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Abstract
Giraitis et al. (J Econom 224(2):394–415, 2021) proposed a kernel-based time-varying
coefficients IV estimator. By using entirely different code, we broadly replicate the
simulation results and the empirical application on the Phillips curve, but we note
that a possible oversight might have affected some of the reported results. Further, we
extend the results by using a different sample and a wider choice of smoothing kernels,
including data-based ones; we find that the estimator is remarkably robust across a
wide range of smoothing choices, but the effect of outliers may be less obvious than
expected.

Keywords Instrumental variables · Time-varying parameters · Hausman test ·
Phillips curve

JEL Classification C14 · C26

1 Introduction

The issue of estimating linear models when the underlying data generation process
may be unstable through time is a long-standing one in the econometric literature. One
solution, adopted since the pioneering contribution by Chow (1960), is to assume that
abrupt breaks take place at some point in time, and this idea has been extended and
generalized in several directions (see, e.g., Bai and Perron 2003).

An increasingly common proposal is to assume instead that the model parameters
change continuously through time. The standard solution is to rely on the state-space
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representation and use the Kalman filter1 apparatus under the Gaussianity assumption
(see, e.g., Hamilton 1994, Section 13.8), but other approaches based on moments esti-
mators (Schlicht 2021), flexible least squares (Kalaba and Tesfatsion 1989), penalized
least squares (Hastie and Tibshirani 1993) and a pure nonparametric framework (Vogt
2012) have also been put forward.

In recent years, a method has been proposed that deals with time-varying parameter
models in a nonparametric way, where the evolution of the parameters through time
can be assumed to be “slow.”2 In a series of works by Giraitis, Kapetanios and several
co-authors (Giraitis et al. 2014, 2018; Kapetanios et al. 2019), the idea is pursued to
generalize the concept of rolling-window regression to kernel-based inference.

One of the advantages of the Giraitis et al. (2014) approach is that it is easily
generalizable to many linear models, among which instrumental variable models. IV
models with time-varying parameters can, in principle, be handled via a state-space
approach, but implementation is far from trivial; for a Bayesian alternative, see Ruisi
(2019). None of these approaches, however, match the computational simplicity and
flexibility of the kernel-based estimator. On the other hand, in semi- and nonparametric
estimation methods one usually has to choose the precise details of the practical
implementation of the estimators, and while many of these choices are asymptotically
equivalent, in finite samples the numerical results are often affected to quite a large
degree.

In this article, we replicate and extend the results presented in Giraitis et al. (2021)
(GKM from now on), using a completely independent software implementation3 and
publicly available data. Section2 briefly describes the model and establishes notation.
InSect. 3,weperformanarrow-sense replication of the original results,while inSect. 4,
we extend the original results in several directions. We find that results are, all in all,
rather robust; however, in some cases they can be markedly different across equally
legitimate choices. We also find that replicating the original empirical exercise with
more recent data, including the COVID-19 pandemic, shows that when large outliers
are present, interpretation of the results may be far from obvious. Therefore, it is
advisable for practitioners to take great care with the robustness of their results.

2 Themodel

We consider the model, for t = 1 . . . T ,

yt = x′
tβ t + ut , xt = z′tψ t + νt , (1)

where yt is the dependent variable, xt is a p × 1 vector of (possibly endogenous)
regressors, zt denotes a q × 1 vector of instruments, and the parameters β t and ψ t
are allowed to vary over time. The coefficients are assumed to be either smoothly

1 See Appendix F for a comparison with the technique discussed below.
2 For a precise definition see, e.g., Giraitis et al. (2018), Section 2.1.
3 The code we used for this exercise is publicly available as the ketvals gretl package.
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varying deterministic functions or smoothly varying persistent stochastic processes
(see Assumptions 2 and 3 in GKM, respectively).

Let 0 < r ≤ p the number of elements of xt that are deemed to be endogenous,
so xt and zt have (p − r) elements in common. This is a slight generalization to
GKM, where p = r is assumed throughout. The disturbance terms ut and νt may
be correlated, in which case endogeneity arises. We focus on two different estimators
proposed in GKM: an OLS estimator β̂ t and an IV estimator β̃ t . For their definition,
see Sect.A.1 in Appendix A.

