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A B S T R A C T

Starting from the observation that classical asymptotic methods fail to correctly describe the
resonance peak of the frequency response curve of a nonlinear oscillator under moderate and
large excitation amplitudes, an alternative approach is proposed to overcome this problem.
The differences between the multiple time scale method (one of the most performant classical
methods) and numerical simulations are initially shown with reference to on the paradigmatic
Duffing equation. They are also shown some characteristics of the near peak behavior. Then,
the proposed asymptotic approach is illustrated. The basic idea is that of having the zero-order
problem nonlinear, while in classical methods it is linear. Thanks to the energy conservation,
the zero-order problem is solved exactly. Also, the exact solution of the higher-order problems
is obtained in closed-form, thus providing a fully analytical approach. Although the proposed
method is valid for any kind of motion, special attention is dedicated to periodic nonlinear
oscillations, because of their interest in practical applications. A simple formula for determining
the exact intersection of the frequency response and backbone curves is obtained, and it is
shown that it can be computed without the need of solving explicitly not even the zero-order
problem. Some illustrative examples are finally reported.

. Introduction

Many mathematical techniques have been developed in the past to obtain approximate analytical solutions of problems for which
lose form expressions are not available: complex variable, matched asymptotic expansion boundary layer, multiscale asymptotic
omogenization (Bensoussan, Lions, & Papanicolaou, 2011; Yang, Sun, Liu, & Cui, 2021) (for static problems), Wentzel, Kramers and
rillouin (WKB), Krylov, Bogoliubov and Mitropolski (KBM), homotopy, Poincaré–Lindstedt, slowing varying frequency, multiple
ime scale method (for dynamic problems), etc. Although in a different way and with different approaches, they (i) are somehow
ased on the use of a small parameter 𝜀 (naturally present in the problem or artificially introduced), (ii) are reliable when this
arameter is small, and thus (iii) are named asymptotic development or perturbations methods. A detailed description of all of them
s not possible, and it is out of the scope of this work. Thus, we refer to classical textbooks (Awrejcewicz, Andrianov, & Manevitch,
998; Awrejcewicz & Krysko, 2006; Bogoliubov & A., 1961; Hinch, 1991; Holmes, 1995; Kevorkian & Cole, 1981; Nayfeh, 1973,
993; Nayfeh & Mook, 1995; Rand & Armbruster, 1987) for better insight, including the differences between each other, required
ricks, potentialities, and limits of use.

Asymptotic methods are commonly used in nonlinear dynamics, in particular in mechanics of structures, like for example in
ortal frames (Brasil, 1999), gear systems (Nie, Zheng, Yu, Wen, & Dai, 2013), externally excited NES-controlled systems (Luongo &
ulli, 2012), rotating pendulum (Xu & Wiercigroch, 2007), internal resonances (Clementi, Lenci, & Rega, 2020), nonlinear vibration
f uniform beams (Atluri, 1973) and cables (Guo, Rega, Kang, & Wang, 2020; Srinil & Rega, 2007), non-uniform cables and
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beams (Lenci, Clementi, & Mazzilli, 2013), nonlocal strain gradient beams (Li & Hu, 2016), inclined risers (Alfosail & Younis, 2020),
galloping problems (Luongo, Zulli, & Piccardo, 2008), wave propagation in metamaterials (Fortunati, Bacigalupo, Lepidi, Arena, &
Lacarbonara, 2022), electrostatically actuated resonators (Ilyas, Alfosail, & Younis, 2019), shells (Gonçalves, Silva, & Del Prado,
2008), Atomic Force Microscopy (Settimi, Gottlieb, & Rega, 2015), bifurcation problems (Luongo, 2017), control (Bauomy & Taha,
2021). This list is far from exhaustive, and the frontier is to apply asymptotic methods directly to partial differential equations,
without an a priori reduced order model (Kloda, Lenci, Warminski, & Szmit, 2022). Although mechanical engineering is the natural
background of the present work (Cartmell, Ziegler, Khanin, & Forehand, 2003), it is worth underlining that these techniques, and
the herein proposed development, are general and in principle can be applied to a much larger class of problems.

The common feature consists of a Taylor expansion with respect to 𝜀 of the solution, and then of the equations of the problem,
thus obtaining a sequence of problems to be solved one after the other up to the desired order. The larger the required precision,
the larger the number of problems to be solved, and the more the requested computational effort. It is commonly accepted that a
method is satisfactory only if it provides good enough results by solving few problems only (Nayfeh, 1973).

Another commonly accepted cornerstone is that all the sequential problems ensuing from the Taylor expansion are linear, in
particular the lowest one, which is the most important. This is clearly due to the easiness of obtaining the closed-form solutions for
linear problems, in agreement with the goal of these approaches which is to have analytical – although approximate – expressions
or the solution. This is commonly obtained in two different ways:

1. having that the lowest-order term of the solution is proportional to 𝜀 (Kloda, Lenci, & Warminski, 2018). This entails that
the solution is valid only for moderately large amplitudes;

2. assuming that all nonlinear terms are small (i.e. proportional to 𝜀) (Razzak, Alam, & Sharif, 2018; Ren, Yao, & He, 2019).
The disadvantage of this latter approach is that it does not provide reliable results for strongly nonlinear systems.

hese drawbacks are better illustrated, also from a quantitative point of view, in Section 2.
Based on the previous motivation, and to obtain an asymptotic method that gives reliable solutions for large amplitudes and

trongly nonlinear systems, an original approach is proposed in this work. It consists of having a lowest-order problem that is
onlinear, while the higher-order problems are linear. As we will see later on, there is a class of nonlinear problems for which the
olutions can be obtained analytically, and thus we are not giving up the possibility to have closed-form solutions while extending
hem to a wider class of problems and cases.

There have been some developments in the literature that may appear similar to a first glance, but they are not.
In Hsu (1960) the author does not consider damping and, more important, considers an excitation that is an elliptic function

Section 3; note that this implies that the excitation varies with the oscillation amplitude, and is not fixed). In Section 4 he considered
he case of harmonic excitation, still with damping. Initially, he proposed an error function and approximate the solution by means
f an elliptic function. Then, he considered the first harmonic of the Fourier series obtained in Section 3 to find an approximate
elation between the excitation amplitude and the solution amplitude; he then proposed various developments considering higher
rder terms in the Fourier expansion of the Elliptic functions, ending with an approximate solution (his Eq. (50)) that is substantially
quivalent to that obtained by the harmonic balance method. Thus, the approach is completely different with respect to that used
n this work. In addition to the methodological difference illustrated above, in Hsu (1960) there is no damping, and so no peak of
he frequency response curve, where instead the present analysis is focused.

In Elias-Zuniga (2005) the author considers the Duffing equation where the excitation is an elliptic function as in Hsu (1960),
ut adds the damping term (which is the element of novelty). As in Hsu (1960), the exact solution is sought as the combination
f elliptic functions, leading to a strongly nonlinear equation (his Eq. (7)) that cannot be solved in close form. Thus, the elliptic
unction is approximated by its Fourier series, limited to the first harmonic, and the author proceeds with the harmonic balance
ethod. Again, this approach is completely different with respect to that used in this work. In Elias-Zuniga (2006) the same method

s applied, with very minor changes. In subsequent works, the author applied his method, which he named the Elliptic Balance
ethod, to systems with more degrees of freedom.

