

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Linezolid-resistant Enterococcus gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes

This is the peer reviewd version of the followng article:

Original

Linezolid-resistant Enterococcus gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes / Coccitto, SONIA NINA; Cinthi, Marzia; Fioriti, Simona; Morroni, Gianluca; Simoni, Serena; Vignaroli, Carla; Garofalo, Cristiana; Mingoia, Marina; Brenciani, Andrea; Giovanetti, Eleonora. - In: JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY. - ISSN 0305-7453. - 77:2(2022), pp. 331-337. [10.1093/jac/dkab408]

Availability:

This version is available at: 11566/293308 since: 2024-04-09T15:30:38Z

Publisher:

Published DOI:10.1093/jac/dkab408

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the

This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

Journal of Antimicrobial Chemotherapy

Linezolid-resistant Enterococcus gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes

Journal:	Journal of Antimicrobial Chemotherapy
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Coccitto, Sonia; Università Politecnica delle Marche Facoltà di Medicina e Chirurgia Cinthi, Marzia; Polytechnic University of Marche Fioriti, Simona Morroni, Gianluca; Università Politecnica delle Marche Simoni, Serena; Università Politecnica delle Marche Vignaroli, Carla; Polytechnic University of Marche, Ancona, Italy, Department of Life and Environmental Sciences; University Garofalo, Cristiana ; Università Politecnica delle Marche Mingoia, Marina; Università Politecnica delle Marche Brenciani, Andrea; Polytechnic University of Marche, Dept. Biomedical Sciences and Public Health Giovanetti, Eleonora; Marche Polytechnic University, 6Department of Life and Environmental Sciences
Keywords:	Enterococcus gallinarum, Oxazolidinone resistance, cfr, optrA, poxtA, Plasmids
	·

1	Original research
2	Linezolid-resistant <i>Enterococcus gallinarum</i> isolate of swine origin
3	carrying <i>cfr</i> , <i>optrA</i> and <i>poxtA</i> genes
4	
5	Sonia Nina Coccitto ^{1†} , Marzia Cinthi ^{2†} , Simona Fioriti ¹ , Gianluca Morroni ¹ , Serena
6	Simoni ² , Carla Vignaroli ² , Cristiana Garofalo ³ , Marina Mingoia ¹ , Andrea Brenciani ¹ *,
7	and Eleonora Giovanetti ²
8	
9	
10	¹ Department of Biomedical Sciences and Public Health, Polytechnic University of
11	Marche Medical School, Ancona, Italy;
12	² Department of Life and Environmental Sciences, Polytechnic University of Marche,
13	Ancona, Italy;
14	³ Department of Agricultural, Food and Environmental Sciences, Polytechnic University
15	of Marche, Italy.
16	
17	[†] These authors have contributed equally to this work.
18	
19	
20	
21	Running title:
22	cfr, optrA and poxtA genes in a porcine Enterococcus gallinarum
23	
24	
25	*Corresponding Author.
26	Unit of Microbiology, Department of Biomedical Sciences and Public Health,
27	Polytechnic University of Marche Medical School,
28	Via Tronto 10/A, 60126 Ancona, Italy.
29	Tel: +390712206299;
30	E-mail: a.brenciani@staff.univpm.it
31	

32 Abstract

- Objectives: To characterize a linezolid-resistant *Enterococcus gallinarum* isolate of
 porcine origin co-carrying *cfr*, *optrA* and *poxtA* genes.
- 35 **Methods:** The plasmidome was evaluated by S1-PFGE/hybridisation. The genome was
- 36 sequenced using the Illumina platform. The presence of circular intermediates was
- 37 examined by inverse PCR. Transferability of oxazolidinone resistance genes was
- 38 investigated by transformation and conjugation.
- 39 **Results:** Two plasmids, the *cfr* and *optrA*-carrying pEgFS4-1 (35 kb) and the *poxtA*-
- 40 harbouring pEgFS4-2 (38 kb), were identified. pEgFS4-1 disclosed a distinctive mosaic
- 41 structure with two cargo regions bounded by identical IS1216 elements interpolated into
- 42 a backbone related to that of *E. faecium vanA*-containing pVEF2. The first cargo region
- 43 included the *cfr* and *optrA* contexts, whereas the second one carried a Tn554 remnant and
- 44 the lnu(A) gene. Both regions were able to excise in circular form as a unique
- 45 translocable unit. pEgFS4-2 plasmid was 99% identical to a not fully described *E*.
- 46 faecium pSBC1 plasmid. The poxtA environment, flanked by IS1216, was proved to be
- 47 instable. pEgFS4-2 also exhibited another cargo region containing the tet(M)-tet(L)
- 48 genes arranged in tandem and its circular form was detected. Transformation and
- 49 conjugation experiments failed to demonstrate the transferability of both plasmids to
- 50 enterococcal recipients. Both plasmids persisted in the absence of selective pressure.
- 51 Conclusions: To the best of our knowledge, this is the first description of a linezolid-
- 52 resistant *E. gallinarum* isolate of swine origin carrying *cfr*, *optrA* and *poxtA* genes.
- 53 The co-presence of three linezolid resistance determinants in an intrinsically
- 54 vancomycin-resistant enterococcal species is cause of concern.

icern.