In addition, GKM define a time-varying equivalent of the classic Hausman test,
for the null hypothesis H0 : E(utνt ) = 0, and a “Global Hausman Test” in which
the hypothesis is tested in a given time span [T0, T1]. For their definitions, see again
Sect.A.1 in Appendix A. Under the null hypothesis, they are both distributed as χ2

variates. GKM focus on the p = r case, the degrees of freedom of the χ2 limiting
distribution of the Hausman test is given by p, the number of explanatory variables
(equation (35) in GKM). However, in the more general case that we analyze (0 < r ≤
p) the degrees of freedom equal the number of endogenous variables r (see Appendix
B for a proof).

It should be noted that the p-values for the time-varyingHausman test are computed
for individual (local) tests, and when one computes a test statistic at each time then one
runs into a multiple testing problem requiring adjustments of critical values. In light
of this, it may make sense to first compute the global Hausman test and then, in case
of rejection of the global null, rejections from the time-specific Hausman statistics
would point to specific time periods when violation of the null occurs.4

3 Narrow-sense replication

This section summarizes the narrow-sense replication of the results in GKM. For
reasons of space, most details are given in Appendices.

3.1 Simulations

In the first part of their article, GKM perform several simulation experiments on the
univariate data generating process (DGP) yt = xtβt + ut to assess the quality of the
time-varying OLS and IV estimators over a range of possible DGPs. For the precise
details of the DGP from which data are simulated, we refer the reader to Sect. 3 in
GKM.

We briefly describe theDGP and report the annotated results in Appendix C. Suffice
it to say here that the simulation results can be replicated almost exactly; in fact, in
some cases, our Monte Carlo results are even closer to the asymptotic figures than the
original ones.

4 We thank an anonymous referee for pointing out this aspect.
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3.2 Empirical application: the Phillips curve

In this section, we replicate the empirical application reported in Sect. 4 of GKM,
where a time-varying version of the Phillips curve is estimated. The following two
models are considered: a “traditional,” backward-looking version

�πt = μt + γt�πt−1 + αt�ut , (2)

and a “New-Keynesian” version where a forward-looking term is added:

�πt = μt + γt�πt−1 + αt�ut + ρt�πt+1. (3)

Here, �πt and �ut are the first differences of inflation and unemployment, respec-
tively. GKM do not point to a downloadable dataset, but we consider the usage of
the St. Louis FED data as a reasonable reconstruction. To be specific, πt is 100 times
the seasonal log difference of the CPIAUCSL variable; unemployment ut is simply a
copy of the UNRATE variable. We use the sample from 1959:02 to 2013:07.

In Eq. (2), �ut is considered endogenous and the instruments are the lags of �ut
from 1 to 4. In Eq. (3),�πt+1 is also considered endogenous and the set of instruments
is augmented with four lags of �πt .

Figure 1 shows the replication results. For Eq. (2), the time paths of estimated
coefficients and the associated confidence bands can be replicated almost exactly. We
note only very minor discrepancies near the end of the sample, which can be safely
attributed to differences in the data vintage used.

On the other hand, the plot for the time-varying Hausman test appears to be rather
different, with much lower p-values for the best part of the sample. We believe the
discrepancy in Hausman test p-values might be due to the different number of degrees
of freedom of the limiting χ2 distribution considered by GKM. The situation where
only �ut is considered to be potentially endogenous marks a departure from the
standard assumption in GKM (p = r ) since the number of explanatory variables
(p = 3) does not coincide with that of endogenous ones (r = 1). To substantiate
our claim, Fig. 2 compares the time path of the p-value for the Hausman test obtained
using the correct number of degrees of freedom (r = 1) and the one obtained using the
total number of regressors (r = p = 3). As can be seen, the time path of the p-value
with 3 degrees of freedom is much closer to the one reported in GKM at the end of
Section 4.

