg = 5 value was considered. The remaining settings of the p-MG precondi-
tioner are the same of the T3L case. For the matrix-free cases, the tolerances
for the adaptation of the quadrature rules DOE are set to tolq,RHS = 10−10

and tolq,pre = 10−2 for the residual and preconditioner assembly, respectively.
When considering matrix-based implementations, e.g., the BJ-MB, to achieve
the formal accuracy of the employed time integration scheme, the Jacobian
matrix must be exact. For this reason, only in these cases we use quadrature
rules for the matrix assembly of the same adapted DOE of the residual, i.e.,
tolq,RHS = 10−10.

For the same p−MG preconditioning technique, the numerical experiments
are summarized in Tab. 3 in terms of number of DOFs per equation; percentage
ratio of DOFs and CPU time, for a single time step, with respect to the
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Table 3 Flow past a sphere – Performance assessment in terms of number of DOFs per
equation; percentage ratio of DOFs and CPU time with respect the reference P5 values
(DOFsr and timer); relative percentage error on the time-averaged force coefficients, cD
and cL, on the oscillation semi-amplitudes of the force coefficients, ∆cD and ∆cL, and on
the Strouhal number St = fD/U∞.

DOFs
DOFs

DOFsr
%

time

timer
%

relative error, err(·), [%]

cD cL ∆cD ∆cL St

u
n

if
o
rm

P3 71 200 35.7 28.6 0.70 10.18 29.26 3.35 -1.98

P4 124 600 62.5 58.5 0.00 0.03 15.64 6.13 -1.79

P5 199 360 100.0 100.0 – – – – –

P1
→

5

`=6 44 911 22.5 24.8 0.17 -0.06 -4.84 -3.54 0.00

`=7 53 603 26.9 30.2 0.08 0.01 -1.44 -0.80 -0.38

`=8 62 725 31.5 32.3 0.06 0.03 -0.92 -1.13 0.05

nadp=9 72 038 36.1 35.9 0.02 0.01 -0.45 -0.60 0.05

reference P5 values (DOFsr and timer); relative percentage error on the time-
averaged force coefficients, cD and cL, on the oscillation semi-amplitudes of the
force coefficients, ∆cD and ∆cL, and on the Strouhal number St = fD/U∞.
The reference P5 values for the coefficients are cD = 0.6572 and cL = 0.06590,
∆cD = 0.00278 and ∆cL = 0.0145, St = 0.1309. The cL coefficient is evaluated
along the direction normal to the symmetry plane. Results from the p-adapted
P1→5 discretizations from ` = 6 to ` = nadp = 9 are tabulated in Tab. 3.

All the simulations reported in Tab. 3 are in good agreement, in terms
of time-averaged force coefficients, with the reference values except for the
cL of the uniform P3 computation that shows an error of ∼10%. Large error
values are observed for the coefficients oscillation semi-amplitudes: ∆cD value
predicted by the uniform P3 and P4 computations shows an error ∼29% and
∼15.5%, respectively, while the computation with p-adaptation (P1→5, `=6)
shows an error ∼5%.

The adaptive procedure, from ` = 7 onward, is in general able to deliver an
overall accuracy comparable to the reference P5 computation. For the adaptive
nadp = 9 simulation the relative errors on all the monitored coefficients are
within the 1%, with significant savings in terms of both CPU time for a single
time step, ∼ − 64.1%, and degrees of freedom, ∼ − 64%. Notice that, for
this flow problem, the CPU time reduction for the adaptive solutions directly
reflect the percentage reduction of the number of DOFs with respect to the
reference uniform P5 computation.

Figure 9 shows the overall relative error erra, defined as the arithmetic
mean of the absolute values of the relative errors, against the percentage
number of DOFs (DOFs/DOFsr%) and the CPU time for a single time step
(time/timer%). For the p-adaptive computations and ` ≥ 6, the erra value is
always lower than the uniform P4 case, and, in particular, the error for the
` = nadp = 9 solution is one order of magnitude lower than P4.
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Fig. 9 Flow past a sphere – Averaged relative error erra against the percentage number of
DOFs (DOFs/DOFsr%) (left) and CPU time ratios (time/timer%) (right).

