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Abstract28

The growing demand of ecosystem services provided by forests increased the

need for fast and accurate field survey. The recent technological innovations

fostered the application of geomatic tools and processes to di↵erent fields

of the forestry sector. In this study we compared the e�ciency and the

accuracy of Mobile Laser Scanner (MLS), combined with Simultaneous Lo-

calization and Mapping (SLAM) technology, and traditional field survey for

the mensuration of main forest dendrometric variables like stem diameter at

breast height (DBH), individual tree height (H), crown base height (CBH)

and branch-free stem volume (VOL). With ground truth measurements taken

from 50 felled trees, we tested the applicability of MLS technology for indi-

vidual tree parameters estimation in a conifer plantation in central Italy. Our

results showed no bias of DBH estimates and the corresponding RMSE was

equal to 10.8% (2.7 cm). H and CBH measured with MLS were underes-
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timated compared to the ground truth (bias of -8.6% for H and -13.3% for

CBH). VOL values showed a bias and a RMSE of -4.1% (-0.01 m3) and 12.4%

(0.04 m3) respectively. Tree height is not perfectly estimated due to laser

obstruction by crowns layer, but the acquisition speed of this survey, joined

with a suitable accuracy of parameters extraction, suggests su�cient suit-

ability of the method for operational applications in simple forest structures

(e.g. one-layered stands).

Keywords: LiDAR Mobile laser scanning, forest inventory, tree detection,29

conifer plantation30

1. Introduction31

The accurate measurement of forest stand features is not only a scien-32

tific value per se but a fundamental step in silvicultural management and33

forest planning. There is an increasing need for accurate and fast forest field34

inventories, due also to the growing demand for the assessment of the mul-35

tiple ecosystem services (Müller et al., 2020). Besides the widespread use,36

in the last decades, of remote sensing techniques in forest inventories, the37

operational surveys still require manual measurements of field plots (Hyyppä38

et al., 2020a). Diameter at breast height (DBH), individual tree height (H)39

and crown base height (CBH) are the tree parameters most frequently mea-40

sured in the field. Although traditional field measurements are as yet broadly41

practised, they present some bottlenecks being time consuming and limited42

in their spatial extent (Bauwens et al., 2016).43
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1.1. Geomatic meets forestry: 3D data acquisition and processing.44

Current forestry management practices, can benefit from di↵erent survey-45

ing approaches: Terrestrial Laser Scanning (TLS), Airborne Laser Scanning46

(ALS), Mobile Laser Scanning (MLS) and Personal Laser Scanning (PLS, a47

subcategory of MLS). DBH, H, CBH and other tree variables can be esti-48

mated using either the ALS system (Luo et al., 2018; Maguya et al., 2015;49

Sibona et al., 2017), the TLS survey (de Conto et al., 2017; Liu et al., 2018a)50

or the MLS technology (Čerňava et al., 2017; Forsman et al., 2016). In this51

scenario, the increasing consciousness and the availability of technological in-52

novations have made possible a stronger bond between geomatic and forestry53

disciplines. Forest inventory at di↵erent scales and levels of detail plays a key54

role for the management choices and the geomatic techniques can increase the55

automation level during the field measurements (Pierzcha la et al., 2018). In-56

deed, over the last decades, technological development in data collection and57

computational processes have opened up new fields of research, also in for-58

est data analysis, using remote and proximal sensing approaches (Tao et al.,59

2015). Then, the forestry point cloud data analysis and management can be60

conducted using di↵erent softwares, as argued by several studies in the lit-61

erature: CloudCompare (Girardeau-Montaut, 2021), FUSION/LDT (Karna62

et al., 2019; Moe et al., 2020), LiDAR 360 (Chen et al., 2019; Luo et al., 2018),63

”3D Forest” (Trochta et al., 2017), Computree (Del Perugia et al., 2019),64

MATLAB (Itakura and Hosoi, 2020; Zhang et al., 2019), Python (Holmgren65

et al., 2019; Srinivasan et al., 2015), R packages such as “lidR” (Tompalski66

et al., 2019; Zaforemska et al., 2019), “TreeLS” (Dalla Corte et al., 2020;67

Puliti et al., 2020) and “rLiDAR” (Mohan et al., 2017).68
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1.2. The need for ground-based mobile proximal sensing.69