55 Introduction

Enterococci are traditionally regarded as human opportunistic bacteria and continue to 56 be important nosocomial pathogens; particularly the clinically relevant species 57 58 Enterococcus faecalis and Enterococcus faecium are globally considered as leading cause of healthcare-associated infections. Most of their success as nosocomial pathogens 59 60 is due to their capability to survive in the environment and tolerate disinfectants, as well 61 as to intrinsic resistance to many drugs and their ability to acquire new antibiotic 62 resistance genes. Multidrug resistance is common in enterococcal isolates, which prolongs hospitalization and increases costs and the risk of therapeutic failure. Few 63 options are still available to treat infections due to antibiotic-resistant enterococci.¹ 64 65 Oxazolidinones, including linezolid and tedizolid, are effective antimicrobial agents for the treatment of clinical infections caused by MDR Gram-positive pathogens, including 66 VRE. However, enterococci can also develop resistance to linezolid through acquisition 67 of the cfr, cfr(B) and cfr(D) genes,²⁻⁴ which encode methyltransferases conferring 68 resistance to five classes of antimicrobial agents, including phenicols, lincosamides, 69 oxazolidinones, pleuromutilins, and streptogramin A (PhLOPS_A phenotype).⁵ 70 71 Oxazolidinone resistance can also be due to the acquisition of optrA and poxtA genes encoding protein of ABC-F family.^{6,7} OptrA and PoxtA lead to decreased susceptibility 72 to phenicols, oxazolidinones (including tedizolid), and tetracyclines (PoxtA protein 73 74 only) by a ribosomal protection mechanism.⁸ Oxazolidinone resistance determinants are 75 commonly located on conjugative plasmids, the main mobile genetic elements 76 responsible for the spread of antibiotic resistance within the enterococcal population.⁹ 77 Although oxazolidinones have been approved only for human use, cfr, optrA, and poxtA genes have been detected in enterococcal isolates of animal and environmental origin,¹⁰ 78 79 and very recently even in enterococci from coastal seawaters samples.¹¹ 80 *Enterococcus gallinarum*, intrinsically resistant to vancomycin, is only occasionally found in human gut and bovine or swine intestinal microbiota.¹² E. gallinarum is 81 considered an opportunistic human pathogen and in recent years, severe infections, 82 including bacteremia, endocarditis, and meningitis, as well as several hospital-acquired 83 outbreaks caused by this enterococcal species, have gradually increased.¹³ 84 To date, the cfr and optrA genes have been identified in E. gallinarum, individually^{14,15} 85 or in combination.¹⁶ Very recently, a *poxtA2* variant was detected in a linezolid-resistant 86 E. gallinarum.¹⁷ 87

To the best of our knowledge, this is the first characterization of a linezolid-resistant E.
gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes.

90 Materials and methods

91

92 Bacterial strain. The strain E. gallinarum FS4 was isolated in the framework of a study 93 (data unpublished) aimed at the detection of resistant enterococci from fecal samples (of 94 healthy animals) collected at swine farms. The strain selected on Slanetz-Bartley agar 95 plates supplemented with florfenicol (10 mg/L) was positive for the presence of the cfr, 96 optrA and poxtA genes using primer pairs previously described (Table S1).¹⁸ Since the 97 isolate FS4 belonged to E. gallinarum species and harbored all three cfr, optrA and 98 poxtA genes, a deeper genetic investigation of the strain was carried out in this study. 99

Susceptibility tests. Susceptibility to florfenicol, chloramphenicol, linezolid,
 tetracycline, erythromycin and vancomycin (Sigma-Aldrich, St. Louis, MO) by standard
 broth microdilution assays according to the CLSI,¹⁹ and to tedizolid using Etest strips
 (Liofilchem, Roseto degli Abruzzi, Italy). The results were interpreted according to the
 EUCAST clinical breakpoint tables (version 10.0, www.eucast.org). E. faecalis
 ATCC29212 and S. aureus ATCC29213 were used for quality control in susceptibility
 tests.

107

S1-PFGE, Southern blotting, and hybridisation assays. Genomic DNA embedded in
agarose gel plugs was digested with S1 nuclease (Thermo Fisher Scientific, Milan,
Italy), and chromosomes and plasmids separated by PFGE as described previously.²⁰
After S1 PFGE, total DNA was blotted onto positively charged nylon membranes
(Ambion-Celbio, Milan, Italy) and hybridized with biotin-labelled *cfr*, *optrA*, and *poxtA*DNA probes as described elsewhere (Table S1).²¹

114

WGS and sequence analysis. Bacterial genomic DNA was extracted by the QIAcube
automated extractor using DNeasy PowerLyzer PowerSoil Kit according to

117 manufacturer's instructions (Qiagen, Germany). Extracted DNA was subjected to WGS

118 by a hybrid approach using both short-read Illumina MiSeq platform (MicrobesNG,

Birmingham, UK) with a 2 x 250 paired end technology and a long-read sequencing

approach (MinION, Oxford Nanopore Technologies, Oxford, UK). SPAdes 3.15.2

- 121 software was used for the hybrid assembly of short and long reads
- 122 (http://bioinf.spbau.ru/spades).
- 123 In silico identification of acquired antimicrobial resistance genes and ribosomal
- 124 mutations involved in oxazolidinone resistance were carried out using dedicated tools
- available at the Center for Genomic Epidemiology available at

- 126 http://www.genomicepidemiology.org/ (ResFinder v.3.2, LRE-finder v.1.0) and by the
- 127 BLAST suite (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
- 128
- 129 Plasmid isolation. Total plasmid DNA was isolated using the GeneElute Plasmid
- 130 Miniprep Kit (Sigma), with the addition of 18 mg/ml lysozyme (Sigma) to the buffer.
- 131
- **132** Transformation and conjugation experiments. Purified plasmid DNA extracted from
- 133 E. gallinarum FS4 was transformed into E. faecalis JH2-2 recipient by
- electrotransformation.²² Transformants were selected on plates supplemented with
- 135 florfenicol (10 mg/L).
- 136 Conjugal transfer was performed on a membrane filter as described previously²¹ using E.
- 137 gallinarum FS4 as the donor and the florfenicol-susceptible E. faecium $64/3^{23}$ as
- 138 recipient. Transconjugants were selected on brain heart infusion agar (BHIA; Oxoid,
- 139 Basingstoke, UK) plates containing fusidic acid, rifampicin, and florfenicol (all at 10
- 140 mg/L). The transfer frequency was expressed as the ratio of the cell number (CFU/mL)
- 141 of the transconjugant to that of the recipient.
- 142
- 143 Detection of circular forms. Excision of the genetic contexts was detected using both
 144 outward-directed primer pairs targeting DNA flanking the cargo regions and primer pairs
 145 bounding the empty excision sites (Table S1 and Figure S1).
- 146
- Plasmid stability. Over time plasmid stability was evaluated by daily serial passages of *E. gallinarum* FS4 on antibiotic-free BHIA. Weekly, some randomly chosen colonies
 were tested for their susceptibility to oxazolidinones and phenicols and their DNA was
 extracted and screened for the presence of the oxazolidinone resistance genes by PCR
 (Table S1). In case of negative testing, the strain was regarded as possibly cured and
 subjected to WGS for confirmation.
- 153
- 154 Nucleotide sequence accession numbers. The nucleotide sequences of plasmids
 155 pEgFS4-1 and pEgFS4-2 have been deposited in GenBank under accession numbers
- 156 MZ291452 and MZ291453, respectively.