Table 4 demonstrates that the adopted preconditioning strategy, i.e., the
p-MG, outperforms the BJ-MB or BJ-MF methods for both the p-adaptive
and the uniform degree simulations, as shown by the percentage CPU time
ratio time/timebj%. Notice that, when considering p-adaptive/uniform degree
computations the reference timebj value is set equal to the CPU time for the
BJ-MB p-adaptive/uniform computation. The p-MG preconditioner provides
a greater CPU time saving for the uniform-degree cases compared to adaptive
simulations, 54% and 30%, respectively. This difference can be attributed to
the matrix-free algorithm that shows better performance for high-order poly-
nomial degrees approximations. Indeed, as reported in Franciolini et al. [28],
the number of operations for the matrix-vector product (matrix-based) and
the residual evaluation (matrix-free), scales equally with the polynomial degree
only asymptotically, thus suggesting the use of very high-order discretizations.
For the present p-adaptive computation (nadp = 9), the number of low-order
cells, i.e. with a polynomial degree less than or equal to 1, is large, and rep-
resents 45% of the global number of mesh elements, thus partially reducing
the overall performance of matrix-free algorithm.This effect can be also clearly
observed in the BJ-MF p-adaptive case, where, differently from the uniform
degree discretization, no gain is obtained even when the matrix assembly is
lagged over five iterations (lg = 5). When matrix-free is coupled to p-multigrid,
the large reduction of GMRES iterations ensured by this efficient precondi-
tioner alleviates the higher cost of each GMRES iteration, thus obtaining a
memory-saving but efficient strategy.

The different preconditioning techniques are characterized by different cost
breakdowns. This is shown by the timemat/time percentage ratio of the CPU
time needed for the matrices assembly with respect to the overall simulation
time. For the BJ-MB case, a similar time percentage is devoted to the matrix
assembly for the fixed-degree (∼54%) and the p-adaptive (∼60%) simulations.
When considering the BJ-MF implementation, as expected, the percentage
time for the matrix assembly reduces due to the increased cost of the linear
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Table 4 Flow past a sphere – Performance assessment for different preconditioners. For
each strategy timemat/time% is the percentage ratio of the CPU time needed for the op-
erator assembly with respect to the overall simulation time. For the adaptive and uniform
simulations, time/timebj% is the percentage ratio of the CPU time of each precondition-
ing strategy compared with the BJ-MB strategy for the p-adaptive and uniform P5 runs,
respectively. timemat/timemat,bu% is the percentage ratio of the CPU time needed for the
operator assembly of each preconditioning strategy compared with the best performing
method for the uniform P5 case, i.e., p-MG with the matrices assembly lagged over lg=5
iterations. timemat/timemat,bu% is the percentage ratio of the CPU time of each precondi-
tioning strategy compared with the best performing method for the uniform P5 case, i.e.,
p-MG with lg=5.

timemat

time
%

time

timebj
%

timemat

timemat,bu
%

time

timebu
%

P5

BJ-MB 53.79 100 1739.7 216.1

BJ-MF 26.87 112.7 979.6 243.6

lg=5 7.49 85.1 206.2 184.0

p-MG 24.46 63.9 505.4 138.1

lg=5 6.68 46.3 100 100

P1
→

5

BJ-MB 59.61 100 453.2 50.8

BJ-MF 18.64 136.2 193.1 69.2

lg=5 4.59 114.0 39.8 57.9

p-MG 17.45 87.9 116.6 44.7

lg=5 4.38 70.7 23.5 35.9

system solution and the higher cost of the matrix assembly for the BJ-MB
strategy. Notice that the cost of the operator assembly for the p-MG precondi-
tioner is smaller than the BJ-MF. As pointed out in Sec. 3.1, this is motivated
by an implementation of the multilevel strategy that only retains the diagonal
blocks on the finest level matrix and mitigates the overhead related to the as-
sembly and positioning of coarser levels off-diagonal blocks by directly assem-
bling them at a lower polynomial degree. In general, the p-MG outperforms BJ-
MF in both the fixed- and variable-order cases, as demonstrated by a smaller
time/timebj% ratio, i.e. (time/timebj%)pMG ∼ 0.5 (time/timebj%)BJ−MF .