In Belhaq and Lakrad (2000) the authors introduced the slow time scales. One of the results of the present work is to show that
t is possible to have relevant information (near the peak) without using the multiple time scale method, entailing a much easier
athematical development. Furthermore, the authors do not illustrate the solution, but show only the analytical developments.
e mention (Chen & Cheung, 1997) (that somehow inspired (Belhaq & Lakrad, 2000)) where the same approach is used, too, but

ntroducing the asymptotic expansion of the frequency, according to the Lindstedt–Poincaré method. Again, the difference with
espect to the present work is that we obtain important information without the necessity to expand the frequency. On top of the
revious comments, the major difference between these two papers and the present work is that they do not consider external
xcitation, and thus deal with a different problem (and accordingly they do not report frequency response curves).

Section 4 of Kovacic, Cveticanin, Zukovic, and Rakaric (2016) deals with autonomous systems, i.e. no excitation, and so the
revious considerations apply. In Section 5, on the other hand, the forced case is considered. Here the authors summarize – with
ome minor differences – the results of Elias-Zuniga (2005), Hsu (1960) (according to the Review nature of Kovacic et al. (2016)),
nd thus the previous comments apply. To further underline the difference, we note that when dealing with harmonic excitation
the case of interest here), see Section 5.2 of Kovacic et al. (2016), other papers are quoted, but they used the method of averaging
r energy conservation law, which are completely different from the proposed approach.

The previous works are valid only for the Duffing equation, while the proposed approach can be applied to any nonlinear system,
2

nd thus is much more general and extensive.
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This paper is organized as follows. In Section 2 the main limitations of the classical asymptotic problems are illustrated in detail,
lso highlighting some properties that are not well known, at least to the best of the author’s knowledge. Then, in Section 3 the
roposed approach is illustrated and then applied for illustrative purposes to various systems (Section 4), among which the most
etailed is the Duffing oscillator (Section 4.2), also because of the importance of this prototype equations. The paper ends with
ome conclusions and suggestions for further developments (Section 5).

. Limits of the classical asymptotic development methods

Although the proposed idea (Section 3) is of general validity, and can be applied to many nonlinear systems, for the sake
f concreteness it is useful to illustrate the drawbacks of classical asymptotic methods (here) and the suggested improvements
Section 4.2) with reference to a specific example. We choose the Duffing equation (Duffing, 1918)

�̂� ̈̂𝑥 + 𝛿 ̇̂𝑥 + �̂�1�̂� + �̂�3�̂�3 = 𝐹 cos(�̂�𝑡) (1)

because it is an archetypal nonlinear oscillator, that has been largely investigated in the literature (Brennan & Kovacic, 2011). It
founds applications in many problems (Parzygnat & Pao, 1978), and thus it has also an interest per se, not only as an illustrative
case.

In this work, we are mainly interested in the case in which there are nonlinear oscillations around the undamped unforced rest
position �̂� = 0. Thus, we assume �̂�1 > 0. We also assume �̂�3 > 0, even if this hypothesis can be relaxed without problems, and also
the softening case �̂�3 < 0 can be considered similarly. With these assumptions, by setting

�̂� = 𝑥

√

�̂�1
√

�̂�3

, 𝑡 = 𝑡

√

�̂�
√

�̂�1

, 𝛿 = 𝛿
√

�̂�
√

�̂�1, 𝐹 = 𝐹
�̂�3∕21
√

�̂�3

, �̂� = 𝜔

√

�̂�1
√

�̂�
, (2)

Eq. (1) can be rewritten, without loss of generality, in the dimensionless and simpler form

�̈� + 𝛿�̇� + 𝑥 + 𝑥3 = 𝐹 cos(𝜔𝑡), (3)

that will be considered in the following. Note that for (3) the natural linear frequency is 𝜔0 = 1.
The two approaches mentioned in the introduction are the following:

1. �̈� + 𝜀𝛿�̇� + 𝑥 + 𝑥3 = 𝜀2𝐹 cos(𝜔𝑡) and 𝑥(𝑡) = 𝜀𝑥0(𝑡) + 𝜀2𝑥1(𝑡) + 𝜀3𝑥2(𝑡) +⋯;
2. �̈� + 𝜀𝛿�̇� + 𝑥 + 𝜀𝑥3 = 𝜀𝐹 cos(𝜔𝑡) and 𝑥(𝑡) = 𝑥0(𝑡) + 𝜀𝑥1(𝑡) + 𝜀2𝑥2(𝑡) +⋯.

Both lead to the same linear lowest-order problem

�̈�0 + 𝑥0 = 0, (4)

which is the leading one.
By applying the classical Multiple Times Scale asymptotic Method (MTSM) (Nayfeh & Mook, 1995) the solution is given by, up

to the first-order,

𝑥 = 𝐴 cos(𝜔𝑡 + 𝜓) +⋯ , (5)

where the relation between the frequency and the amplitude is

𝜔𝑛𝑙 = 1 + 3
8
𝐴2 +⋯ , (6)

𝜔 = 𝜔𝑛𝑙 ±

√

( 𝐹
2𝐴

)2
−
( 𝛿
2

)2
. (7)

The first one gives the so-called Backbone Curve (BC), i.e. the relation between the amplitude and the frequency of the solution in
the undamped unforced case, the latter the Frequency Response Curve (FRC), i.e. the same relation but now considering damping
and excitation.

To show the limits of the classical asymptotic approach, we now compare (6) and (7) with the non-asymptotic solution of the
Duffing equation. Now 𝐴 = 𝑥max = max𝑡∈[0,𝑇 ] 𝑥(𝑡) = −min𝑡∈[0,𝑇 ] 𝑥(𝑡), which is the same of (5) in the limit of small amplitudes.

For the backbone curve the exact expression is reported in the forthcoming Eq. (52), where we identify 𝑥max with its first-order
pproximation 𝐴. The non-asymptotic FRCs are obtained by numerical integrations of (3) since their exact expressions are not
vailable. We fix 𝛿 = 0.05 and vary 𝐹 and 𝜔.

The comparison for low values of 𝐹 is reported in Fig. 1. From Fig. 1a we see a very good agreement between classical asymptotic
nd non-asymptotic results, both for the backbone as well as for the FRCs. In Fig. 1b it is also reported the (numerical) phase
ifference between the excitation and the solution, i.e. the time delay between the maximum of the solution and the maximum of
he excitation. It must be underlined that in correspondence with the resonance the phase difference is around 1∕4 of the period,
hich agrees with the well-known results of the linear case. This is because the excitation amplitude is small and thus we are yet
lmost in the linear regime, even if the hardening behavior of the backbone curves is already visible in Fig. 1a.

Although at the full scale of Fig. 1a there is a good agreement, as said above, if we zoom around the peak of the FRC we note
3

ome differences (Fig. 1c), of the order of 3%. They are compatible with the approximate nature of the analytical solution, even if
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Fig. 1. (a) The backbone (dash–dot) and frequency response (continuous) curves for 𝛿 = 0.05 and 𝐹 = 0.015. Blue curves are the asymptotic solutions, and black
urves are the exact/numerical ones. (b) The phase difference between the excitation and the solution (only for the numerical solution). (c) Zoom of the case
a) around the peak.

hey are around the most critical point (where the displacement is maximum), and thus reveal an unpleasant characteristic of the
lassical asymptotic solution: the error is maximum where more care is needed.