157 **Results and discussion**

158

Susceptibility testing. E. gallinarum FS4 exhibited an MDR phenotype, including
resistance to florfenicol (MIC, 128 mg/L), chloramphenicol (MIC, 32 mg/L), linezolid
(MIC, 8 mg/L), tedizolid (MIC, 4 mg/L), tetracycline (MIC, >128 mg/L), erythromycin
(MIC, >128 mg/l), and vancomycin (MIC, 8 mg/L).

163

164 Location of oxazolidinone resistance genes. S1-PFGE/hybridization assays showed that 165 a *poxtA* gene probe hybridized with a ~35-kb plasmid (Figure S2), whereas experiments 166 performed with *cfr* and *optrA* gene probes were unsuccessful probably due to the low 167 number of plasmid copies (see below).

168

WGS analysis. Sequencing analysis of *E. gallinarum* FS4 revealed a genome consisting
of 3,299,121 bp (40,5% GC content) and the presence of a 34,679-bp plasmid, designated
pEgFS4-1 (accession no. MZ291452), and a 38,387-bp plasmid named pEgFS4-2

172 (accession no. MZ291453), both with a 36% GC content.

- 173 In addition to the *vanC* cluster conferring intrinsic vancomycin resistance, ResFinder
- analysis revealed *E. gallinarum* FS4 strain carried multiple acquired antibiotic resistance
- 175 genes (ARGs). vanC cluster was typically located on the chromosome and showed 100%
- 176 coverage and 99.82% identity to that of the reference strain E. gallinarum BM4174
- 177 (GenBank accession no. AF162694.1), whereas ARGs were all plasmid-associated. As
- 178 regards oxazolidinone resistance genes, WGS analysis confirmed that the *cfr* and *optrA*
- genes were located on pEgFS4-1, whereas the *poxtA* gene was part of the pEgFS4-2.
- 180 The maps of the two plasmids with all the detected ARGs, are shown in Figures 1 and 2.
- 181 The major characteristics of the ORFs of pEgFS4-1 and pEgFS4-2 are detailed in Tables
- 182 S2 and S3, respectively.
 - 183 WGS analysis also ruled out the presence of *cfr* variants and mutations in 23S rRNA and
 184 L3/L4 ribosomal proteins.
 - 185

186 pEgFS4-1 plasmid

- 187 Sequence analysis of pEgFS4-1 plasmid identified 38 ORFs encoding proteins ≥50 amino
 188 acids. BLASTN analysis revealed a mosaic structure consisting of a backbone and two
 189 cargo regions (Figure 1 and Table S2).
- 190 The backbone region (GC content of 34.0%), spanning from *orf1* to *orf9* and from *orf31*
- to orf38, had high-level identity (from 90 to 99%) and wide synteny to the scaffold of
- the non-conjugative *vanA*-containing plasmid pVEF2 (accession number AM410096.1),
- responsible for glycopeptide resistance in *E. faecium* 399/F99/A9 of poultry origin in
- 194 Norway.²⁴ These two regions contained several genes involved in pEgFS4-1 replication,

195 partitioning and persistence (such as the $\delta - \omega - \varepsilon - \zeta$ toxin/antitoxin genetic cluster).

- 196 However, compared to pVEF2, pEgFS4-1 lacked the Tn1546 transposon and harboured
- the erm(B) gene (orf9) responsible for macrolide, lincosamide and streptogramin group B
 resistance.
- 199 The two cargo regions were distinguished by their GC content and similarity to portions200 of known genetic elements:
- 201 The first cargo region (GC content 38%), spanning from *orf9* to *orf23* and including the
- 202 *cfr* and *optrA* genetic contexts, disclosed high-level nucleotide identity (from 90 to 99%)
- to the corresponding region of pWo27-9 plasmid of *Staphylococcus sciuri* (accession no.
- KX982169.1) (Figure 1).²⁵ Unlike pWo27-9, in pEgFS4-1 this region displayed the
- insertion of two transposases: the former, belonging to IS30 family, was inserted
- between *cfr* and *istAS-istBS* genes (encoding transposases belonging to the IS21 family);
- 207 the latter, belonging to Tn3 family, was truncated and located between the *ble*
- 208 (responsible for bleomycin resistance) and the optrA genes. Upstream of ant(4')-Ia
- 209 (*orf22*), we also detected the insertion of the $aph(2^{\circ})$ -IIIa, both genes are responsible for
- aminoglycoside resistance.
- 211 The optrA gene was 99.0% identical to the DNA reference sequence (GenBank accession
- no. KP399637.1). Furthermore, three amino acid changes (K3E, N12Y, Y176D) were
- detected in the protein sequence compared to $OptrAE_{349}$ (99% amino acid identity and
- similarity). Interestingly, the Optr A_{EYD} variant was previously detected in porcine E.
- *faecalis* and *Enterococcus avium* isolates recovered during an antibiotic surveillance in
 central Italy.¹⁶
- 217 The second cargo region (GC content 35%), showing high-level nucleotide identity (from
- 218 90 to 99%) to the corresponding portion of *Lactobacillus johnsonii* UMNLJ22
- chromosome (accession no. CP021704.1), displayed a mosaic structure with the plasmid
- 220 replication repB gene (orf24), a truncated mobM relaxase gene (orf27), and lnu(A)
- 221 (*orf28*) responsible for lincosamide resistance. This region was disrupted due to
- insertion in *mobM* gene of a 1.3-kb Tn554 remnant showing *ant*(9)-Ia gene (responsible
- for spectinomycin resistance), and a truncated erm(A) gene lacking 270-bp at 5'end.
- Both cargo regions were bounded by identical IS1216 elements with the same
- orientation: the *cfr-optrA* genetic context was flanked by *orf9* and *orf23*, while the
- 226 $\Delta Tn554/lnu(A)$ genetic environment was bracketed by orf23 and orf31. The presence of
- 227 specific direct repeats flanking IS1216 elements was not detected.
- 228 A PCR assay showed that these two cargo regions were able to excise in circular form as
- a unique translocable unit (TU). Sequencing data displayed an IS1216 element in the
- circular form and an empty excision site devoid of IS element (Table S2 and Figure S1).