The rapid development of acquisition systems able to collect 3D point70

clouds, allowed the automation of forest inventory procedures. Several plat-71

forms have been developed to reduce time and cost of traditional measure-72

ments held with optical or electronic instruments and to improve their pre-73

cision and accuracy (Luoma et al., 2017; Wang et al., 2019). Light detec-74

tion and ranging (LiDAR) techniques is boosting ecological and forest re-75

search, and researchers in various fields began to apply it for modelling anal-76

ysis (Zhou et al., 2019). TLS is a ground based LiDAR scanning system77

able to o↵er data to analyze, improving significantly Above-Ground Biomass78

(AGB) estimation (Stovall et al., 2017). The 3D model derived by TLS79

application are treated as ground truth validation of forest biomass models80

(Momo Takoudjou et al., 2018; Brede et al., 2019). From these data is pos-81

sible to extract and storing di↵erent metric data, such as DBH (Liu et al.,82

2018b; Dassot et al., 2012), H (Panagiotidis et al., 2016; Cabo et al., 2018),83

stem volume (Iizuka et al., 2020; Panagiotidis and Abdollahnejad, 2021a,b),84

AGB (Momo Takoudjou et al., 2018; Gonzalez de Tanago et al., 2018) and85

branch architecture (Lau et al., 2018). Unfortunately, due to the static nature86

of TLS, it requires multiple scanning stations to ensure the e↵ective detec-87

tion of the trees. This task is time-consuming and requires manpower (Kunz88

et al., 2019). The most significant problems are the e↵ects of the occlusion by89

trunks, crown and the understory vegetation (Bauwens et al., 2016; Gollob90

et al., 2020; Holopainen et al., 2013a). The limitation listed on TLS have91

boosted researchers to move up technologies able to produce 3D point clouds92

in a ready to use manner.93
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A solution is given by mobile laser scanner (MLS) (Mokroš et al., 2021).94

These systems combine a laser scanner with an inertial measurement unit95

(IMU), exploiting the so called SLAM (Simultaneous Localization and Map-96

ping). The accuracy of measurements mainly depends by the synchronization97

of these components. Moreover, thanks to the moving platform, the occlusion98

e↵ect is reduced (Bauwens et al., 2016). MLS applications are divided in two99

categories: handheld laser scanning (HMLS) and backpack personal laser100

scanning (BMLS). Early scientific publications with MLS date back 2013,101

and the first system prototype was large in size and weighed approximately102

30 kg, which limited its operability and mobility (Kukko et al., 2012). More103

recent out-of-the-shelves products are lighter and more compact than more104

complex MLS systems, and can be easily held by a single operator even in105

challenging scenario. Several studies evaluate the accuracy of these di↵erent106

scanning systems in forestry settings. Comparative studies between TLS and107

MLS revealed that MLS got more accuracy than TLS rate (Gollob et al.,108

2020), and took less time to collect the data. The use of TLS requires mul-109

tiple scanning bases to ensure the e↵ective detection of the trees, and the110

most significant problems are the e↵ects of shade or concealment by trees111

(Bauwens et al., 2016; Gollob et al., 2019). Conversely, some studies on the112

quality of the point cloud obtained by MLS report a problem in the model113

due to noise (Bauwens et al., 2016) or errors in fitting the geometric shapes114

(Nurunnabi et al., 2017). In order to achieve high accuracy, several factors115

must be taken into account, such as a small research plot, the best envi-116

ronmental conditions, the instrument used and visibility of the surrounding117

environment during real-time mapping (Van Brummelen et al., 2018).118
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1.3. Paper contribution119

Given the above-mentioned aspects and in line with the recent litera-120

ture, in this study we tested the applicability of MLS technology to measure121

individual tree parameters in a black pine (Pinus nigra Arn.) plantation.122

Specifically, we first compared three methodologies of MLS point cloud pro-123

cessing to obtain DBH, H, CBH and brach-free stem VOL on standing trees124

and estimated their accuracy. Then, we compared the best MLS-derived and125

traditional manual-measured values with the ground truth data collected126

from selected felled trees. From the experiments, we hypothesized that DBH127

estimation could be a↵ected by less error than total height and crown base128

height, due to the limitation of crown shielding.129

2. Materials and methods130

2.1. Study Area131

The study area is included in the “Cesane Regional Forest” (43°42’N132

12°45’E), a large forest area of approximately 1500 ha located on the homony-133

mous mountain system in the norther part of the Marche region in Central134

Italy. The orographic system is ranging from 200 to 600 m a.s.l. featuring135

smooth hills and some steep slopes, with an extended top plateau. The forest136

became state owned a century ago to be restored with rea↵orestation after137

intensive agro-pastoral exploitation causing extended slope erosion. Forest138

plantation, often along man-made stone terraces, started in the early ‘900 but139

continued especially after World War II using mainly a very resilient conifer140

species such as Pinus nigra var. nigra, well adapted even to bare rocky soils.141

Pine is by far the dominant species (Figure 1) with a mean stand density142
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equal to 800 n/ha, but manna ash (Fraxinus ornus L.) was also frequently143

planted along the rows. In addition we found a very sporadic occurrence of144

downy oak (Quercus pubescens Willd., 1805), sycamore maple (Acer pseudo-145

platanus L., 1753) and European smoke tree (Cotinus coggygria Scop.) that146

have probably entered naturally in the forest area.147

Figure 1: The location of the study area (left) and a view of the black pine plantation