Finally, the time/timebu% percentage ratio of the CPU time for each pre-
conditioning strategy compared with the best performing method (bu) for the
uniform P5 case, i.e., p-MG with lg=5, demonstrates the superior performance
delivered by putting together the multilevel preconditioner with the p-adaptive
algorithm. This coupling allows for a ∼64% reduction of the CPU time with
respect to the best performing uniform P5 approach, while not spoiling the
overall accuracy, cfr. Tab. 3. Together with a significant CPU time reduction,
a large memory saving over the BJ is always guaranteed by assembling the
diagonal blocks only. The possible reduction of each block size due to the use
of the p-adaptive procedure further improves the memory footprint as shown
by the strong saving, ∼ −76.5%, in the CPU time for the operator evaluation
time/timebu% when compared to the best performing fixed-degree strategy.
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3.3 Flow past a circular cylinder at ReD = 3 900 – p-adaptive simulations

The transitional turbulent flow around a circular cylinder at Reynolds number
ReD = 3 900 based on the diameter D and the free-stream velocity uref is a
very common flow problem used as benchmark in the scientific community [19,
37,54]. This test case was also part of the suite of the International Workshop
on high-order methods [1]. The simulations have been performed in parallel
using 1 020 CPU cores on two different meshes made of 44 856 (mesh A) and
67 466 (mesh B) elements with quadratic-edges, respectively. Differently from
mesh B, mesh A was deliberately generated without any wake refinement,
see Figs. 10-12, to assess the performance of the p-adaptation strategy in
recovering this lack of spatial resolution. Both the grids have been obtained by
extruding a two-dimensional mesh using 14 elements in the spanwise direction
with a 2D periodicity. The cylindrical far-field boundary has been placed at
50D.

The computations have been initialized with a uniform P0 solution over
the mesh, i.e., kini = 0. According to Algorithm 3, when starting from the
piece-wise constant approximation, the devised adaptation strategy brings all
the elements of the mesh to P1 at the first adaptation cycle. The total number
of adaptation cycles performed during the computations was set to nadp = 7
and to nadp = 6 for the mesh A and mesh B, respectively. These values guar-
antee a comparable number of DOFs per equation at the end of the process,
i.e., 653 679 and 681 327 for mesh A and B, respectively. Adaptation was trig-
gered according to the tolerance toltrg = 0.02 and a minimum number of time
steps between two adaptation cycles equal to Nadp = 500. This last value
corresponds to roughly 5Tc, where Tc is a reference convective time defined
according to the free-stream velocity and the reference length. ROS3P time
integration scheme was adopted with the constant time step size ∆t = 0.01Tc.
Coarsening has been disabled, i.e., Gc = 0, while the 20% of elements with the
higher estimated error are marked to be refined at each adaptation cycle, i.e.,
Gr = 0.2. The maximum allowable polynomial degree is kmax = 5.

For the linear system solution the MF-FGMRES method is used with the
relative tolerance tolr = 10−4. The settings for the p-MG preconditioner are
the same of the T3L case, see Sec. 3.1, but with the preconditioner lagged
over lg = 5 time steps. The tolerances for the adaptation of the quadrature
rules DOE are set to tolq,RHS = 10−10 and tolq,pre = 10−2 for the residual
and preconditioner assembly, respectively.

