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Abstract
In this paper, we propose a framework that uses the theory and techniques of (Social) Network Analysis to investigate the

learned representations of a Graph Neural Network (GNN, for short). Our framework receives a graph as input and passes it

to the GNN to be investigated, which returns suitable node embeddings. These are used to derive insights on the behavior

of the GNN through the application of (Social) Network Analysis theory and techniques. The insights thus obtained are

employed to define a new training loss function, which takes into account the differences between the graph received as

input by the GNN and the one reconstructed from the node embeddings returned by it. This measure is finally used to

improve the performance of the GNN. In addition to describe the framework in detail and compare it with related literature,

we present an extensive experimental campaign that we conducted to validate the quality of the results obtained.

Keywords Graph neural networks � Social network analysis � Learned representations � Node embeddings �
Loss function

1 Introduction

Graph Neural Networks (hereafter, GNNs) have received a

significant attention in recent years for their ability to work

with graph-structured data. They are designed to learn node

and arc representations in a graph, capable of capturing

important features of the underlying data [1–3]. In

particular, GNNs are very successful in tasks where graph

structure plays a key role in determining the output [4, 5],

for example in identifying communities within a social

network, predicting links between nodes, classifying nodes

or graphs [6–9]. These tasks have important applications in

several domains, such as Social Network Analysis, bioin-

formatics and recommender systems [6, 10, 11], materials

science and chemistry [12]. Studies on challenging tasks,

such as protein-protein interaction [13] and causal infer-

ence in brain networks [14], have demonstrated the

expressive power and potential of GNNs and stimulated

further investigation by the academic community.

The growing popularity of GNNs has led to the devel-

opment of various architectures and algorithms related to

them [15–18], as well as of approaches to improve their

discriminative power [19, 20]. However, despite their

success, there are still many open questions about how

GNNs learn and represent information. One of the chal-

lenging issues is to understand the dynamics underlying

learned representations and how these representations

relate to the underlying graph structure. For example, it is

unclear how GNNs process different types of information

(e.g., node attributes and arc features) in their learned
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representations, and how they capture different types of

structural patterns in graph data. Another challenge con-

cerns the development of methods to evaluate the quality

and generalization of learned representations in GNNs.

This is particularly important in real-world applications,

where GNNs must be robust and generalize accurately to

unknown data. Finally, understanding the limitations and

biases of GNNs can help identify potential improvement

areas and provide insights into the design of better models

capable of solving complex graph-based problems.

In this scenario, a compelling and interesting aspect

regards the study of learned representations, especially

node embeddings, as it provides insights into how GNNs

capture and process information in a graph. Node embed-

dings model each node in a graph as a vector representing

the corresponding structural and semantic information. By

examining how GNNs handle the information present in

input graphs, we can obtain valuable insights into their

encoding and processing mechanisms. This analysis can

also help us understand how GNNs generalize this infor-

mation to new data. Moreover, node embeddings can be

used in a wide range of specific tasks (think, for instance,

of node classification, link prediction and graph clustering),

which represent fundamental problems in areas like Net-

work Analysis (NA, for short) and Machine Learning.

This paper falls right in this context and proposes a

comprehensive framework that uses (Social) Network

Analysis theory and techniques to investigate learned rep-

resentations of GNNs. NA theory provides a powerful and

intuitive means of analyzing the structure and properties of

graph-structured data. When applied to learned represen-

tations of GNNs, this theory and the corresponding tech-

niques can support the extraction of important insights

enabling a deeper understanding of learned information.

Furthermore, NA can support us in assessing the quality of

learned representations and identifying improvement areas.

Our framework operates as follows: it receives a graph

and passes it to the underlying GNN to be investigated. The

GNN returns a set of node embeddings corresponding to

the graph received as input. At this point, our framework

creates a new network-based representation by combining

the node embeddings returned by the GNN and the graph

received as input. After that, it uses NA theory and tech-

niques to obtain insights regarding the GNN performance.

Then, it uses these insights to define a new loss function in

order to enhance the training of the GNN. For this purpose,

it considers the differences between the graph received as

input and the one reconstructed from the node embeddings

returned by the underlying GNN.

To the best of our knowledge, this paper represents one

of the first attempts to study the learned representations of a

GNN and to improve its learning process through a com-

prehensive framework based on NA. Specifically, the main

contributions of the framework presented in this paper are

as follows:

• It proposes a method for mapping into a network the

learned representations returned by a GNN after

processing a graph received in input;

• It employs NA theory and techniques to extract insights

about the structure and behavior of the underlying

GNN;

• It defines a new training loss function to both assess and

enhance the quality of the GNN’s learning process, and

thus the likelihood that it will next provide more

accurate results.

The outline of this paper is as follows: Sect. 2 describes

related literature. Section 3 presents the proposed frame-

work. Section 4 illustrates the experimental campaign we

conducted to test it. Finally, Sect. 5 reports our conclusion

and outlines some possible future developments of our

research efforts.

2 Related literature

GNNs have emerged as a powerful framework for learning

representations of graph-structured data [1, 6]. Indeed, they

are capable of encoding both node attributes and input

network topology into node embeddings, which are vector

representations of nodes capable of capturing their struc-

tural and/or semantic properties. A very active research

area concerns the analysis of such embeddings to answer

questions such as: ‘‘Do they capture meaningful relation-

ships?’’, ‘‘Can they be measured quantitatively?’’. Ques-

tions like these can be addressed by studying the

representational power of GNNs [21–23]. A large number

of papers in the literature have shown that GNNs are an

effective tool for learning graph representations in many

applications. However, there is still little understanding

about their properties, limitations and learned representa-

tions [21, 24]. This paper aims to make a contribution to

filling this gap by investigating and providing insights into

the dynamics underlying the learned representations

returned by GNNs. To this end, it proposes a conceptual

framework that employs the theory and techniques of

Network Analysis to evaluate these learned

representations.

As far as the scientific literature is concerned, the study

proposed in this paper belongs to the broader field of

representation learning through GNNs. In the following we

will focus on two aspects of our paper, namely: (i) the

study and analysis of learned representations in GNNs, and

(ii) the use of (Social) Network Analysis models and

techniques to investigate the dynamics of GNNs and assess

the quality of their learned representations. With regard to
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these aspects, we highlight what is already in the literature

and how our framework relates to existing ones. In addi-

tion, in order to highlight the features of our framework, at

the end of our overview we briefly discuss some applica-

tion contexts that can benefit from the exploitation of

GNNs and learned representations. We believe it is worth

pointing out that our framework represents one of the first

attempts to develop an approach that uses NA not only to

evaluate the quality of learned representations in GNNs but

also to enhance their training.

As for the study and analysis of GNNs learned repre-

sentations, several surveys have recently been proposed

[1, 6, 25]. The study in [21] is widely recognized as one of

the most comprehensive studies on the expressive power of

GNNs. In it, the authors present a theoretical framework

for analyzing the expressive power of GNNs and apply it to

characterize popular variants of GNNs, such as Graph

Convolutional Networks. They also develop a simple

neural architecture, called Graph Isomorphism Network,

which has been shown to be as powerful as other GNNs.

The work in [21] and ours are related in terms of motiva-

tions. Indeed, the work in [21] suggests that a maximally

powerful GNN should be able to distinguish different graph

structures by mapping them to different representations in

the embedding space, but this is a hard problem. Our

approach addresses this issue by analyzing the learned

representations of a GNN, using the theory and techniques

of NA, which intrinsically encompasses properties of graph

structures.

In [26], the authors use spectral analysis to investigate

the expressive power of GNNs. They argue that this per-

spective provides a complementary viewpoint for under-

standing GNNs and demonstrate the equivalence of

convolution processes in spatial and spectral GNNs.

Moreover, through several experiments, they show that

graph convolutions in GNNs are problem-specific rather

than problem-agnostic. The approach in [26] is orthogonal

to ours since it focuses on characterizing the expressive

power of GNNs from a spectral perspective while our

approach focuses on the analysis of learned representa-

tions. In [27], the authors propose an interpretable embed-

ding procedure based on a knowledge distillation method

that leverages the learned representation of a GNN. The

authors show that the graph structure caught in the learned

representation captures relational information better than

classical representations, such as those obtained from

attention networks. The approach in [27] and ours share the

use of GNNs learned representation. However, they have

different goals. In fact, the approach in [27] focuses on

knowledge distillation and wants to generate an inter-

pretable embedding procedure. By contrast, our approach

focuses on the investigation of embeddings through the

theory and techniques of NA.

In [28], the authors focus on the graph comparison

problem and propose an approach to produce a fast-to-

compute feature map that represents a graph through the

distribution of its node embeddings. The authors employ

the proposed approach in a graph classification task and

compare it with other supervised and unsupervised

approaches. This paper is interesting in that the authors

explore embedding techniques and construct particular

feature maps on top of the results, thus effectively

exploiting learned representations. However, unlike our

approach, the one of [28] does not consider learned rep-

resentations obtained by GNNs. In [29], the authors

investigate the empirical robustness of embeddings, pro-

duced by different models, to random and adversarial

poisoning attacks. In their evaluation, they include matrix

factorization-based models, skip-gram-based models, and

deep neural network-based models. Although both our

approach and that of [29] analyze learned representations,

the approach in [29] is devoted to a different task, namely

assessing a specific property of node embeddings.