- 231 Very recently, Harmer *et al.* proposed a novel nomenclature for genetic elements that are
- bounded by members of the IS26 family orientated in the same direction defining them
- as "pseudo-compound transposons (PCTs)".²⁶ Since the TU contains the *cfr* and *optrA*

genes and IS1216 elements (belongs to the IS26 family) with the same orientation, it

- could be classified actually as a PCT.
- Transfer experiments of the pEgFS4-1 to *E. faecalis* JH2-2 and *E. faecium* 64/3
- 237 recipients were unsuccessful. Sequencing analysis showed the lack in pEgFS4-1 of a
- complete transfer machinery, which explains the failure of the conjugation experiments.
- 239

240 pEgFS4-2 plasmid

241 pEgFS4-2 plasmid exhibited 99% DNA identity (coverage, 98%) with the conjugative plasmid pSBC1 (accession no. CP038169), partially described in a porcine E. faecium 242 (Figure 2).²⁷ Moreover, pEgFS4-2 displayed 99% DNA identity (coverage, 40%) with a 243 244 region of Tn6657 transposon (containing fexB and poxtA genes). Tn6657 is part of Tn6349 (accession no. MH746818.1), the first *poxtA*-carrying element characterized in 245 the chromosome of the clinical S. aureus AOUC-0915 isolate.²⁸ In pEgFS4-2, the poxtA 246 genetic context, flanked by IS1216 with the same polarity, was highly conserved; inverse 247 PCR experiments and sequencing showed that a circular form of *poxtA* genetic context 248 was detectable. On the other hand, the *poxtA* context excision due to an IS1216-mediated 249 recombination has already been established^{10,11,16,29,30} suggesting that the circularisation 250 251 can facilitate the spreading of this oxazolidinone resistance gene.

- Interestingly, pEgFS4-2 exhibited another 19,337-bp cargo region (from orf11 to orf30) containing the tetracycline resistance tet(M) and tet(L) genes arranged in tandem (orf25and orf26), and several genes involved in transposition and plasmid replication (Table S3). This genetic context, bounded by two identical IS1216 insertion sequences (orf11and orf30) with the same orientation, was integrated within orf10, encoding a DNA
- 257 topoisomerase, splitting the gene into two portions. Remarkably, the tet(M)-tet(L)
- 258 genetic context was flanked by 8 bp direct repeats (5'-CAAAAAAG-3'), apparently
- resulting from target site duplication following IS1216-mediated transposition at this
- site. Inverse PCR assays, with primers targeting the flanking regions the insertion site
- 261 (Figure S1 and Table S3), indicated the circularisation of tet(M)-tet(L) genetic
- environment confirming the mobility of this region. Sequencing analysis demonstrated
- the presence of a IS1216 element in the circular form and a single IS1216 copy at the
- excision site. Interestingly, this genetic context displayed 99% nucleotide identity with a
- mobile tet(M)-tet(L) locus, flanked by two copies of IS1216E elements in the same
- orientation, detected in pFas4-1 plasmid of the *Enterococcus hirae* of swine origin.³¹ As

- indicated above for the *cfr-optrA* TU, also the cargo region carrying the *tet*(M)-*tet*(L) 267
- genes could be actually considered as a PTC.²⁶ 268
- Unlike Lei *et al.* which demonstrated the pSCBC1 transferability,²⁷ we were unable to 269
- transfer pEgFS4-2 to enterococcal recipients despite the presence of several genes 270
- involved in plasmid conjugation. It should nevertheless be underlined that sequencing 271
- analysis displayed that some key genes involved in conjugation were truncated [traG272
- (orf1), topA (orf10) and mobM (orf27 and orf28), Table S3], which may explain the non-273
- transferability of pEgFS4-2 plasmid. Also transfer to E. faecalis JH2-2 via 274
- 275 electrotransformation was not observed.
- 276
- 277 Plasmids stability assays. E. gallinarum FS4 was maintained for 30 days in antibiotic-
- free BHIA. During this time, both a modification in oxazolidinone and phenicols 278
- susceptibility and a loss of pEgFS4-1 and pEgFS4-2 plasmids have not been observed. 279

fh .nd pE_b

Conclusions 280

- This is to the best of our knowledge the first characterization of a linezolid-resistant 281 282 E. gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes.
- 283 Although the oxazolidinone resistance genes were carried by non-transferable plasmids
- their location in PCTs, able to excise as TUs, suggests that they could be mobilized to 284
- other conjugative plasmids and spread among Gram-positive cocci. 285
- Despite its broad environmental diffusion and low prevalence in clinical specimens, E. 286
- gallinarum species is increasingly implicated in human opportunistic infections and 287
- especially patients with concurrent hepatobiliary or onco-hematological diseases seem to 288
- be more susceptible to severe invasive infections.¹³ Typically, E. gallinarum display 289
- low-level resistance to vancomycin due to chromosomally encoded non-transferable vanC 290
- 291 gene cluster and is relatively susceptible to teicoplanin and linezolid. Although vanA and
- vanB genes are typically observed in E. faecium and E. faecalis species, detection of E. 292
- 293 gallinarum isolates harboring different genotypes of vancomycin resistance (including a
- dual vanA and vanB cassette) is worrisome.³² Detection in this species of oxazolidinones 294
- 295 resistance genes limits the therapeutic choices in cases of invasive infections causing 296 further concern.
- 297 Consideration should be given to possibility that E. gallinarum isolates full resistant to ga. in the
- 298 both glycopeptides and oxazolidinones may emerge in the future.
- 299

Journal of Antimicrobial Chemotherapy: under review

300 Funding

This work was supported by PRIN 2017 grant prot. 20177J5Y3P from MIUR-Italy and by 301 302 Progetto Strategico di Ateneo 2017 – Polytechnic University of Marche, "In the hunt of

new antibiotics: active compounds from both chemical synthesis and natural sources". 303

