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Abstract: The head related transfer functions (HRTFs) represent the acoustic path transfer functions
between sound sources in 3D space and the listener’s ear. They are used to create immersive audio
scenarios or to subjectively evaluate sound systems according to a human-centric point of view. Cars
are nowadays the most popular audio listening environment and the use of HRTFs in automotive
audio has recently attracted the attention of researchers. In this context, the paper proposes a
measurement method for HRTFs based on perfect or orthogonal periodic sequences. The proposed
measurement method ensures robustness towards the nonlinearities that may affect the measurement
system. The experimental results considering both an emulated scenario and real measurements
in a controlled environment illustrate the effectiveness of the approach and compare the proposed
method with other popular approaches.

Keywords: head related transfer functions; HRTFs measurement; perfect periodic sequences; orthog-
onal periodic sequences; automotive audio

1. Introduction

Head related transfer functions (HRTFs) are mathematical functions that model the
acoustic path between a sound source and the ears of the listener. They can be measured
using artificial head simulators or listeners equipped with a pair of in-ear microphones. The
HRTFs take into account the human ear’s properties and the sound localization cues, i.e.,
the interaural level difference (ILD), the interaural time difference (ITD), and the spectral
attributes needed by the human brain to localize a sound source in the space. This paper
is focused on making the HRTF measurement method robust towards the nonlinearities
proposed in [1] and presents new extended experimental results.

The HRTFs are employed in many audio applications [2]. In particular, they are
essential in immersive audio rendering, where the audio virtualization is achieved by
the real-time convolution of the input signal with the selected HRTFs. They are also
used in crosstalk cancellation systems to eliminate the crosstalk signals generated by the
loudspeakers’ superposition during the binaural reproduction.

Nowadays, the car is one of the most used audio listening environments, so the
application of immersive systems also becomes appealing for the automotive scenario.
In [3], the HRTFs are used inside the car to obtain an immersive reproduction exploiting
binaural techniques, while in [4], the HRTFs are needed to recreate a virtual environment in
order to evaluate the human being’s perception of a sound system. In recent years, studies
on spatial sound and auralization systems in the car cockpit have been investigated and
implemented, as reported in [5,6].

Focusing on the HRTFs measurement methodology, several approaches can be found
in the literature [2]. The classical methods are based on the deconvolution approach and can
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be categorized depending on the excitation signal. The most used signals are the pseudo ran-
dom sequences [7-16] and the sweep signals [17-21]. The pseudo-random sequence is a de-
terministic discrete time signal and it includes the maximum length sequence (MLS) [9-13],
the inverse repeated sequence (IRS) [14,15] and the Golay codes [16]. Otherwise, a sweep
signal is a continuous signal whose frequency changes with time and it may be a linear
sweep [20] or an exponential sweep [21]. A detailed comparison of different impulse
response measurement approaches discussed so far can be found in [22]. It should be noted
that all these approaches suffer from any nonlinearity present in the measurement system,
such as those affecting the power amplifier or the loudspeaker. The nonlinearities can
generate evident artifacts, such as the spikes observed in the MLSs measurement [23], or
sometimes less evident alterations of the measured impulse response, as in the exponential
sweeps [24-26].

An alternative to deconvolution techniques is the adaptive filtering approach, firstly
applied to HRTFs measurement by Enzner in [27] and then also used in other more re-
cent research [28,29]. This method is mostly based on the normalized least mean square
(NLMS) algorithm, characterized by high performance and simplicity of implementa-
tion [30]. This method can also be affected by nonlinearities in the measurement sys-
tem [27-29]. The HRTF measurement can be affected by different problems. Together with
the already-mentioned nonlinear distortions introduced by the electro-acoustic system,
the measurement is influenced by the characteristics of the sound sources, especially in
near-field measurements [2], and environmental disorders, such as external noise, sound
reflections, and temperature changes [31]. The use of a controlled environment, such
as an anechoic chamber, can avoid some of these problems, e.g., noise, reflections, and
temperature changes, while the nonlinear distortions can be prevented by choosing an
effective measurement method and stimuli [32-39].