In [30], the authors present ROLAND, a graph repre-

sentation learning framework for real-world dynamic

graphs. ROLAND allows researchers to easily repurpose

any static GNN to dynamic graphs. The idea is to view

node embeddings at different GNN layers as hierarchical

node states and then recurrently update them over time.

While both the approach in [30] and ours leverage learned

representations, they have very different goals. Neverthe-

less, in future, it would be interesting to conduct our study

on dynamic graphs also exploiting models built by

ROLAND.

As for the analysis of GNN dynamics and the evaluation

of the quality of their learned representations, in [31] the

authors discuss the representation power of Graph Con-

volutional Networks (GCNs) in learning graph moments,

which encode paths of various lengths in graph topology.

The approach in [31] and ours share the idea of analyzing

learned representations through graph properties and

structures. However, the approach in [31] aims to prove the

limitations of a GCN in learning graph topology, particu-

larly graph moments, while our approach studies learned

representations directly through the proposed framework.

Moreover, the approach in [31] targets generation models

while ours focuses on learned representations of any GNN.

In [32], the authors discuss the limitations in using random

walk-based sampling strategies for network embeddings.

They also present a new method that combines neighbor

information and local-subgraph similarity to learn node

embeddings. This method also uses structural information

(graphlets) to enhance the quality of embeddings. It aims to

enhance learned representations by using topological

information for network data. However, it does not perform
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a subsequent analysis of the enhanced learned

representation.

In [33], the authors propose NCA-GE (Network Cen-

trality Approximation using Graph Embeddings), a fast and

efficient approach to approximate node centralities in large

networks using neural networks and graph embedding

techniques. NCA-GE represents a direct application of

learned representations for addressing a task that cannot be

performed easily on very large graphs. NCA-GE and our

framework can be considered complementary. In fact, our

framework could exploit the results of NCA-GE to further

measure the quality of learned representations. In [34], the

authors propose a new approach called DEMO-Net. It

performs multi-task graph convolution, where each task

carries out node representation learning for nodes with a

specific degree value. The authors also introduce a new

graph-level pooling/readout scheme for learning graph

representations, and show that this scheme is efficient and

effective in many cases. DEMO-Net also focuses on

modifying the learning model to explicitly capture the

graph topology through a variant of GNN.

In [35], the authors investigate structural node embed-

dings. These embeddings are based on the principle that

nodes having similar functions, ties or interactions should

be close in the embedding space, regardless of their dis-

tance in the network. In the paper, the authors want to

understand what types of equivalence are captured by

structural embeddings and provide an in-depth empirical

analysis of them using a variety of datasets and tasks. The

approach in [35] and ours share some similarities. In fact,

both of them propose an intrinsic evaluation of node

embeddings and in both cases this evaluation is based on

some network parameters. However, the approach in [35]

focuses on structural node embeddings while our frame-

work can be applied to any type of node embeddings. In

addition, our framework also wants to improve the learning

process of GNNs. In [36], the authors aim to interpret

vector embeddings of social network data and propose

concrete interpretations in terms of preserved network

properties. Their approach relates embeddings with net-

work centralities. As a result, they obtain that different

embedding methods learn different network properties.

Both the approach in [36] and our framework use (Social)

Network Analysis to provide an explanation of embedding

relatedness. However, their goals are different. In fact, the

approach in [36] wants to predict the centrality values of a

particular node based on its embeddings. In contrast, our

framework focuses on analyzing the structures within the

embeddings and improving the learning process. Finally,

the approach in [36] does not consider the learned repre-

sentations resulting from GNNs.

In [37], the authors analyze the effectiveness of vector

embeddings of nodes in encoding the elementary properties

of the nodes themselves. They also evaluate three state-of-

the-art node representation models (i.e., DeepWalk,

node2vec and LINE) on different tasks and different

graphs, and show that node2vec and LINE best encode

network properties for sparse and dense graphs, respec-

tively. The approach in [37] and our framework share the

use of NA to evaluate node embeddings. However, the

goals of the two approaches are different. In fact, the

approach in [37] focuses on the effectiveness of various

node representations in predicting the properties of graphs

and builds a model to do this. In contrast, our approach

wants to evaluate node representations and use that eval-

uation to improve GNN learning. Furthermore, the

approach in [37] does not consider learned representations

resulting from GNNs, but uses classical models, such as

DeepWalk. In [38], the authors propose a framework for

unsupervised graph embedding comparison. Although the

goals of this approach differ from those of our framework,

some concepts and insights present in [38] (e.g., the con-

cept of divergence score) may be useful in our context.

To conclude, we point out that the expressive power of

GNNs enabled a series of contexts and tasks to be suc-

cessfully managed by them. In particular, researchers have

investigated the usage of GNNs to solve problems in

complex and social networks [39–42]. The ability of

extracting node-level structural features from graphs is one

of the key aspects of GNNs. For instance, in [39], the

authors propose a GCN-based framework for the estima-

tion of communication network reliability. This framework

employs several graph convolution layers to extract node-

level structural features from input information. The cru-

cial task of identifying critical nodes and links in graphs is

the focus of the approach described in [40]. Here, the

authors propose a scalable and generic GNN for identifying

critical nodes and links in large complex networks. The

idea is to learn the node and link criticality score on a small

representative subset of nodes and links, and then predict

the scores of nodes and links on a larger scale network. An

approach tackling general time-evolving social network

problems is presented in [41]. Here, the authors propose a

GNN-based framework, called Spatial-Temporal Graph

Social Network (STGSN), whose aim is to model a social

network taking both spatial and temporal perspectives into

account. STGSN belongs to the general field of GNNs

supporting Social Network Analysis; therefore, it can be

considered orthogonal to our approach. In fact, while

STGSN employs GNNs for modeling the dynamics of a

time-evolving Social Network, our framework employs

(Social) Network Analysis models and techniques to

investigate the dynamics of GNNs. To address the social

recommendation problem, the authors of [42] propose a

GNN-based framework able to coherently model graph

data with the aim to learn better user and item
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representations. The framework takes advantage of an

attention mechanism to discern the heterogeneous strengths

of social relationships between users. Also the study of

functional brain networks has been addressed through

GNNs. For instance, in [43] the authors propose BrainTGL,

a temporal graph representation learning framework for

brain networks. The objective is to capture the potentially

complex spatial and temporal correlations in human brain

through a combination of approaches, such as temporal

graph pooling and dual temporal graph learning.

3 Description of our framework

In this section, we present our NA-based framework con-

ceived to investigate the node embeddings returned by a

GNN and to improve its learning process. Specifically, in

Sect. 3.1 we define the network model adopted by our

framework. In Sect. 3.2, we describe a set of analysis

measures used by it to achieve its goals. Finally, in

Sect. 3.3 we describe the GNN evaluation and enhance-

ment process performed by it.

3.1 Description of the model underlying our
framework

Let G be a graph to be processed and let GNN be a Graph

Neural Network that performs a machine learning task

(e.g., node classification, graph classification, edge pre-

diction, etc.) on G. The ultimate goal of our framework is

to evaluate the application of GNN to G and improve its

performance.

G can be modeled as G ¼ hV ;E;Wi. Here, V is the set

of nodes; each node vi 2 V has associated a set Xi 2 Rh,

h� 1, of features. E 2 V � V is the set of edges. An edge

eij 2 E exists between the nodes vi and vj if there exists a

relationship1 between them. There exists a weight wij 2 W

for each edge eij 2 E; it indicates the strength of the rela-

tionship between vi and vj.

This modeling is as general as possible. Therefore,

depending on the specific application, vi, Xi and eij have

different meanings. For example, in the well-known Cora

dataset,2 each node vi represents a paper. Xi is a one-hot

encoded vector such that each of its elements is associated

with a word of interest and is set to 1 if the associated word

is present in the paper corresponding to vi, otherwise it is

set to 0. The arc eij indicates a relationship between vi and

vj such that the paper corresponding to vi cites the one

associated with vj. The corresponding weight wij is always

equal to 1. In this example, G is a directed graph, but the

model we are defining is generic and admits both directed

and undirected graphs.

Suppose we train GNN for g epochs. During its train-

ing, GNN learns the node representations in a latent space,

i.e., node embeddings. We can define a function f : Rh !
Remb representing this learning task. Here, h is the number

of features of a node, emb is the dimension of the

embedding; generally, emb � h. In particular, given a

node vi of G and the feature vector Xi of vi, the embedding

E i of vi is a vector in Remb. It captures both structural and

feature-based properties of vi because it derives directly

from the learning activity of GNN performed on G and the

vector Xi of the features of vi.