(right)

2.2. MLS survey148

The survey was conducted in early February 2020 to reduce the occlusion149

e↵ect caused by deciduous species of the understory, with a Mobile Mapping150

System device Kaarta Stencil 21. This instrumentation is equipped with a151

LiDAR Velodyne VLP-16 sensor mounted on top of an aluminum platform,152

an IMU (Internal MEMS) and an internal processor (Intel-7) for real-time153

1\https:/www.kaarta.com/products/stencil-2-for-rapid-long-range-mobile-mapping
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localization and mapping. This instrument scans the environment around the154

device, quickly and automatically, in ’handheld’ mode. It is a light weight155

(1730 grams) device, with battery life of around 2 hours and internal 1 Tb156

SSD memory. It provides a very dense point detection (300000 maximum157

number of points to read from the logged up to 10 Hz). The LiDAR has158

a beam (� = 903 nm) with 16 laser profiles and a vertical field of view159

of +15° to -15°, while the horizontal view is 360°. The scanning path was160

performed considering the following issues: i) avoiding occlusions among161

trees, maximizing the best coverage for the trees; ii) reducing the drift error,162

which may occur in repetitive environments where the alignment is harder;163

iii) avoiding the noise in the point cloud data. For the above-mentioned164

reasons, we adopted the following settings (Table 1).165

Table 1: Kaarta Stencil 2 parameters setting used for field survey.

Parameters Value [m]

VoxelSize 0.4

registrationRadius 100

cornerVoxelSize 0.2

surfVoxelSize 0.4

surroundVoxelSize 0.6

blindRadius 1.0

The scan survey covered approximately 0.5 ha of the forest stand and166

it was conducted walking through the forest plantation rows. The study167

area was surveyed in 75 minutes collecting 276 millions of points with a reg-168

istration radius value of 100 meters (Figure 2a). During the MLS survey,169
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it also has been possible to view the operations carried out by the tracker170

camera on an external monitor. Concluded these steps, the system created171

and currently dated a folder with files describing the configuration settings,172

3D cloud characteristics and trajectory estimation. Since the Kaarta is not173

equipped with an internal GNSS, it has been necessary to manually per-174

form the georeferencing post-process of the point cloud using CloudCompare175

tools (Kruček et al., 2020). We then collected the coordinates (x,y) of three176

Ground Control Points (GCPs) with a HiPer VR Topcon GNSS antenna2 in177

the centre of three reflective targets placed on the ground at a considerable178

distance, projected in the WGS 84-UTM33N coordinate reference system.179

2.3. Traditional field survey and ground truth assessment with felled trees180

Within the MLS scanned area, we selected 50 pines of representative tree181

diameter and height within the pine stand (Figure 2b). We first traditionally182

measured the 50 standing trees: DBH with a dendrometric caliper, H and183

CBH (the height from the tree stem base up to the first living tree branch)184

with a Haglöf Hypsometer (Vertext III). We also registered the relative tree185

positions measuring with sub-metric precision their horizontal distance and186

azimuth with a TruPulse 360B rangefinder (Laser Technology Inc.) from five187

GCP recorded with the HiPer VR Topcon GNSS receiver. The DBH of the188

selected trees ranged from 13.5 to 37.0 cm, with a mean and median value189

of 24.9 cm and 25.3 cm respectively.190

In a second step, the selected 50 trees were cut down in September 2020191

after authorization from the regional authority. We measured the stems total192

2https://www.topconpositioning.com/it/support/products/hiper-vr

9



Figure 2: a) an example of the tree point cloud view by Kaarta Stencil 2; b) distribution

of the 50 selected trees (red dots) within the yellow boundary of the forest plot .

length (equal to the tree height) of felled trees with a measuring tape and the193

length from the stem base to the first living branch (corresponding to CBH).194

Stem diameter was measured at the stem base, at 1.30 m (corresponding to195

DBH) and at the median line of every 1 m long virtual sections from the196

base to the tapering diameter of 7 cm. The branch-free stem height was197

determined by visual interpretation of the stem profile, until a mean cut o↵198

height of 8 m. The branch-free volume (VOL) of single felled stems was199

computed applying the Heyer’s formula (equation 1):200

V = S1 + S2 + S3 + · · ·Sn�1 + Sn (1)

where V is the volume up to 8 meters above the ground and S1, S2, Sn�1201

are the transversal surface areas of each 1 m long log. We assumed that202
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collected measures on felled trees were error free and we used them as refer-203