The authors have recently proposed different methods for the robust measurement
of the room impulse response in the presence of nonlinearities in the electro-acoustic
system. In these methods, the measurement system is directly modeled as a nonlinear
filter and its linear part is estimated. A first approach was proposed in [33,35,36,38], where
a Legendre nonlinear (LN) filter [33,35] or a Wiener nonlinear (WN) filter [36,38] is used
to model the measurement system. LN and WN filters are orthogonal polynomial filters
that admit PPSs, i.e., periodic sequences that guarantee the perfect orthogonality of the
basis functions over a period. Using PPSs for LN or WN filters, the linear part of the
system, i.e., the first-order kernel, can be measured with the cross-correlation method, i.e.,
computing the cross-correlation of the output with the PPS. At the same time, the influence
of any nonlinear term can be rejected. Later, Ref. [40] introduced the OPSs, which were
applied to the robust room impulse response measurement in [37,39]. The OPSs allow the
identification of a broad class of nonlinear filters, the functional link polynomial (FLiP)
filters. The FLiP filter class includes LN and WN filters and also the well-known Volterra
filters. Given a persistently exciting periodic input sequence, an OPS is a periodic sequence
that, cross-correlated with the system output, provides one of the so-called “diagonals” of
the FLiP filter [40]. In [39], the OPS has been used to measure the room impulse response
from the first-order kernel of a Volterra filter. OPSs can be more easily developed than PPSs
but they are more sensitive to noise than PPSs. In [1], PPSs and OPSs were applied for the
first time to the HRTFs measurement, considering a car environment.

Table 1 provides a summary of the HRTFs measurement methods proposed in the
literature divided by category and indicates their robustness towards nonlinearities.

Starting from the results of [1], this paper presents an extension of the experimental
tests, obtained by adding new measurements and applying different types of nonlineari-
ties. The obtained results are compared with other state-of-the-art HRTFs measurement
techniques to prove the effectiveness of the proposed approach.
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Table 1. Summary of HRTFs measurement methods proposed in the literature by category and their
robustness towards nonlinearities.

Methods Based on Robustness towards Nonlinearities References
Pseudo-random sequences No [7-16]
Adaptive filtering No [27-29]
Sweep signals Yes but memoryless [17-21]
PPSs Yes with memory [33,35,36,38]
OPSs Yes with memory [39,40]

The paper is organized as follows. Section 2 describes the proposed methodology and
introduces in more detail the functional link polynomial (FLiP) filters, the periodic perfect
sequences (PPSs), and the orthogonal perfect sequences (OPSs). Section 3 shows the experi-
mental results, obtained through experiments carried out in a real scenario (Section 3.1)
and in an emulated nonlinear scenario (Section 3.2), comparing the proposed measurement
methods with the state-of-the-art. Finally, conclusions are reported in Section 4.

2. FLiP Filters, PPSs, and OPSs

In the proposed methodology, the measurement system is modelled as a nonlinear
system, which could be a Volterra, a Legendre, or a Wiener nonlinear filter. For generality,
we assume the nonlinear system belongs to the class of FLiP nonlinear filters, which
comprises all the previously mentioned filters and many others. Our objective is the
measurement of the first-order kernel of the nonlinear filter, which corresponds to the filter
linear part. The measurement will be performed using PPSs or OPSs. Measuring the HRTFs
with these sequences allows us to capture the acoustic transfer function, apart from the
effect of the loudspeaker and microphone, which is neglected as usual. In this section, we
first review the FLiP filters, and then we describe how PPSs and OPSs can be built and how
they can be used for impulse response estimation. A comparison between PPSs and OPSs
will also follow.

2.1. FLiP Filters

FLiP filters [41] are a broad class of nonlinear filters that can arbitrarily well approxi-
mate any discrete-time, time-invariant, finite memory, continuous nonlinear system,

y(n) = flx(n),x(n=1),...,x(n = N+1)], @

where f is a continuous N-dimensional function, N is the system memory length, and the
input signal x(n) is defined in the compact [—1, +1].

FLiP filters are linear-in-the-parameter nonlinear filters, i.e., are a linear combination
of basis functions. They are derived by considering a set of one-dimensional basis func-
tions, the “generating” polynomials, which are assumed to satisfy the Stone-Weierstrass
theorem [42]:

{80(2),81(8),82(8),83(%), ...}, 2)

where ¢((&) is a basis function of order 0, usually the constant 1, ¢; (&) is a basis function
of order 1 and very often is the linear mononial ¢, and in general g;(§) foralli € Nisa
basis function of order i, with all even basis functions g»;(¢) that are even and all odd basis
functions g»;+1(¢) that are odd. The FLiP filter basis functions are formed by first writing
the one-dimensional basis functions for { = x(n),x(n —1),...,x(n — N+ 1) and then
multiplying the functions g; of different variables by each other in any possible manner,
taking care of avoiding repetitions, as in the triangular representation of Volterra filters.
The order of a FLiP basis function is the sum of the orders of the constituent factors g;. The
diagonal number of a basis function is defined as the maximum time difference between the
input samples involved in the factors. For example, the basis function g3[x(n)]g1[x(n — 3)]
has order 4 and diagonal number 3.
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A FLiP filter of order K, diagonal number D, and memory N is given by the linear
combination of all basis functions obtained with this procedure until order K and maximum
diagonal number D. For example, a FLiP filter of order 2, diagonal number D, memory N
has the following input-output relationship:

N-1
y(n) = ho+ ZO h1,m&1[x(n — m)]

N-1
+ ) haomgalx(n—m)]
m=0
D N-1-D
+Y Y himsi[x(n—m)lgi[x(n —m—1i)], ®)
i=1 m=0

and in general a FLiP filter of order K, diagonal number D, and memory N, has the
following input-output relationship:

y) = o+ Y hupfilx(n—m) +
m=0

K D D D N-i
2 Z Z e Z Z h”/ilrizn--/ir—l ’
r=1 i1:0 i2:i1 l’r,lzl‘,_z m=0
Friiv iz [X(n —m), x(n —m — i),

x(n—m—ip) ..., x(n—m—i,_q)]. 4)

In (4), hg is a constant term and is usually neglected in audio applications, ki ,, is
the first order kernel, fi[-] = g1[-] is the first order basis function, k,,, ; . is the r-th
order kernel, and f,; ; .[-] are the basis functions of order r, i.e., polynomials of order
r that are product of the “generating" polynomials g; in the arguments. Every choice of
the generating polynomials g; takes to a different family of FLiP filters. In Volterra filters,
the generating polynomials are the monomials g; = x. In LN filters, they are Legendre
polynomials, and in WN filters, they are Hermite polynomials. In all these filters, g1 (§) = ¢
and the filter in (4) is composed of a linear filter,

N-1
Z hy mx(n —m),
m=0

plus a combination of higher order polynomial basis functions.

LN and WN filters are orthogonal FLiP filters. The LN basis functions are orthogonal
for a white uniform distribution of the input samples, while the WN basis functions are
orthogonal for a Gaussian distribution of the input samples. Thanks to their orthogonality
properties, LN and WN filters admit PPSs, i.e., periodic sequences that guarantee the same
orthogonality of the basis functions on a finite period [43]. In contrast, the basis functions
of Volterra filters are non orthogonal for any input sample distribution and thus they do
not admit PPSs. Nevertheless, they admit OPSs as detailed in the following.

2.2. Perfect Periodic Sequences

PPSs for LN and WN filters can be developed as described in [43,44] by considering
a set of variables representing the samples of the periodic sequence and imposing the
orthogonality of all basis functions of the filter, i.e., imposing that for any two different
basis functions in (4), shortly denoted as f;(n) and f;(n), the cross-correlation is zero, i.e.,
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< fi(n)fj(n) >,=0, ©)

where < - >, indicates the sum of the terms between angular brackets for n ranging over a
period P of the sequence. Imposing (5) for all possible couples of basis functions in (4), a
system of nonlinear equations is obtained and for a sufficiently large period P the system is
underdetermined. A solution for this nonlinear system has always been found using the
Newton—-Raphson method.

Using a PPS input signal, all basis functions are mutually orthogonal. Since x(n — m)
for each m in [0, N — 1] is a basis function, it becomes possible to measure the linear kernel
h1 ;m, with the cross-correlation method, i.e., computing the cross-correlation between the
system output and the PPS input sequence:

P <ym)x(n—m) >,
T2 (n) >,

, (6)

as can be easily proved by replacing y(n) with (4).

2.3. Orthogonal Periodic Sequences

Many families of FLiP filters, including the Volterra filters, are non-orthogonal and
thus do not admit PPSs. Nevertheless, they can still be identified with the cross-correlation
method using OPSs. Given any persistently exiting periodic input sequence x(1n) of suffi-
ciently large period P, an orthogonal periodic sequence z(1n) of period P can be developed
such that

him =<yn)z(n—m) >, . (7)

In [40], the OPS has been developed imposing
<x(n)z(n) >,=1, (8)
and at the same time the orthogonality of z(n) with all other basis functions f;(n) # x(n),

< x(n)fi(n) >,=0. )

In this way, a linear equation system in the variables z(n), for n ranging over a period
P, is obtained and for sufficiently large P, the system is underdetermined and always
admits a solution.