At the end of each training epoch t, we can use f to

obtain the corresponding node embeddings at that time in

order to analyze the evolution of learned representations

and to enhance the training of GNN . To address this issue

we need a way to map the embeddings back to the original

graph. For this purpose, we introduce a new graph

GeðtÞ ¼ hV;E;WeðtÞi, which represents a variant of G. In

fact, GeðtÞ has the same set V of nodes and the same set E

of edges of G, while the vectorWeðtÞ of the edge weights is
different. In fact, since GeðtÞ contains feature vectors dif-

ferent from those of G, it is necessary to take this additional

information into account, and this is done precisely by

redefining WeðtÞ. One way to address this issue is to con-

sider the distance and/or similarity between the embed-

dings of the two nodes associated with the edges whose

weight is being computed. Several measures capable of

doing this have been proposed in the literature. One of the

most widely used is cosine similarity, which computes the

cosine of the angle between the two vectors. It ranges

between -1 and 1; in particular, it is set to 1 if the two

vectors are exactly the same, to 0 if they are orthogonal and

to -1 if they are diametrically opposed. Taking this simi-

larity into account, the weight we
ijðtÞ associated with the

edge eij in GeðtÞ can be computed as follows:

we
ijðtÞ ¼ wij

E i � E j

jjE ijj jjE jjj
¼ wij

Pemb
k¼1 E ik E jkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPemb

k¼1 E
2
ik

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPemb
k¼1 E

2
jk

q

ð3:1Þ

Here, E i and E j are the embedding vectors of vi and vj in

GeðtÞ, while wij is the weight of the edge eij in the original

graph G. The reasoning behind this formula is as follows:

the weight we
ijðtÞ is obtained by multiplying the weight of

the original edge wij by the cosine similarity of the

embedding vectors associated with vi and vj in GeðtÞ. In
this way, the initial weight wij varies by a factor defined by1 At this moment, it is not important to indicate the specific

relationship between the two nodes of an edge.
2 https://relational.fit.cvut.cz/dataset/CORA.
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the embeddings extracted by GNN . Thus, the strength of

the connections between the nodes in Ge
ijðtÞ changes

according to the training of GNN . We point out that this

formula also allows the edges of Ge
ijðtÞ to maintain the

same semantics as the edges of G since the weights are

only scaled by a pure factor.

3.2 Analysis measures used by our framework

In this section, we present the analysis measures employed

by our framework to reach its goals. Specifically, in Sect.

3.2.1 we describe two measures to compare communities in

G and in GeðtÞ. In Sect. 3.2.2, we present a measure to

analyze the clustering coefficient of GeðtÞ during the

training of GNN . Finally, in Sect. 3.2.3, we illustrate a

measure to evaluate the differences between G and GeðtÞ in
terms of centrality measures.

3.2.1 Two measures for comparing communities in G
and Ge(tÞ

In this section, we want to study the structure of the

communities that can be derived from G and GeðtÞ. In
particular, we propose two ways to perform such a task.

Preliminarily, we need an algorithm ACD for community

detection on graphs with weighted edges, such as Louvain

[44], FastGreedy [45], Label Propagation Algorithm [46],

and/or another among those proposed in the past literature

[47]. The application of ACD to G and GeðtÞ returns two

sets of communities CS and CSeðtÞ. Once we have these

two sets, we need a way to identify which among them best

splits the corresponding graph in communities character-

ized by many strong intra-community edges and few weak

inter-community edges. A popular metric addressing this

issue is modularity [48], defined as:

Q ¼ 1

2wtot

Xn

i;j¼1

A½i; j� � didj
2wtot

� �

dðCi; CjÞ ð3:2Þ

Here: (i) wtot is the sum of the weights of the edges in the

network into consideration; (ii) A[i, j] is the element at

position (i, j) of the adjacency matrix corresponding to the

graph; (iii) di (resp., dj) is the degree of the node vi (resp.,

vj); (iv) Ci (resp., CjÞ is the community to which the node vi
(resp., vj) belongs; (v) dðCi; CjÞ is the Kronecker delta

function, which returns 1 if vi and vj belong to the same

community and 0 otherwise. The greater Q is, the better the

partition of nodes in communities. Our expectation is that

the communities extracted from GeðtÞ have associated a

higher value of Q than communities extracted from G since

GeðtÞ ‘‘contains’’ additional knowledge than G; such a

knowledge is the one provided by GNN .

The modularity Q defined above allows us to analyze the

differences in the quality of communities. However, Q

does not allow us to know whether the composition of the

communities of G and GeðtÞ is similar or not. Since CS and

CSeðtÞ are sets of communities and each community con-

sists of a set of nodes, the comparison of community

compositions is not straightforward. To solve this problem

we proceed as follows. For each community Ci 2 CS, we

compute the Jaccard coefficient [49] Jij between its nodes

and those of each community Cj 2 CSeðtÞ. Recall that the
value of the Jaccard coefficient ranges in the real interval

[0, 1]; the greater the value of the Jaccard coefficient Jij of

Ci and Cj, the greater the overlap between these two

communities. After computing the Jaccard coefficient

between Ci and any community Cj 2 CSeðtÞ, we take the

maximum value Ji of the Jaccard coefficients thus

obtained; it represents the maximum possible overlap

between Ci and a community of CSeðtÞ. Proceeding in this

way, we obtain a value Ji for each community Ci 2 CS.

Afterward, we calculate the mean JM of all the values Ji
thus obtained. JM is an indicator of the structural similarity

between the communities of CS and CSeðtÞ. Its value

ranges between 0 and 1; the greater JM , the greater the

structural similarity between the communities of G and

GeðtÞ. The pseudocode describing this behavior is reported

in Algorithm 1.
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Algorithm 1 Function COMMUNITY_STRUCTURAL_SIMILARITY

At the end of this analysis, we have two metrics to

compare the communities of G and GeðtÞ, namely the

modularity Q and the average Jaccard coefficient JM . In

Sect. 4.3, we test whether these measures are useful to train

GNN , and thus whether they can help improve its

performance.

3.2.2 A measure to compare clustering coefficients in G
and Ge(tÞ

Another interesting analysis to compare G and GeðtÞ is

based on clustering coefficients. Recall that the clustering

coefficient of a node measures its tendency to cluster with

other nodes. In fact, the higher the average clustering

coefficient in a graph, the greater the number of closed

triads compared to the number of open triads [50]. Since G

and GeðtÞ have weighted arcs, we use the following for-

mula to compute the weighted clustering coefficient ci
relative to a node vi [51]:

ci ¼
1

di ðdi � 1Þ
X

vj2neighðviÞ

X

vk2neighðviÞ;vk 6¼vj

ðŵij ŵik ŵjkÞ
1
3

ð3:3Þ

Here: (i) di is the degree of the node vi; (ii) neighðviÞ
represents the neighbors of vi, i.e., the nodes connected to

vi through an edge; (iii) ŵij (resp., ŵik, ŵjk) is the normal-

ized weight of the edge eij (resp., eik, ejk); if we indicate

with wmax the maximum edge weight in the network, then

ŵij ¼ wij

wmax
(resp., ŵik ¼ wik

wmax
, ŵjk ¼ wjk

wmax
). Following this

definition, the higher the weight of a triad is, the higher its

importance.

Having the weighted clustering coefficient of each node

in the network, we can compute the mean weighted clus-

tering coefficient cM of the network as:

cM ¼
P

vi2V ci

jV j
ð3:4Þ

The weighted clustering coefficient could be useful to test

whether the embeddings of GNN tend to increase or

decrease the strength of the connections of triads during its
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training. We might expect that the edges and structures of

GeðtÞ would have different weights than those of G just

because of the embeddings learned from GNN . Similarly

to the measures Q and JM seen in the previous section, cM
might have an impact on the performance of GNN .

Therefore, in Sect. 4.4, we present some tests we per-

formed to analyze the differences between the mean

weighted clustering coefficients of G and GeðtÞ and to

understand whether cM can really support the training of G.

3.2.3 A measure to compare centrality measures in G
and Ge(tÞ

Centrality measures represent another interesting viewpoint

to investigate for our framework. They indicate the

importance of a node in the network in terms of the number

of connections, number of shortest paths passing through it,

relevance of its neighbors, and so on [52]. Let c be a

centrality measure in a weighted graph. Based on the val-

ues of c, a ranking of the graph nodes can be built. We

might think of computing c on G and GeðtÞ to obtain the

rankings Rc and Re
cðtÞ of the nodes of G and GeðtÞ with

respect to the values of c. Following this reasoning, we

could verify whether the most important nodes in Rc are the

same or different than the most important nodes in Re
cðtÞ.

Such a check would allow us to understand whether GNN

has modified the relevance of the nodes of G based on what

it has learned during its training process. Since most cen-

trality measures follow a power law distribution, for each

ranking we can focus only on the nodes with the highest

values. For instance, we could focus only on the top 20% of

the nodes in each ranking.