- 304
- 305

Transparency declarations 306

None to declare 307

308 References

- García-Solache M, Rice LB. The enterococcus: a model of adaptability to its
 environment. *Clin Microbiol Rev* 2019; **32**: e00058–18.
- Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne
 chloramphenicol-florfenicol resistance gene in *Staphylococcus sciuri*. Antimicrob
 Agents Chemother 2000; 44: 2530–3.
- Deshpande LM, Ashcraft DS, Kahn HP et al. Detection of a new cfr-like gene,
 cfr(B), in Enterococcus faecium isolates recovered from human specimens in the
 United States as part of the SENTRY Antimicrobial Surveillance Program.
 Antimicrob Agents Chemother 2015; 59: 6256-61.
- Guerin F, Sassi M, Dejoies L et al. Molecular and functional analysis of the novel
 cfr(D) linezolid resistance gene identified in Enterococcus faecium. J. Antimicrob
 Chemother 2020; 75: 1699–1703.
- 5. Long KS, Poehlsgaard J, Kehrenberg C et al. The Cfr rRNA methyltransferase
 confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and
 streptogramin A antibiotics. Antimicrob Agents Chemother. 2006; 50: 2500-5.
- Wang Y, Lv Y, Cai J et al. A novel gene, optrA, that confers transferable
 resistance to oxazolidinones and phenicols and its presence in Enterococcus *faecalis* and Enterococcus faecium of human and animal origin. J Antimicrob
 Chemother 2015; 70: 2182–90.
- Antonelli A, D'Andrea MM, Brenciani A *et al.* Characterization of *poxtA*, a novel
 phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical
 origin. J Antimicrob Chemother 2018; 73: 1763-9.
- 8. Ero R, Kumar V, Su W *et al.* Ribosome protection by ABC-F proteins—molecular
 mechanism and potential drug design. *Protein science* 2019; 28: 684–93.
- 9. Partridge SR, Kwong SM, Firth N *et al.* Mobile genetic elements associated with
 antimicrobial resistance. *Clin Microbiol Rev* 2018; **31**: e00088–17.
- 10. Schwarz SS, Zhang W, Du XD *et al.* Mobile oxazolidinone resistance genes in
 Gram-positive and Gram-negative bacteria. *Clin Microbiol Rev* 2021; 34: e00188–
 20.
- 11. Fioriti S, Coccitto SN, Cedraro N *et al.* Linezolid Resistance Genes in Enterococci
 Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. *Appl and Environ Microbiol* 2021; 87: e02958–20.
- 341 12. Torres C, Alonso CA, Ruiz-Ripa L et al. Antimicrobial resistance in Enterococcus
 342 spp. of animal origin. Microbiol Spectr 2018; 6: 185–227.
- 343 13. Monticelli J, Knezevich A, Luzzati R, *et al.* Clinical management of non-faecium
 344 non-faecalis vancomycin-resistant enterococci infection. Focus on *Enterococcus*

345	gallinarum and Enterococcus casseliflavus/flavescens. J Infect Chemother 2018;
346	24 : 237–246.
347	14. Liu Y, Wang Y, Dai L et al. First report of multiresistance gene cfr in
348	Enterococcus species casseliflavus and gallinarum of swine origin. Vet Microbiol
349	2014; 170: 352–7.
350	15. Yao TG, Li BY, Luan RD et al. Whole genome sequence of Enterococcus
351	gallinarum EG81, a porcine strain harbouring the oxazolidinone-phenicol
352	resistance gene optrA with chromosomal and plasmid location. J Glob Antimicrob
353	Res 2020; 22: 598-600.
354	16. Fioriti S, Morroni G, Coccitto SN et al. Detection of oxazolidinone resistance
355	genes and characterization of genetic environments in enterococci of swine origin,
356	Italy. Microorganims 2020; 8: 2021.
357	17. Baccani I, Antonelli A, Di Pilato V et al. Detection of poxtA2, a presumptive
358	poxtA ancestor, in a plasmid from a linezolid-resistant Enterococcus gallinarum.
359	Antimicrob Agents Chemother 2021; In press.
360	18. Brenciani A, Fioriti S, Morroni G et al. Detection in Italy of a porcine
361	Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-
362	tetracycline resistance gene poxtA. J Antimicrob Chemother 2019; 74: 817-8.
363	19. Clinical and Laboratory Standards Institute (CLSI). 2020. Performance standards
364	for antimicrobial susceptibility testing. CLSI M100. CLSI, Wayne, PA.
365	20. Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing
366	large plasmids. Anal Biochem 1995; 226 : 235–40.
367	21. Brenciani A, Morroni G, Pollini S et al. Characterization of novel conjugative
368	multiresistance plasmids carrying cfr from linezolid-resistant Staphylococcus
369	epidermidis clinical isolates from Italy. J Antimicrob Chemother 2016; 71: 307-
370	313.
371	22. Massidda O, Mingoia M, Fadda D <i>et al</i> . Analysis of the B-lactamase plasmid of
372	borderline methicillin-susceptible Staphylococcus aureus: focus on bla complex
373	genes and cadmium resistance determinants cadD and cadX. Plasmid 2006; 55:
374	114–27.
375	23. Werner G, Klare I, Witte W. Arrangement of the vanA gene cluster in enterococci
376	of different ecological origin. FEMS Microbiol Lett 1997; 155: 55-61.
377	24. Sletvold H, Johnsen PJ,1 Simonsen GS et al. Comparative DNA analysis of two
378	vanA plasmids from Enterococcus faecium strains isolated from poultry and a
379	poultry farmer in Norway. Antimicrob Agents Chemother 2007; 51: 736-9.
380	25. Fan R, Li D, Feßler AT et al. Distribution of optrA and cfr in florfenicol-resistant
381	Staphylococcus sciuri of pig origin. Vet Microbiol 2017; 210: 43-8.

382	26. Harmer CJ, Pong CH, Hall RM. Structures bounded by directly-oriented members
383	of the IS26 family are pseudo-compound transposons. <i>Plasmid</i> 2020; 111 : 102530.
384	27. Lei CW, Kang ZZ, Wu SK et al. Detection of the phenicol-oxazolidinone-
385	tetracycline resistance gene poxtA in Enterococcus faecium and Enterococcus
386	faecalis of food producing animal origin in China. J Antimicrob Chemother
387	2019; 74 : 2459–61.
388	28. D'Andrea, MM, Antonelli A, Brenciani A et al. Characterization of Tn6349, a
389	novel mosaic transposon carrying <i>poxtA</i> , <i>cfr</i> and other resistance determinants,
390	inserted in the chromosome of an ST5-MRSA-II strain of clinical origin. J
391	Antimicrob Chemother 2019; 74: 2870–5.
392	29. Huang J, Wang M, Gao Y et al. Emergence of plasmid-mediated oxazolidinone
393	resistance gene poxtA from CC17 Enterococcus faecium of pig origin. J
394	Antimicrob Chemother 2019; 74: 2524–30.
395	30. Freitas AR, Tedim AP, Duarte B et al. Linezolid-resistant (Tn6246::fexB-poxtA)
396	Enterococcus faecium strains colonizing humans and bovines on different
397	continents: similarity without epidemiological link. J Antimicrob Chemother 2020;
398	75: 2416–23.
399	31. Li D, Cheng Y, Schwarz S et al. Identification of a poxtA- and cfr-carrying
400	multiresistant Enterococcus hirae strain. J Antimicrob Chemother 2020; 75: 482-
401	4.
402	32. Eshaghi A, Shahinas D, Li A et al. Characterization of an Enterococcus
403	gallinarum isolate carrying a dual vanA and vanB cassette. J Clin Microbiol 2015;
404	53 : 2225-29.
405	