ence data for the comparison with traditional measurements and with remote204

sensed records.205

2.4. Point cloud processing206

For better comprehension we outlined the data processing workflow in207

Figure 3.208

We analyzed the points cloud by developing a semi-automatic approach209

for the extraction of metric data. The first phase concerns importing and210

visualising the raw data in CloudCompare (Girardeau-Montaut, 2021); then,211

we filtered the raw cloud by removing unnecessary detected areas to make212

its management easier. After having delimited the test area, we performed213

data filtering using the ”Statistical outlier remover” SOR function (Rusu and214

Cousins, 2011) which allows to discard outliers and noise points produced on215

the trunks surface during the acquisition phase. Then, we carried out the216

classification between the ground and above ground points, using the Cloth217

Simulation Filter (CSF). CSF filters the terrain points, ensuring significant218

time savings and accurate reliability of the final data. The values adopted219

to set the parameters, optimized after several tests, were 0.3 m cloth resolu-220

tion and 0.6 m distance threshold, with a maximum of 50 iterations for the221

analysed sample. Since some portions of the trunk were classified as ground222

points (Figure 4) it required further filtering using the ”Features Geometric”223

tool which classifies all point verticality concerning the nearest neighbours224

point, based on the local orientation and curvature of the stem point cloud225

(Hackel et al., 2016). For this project, ”TreeLS” package (de Conto et al.,226

2017) was used to segment the whole point cloud forest and to get a point227
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Figure 3: Research Workflow (Diameter at breast heigh (DBH), individual tree height

(H), crown base height (CBH), branch-free stem volume(VOL), barycentric coordinates

(X,Y)).

cloud for each individual tree, which calculates the vertical area and enables228

visual detection of surfaces that extend perpendicularly to the ground. Af-229
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ter normalizing the points cloud, we automatically extracted a set of metric230

data belonging to each of the 50 felled pines for statistical evaluation. We231

manually matched the coordinates of the extracted trees with those collected232

in the field with the laser rangefinder , both data were registered in the same233

reference system (WGS84-UTM33N).234

Figure 4: The individual output from Cloth Simulated Filter (CFS) algorithm. The ground

points are red and o↵-ground points blue.

For this scope, we analysed several data extraction methodologies. More235

in deep, for the detection of forest metrics we exploited the ”3D Forest” open236

source application (Trochta et al., 2017), ”VoxR” package and the combina-237

tion of ”TreeLS-rLiDAR-lidr” packages inside R language (R Core Team,238

2021). Afterward, we compared these methods with ground truth data.239

The first method is ”3D Forest” application, based on the C++ language240

and widely used to analyze points clouds from Terrestrial Laser Scanning.241
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This is based on clustering points according to their relative distance, mini-242

mum number, corner and distance between centroids of each cluster (Kruček243

et al., 2020). This application is suitable for processing trees with simple244

crown structure, reason why it has severely limited the extraction of further245

data. In fact, the irregular crown shape and dense foliage limited a correct246

investigation, such as the segmentation and volume of branches, leading to247

discordant results. Therefore in this case we calculated DBH, H and branch-248

free stem VOL (Figure 5a). The tool allows the extraction of two di↵erent249

DBH, the first Randomized Hough transformation (RHT) according to the250

circle detected in the point analysis, whereas the second one, based on Least251

Square Regression, with an algebraic estimate of the geometry calculation of252

the detected circle (Chernov and Lesort, 2005). Next, we defined H as the253

calculation of the maximum distance between the two points along the Z axis.254

Finally, we computed the branch-free stem volume using the Convex hull al-255

gorithm. At the end of this procedure, a denoising operation was used to256

filter out those points not belonging to the trees. Noise reduction and clean-257

ing operations are included in CloudCompare. The second test consisted on258

running the ”VoxR” package (Lecigne et al., 2018), a library written with the259

R language (Team et al., 2013) which is based on a voxelization algorithm260

that has allowed the classification of points in a regular three-dimensional261

grid of voxels (Fernández-Sarŕıa et al., 2013). The file, imported in .txt for-262

mat, was subjected to metric analysis, using the “tree metrics” function and263

setting the voxel size as 0.05 m; DBH, H and VOL values were extracted264

(cylinder), such as diameter, height, and volume (Figure 5b). This func-265

tion makes the metric data extraction easy and intuitive. The third method266

14



tested is a set of R-packages allowing the extraction of the whole metric data.267