To check the differences between the two rankings Rc

and Re
cðtÞ, we rely on Kendall’s tau coefficient. It is a

measure of the correspondence between two rankings. The

higher its value, the greater the correspondence between

the two rankings into examination [53]. Thus, within our

framework, if the value of the Kendall’s tau coefficient sc,
calculated on the rankings Rc and R

e
cðtÞ, tends to 1, it means

that Rc and Re
cðtÞ are close, and thus that the embeddings

returned by GNN have preserved the importance of the

nodes of G during the training activity. Otherwise, if sc
tends to 0, it means that the rankings are different, and

therefore the training of GNN has changed the relevance

of the nodes of G. As a consequence, investigating sc is

interesting to observe whether or not the training of GNN

has led to changes in the importance of the nodes in G. The

experiments related to this investigation are explained in

detail in Sect. 4.5.

3.3 Evaluation and enhancement of a GNN
performed by our framework

In the previous sections, we introduced three different

perspectives to investigate embeddings learned through a

GNN, namely community structure, clustering coefficient

and centrality measures. For each of these perspectives, we

identified measures allowing us to carry out a quantitative

study. These measures are Q and JM for communities, cM
for clustering coefficient and sc for centrality measures.

Thanks to them, we can study the evolution of the

embeddings returned by GeðtÞ during the various epochs of

the training of GNN . Such a study could reveal the pres-

ence of trends that, in addition to being valuable for the

analysis and evaluation of the phenomenon as such, could

provide support for improving the performance of GNN .

In fact, these measures could add information and knowl-

edge capable of supporting the training of this network.

One way for our measures to play a role in improving the

performance of GNN is to leverage the loss function L

used to train this network. In our framework, we do not

need to identify a specific loss function but can use any loss

function available in the literature, such as binary cross-

entropy, categorical cross-entropy and mean squared error-

based loss [54].

Therefore, let L be the starting loss function that we

chose. To add the information that can be derived through

our measures, we can introduce a new loss function derived

from L, which we call Le. It is defined as follows3:

Le ¼ k1 L� k2 Q� k3 JM � k4 cM � k5 sc ð3:5Þ

Each component of Eq. 3.5 is weighted with a factor ki
defining its importance. The value of ki belongs to the real

interval [0, 1]; moreover, the sum of all weights is equal to

1, i.e.,
P5

i¼1 ki ¼ 1. Le contains both the information car-

ried out by L and the one derived through our framework.

In defining Le we start from L (and, thus, we do not give up

its contribution) because L is tailored to the Machine

Learning task that GNN is supposed to solve, such as the

binary cross-entropy for binary classification, the mean

squared error for regression, etc. Moreover, we add to it the

information carried out by the four measures defined

above.

It is worth noting that all the measures we identified

were added with a negative sign. Therefore, the greater

their value, the smaller the value of Le. In this way, we are

forcing GNN to consider the structural information

3 Actually, as for the measures Q, JM , cM and sc, we should have

written QeðtÞ, JeMðtÞ, ceMðtÞ and secðtÞ, since they are associated with

the graph GeðtÞ. However, throughout the paper, in order not to

burden the notation and since there is no risk of confusion, we decided

to use the simplified notation for these measures.
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resulting from the current GeðtÞ and the differences

between GeðtÞ and G. Clearly, each measure has its own

specific impact in the training of GNN . In particular,

maximizing Q implies that GeðtÞ should have the highest

possible modularity, which could be extremely important

in those tasks requiring communities to be as partitioned as

possible. The maximization of JM implies that we want to

have a good overlap between the communities in G and

GeðtÞ, and therefore that GNN should not disrupt the initial

network structure. Maximizing cM could lead GeðtÞ to have

a higher mean weighted clustering coefficient, and thus

stronger triads. Finally, maximizing sc implies that the

ranking of nodes with respect to the centrality measure c
should be preserved when moving from G to GeðtÞ. The
details of the proposed loss function and how it changes the

training and validation processes of the model GNN are

provided in Algorithm 2.
Algorithm 2 Model evaluation and enhancement performed by our

framework

As reported in this algorithm, after splitting G in three

subgraphs Gtrain, Gval and Gtest, our framework trains GNN

for g epochs. During the current epoch t, it calculates Ltrain

by applying the loss function chosen for the task performed

by the GNN . Then, it applies GNN on Gtrain to compute

node embeddings. Afterward, it computes Ge
trainðtÞ starting

from Gtrain and node embeddings computed previously.

After that, it proceeds to calculate the analysis measures Q,

JM , cM and sc from GeðtÞ and, starting from them and Ltrain,

calculates Le
train. At this point, it begins the validation

process during which it first computes Lval and, then,

Ge
valðtÞ starting from Gval and the node embeddings

returned by GNN . Afterward, it computes Q, JM , cM , sc
and Le

val. If L
e
val is less than the current minimum value of

the loss function, it means that, during the current epoch t,

GNN has been improved. In this case, our framework

saves the new weights of GNN and considers Le
val as the

new current minimum value of the loss function.

Finally, we would like to point out that the formula of

Le specified in Eq. 3.5 is generic, does not depend on the

starting loss function adopted and can be applied on any

GNN, regardless of the Machine Learning task it must

perform. Clearly, it is also possible to use only some, or

even one, analysis measures by setting to 0 the weights ki
corresponding to the measures that we do not want to

employ. Indeed, starting from Le, by setting some of its

weights to 0, it is possible to obtain various specific

functions, which can be used to study the contribution of

each measure on the scenario under consideration.

In particular, by setting k3 ¼ k4 ¼ k5 ¼ 0, we obtain a

particular version of Le, which we call Le
Q, defined as:
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Le
Q ¼ k1 L� k2 Q ð3:6Þ

Now, since the sum of the weights of Le must be equal to 1,

we have that k2 ¼ 1� k1. Furthermore, by setting

k ¼ 1� k1, we have that Le
Q can be defined as:

Le
Q ¼ ð1� kÞ L� k Q ð3:7Þ

This specialization of Le emphasizes the role of modularity

in the training of a GNN. Therefore, it can be very useful

when we want to analyze this role. In fact, we employ it in

Sect. 4.3, devoted to this task.

Instead, by setting k2 ¼ k4 ¼ k5 ¼ 0 and proceeding

similarly to what we have seen for Le
Q, we obtain a par-

ticular version of Le, which we call Le
J , defined as:

Le
J ¼ ð1� kÞ L� k JM ð3:8Þ

Le
J emphasizes the role of the Jaccard coefficient JM in the

training of a GNN. We employ it in Sect. 4.3, where this

role is studied in detail.

Similarly, by setting k2 ¼ k3 ¼ k5 ¼ 0 and performing

the same operations as in the previous two cases, we obtain

a particular version of Le, which we call Le
cM
, defined as:

Le
cM

¼ ð1� kÞ L� k cM ð3:9Þ

Le
cM

emphasizes the role of the clustering coefficient on the

training of a GNN. We adopted it in Sect. 4.4, devoted to

study this role.

We end this presentation of the specializations of Le

(albeit many more could be defined by appropriately set-

ting the weights ki) by setting k2 ¼ k3 ¼ k4 ¼ 0 and pro-

ceeding as in the previous cases. We obtain a particular

version of Le, which we call Le
c, defined as:

Le
c ¼ ð1� kÞ L� k sc ð3:10Þ

Le
c emphasizes the role of the centrality measure c in the

training of a GNN. It will be employed in Sect. 4.5 where

we investigate the role of the degree centrality in the

training of a GNN.

In Eq. 3.7 (resp., 3.8, 3.9, 3.10), the higher the weight

assigned to Q (resp., JM , cM , sc) and the lower the weight

assigned to L. Clearly, when k ¼ 0, the GNN is trained

only with L, while when k ¼ 1, the information carried by

Q (resp., JM , cM , sc) is the only one that contributes to the

training of the GNN.

4 Experiments

In this section, we present the experiments we conducted to

test our framework. Specifically, in Sect. 4.1, we provide

an overview of the datasets used. In Sect. 4.2, we describe

the GNN employed. In Sects. 4.3, 4.4 and 4.5, we illustrate

the experiments regarding community structures, clustering

coefficient and centrality measures, respectively. Finally, in

Sect. 4.6, we evaluate the ability of our framework to

enhance the training of the underlying GNN thanks to the

information extracted through it.