By increasing the excitation amplitude 𝐹 up to ‘‘medium’’ values, the difference becomes more important, as shown in Fig. 2a.
n this case a better approximation can likely be obtained by going up to the next order in the classical asymptotic development,
ven if this is somehow in contrast with the ‘‘philosophy’’ of the method, that suggests using only few terms in the asymptotic
evelopment.

For ‘‘large’’ values of 𝐹 the difference becomes huge (Fig. 3a), and by no means the classical asymptotic solution can be used to
pproximate the true solution, even using higher-order terms in the expansion.

By increasing 𝐹 , the phase of the solution has a turning point around 1∕4 of the period, as shown in Figs. 2b and 3b.
The conclusion is that asymptotic methods can be used only for small values of the forcing, and even in this case they introduce

rrors where more care is needed (close to the peak of the FRCs). Although the previous results are obtained only with the MTSN,
hey hold also for different versions of classical asymptotic methods.

The reason behind the bad approximation for large excitation amplitude relies on the fact that the first-order problem (4), which
s the dominating ones, is linear. Since higher-order terms provide small correction to the first-order one (being 𝜀 small), we cannot
xpect to have a good approximation far from the linear case. Since in the linear case the backbone curve is vertical (the frequency
oes not depend on the amplitude in the free dynamics case), asymptotic methods are expected to give good approximations only
hen the exact solution (i.e. the FRC) is in its neighborhood, i.e. in the light gray region schematically illustrated in Fig. 4. This

s further and indirectly confirmed by the fact that in Eq. (1)a the error becomes visible for values of 𝜔 far from the resonant
requency 𝜔 = 1, even if this is not relevant for our purposes.

The previous considerations suggest how to improve the classical methods, still remaining in an asymptotic framework: try to
4

evelop around the exact, bent, backbone curve (or at least around its nonlinear approximation), not around the linear one. In other
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c

Fig. 2. (a) The backbone (dash–dot) and frequency response (continuous) curves for 𝛿 = 0.05 and 𝐹 = 0.05. Blue curves are the asymptotic solutions, and black
curves are the exact/numerical ones. (b) The phase difference between the excitation and the solution (only for the numerical solution).

Fig. 3. (a) The backbone (dash–dot) and frequency response (continuous) curves for 𝛿 = 0.05 and 𝐹 = 0.2. Blue curves are the asymptotic solutions, and black
urves are the exact/numerical ones. (b) The phase difference between the excitation and the solution (only for the numerical solution).

Fig. 4. Schematic representation of the region of validity of classical (light gray strip) and proposed (dark gray strip) asymptotic solutions.
5
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Fig. 5. Enlargement of the numerical FRC around its peak. 𝛿 = 0.05 and 𝐹 = 0.2.

Table 1
The coordinates of the three points of Fig. 5.

𝜔 𝑥max 𝜑∕𝑇

B 2.0062 2.041781 0.24775
C 2.006468 2.041679 0.25
D 2.006589 2.041245 0.25254

words, organized the development in such a way that the lowest-order term is no longer linear, thus overcoming the limitation
(4) of classical methods. This is the approach proposed in this paper, which is illustrated in the following section. Accordingly,
it is expected to have accurate results in the dark gray strip of Fig. 4, and thus hopefully the proposed method will give a good
approximation of the peak of the FRC also for large values of the excitation amplitudes, where classical methods fail.

2.1. The behavior near the peak

Before proceeding further, it is worth shedding some light on what happens around the peak of the ‘‘exact’’ (i.e. numerical) FRC.
n illustrative example is reported in Fig. 5, where we can basically distinguish three relevant points:

B) The point where the FRC has a maximum in 𝑥, i.e. where it has an horizontal tangent;

(C) The point where the FRC intersects the backbone curve;

(D) The point where the FRC has a maximum in 𝜔, i.e. where it has a vertical tangent.

They are very close to each other (see Table 1) and can be undistinguishable from a practical point of view, but remain conceptually
distinct. The point 𝐵 is the most important from a practical point of view since there the displacement is maximum. The point 𝐶
can be characterized also as the one for which the phase difference is exactly 1∕4 of the period (see Table 1), thus keeping the same
property holding for linear systems. The point 𝐷 corresponds to a Saddle-Node (SN) bifurcation, and there the solution has a jump
for increasing 𝜔.

In the classical asymptotic approximation (7) the intersection of the backbone curve and the FRC (i.e. the point 𝐶) occurs when
the square root is zero (giving 𝐴max = 𝐹∕𝛿). This point is also the maximum of the amplitude 𝐴 for varying 𝜔 (this can be seen by
noting that there 𝑑𝜔∕𝑑𝐴 → ∞, so that 𝑑𝐴∕𝑑𝜔 = 0). In other words, the classical asymptotic method approximates 𝐶 with 𝐵.

3. The proposed asymptotic solution

Let us consider the one-degree-of-freedom system

�̈� + 𝑓 (𝑥) = 𝜀𝑔(𝑥, �̇�, 𝑡), (8)

where 𝜀 is a small parameter and 𝑥(𝑡) is the unknown. 𝑓 (𝑥) is a given, arbitrary nonlinear function of 𝑥, not requested to be regular
although we (implicitly) assume that it is continuous. A problem similar to (8) has been considered in Kovacic (2020), but with a
6
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different solution technique. For the Duffing oscillator, and only with damping terms, the approach has been considered as a ‘‘future
work’’ in Morrison (2006), even if to the best of the author’s knowledge it has not been further developed and published.

Applying asymptotic methods, the solution is sought after in the form

𝑥(𝑡) = 𝑥0(𝑡) + 𝜀𝑥1(𝑡) + 𝜀2𝑥2(𝑡) +⋯ (9)

Substituting (9) in (8), and collecting terms multiplying increasing powers of 𝜀 we obtain

�̈�0 + 𝑓 (𝑥0) = 0, (10)

�̈�1 + 𝑓 ′(𝑥0)𝑥1 = 𝑔(𝑥0, �̇�0, 𝑡), (11)

�̈�2 + 𝑓 ′(𝑥0)𝑥2 = −
𝑓 ′′(𝑥0)

2
𝑥21 +

𝜕𝑔(𝑥0, �̇�0, 𝑡)
𝜕𝑥

𝑥1 +
𝜕𝑔(𝑥0, �̇�0, 𝑡)

𝜕�̇�
�̇�1, (12)

�̈�3 + 𝑓 ′(𝑥0)𝑥3 = ⋯

It is important to remark that (10), called the ‘‘unperturbed equation’’, is nonlinear, and this is the major difference with respect
to classical approaches, in which each problem, at any order, is linear. The subsequent equations, on the other hand, are linear in
their unknowns, but have the non-constant coefficient 𝑓 ′(𝑥0), contrary to the classical approaches. They can be expressed in the
common form