TreeLS (de Conto et al., 2017) permits the users to customize the parameters268

according to the tree characteristics and the points clouds, using algorithms269

with various functions. The most important one allows the stem mapping270

through the automatic detection of individual trunk points. We carried out271

the correct identification of the trunk’s points, separating it from the branches272

and leaves by means of the Hough transformation and consequently exploit-273

ing the RANSAC algorithm (de Conto et al., 2017). The latter subdivides274

the cloud into several subsets, providing the inventory of each calculated ge-275

ometric primitive (cylinder), such as diameter, height, and volume (Figure276

5c). The last step generates a series of geometric primitives of cylindrical277

shape along the vertical axis of the trunk. Before being reconstructed by278

using the geometrical primitive, in particular the circular cylinders (Markku279

et al., 2015), the stem point cloud tree was sliced in to three subclasses.This280

necessary because of stem tapering as also addressed by Panagiotidis and281

Abdollahnejad (2021b). The slicing step has carried out along the z-axis282

from up to the maximum height of 8 metres for each investigated tree. We283

calculated a cylinder primitive geometrical by Ransanc algorithm. It was284

filtered on vertical point cloud slice with high accuracy. Thus, the output a285

high details and accuracy concerning the metric data, such as DBH, H and286

branch-free stem volume.287

This choice derived from LiDAR data that provide an incomplete repre-288

sentation of the trunk surface, due to physical obstacles (fallen trees, shrubs289

or saplings) or shaded areas. In particular, denoising operations tend to290

poorly filter out even heterogeneous or unshaded portions of point clouds,291
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Figure 5: DBH extraction phases: a) DBH and Tree Height data extracted by 3D Forest;

b) Voxelization by ”VoxR” package; c) Reconstruction of the geometrical primitives with

RANSAC on the points classified as stem.

compromising the correct data analysis. An interpolation of the two diameter292

values closest to the breast height (1.30 m) allowed to calculate each stem293

DBH. Furthermore, in this set, the barycentric coordinates of each point294

cloud tree and the DBH were extracted. Again, using the inventory data, we295

achieved the volumes of the cylinders, estimating them up to a height of 8 m296

above the ground. The maximum height was then extracted using the lidR297

package (Roussel et al., 2020). Finally, the “rLiDAR” package (Silva et al.,298

2018) was used for the calculation of the CBH. This package enables to find299

a set number classes of point clustered along the z-axis tree by ”kmeans”300

algorithm. Thereby, for each subset was computed ”Convex Hull” algorithm301
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which had facilitated the distinction of the crown from the trunk (Figure 6).302

Figure 6: CBH estimated by Convex Hull function.

2.5. Comparison analysis303

We evaluated the bias and root-mean-square error (RMSE) of selected304

variables (DBH, H) comparing first the results gained with the three dif-305

ferent algorithms (”3D Forest”, ”VoxR” and the combination of ”TreeLS-306

lidr-rLiDAR” packages) with ground-truth measures on felled trees; then,307

comparing traditional field surveys and the best MLS method with ground308

truth (adding CBH). We used the following equations:309

bias =
NX

i=1

xi � xi,ref

N
(2)
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RMSE =

vuut
NX

i=1

(xi � xi,ref )2

N
(3)

where N is the number of felled trees, xi refers to the estimates achieved310

with the algorithms and with traditional survey, and xi,ref refers to the corre-311

sponding ground truth value. Additionally, we used the following definitions312

for the relative bias and RMSE:313

bias% =
bias

xref
⇥ 100% (4)

314

RMSE% =
RMSE

xref
⇥ 100% (5)

where xref is the mean of the reference values. For the comparison among the315

three MLS methods with ground truth measurement, we also evaluated the316

bias and RMSE for stem volume extraction up to 8 meters above the ground.317

We fitted regression lines of DBH and H values distribution derived by laser318

survey, traditional field operation and ground truth assessment data. Finally,319

we plotted all parameters distribution using boxplot charts and tested the320

di↵erences of means using paired two-sided t-test with 95% of confidence321

level (↵=0.05).322

3. Results323

3.1. Comparison of the three MLS methods for feature extraction324

Exploiting the object 3D reconstruction, we obtained the score with most325

accuracy, with the identification of the closest geometric primitive of its orig-326

inal shape. With this first analysis we wanted to discard the less accurate327
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method for a better comparison in the following step. The best accuracy328

is reached with the ”TreeLs-lidR-rLiDAR” packages combination (Table 2),329

through the Hough transformation. We then performed a stem modelling330

with the RANSAC algorithm, which allowed the more accurate estimation.331

The use of MLS has produced zones with low density and high noise point332

clouds (Figure 7).333

Figure 7: DBH points extracted and plotted on a 2D graph. Red dots are the ones used

to interpolate with a suitable circle, while blue dots are the discarded ones.
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Table 2: Comparison of DBH (diameter at breast height), H (tree height) and VOL

(branch-free stem volume up to 8 meters) measures collected from the 50 felled trees and

parameters estimated by di↵erent algorithms. In brackets standard deviation is reported

for felled trees measures and percentage values for bias and RMSE.