4.1 Datasets

To ensure a robust validation of our framework, in our

experiments we employed six different datasets widely

adopted in the fields of GNN and Network Analysis. By

leveraging these datasets we could thoroughly evaluate the

performance and effectiveness of our framework under

various conditions and scenarios. The first dataset is Cora

[55]; it consists of a citation network in which each node

represents a scholarly paper and an arc connecting two

nodes indicates that one paper cites the other. The second

dataset is Chameleon [56], which contains page-page net-

works focusing on particular topics, such as chameleons. In

this dataset, nodes correspond to articles while edges

indicate reciprocal links between articles. The third dataset

Table 1 Some statistics of the

adopted datasets
Cora Chameleon Actor Cornell Texas Wisconsin

Number of nodes 2708 2277 7600 183 183 251

Number of edges 5278 31,371 26,659 277 279 450

Density 0.014 0.012 0.001 0.017 0.017 0.014

Clustering coefficient 0.241 0.208 0.080 0.167 0.198 0.208

Table 2 Hyperparameters of

FSGNN for each dataset
Cora Chameleon Actor Cornell Texas Wisconsin

WDfc1 0.001 0.0 0.001 0.001 0.001 0.001

WDfc2 0.0001 0.0 0.0001 0.001 0.0 0.0001

LRfc 0.01 0.005 0.01 0.01 0.01 0.01

Dropout 0.25 0.25 0.25 0.25 0.25 0.25
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is Actor [57]; it is a network of actor co-occurrences; in it,

each node represents an actor while an edge between two

nodes denotes the co-occurrence of the corresponding

actors on the same Wikipedia page. The fourth, fifth, and

sixth datasets are Cornell, Texas and Wisconsin [58],

which are all of the same type with nodes representing web

pages and arcs denoting hyperlinks from one page to

another. The statistics of the six datasets used are shown in

Table 1.

For the sake of space, we decided to work only with one

Machine Learning task typically performed by GNNs,

namely node classification. However, we point out that our

framework can handle any Machine Learning task as long

as node embeddings can be extracted through it.

4.2 Reference GNN model

The GNN model we adopted for our experiments is the

Feature Selection Graph Neural Network (FSGNN) intro-

duced in [59]. We decided to use this model because of its

high performance in the node classification task, which

makes it a good baseline to evaluate the effectiveness of

our framework. FSGNN is a two-layered GNN model

designed to handle node classification tasks. Because of the

significant differences between the datasets of interest (see

Table 1), we had to provide different values to its hyper-

parameters, depending on the dataset on which it was

applied. The hyperparameters of FSGNN are: (i) the decay

of the weights for the first and second fully connected

Fig. 1 Modularity Q of GeðtÞ against training epochs for the datasets of interest
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Table 3 Average values of

classification metrics obtained

by FSGNN using Q in the

training loss function—Cora,

Chameleon, and Actor datasets

k Cora Chameleon Actor

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.858 0.867 0.823 0.733 0.737 0.736 0.342 0.276 0.300

0.1 0.863 0.875 0.830 0.736 0.737 0.737 0.340 0.329 0.298

0.2 0.858 0.871 0.820 0.732 0.735 0.735 0.338 0.305 0.296

0.3 0.858 0.869 0.824 0.732 0.737 0.734 0.343 0.296 0.302

0.4 0.854 0.873 0.813 0.732 0.737 0.734 0.344 0.318 0.302

0.5 0.858 0.870 0.818 0.725 0.727 0.726 0.344 0.297 0.308

0.6 0.851 0.871 0.810 0.731 0.734 0.733 0.344 0.327 0.307

0.7 0.856 0.874 0.814 0.722 0.722 0.723 0.353 0.325 0.322

0.8 0.851 0.866 0.810 0.695 0.702 0.695 0.351 0.335 0.324

0.9 0.843 0.838 0.784 0.661 0.671 0.659 0.353 0.341 0.326

1.0 0.231 0.034 0.140 0.184 0.037 0.200 0.224 0.049 0.200

The values in bold are the highest ones

Table 4 Average values of

classification metrics obtained

by FSGNN using Q in the

training loss function—Cornell,

Texas and Wisconsin datasets

k Cornell Texas Wisconsin

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.757 0.560 0.496 0.758 0.518 0.447 0.836 0.635 0.594

0.1 0.762 0.566 0.495 0.768 0.518 0.460 0.835 0.672 0.593

0.2 0.757 0.561 0.496 0.768 0.529 0.456 0.831 0.625 0.580

0.3 0.789 0.592 0.526 0.768 0.516 0.460 0.831 0.630 0.591

0.4 0.768 0.540 0.493 0.778 0.563 0.474 0.824 0.627 0.582

0.5 0.762 0.536 0.471 0.795 0.578 0.498 0.839 0.641 0.591

0.6 0.768 0.569 0.501 0.805 0.583 0.505 0.839 0.636 0.590

0.7 0.784 0.574 0.518 0.800 0.503 0.499 0.851 0.607 0.575

0.8 0.805 0.598 0.532 0.849 0.613 0.556 0.867 0.698 0.626

0.9 0.811 0.569 0.543 0.816 0.532 0.511 0.859 0.651 0.618

1.0 0.205 0.054 0.224 0.189 0.038 0.200 0.169 0.046 0.210

The values in bold are the highest ones

Table 5 Average values of

classification metrics obtained

by FSGNN using JM in the

training loss function—Cora,

Chameleon, and Actor datasets

k Cora Chameleon Actor

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.858 0.867 0.823 0.733 0.737 0.736 0.342 0.276 0.300

0.1 0.856 0.869 0.822 0.734 0.736 0.735 0.341 0.322 0.299

0.2 0.862 0.875 0.825 0.739 0.740 0.741 0.341 0.265 0.297

0.3 0.861 0.877 0.820 0.730 0.733 0.731 0.341 0.268 0.301

0.4 0.855 0.874 0.816 0.734 0.738 0.736 0.326 0.223 0.282

0.5 0.860 0.879 0.816 0.724 0.724 0.725 0.251 0.173 0.202

0.6 0.858 0.877 0.810 0.723 0.730 0.725 0.252 0.158 0.202

0.7 0.861 0.876 0.816 0.716 0.725 0.715 0.246 0.094 0.200

0.8 0.851 0.844 0.794 0.399 0.309 0.403 0.246 0.049 0.200

0.9 0.847 0.846 0.788 0.203 0.041 0.200 0.246 0.049 0.200

1.0 0.186 0.05 0.141 0.184 0.037 0.200 0.215 0.043 0.200

The values in bold are the highest ones
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layers (WDfc1 and WDfc2), (ii) the learning rate of the fully

connected layers (LRfc), and (iii) the dropout rate. The

corresponding values are reported in Table 2.

4.3 Experiments on communities structures

In this section, we describe the experiments performed to

analyze the communities in G and GeðtÞ for the datasets

selected.

First, we tested whether the modularity Q of GeðtÞ
changed during the training epochs, which could show that

FSGNN was creating stronger or weaker communities

during its learning. To this end, we trained FSGNN for 100

epochs. At the end of each epoch, we extracted the com-

munities from GeðtÞ through the Louvain and Clauset-

Newman-Moore algorithms and, after that, calculated the

modularity of GeðtÞ. We used two different community

extraction algorithms to better verify the stability of the

results obtained. The corresponding results for each dataset

are shown in Fig. 1.

From the analysis of this figure, we can observe that in

Cora, Chameleon, Actor, Cornell and Wisconsin the

modularity of GeðtÞ increased as the number of epochs

increased. This means that FSGNN created more cohesive

communities than those in the original graph. Specifically,

in this case, the increase in Q ranges from 1.8%, obtained

for the Texas dataset, to 12.70%, obtained for the Cornell

dataset. Only in the Texas dataset we do not observe a

stable growth of Q, due to some fluctuations. However,

even in this less favorable case, the modularity of GeðtÞ at
the end of training is greater than that at the beginning of

this task. This confirms our hypothesis that the modularity

grows as the number of epochs increases.

To test whether modularity can improve the perfor-

mance of FSGNN, we added the information associated

with Q into the model training. For this purpose, we

adopted the specialization of Le called Le
Q defined in

Eq. 3.7. We repeated the experiments five times with dif-

ferent training and testing splits. In Tables 3 and 4, we

report the average values of the classification performance

metrics we obtained. In these tables, as well as in the next

ones, we use bold to indicate the maximum values in the

corresponding column. For these tables, as well as for

Tables 5 and 6 below, we report only the results obtained

with the communities returned by the Louvain algorithm.

However, the results obtained with the communities

returned by the Clauset-Newman-Moore algorithm are

similar.