�̈�𝑛 + 𝑓 ′(𝑥0)𝑥𝑛 = ℎ𝑛(𝑡), 𝑛 ≥ 1, (13)

where ℎ𝑛(𝑡) is a known function (from the previous steps). The homogeneous version of (13) is

�̈�𝑛 + 𝑓 ′(𝑥0)𝑥𝑛 = 0. (14)

3.1. Zero-order problem

To obtain the solution to the zero-order problem (10) we observe that it is conservative, and

�̇�20
2

+ 𝑉 (𝑥0) = 𝑐1 (15)

is constant in time. Here

𝑉 (𝑥0) = ∫

𝑥0

0
𝑓 (𝑠)𝑑𝑠 (16)

is the primitive of 𝑓 (𝑥0). Note that 𝑉 (0) = 0 by definition.
From (15) one gets

�̇�0 = ±
√

2[𝑐1 − 𝑉 (𝑥0)], (17)

from which it is possible to draw the orbits in the phase space (𝑥0, �̇�0). They are symmetric with respect to the axes �̇�0 = 0. From
17) it follows

𝑑𝑡 = ±
𝑑𝑥0

√

2[𝑐1 − 𝑉 (𝑥0)]
(18)

or, after integrating,

𝑡 = 𝑡(𝑥0) = 𝑐2 ± 𝑟(𝑥0), 𝑟(𝑥0) = ∫

𝑥0

0

𝑑𝑠
√

2[𝑐1 − 𝑉 (𝑠)]
. (19)

Eq. (19)a gives 𝑡(𝑥0). Inverting this function (possibly in a piecewise manner) one gets the general solution 𝑥0(𝑡). It depends on
1 and 𝑐2, according to the fact that (10) is second-order. They are constant with respect to 𝑡, and can be computed for example by
he initial conditions. Note that 𝑐2 is the time for which the displacement vanishes, 𝑥0(𝑐2) = 0, which thus corresponds to 𝑉 (0) = 0
nd �̇�0 = ±

√

2𝑐1. If 𝑉 (𝑥0) ≥ 0, than it corresponds to the maximum of �̇�0(𝑡).

3.2. 𝑛th-order problem, 𝑛 ≥ 1

To obtain the solution of the 𝑛th-order problem (13) we take the derivative of (10) with respect to 𝑡:

𝑑2

𝑑𝑡2
(

�̇�0
)

+ 𝑓 ′(𝑥0)�̇�0 = 0. (20)

This proves that

𝑦1 = �̇�0 (21)

is one of the two independent solutions of (14). To find the other one we recall that the Wronskian is given by

𝑊 = 𝑦 �̇� − �̇� 𝑦 . (22)
7

1 2 1 2
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From the Abel’s theorem we have that 𝑑𝑊
𝑑𝑡 = 0, namely 𝑊 = 𝑐3.

Note that (14) is linear and homogeneous, so that the amplitudes of the two independent solutions 𝑦1(𝑡) and 𝑦2(𝑡) are arbitrary.
hus, without loss of generality we can assume 𝑐3 = 1. Then

𝑦1 �̇�2 − �̇�1 𝑦2 = 1, (23)

which yields the second solution of (14)

𝑦2(𝑡) = 𝑦1(𝑡)∫
𝑑𝑡
𝑦21(𝑡)

. (24)

If 𝑦1(𝑡) = 𝑎1(𝑡 − 𝑡)𝛼 +⋯, in a neighborhood of a certain 𝑡, then 𝑦2(𝑡) =
(𝑡−𝑡)1−𝛼
𝑎1(1−2𝛼)

+⋯, so that 𝑦2(𝑡) vanishes for 𝛼 < 1 and goes to
infinity for 𝛼 > 1. The intermediate case 𝛼 = 1, which indeed is the most common, gives 𝑦2(𝑡) = − 1

𝑎1
+⋯, and thus 𝑦2(𝑡) is bounded.

The particular solution of (13) can then be obtained by the method of variation of constants, which gives

𝑥𝑛,𝑝(𝑡) = −𝑦1(𝑡)∫

𝑡

𝑡0
ℎ𝑛(𝑠) 𝑦2(𝑠)𝑑𝑠 + 𝑦2(𝑡)∫

𝑡

𝑡0
ℎ𝑛(𝑠) 𝑦1(𝑠)𝑑𝑠, (25)

here 𝑡0 can be chosen arbitrarily. Thus, the general solution is

𝑥𝑛(𝑡) = 𝑐5,𝑛𝑦1(𝑡) + 𝑐6,𝑛𝑦2(𝑡) + 𝑥𝑛,𝑝(𝑡). (26)

By using the definition (24) of 𝑦2(𝑡) in the expression (25) we have that, after some computations, a particular solution can be
ewritten as

𝑥𝑛,𝑝(𝑡) = 𝑦1(𝑡)∫

𝑡

𝑡0

𝑙𝑛(𝑠, 𝑠0)
𝑦21(𝑠)

𝑑𝑠, 𝑙𝑛(𝑠, 𝑠0) = ∫

𝑠

𝑠0
ℎ𝑛(𝜉)𝑦1(𝜉)𝑑𝜉, (27)

where also 𝑠0 can be chosen arbitrarily. As expected, 𝑥𝑛,𝑝(𝑡) does not depend on the (free) amplitude of 𝑦1(𝑡). For points where
𝑦1(𝑡) = 0, the same considerations previously done for 𝑦2(𝑡) are valid.

The general solution then becomes

𝑥𝑛(𝑡) = 𝑦1(𝑡)

{

𝑐5,𝑛 + 𝑐6,𝑛 ∫

𝑡

𝑡0

𝑑𝑠
𝑦21(𝑠)

+ ∫

𝑡

𝑡0

𝑙𝑛(𝑠, 𝑠0)
𝑦21(𝑠)

𝑑𝑠

}

, (28)

or, remembering that 𝑦1(𝑡) = �̇�0(𝑡):

𝑥𝑛(𝑡) = �̇�0(𝑡)

{

𝑐5,𝑛 + 𝑐6,𝑛 ∫

𝑡

𝑡0

𝑑𝑠
�̇�20(𝑠)

+ ∫

𝑡

𝑡0

𝑙𝑛(𝑠, 𝑠0)
�̇�20(𝑠)

𝑑𝑠

}

. (29)

The solutions 𝑥𝑛(𝑡) are then fully determined, to any order. The constants 𝑐5,𝑛 and 𝑐6,𝑛 can be computed, for example, by the
initial conditions (including those required to have periodic solutions).

3.3. Periodic solutions

The case of periodic solution is the most common and of principal interest in this work.
To the zero-order we have a periodic solution with minimum 𝑥0,min and maximum 𝑥0,max when

𝑉 (𝑥0,min) = 𝑐1, 𝑉 (𝑥0,max) = 𝑐1, 𝑉 (𝑥) < 𝑐1 for 𝑥0,min < 𝑥 < 𝑥0,max; (30)

in other words, 𝑥0,min and 𝑥0,max are two consecutive solutions of 𝑉 (𝑥) = 𝑐1. Note that 𝑐1 is a measure of the amplitude of the periodic
oscillation (up to the zero-order), since both 𝑥0,min and 𝑥0,max depend on 𝑐1 by (30).