Once all the nadp adaptation steps have been performed, the solutions have
been integrated in time to compute a time-averaged solution over roughly 40
shedding periods. The algorithm was able to increase the resolution at the
shear layer and in the wake region as shown in Figs. 11 and 12 by the polyno-
mial degree distribution over the domain and in Fig. 10 by the instantaneous
Mach number and pressure contours over the two meshes. As expected, high-
order polynomials elements are differently distributed in mesh A and B, with
a larger number of P4 and P5 cells in the wake region of mesh A. The refine-
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Fig. 10 Flow past a circular cylinder – Instantaneous Mach number and pressure contours
for mesh A (left) and B (right), P1→5 solution

Fig. 11 Flow past a circular cylinder – Polynomial degree distribution after 7 adaptation
cycles, mesh A (651 3679 DoFs), P1→5 solution

Fig. 12 Flow past a circular cylinder – Polynomial degree distribution after 6 adaptation
cycles, mesh B (681 327 DoFs), P1→5 solution

ment in the wake is not symmetric with respect to the centerline due to the
asymmetry of the unstructured meshes.

Figure 13 depicts the spanwise- and time-averaged distributions over the
cylinder for the pressure coefficient cp and the non-dimensional wall vorticity
Ω/2Re0.5. The cp distribution is in good agreement with the experimental data
from Norberg [52] and other numerical results, such as the DNS of Ma et al. [44]
(DOFs=100 000 000) and the LES of Lysenko et al. [43] (DOFs=5 760 000).
The vorticity profile is quite different in the first half of the cylinder from the
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Fig. 13 Flow past a circular cylinder – Spanwise- and time-averaged pressure coefficients
cp (left) and non-dimensional wall vorticity Ω/2Re0.5 (right) distribution on the wall of the
cylinder, P1→5 solution. Norberg exp Re = 3000 [52], Son and Hanratty exp [62], Ma
et al. DNS [44], Lysenko et al. LES k-eq. [43], DG-Pn mesh A, DG-P1→5

mesh B

experimental data of Son and Hanratty [62], but the distribution is almost
superimposed with DNS of Ma et al. [44]. The p-adaptation strategy allows
to provide almost “mesh independent” time-averaged solutions with a number
of DOFs roughly one and two order of magnitude lower than LES [43] and
DNS [44] computations, respectively.

Figure 14 compares the spanwise- and time-averaged streamwise ux/uref
and crosswise uy/uref velocity profiles at different locations in the wake of the
cylinder x/D = {1.06, 1.54, 2.02} with the numerical results available in the
literature [43,68] and the experiments from Parnaudeau et al. [57]. These quan-
tities confirm a good matching between experimental and numerical results.
In this case only streamwise velocities can be considered almost grid inde-
pendent, while some discrepancies between mesh A and B are observed for
the crosswise velocities. However, our numerical experiments on the compress-
ible case [12] suggest that this difference could be ascribed to an insufficient
averaging period/window.

Fig. 15 compares the streamwise ux/uref velocity along the centerline in
the wake of the cylinder with the numerical results available in the litera-
ture [43,68] and the experiments from Parnaudeau et al. [57] and Ong et
al. [53]. The length of the recirculation bubble is predicted correctly, and it
is in agreement with the experiment of Parnaudeau et al. [57]. The value of
ux/uref far from the circular cylinder is in good agreement with the experi-
mental value of Ong et al. [53].

Figure 16 compares the spanwise- and time-averaged streamwise u′xu
′
x/u

2
ref

and crosswise u′yu
′
y/u

2
ref velocity fluctuations with the numerical results avail-

able in the literature [43,68] and the experiments from Parnaudeau et al. [57].
The agreement with the reference data is generally good, even if locally some
discrepancies can be observed. Some differences between mesh A and B are
also present, but they could be ascribed also in this case to a not sufficient
time of average. Finally, Fig. 17 presents the comparison between all the veloc-
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Fig. 14 Flow past a circular cylinder – Spanwise- and time-averaged streamwise ux/uref
and crosswise uy/uref velocity at different locations in the wake of the cylinder x/D =
{1.06, 1.54, 2.02}, P1→5 solution. Parnaudeau et al. exp [57], Lysenko et al. LES k-
eq. [43],, Wissink and Rodi DNS [68], DG-P1→5 mesh A, DG-P1→5 mesh
B
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Fig. 15 Flow past a circular cylinder – Spanwise- and time-averaged streamwise velocity
ux/uref along the centerline (y/D = 0) in the wake of the cylinder,P1→5 solution. Par-
naudeau et al. exp [57], Ong et al. exp [53], Lysenko et al. LES k-eq. [43],
Wissink and Rodi DNS [68], DG-P1→5 mesh A, DG-P1→5 mesh B