2.4. A Comparison between PPSs and OPSs

For the same memory length N, order K, diagonal number D, and period P, computing
an OPS is much simpler and faster than a PPS. The OPS requires solving a linear equation
system, while the PPS requires solving a nonlinear system. In OPSs, the input signal is
chosen a priori and can be any persistently exciting sequence, even a quantized sequence
with a reduced number of levels. For example, the input sequence can be formed by
samples having a Gaussian or uniform distribution. The same input sequence can be used
to develop OPSs for Volterra, LN, and WN filters. In PPSs, in the estimation of /1 ;, the input
sequence and the orthogonal sequence coincide and are the PPS itself. A sufficiently large
number of levels must be used in the sequence quantization otherwise the orthogonality
between the basis functions is lost. Moreover, OPSs and PPSs have different behavior in
the presence of noise. To compare sequences of different periods on equal terms, the noise
gain has been introduced in [40] and is defined as

MSD
E[v(n)?]
where MSD is the mean square deviation in the coefficient estimate, i.e., MSD = E[(fy ,,, —

hym)?], with iy, the true value and hy ,, the estimated one, and E[v(n)?] is the noise
variance. It can be proved that PPSs always have G, = 1. On the contrary, for OPSs when

Gy = < x*(n) >,, (10)
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the period P is small, i.e., close to the minimum value allowed by the conditions of the linear
equation system, the noise gain G, assumes very large values that make the identification
with OPSs useless. Nevertheless, for large periods, G, assumes reasonable values that
make the identification with OPSs feasible and useful. We have found experimentally that,
for the same values of N, K and D, the period of the OPS should be twice that of a PPS to
obtain reasonable values of G, in the estimation of the first order kernel.

Eventually, we must point out that PPSs can be applied to the identification of the first
order kernel only of orthogonal FLiP filters, e.g., LN and WN filters, while the first order
kernel of Volterra filters can be estimated with the cross-correlation method only using
OPSs. Moreover, the first order kernel of the Volterra model coincides with the impulse
response of the system when the input signal amplitude tends to zeros, which is not the
case for LN and WN filters.

2.5. Computational Cost of the Identification with PPSs and OPSs

The computational cost of identification with PPSs and OPSs using Equations (6)
and (7), respectively, is of order NP operations. In reality, the formulas can be implemented
in the FFT domain with a computational cost of P log, P operations. Thus, these techniques
have the same computational cost as the methods based on MLSs or exponential sweeps
but introduce robustness toward nonlinearities since they estimate the linear component
of a polynomial filter (a Volterra, LN, or WN filter). More properly, the computational
complexity of the proposed techniques should be compared with that of the least-squares
(LS) technique usually used to identify the coefficients of polynomial filters. The LS
technique has a computational cost of M?L operations, with M the number of nonlinear
coefficients, which in general is much larger than the impulse response length N, M > N.
Thus, the proposed techniques provide a great computational complexity saving with
respect to the LS technique, and also a large advantage in memory usage.

3. Experimental Results

Two types of experiments have been performed. The first one was based on the
validation of the proposed approach in a real scenario, i.e., a car equipped with a binaural
mannequin. The second one was based on an emulated scenario in order to create different
controlled distortion levels through specific devices since the considered car environment
has shown a low level of nonlinearity.

3.1. Real Scenario

For the real scenario, the HRTFs measurement was performed according to the scheme
reported in Figure 1. In particular, for the recording, a Bruel&Kjaer Head and Torso
Simulator Type 4128, with right and left Ear Simulators (Type 4158 and 4159) connected to
a Sound Card Focusrite 2i2 through the Bruel&Kjaer microphone preamplifier Type 2829,
was used. For the reproduction, the car sound system was used, exploiting the auxiliary
car audio port for the connection with the same sound card used for the recordings.
The NU-Tech software [45] exploiting ASIO drivers was used on a PC for reproduction
and acquisition synchronization. Finally, to ensure a low environmental noise, all the
measurements were performed within the semi-anechoic chamber of the A3lab group
(Dept. of Information Engineering, UNIVPM) as visible in Figure 2.
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PC Running
NU-Tech Software

SIGNAL ‘
GENERATION

Sound card
Focusrite 2i2

SIGNAL RECORDING SiIGNAL ReEPRODUCTION
= e SOl

B&K Mannequin Car audio system

Figure 1. Overall scheme of the acquisition procedure for the real scenario.