From (18) the period is

𝑇 = 2[𝑟(𝑥0,max) − 𝑟(𝑥0,min)] = 2∫

𝑥0,max

𝑥0,min

𝑑𝑠
√

2[𝑐1 − 𝑉 (𝑠)]
. (31)

This expression gives

𝜔 = 2𝜋
𝑇

= 𝜋
𝑟(𝑥0,max) − 𝑟(𝑥0,min)

= 𝜔(𝑐1), (32)

i.e. how the frequency depends on the (lowest-order) measure of the amplitude 𝑐1, which is the exact backbone curve.
Because of the previous hypothesis we have that 𝑥0(𝑡) = 𝑥0(𝑡 + 𝑇 ). It follows from (21) that 𝑦1(𝑡) is periodic, too, with the same

eriod. Then, multiplying (13) by 𝑦1(𝑡), integrating from a generic 𝑡0 to 𝑡0 + 𝑇 and using the periodicity of 𝑦1(𝑡) we obtain

[�̇�𝑛(𝑡0 + 𝑇 ) − �̇�𝑛(𝑡0)]𝑦1(𝑡0) − [𝑥𝑛(𝑡0 + 𝑇 ) − 𝑥𝑛(𝑡0)]�̇�1(𝑡0) =

= ∫

𝑡0+𝑇

𝑡0
ℎ𝑛(𝑠)𝑦1(𝑠)𝑑𝑠 = 𝑙𝑛(𝑡0 + 𝑇 , 𝑡0). (33)
8



International Journal of Engineering Science 192 (2023) 103928S. Lenci

c
i

w
t

I

It follows that

𝑙𝑛(𝑡0 + 𝑇 , 𝑡0) = 0, ∀𝑡0, (34)

i.e. 𝑙𝑛(𝑠, .) is 𝑇 -periodic, is a necessary condition for the 𝑇 -periodicity of 𝑥𝑛(𝑡0). This is equivalent to the classical solvability condition,
and can be discussed in terms of the Fredholm alternative (Fredholm, 1903), although we do not follow this approach and prefer a
more direct one.

A corollary of (34) is that ℎ𝑛(𝑠) must be 𝑇 -periodic, which agrees with common sense. Note that the (minimal) period of ℎ𝑛(𝑠)
ould be an integer fraction of 𝑇 , so that we can consider also superharmonic resonance. Remembering that 𝑦1(𝑠) = �̇�0(𝑠) and
ntegrating by parts we see that (34) is equivalent to

∫

𝑡0+𝑇

𝑡0
ℎ̇𝑛(𝑠)𝑥0(𝑠)𝑑𝑠 = 0, ∀𝑡0. (35)

A particular, but interesting, case is when

ℎ1(𝑡) = 𝑔(𝑥0(𝑡), �̇�0(𝑡), 𝑡) = −𝛿�̇�0(𝑡) + 𝐹 cos(𝜔𝑡), (36)

here 𝛿 is the damping coefficient and 𝐹 and 𝜔 are the amplitude and frequency of the periodic excitation, respectively. Eq. (34)
hen becomes (assuming without loss of generality 𝑡0 = 0)

0 = −𝛿 ∫

𝑇

0
�̇�20(𝑡)𝑑𝑡 + 𝐹 ∫

𝑇

0
cos(𝜔𝑡)�̇�0(𝑡)𝑑𝑡

= −2𝛿 ∫

𝑥0,max

𝑥0,min

�̇�0(𝑥0)𝑑𝑥0 + 2𝐹 ∫

𝑥0,max

𝑥0,min

cos[𝜔 𝑡(𝑥0)]𝑑𝑥0

= −2𝛿 ∫

𝑥0,max

𝑥0,min

√

2[𝑐1 − 𝑉 (𝑥0)]𝑑𝑥0

+ 2𝐹 ∫

𝑥0,max

𝑥0,min

cos
{

𝜔
[

𝑐2 + 𝑟(𝑥0)
]}

𝑑𝑥0

= −2𝛿 ∫

𝑥0,max

𝑥0,min

√

2[𝑐1 − 𝑉 (𝑥0)]𝑑𝑥0

+ 2𝐹 cos(𝜔𝑐2)∫

𝑥0,max

𝑥0,min

cos
[

𝜔 𝑟(𝑥0)
]

𝑑𝑥0

− 2𝐹 sin(𝜔𝑐2)∫

𝑥0,max

𝑥0,min

sin
[

𝜔 𝑟(𝑥0)
]

𝑑𝑥0. (37)

t can be rewritten as

𝛿 𝑏1 = 𝐹 [cos(𝜔𝑐2)𝑏2 − sin(𝜔𝑐2)𝑏3], (38)

where

𝑏1 = ∫

𝑥0,max

𝑥0,min

√

2[𝑐1 − 𝑉 (𝑥0)]𝑑𝑥0 > 0,

𝑏2 = ∫

𝑥0,max

𝑥0,min

cos
[

𝜔 𝑟(𝑥0)
]

𝑑𝑥0,

𝑏3 = ∫

𝑥0,max

𝑥0,min

sin
[

𝜔 𝑟(𝑥0)
]

𝑑𝑥0, (39)

are coefficients that dependent on 𝑐1.
Eq. (38) can be further rewritten as

𝛿
𝐹
𝑚(𝑐1) = cos(𝜔𝑐2 + 𝜙), (40)

where

cos(𝜙) =
𝑏2

√

𝑏22 + 𝑏
2
3

, sin(𝜙) =
𝑏3

√

𝑏22 + 𝑏
2
3

, 𝑚(𝑐1) =
𝑏1

√

𝑏22 + 𝑏
2
3

> 0. (41)

When 𝑉 (𝑥) is symmetric, 𝑉 (𝑥) = 𝑉 (−𝑥), that corresponds to an odd function 𝑓 , 𝑓 (𝑥) = −𝑓 (−𝑥), we have 𝑥0,min = −𝑥0,max and

𝑇 = 4 𝑟(𝑥0,max),

𝑏1 = 2∫

𝑥0,max

0

√

2[𝑐1 − 𝑉 (𝑥0)]𝑑𝑥0,

𝑏2 = 2
𝑥0,max

cos
[

𝜔 𝑟(𝑥0)
]

𝑑𝑥0,
9
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𝑏3 = 0, 𝜙 = 0, 𝑚(𝑐1) =
𝑏1
|𝑏2|

. (42)

Let us fix 𝛿 and 𝐹 . The (periodic) first-order solution can then be obtained as follow:

1. Choose the excitation frequency 𝜔;
2. invert the backbone curve (32) and determine 𝑐1;
3. compute 𝜙 by (41)a and (41)b, 𝜙 = arctan(𝑏3∕𝑏2);
4. compute 𝑐2 by solving (40), which gives the two solutions

𝑐2 =
1
𝜔

[

±arccos
( 𝛿
𝐹
𝑚(𝑐1)

)

− 𝜙
]

; (43)

5. at this point the zero-order solution 𝑥0(𝑡) is determined by inverting (19)a;
6. compute the first-order solution 𝑥1(𝑡) by means of (29),

𝑥1(𝑡) = �̇�0(𝑡)∫

𝑡

𝑐2

𝑐6,1 + 𝑙1(𝑠)

�̇�20(𝑠)
𝑑𝑠,

𝑙1(𝑠) = ∫

𝑠

𝑐2
[−𝛿�̇�20(𝜉) + 𝐹 cos(𝜔𝜉)�̇�0(𝜉)]𝑑𝜉, (44)

where we have set 𝑡0 = 𝑠0 = 𝑐2 and chosen 𝑐5,1 = 0 to guarantee that 𝑥1(𝑐2) = 0, i.e. the same initial condition for 𝑥0(𝑡). The
other constant 𝑐6,1 is selected in such a way that the derivative of 𝑥1(𝑡) is continuous at the points 𝑡 where �̇�0(𝑡) = 0, i.e. where
the integral in (44)a has a singularity. Here the first-order solution has value 𝑥1(𝑡) = −[𝑐6,1 + 𝑙1(𝑡)]∕�̈�0(𝑡) if �̈�0(𝑡) ≠ 0 (which is
the common case).