As for the “New-Keynesian” Phillips curve in Eq. (3), we observe noticeable differ-
ences between our results and the original ones. For the three parameters in the model,
we are able to almost perfectly replicate the time paths and the confidence intervals
of the least squares estimator β̂ t . On the contrary, the IV estimates appear to be quite
different all over the sample, particularly at the beginning and the end of the time
span considered. Since the differences in the OLS estimates are relatively minor, we
conjecture that the IV estimator, in an over-identified case such as the present one, may
be somewhat sensitive to individual data points. This conjecture is consistent with the
evidence we present in Sect. 4.3, where we show the effects on the estimates of one
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Fig. 1 Replication, h1 = h2 = 0.7. Note: the two columns report estimated coefficients and the Hausman
test (p-value) related to Eqs. (2) and (3), respectively. With reference to coefficients, the red line denotes
the OLS point estimates, while the blue one represents the IV estimator. Dotted lines, with the same colors,
represent the boundaries of the 90%confidence intervals. Shaded area denotes the region for p-value ≤ 10%.
(Color figure online)

extremeoutlier, given by the unemployment surge ofApril 2020.Given these premises,
it is obvious that the Hausman test results could not be replicated satisfactorily.

In order to provide the complete set of the results shownbyGKM,Fig. 8 inAppendix
D reports the replication of the robustness check on the “traditional” Phillips curve,
where the parameters h1 and h2 are set to 0.5. Similarly to our previous results, the time
paths of the coefficients are very similar to the reported ones, although the Hausman
p-value plot is not.
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Fig. 2 Hausman test: comparing degrees of freedom. Note: the two panels report the Hausman test p-value
related to the model in Eq. (2), assuming a limiting χ2-distribution with 1 (left) and 3 (right) degrees of
freedom. Shaded area denotes the region for p-value ≤ 10%

Finally, it is worth recalling that the whole replication exercise is based on data
provided by the St. Louis FED, while it is not clear where GKM data come from. As a
consequence, small differences between our results and the original ones may be due
to the nature of the data.

4 Extended replication

In this section, we extend the empirical example proposed by GKM by investigating
robustness of results with respect to two separate issues, namely (a) different choices
of the kernel weighting scheme and (b) an extension of the sample used by the authors.
As will be argued, both these aspects reveal interesting features of the estimator.

4.1 Kernel functions and bandwidth

In this subsection, we replicate the empirical analysis provided in Sect. 3.2 by using
four different kernel functions, namely the Gaussian, Epanechnikov and exponential
kernels, as well as the rectangular kernel, which is equivalent to a simple rolling-
window estimator.

In GKM, the Gaussian kernel was used, where the kernel weighting function is
K (x) = exp(−x2/2) and x = | j − t |/T h . The exponential kernel uses the Laplace
density instead: K (x) = exp(−|x |).5 These two kernels have infinite support, so
that all observations contribute to the calculation of each element of the β̂ t and β̃ t
sequences. The other two, instead, have finite support: for |x | < 1, K (x) = 0.75(1−
x2) for the Epanechnikov kernel and K (x) = 1 for the rectangular one; both are 0 for
|x | ≥ 1. This implies that in the calculation of β̂ t and β̃ t only “nearby” data matter
(although of course with infinite-support kernels small bandwidths achieve the same
effect in practice). Aswill be seen, the distinction between the two kinds has noticeable
empirical implications.

Figure 3 reports the estimated coefficients and their confidence intervals, plus the
Hausman test p-value for the model in Eq. (2). As a benchmark, we consider the

5 In fact, more general formulations are possible: GKM, in the original paper, consider using K (x) =
exp(−c · |x |α).

123



Kernel-based time-varying IV estimation: handle with care 3007

Fig. 3 Traditional PC: 1959:02–2013:07, h1 = h2 = 0.7. Note: Each column reports estimated coefficients
and the Hausman test (p-value) related to Eq. (2). With reference to coefficients, the red line denotes the
OLS point estimates, while the blue one represents the IV estimator. Dotted lines, with the same colors,
represent the boundaries of the 90% confidence intervals. (Color figure online)

same bandwidth parameters used in GKM, that is h1 = h2 = 0.7. Using the original
sample, the results appear to be qualitatively robust to the choice of kernels.Magnitude
of coefficients and confidence intervals are similar across the different smoothing
functions, even though estimates relying on finite-support kernels (i.e., rolling window
and Epanechnikov) appear more volatile through time and display spiky confidence
intervals. As for theHausman test, results obtainedwith finite-support kernel functions
appear less stable over time. However, this finding has to be considered together with
the results in Sect. 4.3 later.