Figure 2. Car used for the experiments with the B&K mannequin. The experiments were performed
inside the semi-anechoic chamber of the A3Lab group at Universita Politecnica delle Marche.

Several experiments were performed, considering the driver and passenger positions.
The measurements performed with OPS (with input samples having Gaussian and uniform
distribution) and PPSs for LN and WN filters were compared with measurements based on
MLSs and exponential sweeps.

The OPSs have memory length N = 2048 samples, order K = 3, diagonal num-
ber D = 3, period P = 262,144. The OPS input samples are also quantized in the set
[-512: +512]/512. The PPSs for WN and LN filters have N = 2048, K = 3, D = 3, and
P = 262,120 (to have a period comparable with the OPS) and the samples are represented
24 bits. The MLSs have period 28 — 1. The exponential sweeps have length 262,144 and
sweep from around 20 Hz till 22,050 Hz. The sampling frequency is 44,100 Hz. The same
power has been considered for all input signals. Additionally, the power consumption
and the computational complexity for measuring the HRTF are practically the same for all
methods.

Figure 3 shows the results obtained for the driver position while Figure 4 shows the
results for the passenger position in terms of MLS, Sweep, PPS and OPS. All methodologies
present similar results due to the quasi-linear characteristics of the car audio system and
of the car environment. These results are in line with the results obtained in [39] for the
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specific application of room response identification. For this reason, we decided to force a
more non-linear behavior introducing external nonlinear devices in the acquisition chain.

These results will be reported in the next section.
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Figure 3. HRTFs measurement at driver position, where (a) is the response of the left ear from the left
speakers, (b) is the response of the left ear from the right speakers, (c) is the response of the right ear
from the left speakers, and (d) is the response of the right ear from the right speakers

of 1/12 octave band was applied to the responses.
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8 8
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|—OPS Gaussian| |—OPS Gaussian|
—80 . ‘OPS Uniform 780 . . . ‘OPS Uniform
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. A smoothing

Figure 4. HRTF measurements with the mannequin in the passenger position; in particular, (a) is the
response of the left ear and the left speakers, (b) is the response of the left ear and the right speakers,
(c) is the response of the right ear and the left speakers and (d) is the response of the right ear and the
right speakers. A smoothing of 1/12 octave band was applied to the responses.

3.2. Emulated Scenario

In order to evaluate the performances of the proposed approach with different levels
of nonlinearity and to study the effect of noise, two different emulated systems have been
considered. Figure 5 shows the procedure adopted for creating the nonlinear signals. In
particular, the input signals (i.e., OPS, PPSs, MLSs, and Sweeps signals) of the previous
experiment were applied to a nonlinear device exploiting Focusrite Scarlett 2i2 audio inter-
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face. Then, the recorded output was convolved in the PC with four HRTFs of 8192 samples
previously measured inside the real car environment. Specifically, the HRTFs were those
measured in the driver position with the exponential sweep in the previous experiment.

PC Running
NU-Tech
Software

Signal
generation

Sound card
Focusrite 2i2

Signal Signal
reproduction recording

Nonlinear
Device

Figure 5. Block diagram of the acquisition procedure for the emulated scenario.

In what follows, the different methods will be compared in terms of log-spectral
distance (LSD) between the measured impulse response and the impulse response at the
lowest distortion setting with an exponential sweep having 524, 288 samples and sweeping
from around 20 Hz till 22, 050 Hz. The LSD is defined in a band B = [k; %2, k3], with k;
and k; € N, Fg the sampling frequency and T the number of samples of the discrete Fourier
transform (DFT), as follows:

Ly |H(k)|2r'

IsDh=,|— 101o ~ 11
kz—k1+lk§;‘1{ 810 | (k)2 an

where H(k) is the reference HRFT and H (k) is the measured HRTF. In the experiment, the
LSD was measured in the band [100, 18000] strictly inside the pass-band.