7. up the first order the solution is 𝑥(𝑡) = 𝑥0(𝑡) + 𝜀𝑥1(𝑡).

.4. The behavior near the peak

Since cos(𝜔𝑐2 + 𝜙) ≤ 1 and 𝑚(𝑐1) > 0, from (40) it follows that

𝐹
𝛿

≥ 𝑚(𝑐1). (45)

This is the ‘‘admissibility’’ condition for the existence of the considered periodic solution. For 𝐹∕𝛿 > 𝑚(𝑐1) there are two solutions
2 (see (43)); for 𝐹∕𝛿 < 𝑚(𝑐1) there are no solutions; for 𝐹∕𝛿 = 𝑚(𝑐1) there is the unique solution 𝑐2 = −𝜙∕𝜔. Thus, 𝑚(𝑐1) is the

minimum value of 𝐹∕𝛿 giving the oscillation with the considered frequency. It identifies, in an exact manner, the intersection of the
backbone curve with the FRC, i.e. the point ‘‘C’’ in Fig. 5, that is poorly detected by classical asymptotic methods, as we have shown
in Section 2 (see Figs. 2 and 3). Consequently, it also gives a physical meaning to the function 𝑚(𝑐1). The frequency corresponding
to this point is

𝜔(𝑐1) = 𝜔[𝑚−1(𝐹∕𝛿)]. (46)

It is worth stressing that we obtained this fundamental information without solving explicitly the various order problems, not
ven the lowest one, and without special tricks like multiple time scales: just computing the integrals in (39). Thus, it is very simple
nd powerful.

Let us reconsider the inequality (45) from a different point of view, by assuming that 𝐹∕𝛿 is fixed. Let 𝑐1,𝑐𝑟 be the value of 𝑐1
such that 𝐹∕𝛿 = 𝑚(𝑐1,𝑐𝑟). If 𝑚(𝑐1) is monotonically increasing, for 𝑐1 > 𝑐1,𝑐𝑟 we have 𝑚(𝑐1) > 𝑚(𝑐1,𝑐𝑟) = 𝐹∕𝛿 and so there are no
solutions; clearly, for 𝑐1 < 𝑐1,𝑐𝑟 there are two solutions. If 𝜔(𝑐1) is monotonically increasing (i.e. we have a hardening behavior), for
𝜔(𝑐1) > 𝜔(𝑐1,𝑐𝑟) = 𝜔𝑐𝑟 we have 𝑐1 > 𝑐1,𝑐𝑟 and so there are no solutions; for 𝜔(𝑐1) < 𝜔𝑐𝑟 there are two solutions. Thus at 𝜔𝑐𝑟 there is a
SN bifurcation.

The same conclusion can be obtained if 𝑚(𝑐1) and/or 𝜔(𝑐1) are monotonically decreasing, possibly changing the side where there
are two solutions (i.e. for 𝜔 > 𝜔𝑐𝑟 instead of 𝜔 < 𝜔𝑐𝑟), but still keeping the SN bifurcation (possibly of reverse type).

The previous results show that the proposed approach approximates point 𝐶 with point 𝐷 of Fig. 5, and this marks a conceptual
difference with respect to the classical asymptotic methods (see the last sentence of Section 2). From a practical point of view,
however, all three points of Fig. 5 coincide, and so we ‘‘exactly’’ compute also the point 𝐵, for any value of 𝐹 and 𝛿, which is the
big advance of the proposed method.

From (19) we have that the time 𝑡max in correspondence of the maximum value 𝑥0,max is

𝑡max = 𝑐2 + 𝑟(𝑥0,max). (47)

In the case of symmetric 𝑉 (𝑥) we have 𝜙 = 0, so that 𝑐2 = 0, and 𝑥0,min = −𝑥0,max. Comparing then (47) with (42)a we conclude that
𝑡max = 𝑇 ∕4. Since the excitation cos(𝜔𝑡) has a maximum in 𝑡 = 0 we note that the phase difference between the excitation and the
solution is 𝑇 ∕4, in perfect agreement with the findings of Section 2.1.
10



International Journal of Engineering Science 192 (2023) 103928S. Lenci

l

w
s

p

a

4. Examples

4.1. The linear equation

To start with a simple example, and to check that our developments are ground on solid foundations, we initially consider the
inear case, i.e.

𝑓 (𝑥) = 𝑥, 𝑉 (𝑥) = 𝑥2

2
, 𝑔(𝑥, �̇�, 𝑡) = −𝛿�̇� + 𝐹 cos(𝜔𝑡). (48)

We have

𝑟(𝑥0) = arcsin
(

𝑥0
𝑥0,max

)

, 𝑇 = 4 𝑟(𝑥0,max) = 2𝜋,

𝑏1 =
𝑥20,max𝜋

2
, 𝑏2 =

𝑥0,max𝜋
2

→ 𝑚 = 𝑥0,max, (49)

so that 𝐹∕𝛿 = 𝑥0,max, which is the exact value of intersection of the FRC with the backbone curve, that in this simple case is frequency
independent and given by 𝜔 = 1.

4.2. The Duffing equation

A fully nonlinear case is the classical Duffing Eq. (3), i.e.

𝑓 (𝑥) = 𝑥 + 𝑥3, 𝑉 (𝑥) = 𝑥2

2
+ 𝑥4

4
, 𝑔(𝑥, �̇�, 𝑡) = −𝛿�̇� + 𝐹 cos(𝜔𝑡), (50)

hich has been considered also in Section 2 because it is a very interesting example of a nonlinear oscillator. Note that it has a
ymmetric potential.

We have

𝑟(𝑥0) = ∫

𝑥0

0

𝑑𝑠
√

2[𝑉 (𝐴) − 𝑉 (𝑠)]
=
√

2
2 + 𝐴2

𝐹1

(

𝑥0
𝐴
, 𝐼𝐴
√

2 + 𝐴2

)

, (51)

where 𝐴 = 𝑥0,max, 𝐹1(𝑥) is the incomplete elliptic integral of the first kind (Abramowitz & Stegun, 1965; Byrd & Friedman, 1954)
and 𝐼 is the imaginary unit.