From the analysis of these tables, we can observe that

the use of Q in the training loss function of FSGNN

increases the classification performance of this model. In

the Cora and Chameleon datasets, the best results are

obtained for k ¼ 0:1; in this case, the values of classifica-

tion metrics increase only slightly. Instead, in the Actor

dataset we achieve interesting performances when k ¼ 0:9,

in which case Accuracy increases by 3.2%, Precision by

23.6% and Recall by 8.7%. Similarly, in the Cornell, Texas

and Wisconsin datasets, the performance gets interesting

results when k ¼ 0:8 or k ¼ 0:9. More specifically, for the

Cornell dataset, Accuracy increases by 7.1%, Precision by

6.7% and Recall by 9.5%. As for the Texas dataset,

Accuracy increases by 10.7%, Precision by 15.5% and

Recall by 19.6%. Finally, for what concerns the Wisconsin

dataset, Accuracy increases by 3.3%, Precision by 9.9%

and Recall by 4.7%. Hence, we can conclude that the

adoption of GeðtÞ and Q during the training of FSGNN

results in significant improvements in classification per-

formance in four datasets (i.e., Actor, Cornell, Texas, and

Wisconsin), while it leads to marginal improvements in the

remaining two ones (i.e., Cora and Chameleon). Still for

Table 6 Average values of

classification metrics obtained

by FSGNN using JM in the

training loss function—Cornell,

Texas and Wisconsin datasets

k Cornell Texas Wisconsin

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.757 0.560 0.496 0.758 0.518 0.447 0.836 0.635 0.594

0.1 0.762 0.561 0.495 0.762 0.517 0.455 0.827 0.622 0.581

0.2 0.768 0.568 0.494 0.773 0.537 0.466 0.824 0.622 0.570

0.3 0.800 0.594 0.536 0.768 0.517 0.463 0.827 0.625 0.583

0.4 0.773 0.543 0.495 0.789 0.578 0.484 0.827 0.627 0.584

0.5 0.773 0.560 0.495 0.795 0.576 0.498 0.824 0.623 0.572

0.6 0.784 0.598 0.516 0.800 0.517 0.490 0.839 0.600 0.567

0.7 0.805 0.616 0.560 0.811 0.546 0.522 0.839 0.604 0.562

0.8 0.816 0.616 0.560 0.843 0.607 0.564 0.855 0.624 0.574

0.9 0.800 0.560 0.535 0.822 0.529 0.523 0.839 0.578 0.558

1.0 0.211 0.042 0.200 0.189 0.038 0.200 0.176 0.035 0.200

The values in bold are the highest ones
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the community investigation task, we next tested the role of

the Jaccard coefficient JM to see whether and to what extent

the overlapping level between G and GeðtÞ varies against

training epochs. Again, we trained FSGNN for 100 epochs.

At the end of each epoch, we extracted communities from

G and GeðtÞ using the Louvain and Clauset-Newman-

Moore algorithms. Afterward, we calculated JM by apply-

ing the procedure described in Algorithm 1. In Fig. 2, we

show the values of JM during the training of FSGNN.

From the analysis of this figure, we can see that JM tends

to decrease as the number of epochs increases. In fact, at

epoch 0, when training has not yet begun, JM is equal to 1,

which implies that the communities in G and GeðtÞ are the

same. Then JM decreases as the number of epochs increases

and, at the end of the 100th epoch, it reaches a value that is

always less than its original one. This occurs regardless of

which algorithm we use to detect communities. In partic-

ular, for the Cora and Chameleon datasets, JM decreases

rapidly and reaches a value close to 0.65, which means that

there is 65% overlapping between the communities of G

and GeðtÞ. A similar reasoning applies to the Texas and

Wisconsin datasets, for which JM decreases rapidly and

reaches a value close to 0.60. As for the Actor dataset, JM
decreases very rapidly and settles at 0.40 in the case of

adoption of the Clauset-Newman-Moore algorithm, while

it settles to 0.10 in the case of employment of the Louvain

Fig. 2 Jaccard coefficient JM of GeðtÞ against training epochs for the datasets of interest
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algorithm. Finally, for the Cornell dataset, JM fluctuates in

a range between 0.86 and 0.92.

Next, we tested whether JM could improve the perfor-

mance of FSGNN in classifying nodes. To this end, we

added the information brought by JM into the training

process of FSGNN. To do this, we employed the special-

ization Le
J of the function Le defined in Eq. 3.8. We

repeated the training of FSGNN five times with different

training and testing splits. We report the average values of

the classification metrics in Tables 5 and 6.

From the analysis of these tables, we can see that, in

many cases, JM improves the performance of FSGNN

although there are differences among the datasets. In fact,

in the Cora and Chameleon datasets, we observe slight

improvements in Accuracy, Precision, and Recall. In the

Actor dataset, Precision increases by 16.7% when k ¼ 0:1,

while Accuracy and Recall do not show significant chan-

ges. Furthermore, in the Cornell dataset, we get an increase

in Accuracy of 7.8%, an increase in Precision of 10.0%,

and an increase in Recall of 12.9% for k ¼ 0:8. Similarly,

in the Texas dataset, we obtained a significant increase. In

contrast, in the Wisconsin dataset, we can see that Accu-

racy increased by 2.4%, while Precision and Recall

decreased by 1.7% and 3.2%, respectively.

In conclusion, we observe that the knowledge on com-

munity structures extracted during the training of FSGNN

Fig. 3 Average weighted clustering coefficient cM of GeðtÞ against training epochs for the datasets of interest
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can be used to improve its performance. For this purpose, it

is possible to employ the two analysis measures Q and JM
that summarize the knowledge on the variations of com-

munity structures extracted during the training of FSGNN.

4.4 Experiments on clustering coefficient

The first experiment on the role of the clustering coefficient

in the training of FSGNN aimed to analyze the evolution of

the values of the mean weighted clustering coefficient cM
in GeðtÞ after each training epoch. Specifically, we trained

FSGNN for 100 epochs and, at the end of each epoch, we

created GeðtÞ, calculated the weighted clustering coeffi-

cients for all nodes, and finally computed cM . The results

obtained are shown in Fig. 3.

From the analysis of this figure we can observe that, in

all cases, the value of cM decreases as the number of

epochs increases. This means that the triads present in G

lose power during the training of FSGNN. In particular, we

observe a decrease in cM ranging from 6.2% in the Cora

dataset to 62.5% in the Wisconsin dataset. This is an

interesting result in that it tells us that the training of

FSGNN leads to a decrease in the power exerted by the

weighted triads of G.

To check whether and how much cM exerts an influence

in the training of FSGNN, we proceeded employing the

specialization Le
cM

of the function Le, defined in Eq. 3.9.

Afterward, we tested Le
cM

for different values of k. Again,

we repeated this experiment five times with different

training and testing splits. In Tables 7 and 8, we report the

results obtained.

From the analysis of these tables, we can observe trends

similar to those we have seen for community structures. In

particular, we note that the benefits of using cM in the Cora

and Chameleon datasets are small, while they become

significant for the Actor, Cornell, Texas and Wisconsin

Table 7 Average values of

classification metrics obtained

by FSGNN using cM in the

training loss function—Cora,

Chameleon, and Actor datasets

k Cora Chameleon Actor

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.858 0.867 0.823 0.733 0.737 0.736 0.342 0.276 0.300

0.1 0.863 0.875 0.830 0.736 0.737 0.737 0.340 0.315 0.298

0.2 0.858 0.871 0.820 0.732 0.735 0.735 0.341 0.271 0.298

0.3 0.858 0.869 0.824 0.732 0.737 0.734 0.346 0.277 0.303

0.4 0.854 0.873 0.813 0.732 0.737 0.734 0.346 0.319 0.305

0.5 0.858 0.870 0.818 0.725 0.727 0.726 0.344 0.277 0.303

0.6 0.851 0.871 0.810 0.731 0.734 0.733 0.344 0.311 0.303

0.7 0.856 0.874 0.814 0.722 0.722 0.723 0.345 0.264 0.302

0.8 0.851 0.866 0.810 0.695 0.702 0.695 0.346 0.278 0.305

0.9 0.843 0.838 0.784 0.661 0.671 0.659 0.347 0.270 0.299

1.0 0.231 0.034 0.140 0.184 0.037 0.200 0.225 0.057 0.197

The values in bold are the highest ones

Table 8 Average values of

classification metrics obtained

by FSGNN using cM in the

training loss function—Cornell,

Texas and Wisconsin datasets

k Cornell Texas Wisconsin

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.757 0.560 0.496 0.758 0.518 0.447 0.836 0.635 0.594

0.1 0.762 0.566 0.495 0.768 0.518 0.460 0.835 0.672 0.593

0.2 0.757 0.561 0.496 0.768 0.529 0.456 0.831 0.625 0.580

0.3 0.789 0.592 0.526 0.768 0.516 0.460 0.831 0.630 0.591

0.4 0.768 0.540 0.493 0.778 0.563 0.474 0.824 0.627 0.582

0.5 0.762 0.536 0.471 0.795 0.578 0.498 0.839 0.641 0.591

0.6 0.768 0.569 0.501 0.805 0.583 0.505 0.839 0.636 0.590

0.7 0.784 0.574 0.518 0.800 0.503 0.499 0.851 0.607 0.575

0.8 0.805 0.598 0.532 0.849 0.613 0.556 0.867 0.698 0.626

0.9 0.811 0.569 0.543 0.816 0.532 0.511 0.859 0.651 0.618

1.0 0.205 0.054 0.224 0.189 0.038 0.200 0.169 0.046 0.210

The values in bold are the highest ones
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datasets. In fact, as for the Actor dataset, we achieved an

increase in Precision of 15.6%, in Accuracy of 1.5% and in

Recall of 1.7%. As for the Cornell dataset, we obtained an

increase in Accuracy of 7.1%, in Precision of 6.8% and in

Recall of 9.5%. In the case of Texas, we achieved a higher

Accuracy of 10.7%, a higher Precision of 15.7% and a

higher Recall of 19.6%. Finally, in the Wisconsin dataset,

Accuracy increased by 3.3%, Precision by 9.9% and Recall

by 4.7%.