3.2.1. First Experiment

In this first experiment, the nonlinear device of Figure 5 was a Behringer MIC 100 vac-
uum tube preamplifier [1]. In the preamplifier, a potentiometer was used to select different
levels of nonlinear distortion. In particular, twenty-one different settings were evaluated.
Each setting corresponds to a different distortion level. The nonlinearities in the measure-
ment system can be detected and characterized by measuring the harmonic distortion. The
second, the third, and the total harmonic distortion on a tone at 1 kHz at the different
settings are shown in Figure 6. The curves were obtained by applying input signals with
the same power. The harmonic distortion represents the percentage ratio between the
power of a harmonic (or all harmonics in case of total distortion) and one of the funda-
mental frequencies. In order to stress the robustness towards nonlinearities of the different
methods, harmonic distortions greater than those normally found in an impulse response
measurement system have been considered. In Figure 6, the second-order nonlinearities
exhibit higher harmonic distortion.
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Harmonic Distortion %

0 5 10 15 20
Setting
Figure 6. Second, third, and total harmonic distortion of the MIC-100 preamplifier at the
different settings.

Figure 7 shows the measured LSD for the four HRTFs, varying the settings, without
artificial noise added to the output. The SNR is greater than 60 dB, since the noise generated
by the power preamplifier is the only existing noise of the system. In this case, the LSD
values of the different methods are very similar at the lowest settings, where the distortion
is reduced, while they are more different for larger distortions. The desired trend of the
LSD varying the settings is a flat curve because it means that the method is immune to
nonlinearities. Therefore, the best results are obtained with the exponential sweep that
guarantees almost the same value of the LSD for all the settings. The PPSs also show good
results, similar to those of the exponential sweep, except for high distortions where the
LSD is slightly higher. This aspect is clearly visible in Figure 8a, which shows the measured
HRTFs with PPSs compared with the sweep result for settings (0,10, and 20). The OPSs and
MLSs exhibit the worst results since the LSD presents a large increase for high levels of
distortion. However, the LSD values are small and the difference in the resulting impulse
responses is hardly visible. Figure 8b shows the measured HRTFs on the driver position in
terms of sweep and OPS.

0.08 i 0.08 i
——MLS ——MLS
——SWEEP ——SWEEP
| PPS Legendre | L PPS Legendre
0.06 1| PPS Wiener 0.06 PPS Wiener
— ~———OPS Gaussian — ~———OPS Gaussian
%/ OPS Uniform % OPS Uniform /
Q- a
n 5]
- -

0 5 10 15 20
Setting Setting

(a) (b)

Figure 7. Cont.
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— —
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Figure 7. Log-spectral distance in the band [100, 18000] Hz at the different settings with the MIC-100
preamplifier for (a) the response of the left ear from the left speakers, (b) the response of the left ear
from the right speakers, (c) the response of the right ear from the left speakers and (d) the response of
the right ear from the right speakers, and no artificially added noise, i.e., with SNR larger than 60 dB.

o
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Figure 8. HRTFs measurement at driver position from the left loudspeaker to the left ear, comparing
different distortion settings (0,10, and 20) using the MIC-100. The sweep is compared to (a) PPS
Legendre and (b) OPS Gaussian. A smoothing of 1/12 octave band was applied to the responses.

Subsequently, white Gaussian noise was added to output signals, resulting in an SNR
of 40 dB, in order to evaluate the effect of noise. Each measurement was repeated 100
times using a different output noise every time and the final LSDs values were obtained
by the average of the 100 repetitions. Figure 9 shows the obtained results. In this case, the
curves related to the OPSs are higher because of a noise gain bigger than 1. In fact, the
noise gain of OPS with Gaussian input is 8.8 dB, while the noise gain of OPS with uniform
input is 12.5 dB. These values are so large because of the short length of the OPS sequences.
The length is similar to the one used for HRTF measurements, but the effect of noise on
short-length OPSs is more evident than on the longer-length OPSs used for room impulse
response (RIR) measurements [40]. Looking at Figure 9, the best results are presented by
the PPSs that have a noise gain of 1, while the exponential sweep is more sensitive to noise,
as proved by the raised curve of the LSD.
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Figure 9. Log-spectral distance in the band [100, 18000] Hz at the different settings with the MIC-100
preamplifier for (a) the response of the left ear from the left speakers, (b) the response of the left ear
from the right speakers, (c) the response of the right ear from the left speakers, and (d) the response
of the right ear from the right speakers with a 40 dB output noise.