Using (51), the period and circular frequency, computed by means of (42)a, are

𝑇 = 4
√

2
2 + 𝐴2

𝐾

(

𝐼𝐴
√

2𝐴2

)

, 𝜔 = 2𝜋
𝑇
, (52)

where 𝐾(𝑥) is the complete elliptic integral of the first kind (Byrd & Friedman, 1954).
From (42)b we have that

𝑏1 =
2
√

2
3

√

2 + 𝐴2

[

(1 + 𝐴2)𝐾

(

𝐼𝐴
√

2 + 𝐴2

)

− 𝐸

(

𝐼𝐴
√

2 + 𝐴2

)]

, (53)

where 𝐸(𝑥) is the complete elliptic integral of the second kind (Byrd & Friedman, 1954); it is shown in Fig. 6a. The function 𝑏2(𝐴),
on the other hand, cannot be computed in closed-form, but can be easily determined numerically, taking advantage of (51); it is
reported in Fig. 6b, which shows that it is practically linear.

Once 𝑏1 and 𝑏2 are known, it is immediate to compute 𝑚 by (42) and 𝜔 by (46). Inverting the former we can compute 𝐴(𝐹∕𝛿)
and then 𝜔(𝐹∕𝛿), which are reported in Fig. 7. They can be used to determined the exact frequency and amplitude of the ‘‘peak’’
of the FRC as a function of 𝐹∕𝛿: more precisely, they give the coordinates of the point 𝐶 of intersection between the FRC and the
backbone curve, which is very close to the maximum value of the FRC and to the SN bifurcation point, see Fig. 5. For example, for
𝐹 = 0.2 and 𝛿 = 0.05, i.e. 𝐹∕𝛿 = 4, we have 𝑥0,max = 2.041679 and 𝜔 = 2.0064684, that perfectly agrees with the coordinates of the
oint 𝐶 of Table 1, that there have been computed by numerical simulations. For 𝐹 = 0.05 we have 𝑥0,max = 0.82571 and 𝜔 = 1.22642

that gives the coordinates of the peak of Fig. 2, while for 𝐹 = 0.015 we have 𝑥0,max = 0.29160 and 𝜔 = 1.03132 that agree with Fig. 1.
The periodic solution of the zero-order problem is

𝑥0(𝑡) = 𝐴𝑐𝑛(𝑠, 𝑏), (54)

where

𝑠 = 𝑎 𝑡 + 𝛽, 𝑎2 = 1 + 𝐴2, 𝑏2 = 1
2

𝐴2

𝐴2 + 1
, (55)

nd where 𝐴 (the amplitude) and 𝛽 (the phase) are to be determined. It follows that

𝑦1 = �̇�0 = −𝐴𝑎 𝑠𝑛(𝑠, 𝑏)𝑑𝑛(𝑠, 𝑏),

𝑦2 =
1

{

𝑑𝑛(𝑠, 𝑏) 𝑠𝑛(𝑠, 𝑏)𝐸[𝑠𝑛(𝑠, 𝑏), 𝑏] 2𝑏
2 − 1
11
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Fig. 6. The functions (a) 𝑏1(𝐴) and (b) 𝑏2(𝐴).

Fig. 7. The functions (a) 𝐴(𝐹∕𝛿) and (b) 𝜔(𝐹∕𝛿). They give the coordinates of the peak of the FRC as a function of 𝐹∕𝛿.

− 𝑠𝑛2(𝑠, 𝑏) 𝑑𝑛(𝑠, 𝑏) 𝑐𝑛(𝑠, 𝑏)
[

𝑏4

(𝑏2 − 1)𝑑𝑛(𝑠, 𝑏)
+

𝑑𝑛(𝑠, 𝑏) 𝑏2

𝑑𝑛2(𝑠, 𝑏) − 1

]

−𝑠 𝑑𝑛 (𝑠, 𝑏) 𝑠𝑛 (𝑠, 𝑏)} . (56)

Note that 𝑦2 is unbounded (see the last term, proportional to 𝑠). 𝑐𝑛, 𝑠𝑛 and 𝑑𝑛 are the Jacobian elliptic functions (Abramowitz &
tegun, 1965; Byrd & Friedman, 1954), and 𝐸 is the complete elliptic integral of the second type.

The first-order solution is computed by means of (44). As an illustrative case we consider 𝐹 = 0.2, 𝛿 = 0.05 and 𝜔 = 1.4
(𝑇 = 4.48799), which is in between the linear frequency 𝜔0 = 1 and the peak frequency 𝜔𝑝𝑒𝑎𝑘 = 2.0064684 computed above.

From (43) we have that the two solutions are 𝑐2,± = ±0.8333 (note that 𝑐2 ≠ 0 because we are not on the peak of the FRC); then
𝛽 is determined in such a way that 𝑥0(𝑐2±) = 0, which gives 𝛽± = −𝑎(𝑇 ∕4 + 𝑐2±), namely 𝛽+ = −2.96997 and 𝛽− = −0.43851. This is
nough to determine the two functions 𝑙1±(𝑡), that are reported in Fig. 8.

Next we observe that �̇�0 vanishes for 𝑡 = 𝑐2± + 𝑇 ∕4. Imposing the continuity of �̇�1(𝑡) at 𝑡 we obtain 𝑐6,1± = ∓0.2334. With this we
re able to determine 𝑥1±(𝑡), that are reported in Fig. 9.

Summing 𝑥0(𝑡) and 𝑥1(𝑡) we are finally able to determine the two solutions 𝑥±(𝑡) up to the first order. They are depicted in red in
ig. 10, where they are compared with the corresponding numerical ones (in black) obtained in Section 2. A noticeable agreement
s observed, which confirms the validity of the proposed approach for large values of the oscillation amplitude.

The closeness of the analytical and numerical solutions is confirmed also from a quantitative point of view, since for the upper
olution we have 𝑥max = 1.27535 (analytical) vs 𝑥max = 1.23210 (numerical) and the phase differences between the excitation and
he oscillation are 𝜑∕𝑇 = 0.064326 (analytical) vs 𝜑∕𝑇 = 0.069334 (numerical). For the lower solution, we have 𝑥max = 1.01128
12

analytical) vs 𝑥max = 1.02455 (numerical) and 𝜑∕𝑇 = 0.43567 (analytical) vs 𝜑∕𝑇 = 0.44240 (numerical).
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Fig. 8. The functions (a) 𝑙1+(𝑡) and (b) 𝑙1−(𝑡). 𝛿 = 0.05, 𝐹 = 0.2 and 𝜔 = 1.4.

Fig. 9. The functions (a) 𝑥1+(𝑡) and (b) 𝑥1−(𝑡). 𝛿 = 0.05, 𝐹 = 0.2 and 𝜔 = 1.4.

Repeating the same computation illustrated above for different values of 𝜔 (but keeping fixed 𝐹 and 𝛿) we can determine the
RC, which is reported in red in Fig. 11a, where it is compared with the corresponding numerical one (in black), computed in
ection 2. The agreement is excellent around the peak and decreases only for lower values of the excitation frequency, where the
RC moves far away from the backbone curve. This is in perfect agreement with the considerations related to Fig. 4. The agreement
etween analytical and numerical solutions is also excellent in terms of the phase difference, as illustrated in Fig. 11b.