406 **Figures**

Figure 1. Circular map of the pEgFS4-1 plasmid in comparison with similar reported
 plasmids using BRIG software. Plasmids, transposons and chromosomal regions included

- 409 in the analysis were as follows: (inner to outer circles) chromosomal segment of L.
- *jonhsonii* (CP021704.1), Tn554 (X03216.1), pWo27-9 (KX982169.1) and pVEF2
- 410 *Johnsonti* (CP021/04.1), 1n554 (X05210.1), pw027-9 (KX982109.1) and pvEF2
- 411 (GenBank ID AM410096.1).
- 412 Black arrows indicate the positions and orientations of genes; some antibiotic resistance
- 413 determinants and relevant genes described in this study are shown.
- 414

415

pSCBC1

Figure 2. Circular map of the pEgFS4-2 plasmid in comparison with similar reported
plasmids using BRIG software. Plasmids and transposons included in the analysis were
as follows: (inner to outer circles) pSBC1 (CP038169) and Tn6657 (MH746818.1).
Black arrows indicate the positions and orientations of genes; some antibiotic resistance
determinants and relevant genes described in this study are shown.

- 421 422 423
 - 100% identity 90% identity 70% identity Tn6657 IS1216 100% identity poxtA 90% identity 70% identity IS1216 CDS at help the state of the state 35 kbp fexB 5 kbp IS1216 30 kbp pEgFS4-2 10 kbp 38387 bp IS1216 25 kbp 15 kbp 20 kbp IS1216 IS1252 tet(L) tet(M) IS1216

424 Supplementary materials

425 Table S1. Primer pairs used in this study. 426 427 _____ 428 Primer 429 Product 430 Gene Designation Sequence (5'-3') Reference size (bp) 431 432 433 cfr-FW^a TGAAGTATAAAGCAGGTTGGGAGTCA 746 cfr 1 434 cfr-RV^a ACCATATAATTGACCACAAGCAGC 435 optrA-FW^a TACTTGATGAACCTACTAACCA 1 422 optrA CCTTGAACTACTGATTCTCGG 436 optrA-RV^a 437 poxtA poxtA-FW^a GAACGCTTGGAGTATTTCGACTTC 1 778 438 poxtA-RV^a CTGGACTGAGAATACCCATC 439 440 Detection of circular forms and analysis of the excision sites in pEgFS4-1 441 CGAAAAACGGTTGGCACGGTA orf10 This study orf10inv 442 orf30 orf30-fw CGTTTATTGTGTGTATCCAGAA 443 orf8 orf8-fw GGGCAACCAGGGTCAGGGAAAA This study 444 orf32-inv AAGAAAGAAAAAAGGAAGAAGA orf32 445 446 Detection of circular forms and analysis of the excision sites in pEgFS4-2 447 orf12 orf12inv AAACTGATTTTTTGTTGATTCG This study 448 orf29 orf29-fw AAAGGCTGAAAGAGTAAAAGA 449 orf9 orf9-fw CCAAAGGAGCAGGACGGT This study 450 orf10 orf10-rv TTCAGGGAAAATGGGTAAAT 451 452 GACGAGCCGACCAACCACCT 2 poxtA-3 poxtA 453 TTGGATTTTTGTCCGCCTGAA poxtA-4 454 _____ -----455 ^a These primer pairs were also used to obtain specific probes. 456

457 References:

458 1. Brenciani A, Fioriti S, Morroni G *et al.* Detection in Italy of a porcine *Enterococcus faecium* isolate 459 carrying the novel phenicol-oxazolidinonetetracycline resistance gene *poxtA* 2019; 74: 817–8.

460 2. Fioriti S, Morroni G, Coccitto SN, *et al.* Detection of oxazolidinone resistance genes and

400 2. Florin S, Morron G, Coccitto SN, *et al.* Detection of oxazonatione resistance genes and 461 characterization of genetic environments in enterococci of swine origin, Italy. Microorganims 2020; 8:

462 2021.

463	Table S2. Amino acid seq	uence identities/similarities of	putative proteins encoded by	y the pEgFS4-1	(GenBank accession no. MZ291452).
-----	--------------------------	----------------------------------	------------------------------	----------------	-----------------------------------