3.2.2. Second Experiment

In this second experiment, the nonlinear device of Figure 5 was a guitar pedal Electro
Harmonix East River Drive. The guitar pedal had three knobs, one for the volume (set at
50%), one for the tone (set at 100%), and one that allows setting different levels of nonlinear
distortion. Twenty-one different settings were considered, and Figure 10 shows the second,
third, and total harmonic distortions calculated as in the previous section. Also in this case,
many of the harmonic distortions of Figure 10 are much greater than those normally found
in an impulse response measurement system, but, as underlined before, the objective of
this experiment was to stress the robustness towards the nonlinearities of the different
methods. Note that in this experiment the third-order nonlinearities prevail, differently
from the previous experiment.

Figure 11 shows the LSD measured at the different settings for the four HRTFs when
no artificial noise is added to the output. Also in this case, the only noise in the system is
that generated by the guitar pedal and the SNR is around 60 dB. In these conditions, except
for the exponential sweep signal, all the curves are very close to each other, especially for
low distortions at the lowest settings. As pointed out before, the more flat the curve, the
more immune is the method to the nonlinearities. Considering this aspect, the worst results
are provided by the exponential sweep because this signal is very sensitive to the third-
order nonlinearities as reported in the state-of-the-art [25]. The best results are provided by
the MLSs’ signal, which originates an almost horizontal curve for most of the settings. The
PPSs provide results very similar to the MLSs and only show slightly worse results for very
high distortions. In these conditions, the OPSs also show results similar to those of MLSs
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and PPSs with an increasing LSD for increasing distortion. To underline these aspects,
Figure 12 shows the comparison between the measured HRTFs on the driver position in
terms of MLS, PPS, and OPS, when the maximum distortion (setting 20) is applied by the
guitar pedal Electro Harmonix East River Drive.

20

Harmonic Distortion %

5 10 15 2

Setting

0

Figure 10. Second, third, and total harmonic distortions of the Electro Harmonix East River Drive

pedal at the different settings.
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Figure 11. Log-spectral distance in the band [100, 18000] Hz at the different settings with the Electro
Harmonix East River Drive pedal for (a) the response of the left ear from the left speakers, (b) the
response of the left ear from the right speakers, (c) the response of the right ear from the left speakers
and (d) the response of the right ear from the right speakers, and no artificially added noise, i.e., with
SNR around 60 dB.
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Figure 12. HRTFs measurement at driver position from the left loudspeaker to the left ear, compar-
ing different distortion settings (0,10, and 20) using the Electro Harmonix East River Drive pedal.
The MLS is compared to (a) PPS Legendre and (b) OPS Gaussian. A smoothing of 1/12 octave band
was applied to the responses.

To study the effect of noise, a white Gaussian noise was added to the output signals
used in the measurement to reach a 40 dB SNR. Each measurement was repeated 100 times
with a different output noise and the resulting LSDs values were averaged. Figure 13
shows the results obtained in these conditions. The rise of the curves obtained with the
OPSs is immediately evident, thus confirming the results obtained in the previous section.
Additionally, the exponential sweep measurements result in being more sensitive to noise
as can be appreciated from the curve’s rise at all settings, confirming the observations of
the previous section. The best results are obtained by the MLS and PPS signals that are able
to keep low values at almost all configurations.
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Figure 13. Log-spectral distance in the band [100, 18000] Hz at the different settings with the Electro
Harmonix East River Drive pedal for (a) the response of the left ear from the left speakers, (b) the
response of the left ear from the right speakers, (c) the response of the right ear from the left speakers,
and (d) the response of the right ear from the right speakers with a 40 dB output noise.
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4. Conclusions

In this paper, an extended evaluation of the novel HRTFs measurement method robust
towards nonlinearities proposed in [1] has been presented, by adding new measurements
and testing the system with other types of nonlinearities. Using perfect or orthogonal
periodic sequences as input, the HRTFs were calculated by the cross-correlation between
the output signal and the relative input sequence. In the experiments, two scenarios were
taken into account. Firstly, a real scenario was considered and the proposed approach was
tested using a car equipped with a binaural mannequin. In this case, small nonlinearities
have demonstrated the validity of the approach in comparison with other state-of-the-art
methods. In the second scenario, two emulated systems were considered to evaluate the
performance of the proposed method, varying the level of nonlinear distortion and the
added output noise. Experimental results have proven the robustness of PPSs and OPSs
towards nonlinearities. However, short-length OPSs are more sensitive to output noise,
showing an increase in the LSD values when noise is added to the output. For this reason,
PPSs represent the best solution for the development of an HRTFs measurement method
that is robust towards both noise and nonlinearities.
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