ities and velocity fluctuations profiles, at different locations in the wake of the
cylinder x/D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, with the DNS performed by Wissink
and Rodi [68]. In this case a very good matching is observed. Comparing the
results of grids A and B, an almost mesh independent behaviour is shown
with the exception of the first station. At the first station, the polynomial
distribution of the mesh A seems to guarantee a better resolution.
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Fig. 16 Flow past a circular cylinder – Spanwise- and time-averaged streamwise u′xu
′
x/u
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and crosswise u′yu
′
y/u

2
ref velocity fluctuations at different locations in the wake of the cylin-

der x/D = {1.06, 1.54, 2.02}, P1→5 solution. Parnaudeau et al. exp [57], Lysenko et
al. LES k-eq. [43], DG-P1→5 mesh A, DG-P1→5 mesh B

4 Conclusion

The paper presents a strategy to enhance the computational efficiency of an
implicit DG solver for the scale resolving simulation of incompressible tur-
bulent flows. The proposed approach exploits the coupling of a p-adaptive
solution process and a p-MG preconditioner.

The p-adaptive algorithm aims at reducing the spatial discretization error
by locally varying the polynomial degree of the solution according to proper
error estimators. The algorithm also takes advantage of i) a multi-constraint
domain decomposition algorithm to mitigate the computational load imbal-
ance induced by adaptation, and ii) an adaptive algorithm for the degree of
exactness of the quadrature rules to reduce, without loss of accuracy, the op-
erator assembly cost.

To further improve the solver performance in terms of memory footprint
and the CPU time, a matrix-free FGMRES implementation has been con-
sidered together with a p-MG preconditioner that can exploit element-wise
approximations of the implicit operator. This multilevel preconditioner, pro-
posed in [27], was here extended to a variable polynomial degree framework,
where the finest level operator is a partitioned matrix with blocks of variable
size, by using coarser levels of (almost) uniform degree over the mesh.

The performance and accuracy of the method have been assessed by con-
sidering the following test cases: i) the T3L ERCOFTAC case with different
levels of inlet turbulence, ii) the flow past a sphere at ReD = 300, and iii) the
flow past a circular cylinder at ReD = 3 900.

The T3L case has been used to show the dramatic improvement of the
solver efficiency due to the only use of an effective preconditioner for the
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linear systems solution, here the p-multigrid preconditioner. This flow problem
has been also used to demonstrate, in detail and for different Tu values, the
promising predicting capabilities of the numerical method when applied to the
ILES.

Once the the good properties of the underlying DG method have been
proved, the positive impact of the p-adaptive strategy on the solver perfor-
mance was quantified by computing the unsteady laminar flow past a sphere
at ReD = 300. Indeed, for a given target accuracy, the overall number of DOFs
and the CPU time are always in favor of the adaptive strategy when compared
to uniform-degree discretizations.

Finally, as a proof of concept, the p-adaptive ILES of the turbulent flow
past a circular cylinder was considered. The proposed approach was able to
deliver an almost mesh-independent solution for many quantities of interest
(cp, cf , and averaged velocities) when considering two very coarse unstructured
meshes. The results are in reasonable agreement with the literature but with a
number of DOFs roughly 1-2 order of magnitude smaller than the references.

Future works involve a thorough investigation of the parameters of the p-
multigrid preconditioner, e.g., number of levels and orders distributions over
the levels, as well as the study of alternatives strategies for the definition of
the coarser levels operators, e.g., strongly non-uniform order coarser levels.
More complex flow problems will be considered in a forthcoming paper to
demonstrate the effective potential of the promising p-adaptive method devised
in this work.
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