464								
465				C :		BLASTP analysis ^a		
460 467 468 469 470	ORF	Start (bp)	Stop (bp)	(amino acids)	Predicted function	Most significant database match	Accession no.	% Amino acid identity (% amino acid similarity)
471	orfl	2	625	207	Serine Recombinase	Recombinase family protein [Enterococcus faecium]	EGP4902831.1	99 (100)
472	orf2	625	2,769	714	DNA topoisomerase IA	DNA topoisomerase III [Enterococcus faecium Ef aus0100]	HAQ1370444.1	99 (99)
473	orf3	2,895	3,128	77	Omega transcriptional repressor	Omega2 protein [Enterococcus faecalis HIP11704]	EEU72717.1	100 (100)
474	orf4	3,397	4,134	245	Ribosomal RNA adenine demethylase	23S rRNA (adenine(2058)-N(6))-methyltransferase Erm(B) [E. faecalis]	EGO2511360.1	100 (100)
475	orf5	4,667	5,563	298	Plasmid-partitioning protein	ParA family protein [Enterococcus gallinarum]	WP_096711234.1	100 (100)
476	orf6	5,661	5,870	69	Omega Transcriptional Repressor	Omega Transcriptional Repressor family protein [E. faecalis 62]	ADX79061.1	100 (100)
477	orf7	5,888	6,160	90	Epsilon antitoxin	Bacterial epsilon antitoxin family protein [E. faecalis 62]	ADX79060.1	100 (100)
478	orf8	6,162	6,491	109	Zeta toxin	Zeta toxin family protein [E. faecium]	WP_172689917.1	94 (95)
479	orf9	7,207	6,521	228	IS6 family transposase	IS1216 transposase [E. faecalis]	ARQ19110.1	100 (100)
480	orf10	7,929	7,255	224	AAA family ATPase	AAA family ATPase [Staphylococcaceae]	WP_119881052.1	99 (99)
481	orf11	9,379	7,922	482	Integrase core domain	DDE-type integrase/transposase/recombinase [Staphylococcaceae]	WP_119890407.1	100 (100)
482	orf12	10,017	9,403	204	Serine Recombinase	Recombinase family protein [Staphylococcaceae]	WP_032495683.1	100 (100)
483	orf13	11,810	10,752	352	23S rRNA methyltransferase	rRNA methylase [Staphylococcus aureus]	AFF18416.1	100 (100)
484	orf14	12,099	11,920	59		Hypothetical protein [S. epidermidis]	AJW29121.1	100 (100)
485	orf15	13,319	12,285	344	IS30 family transposase	IS30 family transposase [Oceanobacillus sp. AG]	WP_156858118.1	99 (99)
486	orf16	14,329	13,577	250	DNA replication protein DnaC	Integrase/resolvase B [Staphylococcus saprophyticus]	AEP69231.1	100 (100)
487	orf17	15,104	14,322	518	Integrase core domain	Integrase/resolvase A [S. saprophyticus]	AVE17230.1	100 (100)
488	orf18	16,577	16,173	134	Bleomycin binding protein	Bleomycin resistance protein [S. saprophyticus]	AVE17232.1	100 (100)
489	∆orf19	17,944	16,703	413	Truncated Tn3 transposase DDE domain	Tn3 family transposase, partial [<i>E. faecalis</i>]	EGO2516840.1	100 (100)
490	orf20	20,117	18,150	655	ABC-F type ribosomal protection	ABC-F type ribosomal protection protein OptrA [Streptococcus suis]	WP_050571857.1	100 (100)
491					protein OptrA			
492	orf21	20,815	21,735	306	Aminoglycoside 2"-phosphotransferase	Aminoglycoside 2'-phosphotransferase-IIIa [E. gallinarum]	3TDV_A	100 (100)
493	orf22	22,906	22,136	256	Aminoglycoside 4'-nucleotidyltransferase	Aminoglycoside O-nucleotidyltransferase ANT(4')-Ia [S. aureus]	WP_137075613.1	100 (100)
494	orf23	24,153	23,467	228	IS6 family transposase	IS1216 transposase [E. faecalis]	ARQ19110.1	100 (100)
495	orf24	24,209	24,646	145	Plasmid replication protein	Replication protein Rep [Lactobacillales]	WP_011117198.1	98 (100)

496	$\Delta orf 25$	24,897	24,970	24	Truncated relaxase domain of MobM	Plasmid recombination protein, partial [Lactobacillus]	WP_089143251.1	99 (99)
497	orf26	24,981	25,799	272	Aminoglycoside 9-nucleotidyltransferase	Aminoglycoside nucleotidyltransferase ANT(9) [S. aureus]	MVJ61453.1	100 (100)
498	∆orf27	26,298	25,889	97	Truncated 23S rRNA dimethyltransferase	rRNA adenine N-6-methyltransferase, partial [S. aureus M1150]	EWN25939.1	97 (97)
499	∆orf25	26,287	27,1 <mark>5</mark> 4	313	Truncated relaxase domain of MobM	Plasmid recombination protein, partial [Lactobacillus]	WP_089143251.1	99 (99)
500	orf28	27,946	27,461	161	Lincosamide nucleotidyltransferase	Lincosamide nucleotidyltransferase Lnu(A) [E. faecalis]	EGS7980767.1	100 (100)
501	orf29	28,337	28,501	54	Transcriptional repressor protein CopG	Ribbon-helix-helix protein, CopG family [Aerococcus urinaeequi]	WP_069286785.1	98 (100)
502	∆orf30	28,555	28,746	63	Truncated replication initiation protein	Replication protein, partial [E. faecalis]	EGS7980764.1	100 (100)
503	orf31	29,466	28,780	228	IS6 family transposase	IS1216 transposase [E. faecalis]	ARQ19110.1	100 (100)
504	orf32	30,094	29,723	123		Hypothetical protein pEF-01_031 [E. faecalis]	ADN34780.1	100 (100)
505	orf33	31,007	30,096	303	Plasmid-partitioning protein	Chromosome partitioning protein ParA [E. faecium]	AWB15771.1	100 (100)
506	orf34	31,558	33,057	499	Primase C terminal 1 (PriCT-1)	Primase C-terminal domain-containing protein [Enterococcus]	WP_002333826.1	100 (100)
507	orf35	33,193	33,480	95	Replication control protein PrgN	PrgN protein [E. faecalis]	ADN34751.1	100 (100)
508	∆orf36	33,646	34,002	118	Truncated IS6 family transposase	Truncated IS1216 [E. faecalis]	ADN34752.1	98 (99)
509	orf37	33,986	34,156	56		Hypothetical protein [E. faecium]	HAZ0642166.1	100 (100)
510	orf38	34,503	34,673	56		Hypothetical protein [E. faecalis]	ADM24823.1	100 (100)
512 513 514	^{<i>a</i>} For each ^{<i>b</i>} ∆ repress	ORF, only ented a trur	the most s	ignificant i	identity detected is listed.			