Setting the bandwidth parameters to h1 = h2 = 0.5 yields the results reported
in Fig. 9 in Appendix E. Here too, the time path of all estimators appears to be quite
unstable, even thoughpoint estimates are comparable to those inFig. 3.On the contrary,
confidence intervals and the Hausman test are rather sensitive to the bandwidth choice:
estimates obtained by using finite-support kernels appear to be volatile at the end of
the sample and the time-varying p-value for the Hausman test is markedly unstable.

4.2 Data-driven bandwidth selection

As is well known, the finite sample performance of nonparametric estimators and
tests depends on bandwidth selection. Moreover, a rigid bandwidth choice, as the
one adopted in GKM, may work well for particular signal-to-noise ratios, but not in
general.6 Therefore, we explored the effects of using a data-driven method, namely
the corrected AIC proposed by Cai and Tiwari (2000) and Cai (2007). The optimal

6 We thank an anonymous referee for pointing out this aspect.
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Table 1 Phillips curve
estimation using data-driven
bandwidth

h2 = 0.5 h2 = 0.7

Traditional PC 0.6758 0.9899

New-Keynesian PC 0.8872 0.8526

bandwidth parameter hopt is the minimizer of AIC(h):

AIC(h) = log(σ̂ 2) + 2 · (Th + 1)

(T − Th − 2)
,

where σ̂ 2 = 1
T

∑T
t=1(yt − ŷt )2 and where Th is the trace of the “smoothing matrix”

Hh , defined in Sect.A.2 in Appendix A.
This method can be applied to the time-varying OLS estimator in a straightforward

manner, but its application to IV estimation is more problematic, since it is unclear
how to set up the objective function to cover both the first- and second-stage models.
The solution we have adopted is to apply the AIC criterion for the selection of the
second-stage bandwidth parameter h1, given the first-stage parameter h2, which we
keep at the values originally used in GKM. Table 1 contains the results for the two
models in Eqs. (2) and (3).

As can be seen, the bandwidth parameters selected via AIC are quite large for
both models, therefore yielding estimates that are much more stable trough time.
Figure4 compares, for the traditional Phillips curve, the IV estimates obtained with
the automatic bandwidth selection and those given by setting h1 = h2.

Finally, it should be noted that the bandwidth parameter governs the degree of time-
variability of the estimators, which inmany cases is an aspect onwhich the analystmay
have strong a priori beliefs, dictated by the details of the problem at hand. In particular,
economic reasoning can be used to evaluate ex post how credible the estimated time
path of a coefficient is. Therefore, committal to a data-driven approach for bandwidth
selection should in most cases be supplemented by traditional robustness checks.

4.3 Extending the sample

We now investigate the effects of a sample extension. Figure5 shows the results for
Eq. (2) based on observations ranging from 1948:06 to 2022:09 from the St. Louis
FED dataset. This experiment is particularly interesting, because it includes data from
the COVID-19 pandemic. As we will show, this provides a very interesting “natural
experiment” to assess the performance of the estimator under extreme conditions.7

The results we obtain, in terms of the robustness of results, are mixed. On the one
hand, the parameter estimates appear to be quite robust to the choice of the time span,
apart from small differences around 1960 and 2013, due to the new observations at the

7 Clearly, the 2020 unemployment spike had nothing to do with changing structural coefficients and every-
thing to dowith an exogenous shock that had a dramatic impact on unemployment but a negligible impact on
inflation. However, we believe this is a perfect illustration of the numerical consequences on the estimates
of one large outlier.
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Fig. 4 Traditional PC: automatic bandwidth selection. Note: each plot compares the IV estimation results
obtained with a "second-step" bandwidth h1 = h2 (blue line) and those resulting from the automatic selec-
tion procedure (red line, see Table 1). Dotted lines denote 90% confidence intervals. (Color figure online)