DBH (�) [cm] H (�) [m] VOL (�) [m3]

FELLED 24.7 (5.2) 17.1 (1.2) 11.2 (1.5)

Platform Bias (%) RMSE (%) Bias (%) RMSE (%) Bias (%) RMSE (%)

3D Forest 0.9 (3.8) 4.1 (16.3) -2.4 (-14.4) 3.1 (18.3) 0.0 (-11.5) 0.1 (31.7)

VoxR 2.6 (10.4) 6.8 (27.0) -1.7 (-9.9) 2.4 )14.0) 0.0 (-11.1) 0.1 (39.6)

TreeLS-lidr-rLiDAR 0.0 (0.0) 2.7 (10.8) -1.5 (-8.6) 2.4 (13.9) 0.0 (-4.1) 0.0 (12.4)

3.2. Comparison of traditional and MLS methods with ground truth334

Bias and RMSE values of traditional field sampling compared to ground335

truth measurements are very low for DBH: 0.8% (0.2 cm) and < 5% (1.1 cm)336

respectively (see Table 3). Similar gaps occur in tree sub-samples with DBH337

below and above 25 cm (RMSE of 0.8 cm and 1.3 cm respectively). Manual338

measured tree height was slightly underestimated compared to the ground339

truth (% bias = -0.7 and % RMSE = 10.2) as well as in trees sub-sample340

with heights below 17.5 m (bias % = -1.3 and RMSE % = 11.2) (Table 3).341

Diversely, the RMSE of H estimates of trees higher than 17.5 m indicated a342

minor overestimation (1.6 m and 8.9%) compared to the ground truth. CBH343

showed a bias of 0.1 m (0.6%) and a higher RMSE (15.8%) (Table 3).344

Comparing MLS values with ground truth measurements (Table 4), the345

bias of DBH estimates was equal to 0 for both absolute and percent values346

and the RMSE 10.8% (2.7 cm). For DBH sub-groups, we found opposite347

estimates: positive for DBH below 25 cm (0.8 cm and 4.1%) and negative for348

DBH above 25 cm (-0.8 cm and -2.8%); % RMSE was equal for both classes349
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Table 3: Tree variables values reached with traditional manual measurements on standing

trees (TRAD) and from cut down trees (FELLED). Abs : absolute values; % : percent

values.

Variable N
Mean (�) Bias RMSE

TRAD FELLED Abs % Abs %

DBH [cm] 50 24.9 (5.4) 24.7 (5.2) 0.2 0.8 1.1 4.5

H [m] 50 17.0 (2.1) 17.1 (1.2) -0.1 -0.7 1.7 10.2

CBH [m] 50 11.2 (1.4) 11.2 (1.5) 0.1 0.6 1.8 15.8

DBH  25 [cm] 25 20.7 (3.4) 20.6 (3.4) 0.1 0.4 0.8 4.1

DBH >25 [cm] 25 29.2 (3.4) 28.9 (3.1) 0.3 1.1 1.3 4.6

H 17.5 [m] 28 16.1 (2.0) 16.3 (1.0) -0.2 -1.3 1.8 11.2

H >17.5 [m] 22 18.1 (1.8) 18.1 (0.5) 0.0 0.0 1.6 8.9

CBH 17.5 [m] 28 11.2 (1.4) 11.1 (1.9) 0.1 0.7 1.9 17.5

CBH >17.5 [m] 22 11.2 (1.3) 11.2 (1.0) 0.05 0.5 1.5 13.2

(10.6%). H and CBH measured with MLS were underestimated compared to350

the ground truth (bias of -8.6% for H and -13.3% for CBH) but CBH estimate351

had the highest percent RMSE value (19.5%). Splitting the analysis by H352

classes (below and above 17.5 m), both SLAM measures confirmed an overall353

underestimation compared to the ground truth (bias % of -7.6 for H below354

17.5 m and -9.8 for H above 17.5 m). Branch-free stem volume (up to 8355

meters) values showed a bias and a RMSE of -4.1% (-0.01 m3) and 12.4%356

(0.04 m3) respectively.357

Figure 8a shows the overestimation of smaller DBH values and the un-358

derestimation of greater values (red line) using MLS. The comparison of tree359
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Table 4: Tree parameters values measured with SLAM (MLS) and on the ground

(FELLED). Abs : absolute values; % : percent values.