The results obtained lead us to conclude that the mean

weighted clustering coefficient cM of GeðtÞ changes against
training epochs. Therefore, it could be a relevant factor to

be investigated during the learning of a GNN model. As

evidence of this, the introduction of cM in the loss function

allowed us to obtain higher values of the performance

metrics than those of the baseline.

4.5 Experiments on centrality measures

Our experiment on centrality measures involved the anal-

ysis of the trend of the Kendall’s tau coefficient sc against
training epochs. Recall that sc is an indicator of the

agreement of the rankings of the main nodes of G and GeðtÞ
with respect to the centrality measure c. The first decision

we had to make was the choice of c and of the way to select
the main nodes. Regarding centrality measures, we know

Fig. 4 Kendall’s tau coefficient swd , computed on the Weighted Degree Centrality, against training epochs for the datasets of interest
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Table 9 Average values of

classification metrics obtained

by FSGNN using swd in the

training loss function—Cora,

Chameleon, and Actor datasets

k Cora Chameleon Actor

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.858 0.867 0.823 0.733 0.737 0.736 0.342 0.276 0.300

0.1 0.857 0.868 0.824 0.736 0.737 0.737 0.340 0.315 0.298

0.2 0.859 0.871 0.825 0.732 0.735 0.735 0.339 0.269 0.296

0.3 0.859 0.873 0.821 0.731 0.735 0.732 0.346 0.277 0.303

0.4 0.855 0.876 0.814 0.732 0.736 0.734 0.346 0.319 0.305

0.5 0.857 0.874 0.816 0.729 0.730 0.731 0.344 0.277 0.303

0.6 0.859 0.875 0.818 0.727 0.731 0.729 0.345 0.315 0.304

0.7 0.862 0.880 0.823 0.722 0.725 0.724 0.345 0.318 0.302

0.8 0.858 0.876 0.819 0.714 0.716 0.715 0.345 0.278 0.304

0.9 0.857 0.878 0.812 0.689 0.694 0.689 0.349 0.278 0.307

1.0 0.186 0.050 0.141 0.182 0.043 0.197 0.230 0.080 0.200

The values in bold are the highest ones

Table 10 Average values of

classification metrics obtained

by FSGNN using swd in the

training loss function—Cornell,

Texas and Wisconsin datasets

k Cornell Texas Wisconsin

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

0.0 0.757 0.560 0.496 0.758 0.518 0.447 0.836 0.635 0.594

0.1 0.762 0.561 0.495 0.762 0.517 0.455 0.831 0.623 0.583

0.2 0.768 0.569 0.494 0.773 0.537 0.466 0.831 0.625 0.580

0.3 0.800 0.594 0.536 0.768 0.517 0.463 0.827 0.626 0.589

0.4 0.773 0.543 0.495 0.789 0.578 0.484 0.827 0.627 0.584

0.5 0.773 0.560 0.495 0.795 0.576 0.498 0.824 0.623 0.578

0.6 0.773 0.594 0.512 0.800 0.517 0.49 0.835 0.634 0.595

0.7 0.805 0.616 0.560 0.811 0.546 0.522 0.855 0.649 0.615

0.8 0.816 0.616 0.560 0.843 0.607 0.564 0.855 0.686 0.621

0.9 0.800 0.560 0.535 0.822 0.529 0.523 0.867 0.646 0.629

1.0 0.211 0.042 0.200 0.189 0.038 0.200 0.176 0.035 0.200

The values in bold are the highest ones

Table 11 Average values of classification metrics obtained by FSGNN using different combinations of Le as training loss function—Cora,

Chameleon and Actor datasets

k Cora Chameleon Actor

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Baseline 0.858 0.867 0.823 0.733 0.737 0.736 0.342 0.276 0.300

k1, k2, k3 0.851 0.868 0.812 0.702 0.704 0.703 0.342 0.281 0.301

k1, k2, k4 0.852 0.868 0.811 0.719 0.722 0.721 0.340 0.286 0.299

k1, k2, k5 0.850 0.877 0.806 0.729 0.732 0.730 0.338 0.258 0.293

k1, k3, k4 0.854 0.872 0.813 0.706 0.707 0.707 0.342 0.281 0.301

k1, k3, k5 0.850 0.877 0.806 0.728 0.729 0.728 0.309 0.178 0.264

k1, k4, k5 0.850 0.877 0.806 0.722 0.725 0.722 0.332 0.229 0.287

k1, k2, k3, k4 0.853 0.867 0.812 0.684 0.696 0.686 0.342 0.281 0.301

k1, k2, k3, k5 0.856 0.875 0.813 0.695 0.700 0.696 0.340 0.313 0.304

k1, k2, k4, k5 0.851 0.873 0.807 0.694 0.700 0.696 0.342 0.291 0.303

k1, k3, k4, k5 0.856 0.875 0.813 0.702 0.709 0.704 0.338 0.258 0.293

k1, k2, k3, k4, k5 0.849 0.869 0.803 0.692 0.700 0.691 0.340 0.314 0.302

The values in bold are the highest ones
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from Network Analysis theory that there are four main

centrality measures, namely Degree Centrality, Closeness

Centrality, Betweenness Centrality and Eigenvector Cen-

trality [50]. However, only the former is fast to compute, so

that it has a low impact on the training time of the GNN;

instead, the others have a long computation time. There-

fore, we chose Weighted Degree Centrality as the bench-

mark centrality measure. Regarding the choice of the main

nodes, we know that Degree Centrality follows a power

law distribution [50]. Therefore, we thought of using the

Pareto principle underlying such a distribution and selected

the 20% of nodes with the highest Weighted Degree

Centrality values as the most important nodes.

At this point, similar to what we did for the previous

measures, we trained FSGNN for 100 epochs. At the end of

each epoch, we calculated swd (i.e., the Kendall’s tau

coefficient specialized to Weighted Degree Centrality) for

each node in the training split and then averaged the values

thus obtained. The corresponding results are reported in

Fig. 4.

From the analysis of this figure, we observe that swd
tends to decrease rapidly during the training of FSGNN. In

fact, in all cases, we start with swd ¼ 1 and, in a few

epochs, reach a value of swd between 0 (for Cora, Cha-

meleon, Actor and Cornell) and 0.4 (for Texas and Wis-

consin). This result shows that the rankings of the most

central nodes of G and GeðtÞ are different. This tells us that,
during the training of FSGNN, the weighted degree cen-

trality of the nodes of GeðtÞ, and consequently the weights

of the edges incident on them, substantially change.

After that, we wanted to test whether these changes had

a positive impact on the training of FSGNN. To this end,

similar to what we have done for the previous measures, we

employed the specialization Le
c of the function Le defined

in Eq. 3.10. Since, in this experiment, we chose the

Weighted Degree Centrality as centrality measure, for the

sake of clarity, we prefer to write Le
wd and swd, instead of

Le
c and sc. L

e
wd is defined as: Le

wd ¼ ð1� kÞ L� k swd. We

want to point out again that this is only a change of nota-

tion to increase the clarity of presentation. We repeated this

experiment five times with different training and testing

splits. The average results thus obtained are reported in

Tables 9 and 10.

From the analysis of these tables, we can see that swd has
a positive impact on the training of FSGNN on average. In

particular, as for Cora, there is a small increase in Precision

and Recall. In the case of Chameleon, improvement is

negligible. As for Actor, Accuracy increased by 2.1% (for

k ¼ 0:9), Precision by 15.6% (for k ¼ 0:4) and Recall by

2.3% (for k ¼ 0:9). Instead, as for Cornell, Accuracy

increased by 7.2%, Precision by 9.1% and Recall by 11.4%

when k ¼ 0:8. In Texas, Accuracy grew by 10.2%, Preci-

sion by 15.3% and Recall by 21.1% when k ¼ 0:8. Finally,

in Wisconsin, Accuracy increased by 3.7% (for k ¼ 0:8),

Precision by 7.4% (for k ¼ 0:9) and Recall by 5.7% (for

k ¼ 0:8). As a consequence, we can conclude that, in our

setting, this measure also has an impact on the training of

FSGNN because in almost all cases its introduction into the

loss function resulted in an improvement in classification

performance compared with the baseline.