Journal of Antimicrobial Chemotherapy: under review

516 517						BLASTP analysis ^a		
518 519 520 521 522	ORF	Start (bp)	Stop (bp)	Size (amino acids)	Predicted function	Most significant database match	Accession no.	% Amino acid identity (% amino acid similarity)
522	4 (1	2	(04	220			11 A D7 (21 5 4 4 1	100 (100)
525	⊿orj1	3	684	238	Funcated TrwB/IFaG/IFaD/VIFD4 family	Conjugal transfer protein, partial [<i>Enterococcus faecium</i>]	HAP/631544.1	100 (100)
524	0	(07	2 1 1 5	472	of bacterial conjugation proteins		WD 1502724021	100 (100)
525	orj2	097	2,115	4/2	Protein secretion system	CUAD lumine entrining entring [E. Jaectum]	WP_159373493.1	100 (100)
520	orjs	2,117	3,280	389 205	Phage tall lysozyme	CHAP domain-containing protein [E. Jaectum]	WP_159373492.1	100 (100)
527	orj4	3,304	3,921	205		Hypothetical protein [<i>E. faecium</i>]	WP_159373491.1	100 (100)
528	orjs	3,899	4,282	127		Rypotnetical protein [Lactipiantibacilius plantarum]	KZU18644.1	89 (96)
529	orjo	4,283	4,741	152	T - North and a contraction	Conjugal transfer protein [E. Jaecium]	WP_159373490.1	100 (100)
530 531	orj/	4,/38	6,264	508	DNA transfer	[<i>E. faecium</i>]	WP_159373489.1	100 (100)
532	orf8	6,283	6,699	138		Hypothetical protein [E. faecium]	WP_159373488.1	100 (100)
533	orf9	6,712	7,581	289		Conjugal transfer protein [Enterococcus faecalis]	KII46943.1	100 (100)
534	∆orf10	7,598	7,668	24	Truncated DNA topoisomerase IA	Type IA DNA topoisomerase, partial [E. faecalis]	WP_033922359.1	100 (100)
535	orf11	8,409	7,723	228	IS6 family transposase	IS6-like element IS1216 family transposase [E. faecium]	WP_002354485.1	100 (100)
536	orf12	9,048	8,836	70		Hypothetical protein [<i>E. faecium</i>]	WP_002324171.1	100 (100)
537	orf13	9,920	9,069	283		Hypothetical protein [E. faecium Aus0085]	AGS77122.1	100 (100)
538	orf14	10,338	10,021	105		PrgN [E. faecium]	ABB46244.1	99 (99)
539	orf15	11,945	10,452	497	Primase C terminal 1 (PriCT-1)	Primase C-terminal domain-containing protein [Bacteria]	WP_000947691.1	100 (100)
540	orf16	12,557	13,510	317	Cellulose biosynthesis protein BcsQ;	Putative PrgP protein [E. faecium Aus0085]	AGS77160.1	100 (100)
541	orf17	13,482	13,757	91		Hypothetical protein EFAU085_p3041 [E. faecium Aus0085]	AGS77159.1	100 (100)
542	orf18	13,979	14,665	228	IS6 family transposase	IS6-like element IS1216 family transposase [E. faecium]	WP_002354485.1	100 (100)
543	orf19	14,793	15,752	319	IS30 family transposase	IS30-like element IS1252 family transposase [Enterococcus sp.]	MBC9710599.1	100 (100)
544	orf20	16,757	16,185	190	Serine Recombinase (SR) family	Recombinase family protein [Enterococcus sp.]	MBC9710598.1	100 (100)
545	orf21	17,378	16,773	201	Fic/DOC family	Fic family protein [E. faecium Aus0085]	AGS77151.1	100 (100)
546	orf22	18,262	17,576	228	IS6 family transposase	IS6-like element IS1216 family transposase [E. faecium]	WP_002354485.1	100 (100)
547	orf23	18,318	19,001	227	NlpC/P60 family	Lipoprotein, NLP/P60 family [E. faecium]	QDL89967.1	100 (100)

Table S3. Amino acid sequence identities/similarities of putative proteins encoded by the pEgFS4-2 (GenBank accession no. MZ291453).

548	orf24	18,998	19,930	310	Conjugative transposon protein TcpC	Conjugal transfer protein [Bacteria]	WP_001224319.1	100 (100)
549	orf25	20,307	22,226	639	Tetracycline resistance, ribosomal	Tetracycline resistance ribosomal protection protein Tet(M)	HAQ1362153.1	100 (100)
550					protection Tet(M)	[<i>E. faecium</i> Ef_aus0098]		
551	orf26	22,420	23,796	458	Tetracycline resistance, MFS efflux pump	Tetracycline efflux MFS transporter Tet(L) [E. faecalis]	EHA4049641.1	100 (100)
552	∆orf27	24,360	24,656	98	MobM_relaxase	Plasmid recombination enzyme, partial [E. faecium]	QDL89972.1	100 (100)
553	∆orf28	24,756	25,622	288	MobM_relaxase	Plasmid recombination protein, partial [E. faecium]	WP_192423965.1	100 (100)
554	orf29	25,846	26,217	123	Replication protein	Truncated replication protein [E. faecium]	QRN45573.1	100 (100)
555	orf30	26,937	26,251	228	IS6 family transposase	IS6-like element IS1216 family transposase [E. faecium]	WP_002354485.1	100 (100)
556	∆orf10	27,014	29,117	714	Truncated DNA topoisomerase IA	Type IA DNA topoisomerase, partial [E. faecalis]	WP_033922359.1	98 (98)
557	orf31	29,231	30,736	501		Hypothetical protein [Enterococcus]	WP_013330743.1	100 (100)
558	orf32	32,475	31,066	469	Chloramphenicol/florfenicol MFS transporter	Chloramphenicol/florfenicol exporter [E. faecium]	AKU20099.1	100 (100)
559	orf33	33,376	33,164	70		Hypothetical protein HMPREF1327_00680 [E. faecalis 599]	EJU93012.1	100 (100)
560	orf34	33,843	33,586	85		Putative transposase [E. faecalis]	ADN34760.1	100 (100)
561	orf35	34,357	33,980	125		Hypothetical conserved protein [E. faecalis]	ADN34761.1	100 (100)
562	orf36	35,200	34,514	228	IS6 family transposase	IS1216 transposase [E. faecalis]	ADN34762.1	100 (100)
563	orf37	36,876	35,248	542	Ribosomal protection protein	ARE-ABC-F family resistance factor PoxtA [Staphylococcus aureus]	AVI44920.1	100 (100)
564	orf38	38,319	37,633	228	IS6 family transposase	IS6-like element IS1216 family transposase [E. faecalis]	TKN59864.1	100 (100)
565								
566 567 568	^{<i>a</i>} For each ^{<i>b</i>} ∆ represe	ORF, only	the most s	ignificant i	dentity detected is listed.			

Figure S1. Schematic representation, not in scale, of the pEgFS4-1 (A) and pEgFS4-2 (B) plasmids from *E. gallinarum* FS4. IS1216 elements are represented as black arrows, antibiotic resistance genes were indicated as red arrows and other plasmid ORFs are specified as white arrows. Thin arrows indicate the primer pairs used for the stability tests of each cargo region. In pEgFS4-2 the target site duplication (CAAAAAAG) of the tet(M)/tet(L) genetic context was also indicated. Δ symbol represented a truncated ORF.

Figure S2. E. gallinarum FS4 plasmid profile after S1-PFGE (A). Hybridization with a *poxtA* probe (B). DNA molecular weight mid-range PFG marker (New England Biolabs,
Ipswich, MA), with the size of fragments reported on the left, is shown in the first
column (M).

582