Variable N
Mean (�) Bias RMSE

MLS FELLED Abs % Abs %

DBH [cm] 50 24.7 (5.1) 24.7 (5.2) 0.01 0.04 2.7 10.8

H [m] 50 15.6 (1.7) 17.1 (1.2) -1.48 -8.64 2.4 13.9

CBH [m] 50 9.7 (1.1) 11.2 (1.5) -1.48 -13.3 2.2 19.5

VOL [m3] 50 0.31 (0.1) 0.32 (0.1) -0.01 -4.1 0.04 12.4

DBH  25 [cm] 25 21.4 (3.3) 20.6 (3.4) 0.8 4.1 2.2 10.6

DBH >25 [cm] 25 28.0 (4.3) 28.9 (3.1) -0.8 -2.8 3.1 10.6

H 17.5 [m] 28 15.1 (1.7) 16.3 (1.0) -1.2 -7.6 2.4 14.7

H >17.5 [m] 22 16.3 (1.6) 18.1 (0.5) -1.8 -9.8 2.3 12.9

CBH 17.5 [m] 28 9.4 (1.2) 11.1 (1.9) -1.7 -15.5 2.5 22.4

CBH >17.5 [m] 22 10.0 (1.0) 11.2 (1.0) -1.2 -10.4 1.7 14.9

height (Figure 8b) reveals the same pattern of underestimation of MLS data360

for the heighest trees. We did not detect statistical di↵erences in mean DBH361

(↵=0.05) between the two estimation methods (MLS and TRAD) compared362

to the direct measurement on felled trees (Figure 9a), but we found them in363

mean H (MLS vs FELLED) both for the whole sample (15.6 m vs 17.1 m re-364

spectively) and splitting it by H classes (15.1 m vs 16.3 m for H<17.5 m and365

16.3 m vs 18.1 m for H >17.5 m) (Figure 9b). We also detected significant366

statistical di↵erences in comparison of mean CBH (9.7 m for MLS vs 11.2 m367

for felled trees) and for stem volume (0.31 m3 for MLS vs 0.32 m3 for felled368

trees) (Figure 10).369
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Figure 8: Regression analysis between DBH (a) and H (b) values derived by laser survey

(MLS, red dots), traditional field operation (TRAD, green dots) and ground truth assess-

ment data (FELLED).

4. Discussion370

Forest structure and yield measurements are essential not only for com-371

puting timber productivity but also for calibrating any kind of multi-functional372
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Figure 9: Boxplots of the DBH distribution (a) and tree height H (b) from MLS (L - red),

TRADitional (T - green) and FELLED trees measurement (F - blue) for the whole sample

(All) and sub-samples (DBH below/above 25 cm and H below/above 17.5 m). Horizontal

bold lines are medians, blue dots are the means. Whiskers are minimum and maximum

values and circles are outliers. Significance of di↵erences in DBH and H between MLS,

TRAD and FELLED are marked by ”ns” (not significant, p-value > 0.1) or ”***” (p-value

< 0.001) tested with paired two-sided Student’s t-Test.
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Figure 10: Boxplots showing the CBH distribution (a) the volume distribution (b) of the

tree stems from SLAM laser technology (L - red), traditional (T - green) and field direct

measurement of felled trees (F - blue), across the whole sample (n = 50). Horizontal bold

lines are medians, blue dots are means. Whiskers are minimum and maximum values and

circles are outliers. * = p value < 0.05, ** = p value < 0.01, *** = p value < 0.001; ns,

not significant (paired and “two-sided” Student’s t-Test for laser and traditional measures

with the ground truth).

forest management (e.g. biodiversity conservation, carbon sequestration and373

other ecosystem services). Nonetheless, accurate forestry measurements are374

not straightforward due to forests complexity and to the characteristics of375

the traditional instruments used in forest field measurements (e.g., calipers376

and clinometers). They are easy to use but they require several operational377

steps, becoming time consuming, laborious and expensive when repeated378

in inventory survey (Shao et al., 2020). MLS can provide very fast data379

collection of large areas, reducing the e↵orts for surface area and the mea-380

surement error. Holopainen et al. (2013b) compared the accuracy and the381

e�ciency of TLS, ALS and MLS systems on 438 trees in an urban forest382

area in Finland. The study proves that TLS and MLS outperform ALS for383

the parameters detection, as the canopy e↵ect hampers the achievement of384
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trustful results. Vatandaşlar and Zeybek (2021) evaluated the e�ciency and385

reliable of Zeb-Revo lidar (HMLS) by GeoSlam company compared to man-386

ual field measurements, considered as ground truth, in a forest stand (79387

ha) in Turkey. They reported that DBH RMSE was 2.41% and bias 0.56%,388

while the timber volume showed a high deviation (21,5%), compared with al-389

lometric values. Bauwens et al. (2016) compared TLS with a handheld MLS.390

These two di↵erent systems, compared with the traditional field DBH mea-391

surements, provided similar results with a bias < -0.2 cm and a RSME < 1.5392

cm. The DBH detection was determined with an accuracy of <3 cm scoring393

96% for the TLS and 98% for the MLS. These rates decreased, respectively,394

to 78% and 73% with < 1 cm accuracy. This confirms that TLS e MLS395

produce comparable results in terms of accuracy, while the latter may result396

convenient as it reduces the time spent for performing the survey and the397

post processing phase of point cloud registration. Our results showed that398

data collected with MLS survey in an dense even-aged black pine plantation,399

provides acceptable DBH estimations, featuring a 10.8% RMSE respect to400

ground truth (4.5% RMSE with traditional measurements). The accuracy401

of DBH estimation with MLS remains su�ciently high at all size classes.402

The error slightly increases with height measurements, ranging from 13.9%403

for H and 19.5% for CBH, where traditional hypsometer survey produced404

10.2% and 15.8% respectively. It is worth to note that our study confirms405

the most recent findings in the literature; the accuracy of H estimations de-406

creases when the tree height increases, highlighting some limitation of the407

proposed approach. Consistently, the RMSE increases from the ground to408

the top of the tree for two reasons: i) the crown, being more dense, generally409