Table 12 Average values of classification metrics obtained by FSGNN using different combinations of Le as training loss function—Cornell,

Texas and Wisconsin datasets

k Cornell Texas Wisconsin

Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

Baseline 0.757 0.560 0.496 0.758 0.518 0.447 0.836 0.635 0.594

k1, k2, k3 0.784 0.576 0.513 0.789 0.574 0.488 0.827 0.629 0.584

k1, k2, k4 0.762 0.567 0.494 0.789 0.574 0.488 0.831 0.630 0.587

k1, k2, k5 0.757 0.557 0.48 0.784 0.554 0.476 0.831 0.630 0.587

k1, k3, k4 0.762 0.555 0.482 0.789 0.574 0.488 0.831 0.629 0.587

k1, k3, k5 0.751 0.537 0.467 0.784 0.554 0.476 0.827 0.629 0.584

k1, k4, k5 0.757 0.553 0.476 0.784 0.554 0.476 0.824 0.585 0.569

k1, k2, k3, k4 0.789 0.594 0.533 0.805 0.548 0.494 0.851 0.647 0.617

k1, k2, k3, k5 0.789 0.604 0.527 0.789 0.497 0.477 0.847 0.643 0.609

k1, k2, k4, k5 0.778 0.576 0.495 0.789 0.500 0.475 0.847 0.643 0.609

k1, k3, k4, k5 0.778 0.576 0.495 0.789 0.497 0.477 0.847 0.645 0.615

k1, k2, k3, k4, k5 0.800 0.616 0.535 0.811 0.547 0.523 0.863 0.695 0.625

The values in bold are the highest ones
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4.6 Experiments on the structural information
in the GNN training

Having tested the improvements in the training of a GNN

made by each analysis measure separately from the others,

we now want to verify the effectiveness of Le (see Eq. 3.5),

which takes into account the contributions of all the anal-

ysis measures at once. Recall that, in the definition of Le,

each of the weights ki, 1� i� 5, associated with L and the

four analysis measures under consideration, ranges in the

real interval [0, 1], and
P5

i¼1 ki ¼ 1. Therefore, by

adjusting these weights, we could define many versions of

Le according to our needs (see, for instance, Eqs. 3.7–

3.10). In all the previous tests, we considered scenarios in

which only two values of ki were different from 0; one of

them was always k1 while the other depended on the

analysis measure we wanted to test. It would now be

interesting to consider 3, 4 and 5 weights ki different from
0 in Le. Unfortunately, testing all possible combinations of

ki is extremely wasteful and essentially useless. Therefore,

in conducting the experiments described in this section, we

had to find a workaround different from the one of the

previous experiments.

To this end, we decided to add the weights ki as learn-
able parameters of FSGNN. In this way, their values are

learned during the training of the model. As a result, we do

not have to check all the values but, hopefully, we obtain

the best ones by solving the node classification task.

Moreover, in all the previous experiments, we have seen

that excluding the contribution of the initial loss function L

often returned very low results (see the last rows of

Tables 3, 4, 5, 6, 7, 8, 9, 10). This highlights that L is

critical to the Machine Learning task performed by

FSGNN. Consequently, we decided to keep k1 (i.e., the

weight associated with L in Le) in all tests. The results of

the experiments for the various combinations of ki kept in
the test and the corresponding performances obtained by

FSGNN are shown in Tables 11 and 12.

In these tables, the row ‘‘Baseline’’ corresponds to the

case in which we train FSGNN with only the loss function

L and, therefore, to the case in which k1 ¼ 1, ki ¼ 0,

2� i� 5. Each row corresponds to a choice of the

parameters ki that we decide to keep and train. The values

of the parameters not present in that row are set to 0. For

example, in the second row of the two tables, we decided to

keep only the weights k1, k2 and k3; consequently, k4 ¼ 0

and k5 ¼ 0. The values of the three weights k1, k2 and k3
are initially set equal to each other and, consequently,

equal to 1
3
. At each iteration of the training, the values of the

weights vary. To give an example, let us consider the last

row of Table 12. It represents a scenario in which all the

weights ki, 1� i� 5, are kept and their values are tuned

during training. At the first iteration of training, ki ¼ 0:2,

1� i� 5. Such a scenario returns the maximum values of

Accuracy, Precision and Recall for the Cornell and Wis-

consin datasets, the maximum value of Precision for the

Actor dataset and the maximum values of Accuracy and

Recall for the Texas dataset. Regarding the values of the

weights ki, 1� i� 5, in this row we obtained that: (i) for

the Cornell dataset: k1 ¼ 0:12, k2 ¼ 0:22, k3 ¼ 0:22,

k4 ¼ 0:22, k5 ¼ 0:22; (ii) for the Texas dataset: k1 ¼ 0:12,

k2 ¼ 0:25, k3 ¼ 0:25, k4 ¼ 0:23, k5 ¼ 0:15; (iii) for the

Wisconsin dataset: k1 ¼ 0:12, k2 ¼ 0:23, k3 ¼ 0:22,

k4 ¼ 0:22, k5 ¼ 0:20; (iv) for the Actor dataset: k1 ¼ 0:12,

k2 ¼ 0:24, k3 ¼ 0:24, k4 ¼ 0:23, k5 ¼ 0:18.

From the analysis of Tables 11 and 12, we observe

some interesting results. First of all, they are in line with

the ones seen in the previous tests, although we employed a

completely different workaround in this experiment. In

particular, similar to the previous tests, the improvements

achieved by our framework when applied to Cora and

Chameleon are slight. As a matter of fact, the performances

achieved are similar to that of the baseline, which means

that the framework did not alter the training of FSGNN too

much. As for Actor, the performances achieved are similar

to that of the baseline with the exception of Precision,

which, with the use of all five weights, achieves a sub-

stantial increase. We observe that FSGNN has the most

significant improvements for Cornell, Texas, and Wiscon-

sin. These are smaller datasets than the previous ones and

all refer to the same context. These observations might

prompt some preliminary considerations about the role that

dataset size can play on the behavior of our framework.

However, before coming to more definitive conclusions,

we feel it appropriate to explore this aspect further in the

future.

More specifically, the results obtained by our framework

using Actor, Cornell, Texas and Wisconsin are promising.

In fact, in almost all cases, the values of the classification

metrics are greater than those of the baselines. In particular,

as for Actor, while Accuracy remains the same, Precision

increases by 13.77% using all five weights. Recall increa-

ses by 1.33% when we use the weights k1, k2, k3 and k5; if
we use all five weights Recall still increase, but its growth

is smaller, as it is 0.67%. As for Cornell, the highest values

of Accuracy, Precision and Recall are obtained using all

five weights, and thus all the analysis measures. In this

case, compared to the baseline, the values of Accuracy,

Precision and Recall increase by 5.68%, 10.00% and

7.86%, respectively. As for Texas, the highest values of

Accuracy and Recall are obtained using all five weights. In

this case, compared to the baseline, Accuracy increases by

6.99%, Precision by 5.60% and Recall by 17.00%. Actu-

ally, for this dataset, there are other configurations that are

able to provide an even greater increase in Precision, equal
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to 10.81%. Finally, as for Wisconsin, the highest values of

the classification metrics are again obtained using all five

weights. In this case, compared to the baseline, Accuracy

increases by 3.23%, Precision by 9.45% and Recall by

5.22%.

In conclusion, this experiment shows that our frame-

work is capable of ensuring substantially higher classifi-

cation performance than the baseline for the three datasets

with smaller sizes. Currently, we think it is possible to

hypothesize a role of dataset size on the performance of our

approach. However, we think it is premature to draw firm

conclusions about this. Certainly, the results obtained can

be a significant starting point for further investigations in

this direction.

5 Conclusion

In this paper, we have proposed a framework that employs

the theory and techniques of Network Analysis to investi-

gate the dynamics underlying the learned representations of

a GNN. Our framework receives a graph as input and

passes it to the GNN to be analyzed. This returns the

suitable node embeddings corresponding to the graph

received as input. Afterward, our framework uses the

original graph and the corresponding node embeddings to

derive insights concerning the behavior of the GNN. Then,

it employs these insights to define a new loss function that

accounts for the differences between the graph received as

input and the one reconstructed from the embeddings

returned by the GNN. Finally, it uses this loss function to

enhance the training of the GNN in such a way as to

improve its performance. We have also described a large

set of experiments that confirmed the goodness of our

framework.

The main contributions of this paper with respect to the

existing literature are as follows: (i) it proposes a method to

map the learned representations returned by a GNN onto

the graph from which they were obtained; (ii) it uses the

theory and techniques of Network Analysis to define a

framework that, in many datasets of different size and

nature, has been shown capable of extracting insights

regarding the structure and behavior of the GNN; (iii) it

defines a new loss function that, in various datasets of

different size and nature, assessed and enhanced the quality

of the learning process of the GNN so that it can subse-

quently return better results.

This paper should not be considered as an ending point

but rather as a starting point for further future research on

this topic. In particular, in future, we would like to improve

the representation of GeðtÞ using a multilayer network [60]

in order to be able to handle more details about the

embeddings returned by the GNN during its training. The

multilayer network representation could have a temporal

component corresponding to the training epochs. Each

layer could be associated with GeðtÞ at a given epoch t, and

layers could be connected to each other according to the

training progress. As a further development, we would like

to improve our framework so that it can handle other GNN

architectures, such as Graph Autoencoder and Spatio-

Temporal Graph Neural Networks. These two types of

models bring new challenges, and it would be interesting to

see if, how, and with what modifications our framework

could address them. Last but not least, we would like to test

our framework on other machine learning tasks where

GNNs are used, such as graph classification, edge predic-

tion and unsupervised scenarios.
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