By comparing Figs. 3 and 11 it is evident the superior performances of the proposed method with respect to the classical
symptotic developments.

To end this subsection it is worth to report in Fig. 12 two enlargements of Fig. 11a. Fig. 12a further proves the closeness of
heoretical and numerical results, even to an enlarged scale, while Fig. 12b illustrates what is said in Section 2.1, i.e. that the
roposed approach approximates point 𝐶 with point 𝐷 of Fig. 5. Looking at the axes scales, it is further confirmed that this difference
as only a theoretical meaning, and is negligible from a practical point of view.

.3. The Helmholtz equation

In the previous section we have investigated the simplest case of symmetrical hardening nonlinear oscillator. To deal with a
on-symmetrical and softening example, in this section we consider the Helmholtz oscillator, i.e.

𝑓 (𝑥) = 𝑥 + 𝑥2, 𝑉 (𝑥) = 𝑥2

2
+ 𝑥3

3
, 𝑔(𝑥, �̇�, 𝑡) = −𝛿�̇� + 𝐹 cos(𝜔𝑡). (57)

ounded oscillations exist for 𝑉 < 1∕6, in the interval −1 < 𝑥 < 1∕2.
13



International Journal of Engineering Science 192 (2023) 103928S. Lenci

𝛿

Fig. 10. The functions 𝑥±(𝑡). In red the analytical solution up to the first, in black the numerical solution. The dash–dot blue curve is the free oscillation of the
system for the same value of 𝜔. 𝛿 = 0.05, 𝐹 = 0.2 and 𝜔 = 1.4.

Fig. 11. (a) Analytical (red) and numerical (black) FRCs. (b) Analytical (red) and numerical (black) phase difference between the excitation and the solution.
= 0.05 and 𝐹 = 0.2.

Similarly to the Duffing case, also here the function 𝑟(𝑥0) can be computed in terms of the incomplete elliptic integral of the first
kind:

𝑟(𝑥0) = ∫

𝑥0

0

𝑑𝑠
√

2[𝑉 (𝐴) − 𝑉 (𝑠)]
=
√

−24
3 + 6𝐴 + �̄�

×

×
⎡

⎢

⎢

⎣

𝐹1
⎛

⎜

⎜

⎝

√

1
2
+
√

1
12

3 + 2𝐴
1 − 2𝐴

+
2𝑥0
�̄�
,
√

2
1 + 3 1+2𝐴

�̄�

⎞

⎟

⎟

⎠

−

−𝐹1
⎛

⎜

⎜

⎝

√

1
2
+
√

1
12

3 + 2𝐴
1 − 2𝐴

,
√

2
1 + 3 1+2𝐴

�̄�

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

,

�̄� =
√

3(3 + 2𝐴)(1 − 2𝐴). (58)

Using (58) it is possible to compute the backbone curve, which is reported in Fig. 13, where both the maximum and the minimum
values of the displacements (that are not longer equal in absolute value) are illustrated. The softening behavior is clear, and it is
14



International Journal of Engineering Science 192 (2023) 103928S. Lenci
Fig. 12. Enlargements of Fig. 11a.

Fig. 13. The backbone curves for the Helmholtz oscillator.

noted that 𝑥max → 1∕2 and 𝑥min → −1 for 𝜔 → 0. In this limit case, the periodic solution tends to the homoclinic solution of the
hilltop saddle at 𝑥 = −1.

The functions 𝑥max(𝐹∕𝛿), 𝑥min(𝐹∕𝛿) and 𝜔(𝐹∕𝛿), giving the coordinates of the peak of the FRC, are illustrated in Figs. 14a and
14b, to be compared with Fig. 7 to ascertain the effect of asymmetry and softening. In Fig. 14c it is reported the function 𝜙(𝐹∕𝛿)
(see (41)), which is no longer null since the potential is not symmetric. An important property is that all functions turn back at
about 𝐹∕𝛿 = 0.509, thus showing a very peculiar behavior of this system.

4.4. The quintic equation

As a final example we consider the quintic equation

𝑓 (𝑥) = 𝑥 + 𝑥3 − 𝑥5, 𝑉 (𝑥) = 𝑥2

2
+ 𝑥4

4
− 𝑥6

6
,

𝑔(𝑥, �̇�, 𝑡) = −𝛿�̇� + 𝐹 cos(𝜔𝑡), (59)

which is symmetric but with a non monotonic backbone curve, which is reported in Fig. 15.
The solution is reported in Fig. 16, where it is confirmed the non-monotonic behavior for large values of 𝐹∕𝛿 already observed

for the Helmholtz oscillator. Thus, we guess that it is due to the softening behavior shared by these two systems.
15
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Fig. 14. The functions (a) 𝑥max(𝐹∕𝛿) and 𝑥min(𝐹∕𝛿) and (b) 𝜔(𝐹∕𝛿). They give the coordinates of the peak of the FRC as a function of 𝐹∕𝛿. (c) The function
𝜙(𝐹∕𝛿). Helmholtz oscillator.

Fig. 15. The backbone curve for the quintic oscillator.
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Fig. 16. The functions (a) 𝑥max(𝐹∕𝛿) and (b) 𝜔(𝐹∕𝛿). They give the coordinates of the peak of the FRC as a function of 𝐹∕𝛿. Quintic oscillator.

5. Conclusions and further developments

A novel asymptotic method for detecting analytically the nonlinear oscillations of generic systems is proposed. The basic idea
consists of having the zero-order problem, the dominating one, that is nonlinear, thus extending the classical approaches where the
lowest-order problem is linear.

Taking advantage of the conservativeness of the zero-order problem, the solution is obtained analytically. Also, the exact solution
is obtained for higher-order problems, thus providing a fully analytical approach. This is obtained for a completely generic system,
and thus the approach is not restricted to specific cases or to specific solutions.

Attention is then focused on periodic oscillations, and it is shown how the proposed method allows us to compute exactly the
peak of the frequency response curves, by means of simple integrals and without complicated tricks like in the multiple time scale
method.

The performances of the proposed method are illustrated with reference to the classical Duffing oscillator, which also has an
interest per se. The near peak behavior is initially illustrated with numerical simulations, showing some properties that, to the
best of the author’s knowledge, have not been highlighted before. Then, the analytical solution is computed, and compared with
the numerical one, showing an excellent agreement in the top part of the frequency response curve, where classical approaches
commonly fail.

The method has been applied also to other simple oscillators, to show how it works for non-symmetrical and softening behavior,
as well as for non-monotonic FRCs.

The most important further development consists of dealing with the stability of the proposed oscillations. Also considering
different excitations (e.g. parametric) and different dampings (e.g. quadratic), which can be easily addressed with the proposed
method, are worthy of further investigations. Different mechanical systems, possibly non-smooth, needs successive study, too. We
finally mention the extension to higher dimensional systems (including continuous systems, that may also have the boundary
layer problem and thus joining asymptotic methods in time and space), although it is foreseen that some mathematical difficulties
may arise due to the dimension. In this respect, help can come from the nonlinear normal mode theory, which could simplify
the computations of the backbone curve, together with the Rauscher method, along the lines developed for example in Section 5
of Vakakis, Manevitch, Mikhlin, Pilipchuk, and Zevin (1996).
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