26



occlude the light beam by LiDAR; ii) the distance from the scanner to the410

stem decreases both measurement accuracy and points resolution. Both of411

these e↵ects result in a smaller number of good quality arcs (Hyyppä et al.,412

2020b). The values achieved in this work are not very di↵erent from those413

recorded in a Finland Boreal forest (Hyyppä et al., 2020b) where the RMSE414

for total tree height estimation, using a backpack mobile laser scanner, was415

8.7%. From the statistical analysis, the authors reported a RMSE of stem416

Volume computed in two sample plots, ranging from 0.053 m3 e 0.002m3.417

The tree density in Boreal forests is usually much lower than in scarcely418

thinned mountain conifer plantations where the standing trees treetops are419

often hardly detectable. Considering our case with similar characteristics,420

the RMSE value compared with felled trees is 0.004m3. A detection accu-421

racy of 90.9% was reached for the DBH detection from a MLS based point422

cloud compared with traditional ground data (Chen et al., 2019). This is423

confirmed even in the article by Cabo et al. (2018), where TLS e ZEB REVO424

are compared in Pinus pinea and Platanus hispanica plantations. In those425

sites, DBH RMSE is 0.011 m e 0.009 m respectively and H RMSE of 1.340 m426

and 9.440 m. Our approach produces comparable results with those already427

described in the reviewed literature, despite the authors tested the methodol-428

ogy with trees higher that 15 meters and in sunny conditions that reduce the429

MLS accuracy. Kaarta Stencil 2 proved to be versatile and featuring higher430

mobility if compared with TLS. The data processing method proposed in our431

study provides the most robust denoising method was the Hough transforma-432

tion, since it maintains stem features up to the tree crown, allowing a better433

accuracy on the stem modelling phase. It worked out in good combination434
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with the cylinder fit Ransac algorithm for stem modelling. The proposed435

workflow is linear and replicable to further studies as well the sample used.436

Dealing with the CBH, the proposed method (Convex Hull) provides a 3D437

graph showing the di↵erences between the crown and the remaining stem,438

enabling the CBH visualization. A more e�cient approach could be the com-439

bination of airborne collected data, for a more realistic detection of the crown440

shape from the forest canopy top (Luo et al., 2018). Finally, an important441

aspect that needs further studies is the e↵ect of diameter size (Ryding et al.,442

2020). In our study we have limited the detection to the dominant and regu-443

larly shaped species, the black pine, providing more homogeneous target and444

facilitating the data processing. The results obtained are encouraging but445

need to be validated in more heterogeneous structures with mixed species446

and multi-layer stands.447

5. Conclusions448

This study demonstrates the applicability of the hand held MLS with449

SLAM algorithm for the estimation of metric parameters of individual trees450

in a black pine (Pinus nigra Arn. plantation). The advantages of the MLS-451

SLAM application transcend the automatic registration of the scans and the452

low weight of the device, which favoured a high rate of reliability in retriev-453

ing the 3D structure and forest monitoring. Statistical analysis between454

LiDAR and ground truth data shows an accuracy of about 10% of relative455

RMSE. The forest environment investigated had very dense and overlap-456

ping crowns, and the presence of a consistent number of branches from 8457

m height hindered the laser beam in acquiring objects at this height; this458
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limitation reduces the estimate of the maximum tree height and total stem459

volume calculation. Our method exploited a semi-automatic procedure for460

the branch-free stem volume estimation, even if few thresholding operations461

are needed in the loop. Our research paves the way for future experiments,462

by highlighting limitations that deserve further investigation. Firstly, the463

sample stand is homogeneous both in terms of tree species and morphology;464

the same approach should be tested in a more complex contexts. Secondly,465

the lack of literature benchmarks in the definition of CBH. Indeed, the com-466

parison with ground truth data is left to the operator’s subjectivity; a more467

objective method of CBH extraction should be proposed in future research.468

Finally, the estimation of H cannot be su�ciently accurate, and integration469

with aerial data is still mandatory to guarantee a complete mapping of the470

surveyed area. Nonetheless, remote sensing data will provide new and accu-471

rate field data to improve measuring and estimation forest parameters, such472

as basal area or stand volume.473
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