Fig. 5 Traditional PC: 1948:06–2022:09, h1 = h2 = 0.7. Note: see Fig. 3. (Color figure online)

beginning and at the end of the sample. On the other hand, standard errors are quite
different from the original ones throughout the sample span. Using infinite-support
kernels (Gaussian and exponential), the confidence intervals for the parameter αt in
the late 1990s appear much larger than the original ones. This is hardly surprising,
given that the standard errors depend on the first stage residuals: extending the sample
to include the COVID-19 pandemic has a dramatic effect on the estimated standard
errors.
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Fig. 6 Excluding Covid-19. Note: the two columns report IV estimates and first-stage residuals of the
endogenous variable�ut , obtained by excluding (left) the Covid-19 period and with the full sample (right).
Gaussian kernel function, bandwidth parameters h1 = h2 = 0.7. Shaded area denotes 90% confidence
interval

In order to show this effect, Fig. 6 reports IV estimates forαt and first stage residuals
for�ut obtained by excluding the COVID-19 period (left) and by using the full sample
to 2022:09 (right). In the pre-COVID-19 sample, residuals do not contain any outliers
and the confidence interval of the coefficient is very similar to the one in GKM.When
using the full dataset, instead, the first-stage residuals display a huge spike in April
2020, as an effect of the unemployment surge which took place during the first wave
of the pandemic: the most striking consequence is the effect this has on estimated
standard errors for a wide range of observations.8

With infinite-support kernels, the “COVID-19 spike” provokes an effect on con-
fidence bands that extends for a very long period, with features that are somewhat
counter-intuitive. The standard error for αt reaches its maximum around the year
2000, i.e., nearly 20 years before the pandemic, whereas a similar effect cannot be
seen for the standard errors for the 2020–2022 period. In other terms, the influence
of a single outlier on the estimates is markedly asymmetric with respect to time. On
the contrary, the Hausman test performs satisfactorily in terms of robustness and pro-
vides stable results whatever the sample, with substantial discrepancies in the results
obtained only with a Rolling Window kernel during the 60’s and the 80’s.

8 As an anonymous referee pointed out, it could be argued that the COVID-19 pandemic is not, in principle,
the only example of crisis episode that could exert a similar impact: for example, one could also take the 1973
oil crisis or the 2007–2008 financial crisis. In this context, however, we consider the COVID-19 pandemic
to be qualitatively different given the enormous impact it had on the unemployment rate, compared to the
past. The right-bottom pane of Fig. 6 is quite telling in this respect.
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Fig. 7 Bandwidth: local effects on standard errors. Note: the two panels report estimated α̃t and 90%
confidence intervals for the model in Eq. (2), the kernel is Gaussian. The left panel is obtained with
h1 = h2 = 0.7 and right one with h1 = h2 = 0.5. Shaded area denotes 90% confidence interval

Unsurprisingly, the adverse effects shown above are somewhat mitigated by kernel
choices that put a greater weight on “local” data when calculating the time-varying
quantities: for example, a Gaussian kernel with a narrower bandwidth (see Fig. 7) or
finite-support kernels (see Fig. 13 in Appendix). Our overall impression is that, in
normal times, the estimator is quite robust across a wide range of possible choices,
but in the presence of possible abrupt breaks or otherwise exceptional events much
care is needed by the investigator when choosing the precise details of the smoothing
scheme to use.

5 Conclusions

We have presented a replication of the results provided by Giraitis et al. (2021) for
their kernel-based instrumental variable regression estimator, in both a narrow and a
wide sense.

In the narrow-sense replication, the Monte Carlo experiment and the real data
application on the Phillips curve are replicated almost exactly. As for the empirical
example, we came across a possible oversight about the degrees of freedom of the
Hausman test which might have affected the results shown in GKM.

The wide sense replication focuses on the robustness of results to different aspects:
we use different smoothing strategies (including data-driven ones), as well as a larger
sample and show the effects on the results. As for the choice of the smoothing kernel,
results seem to be sensitive mainly to the choice of finite-support versus infinite-
support kernels. While the latter provide results that are more readily interpretable,
the former are more robust to the presence of outliers, which can affect results quite
dramatically.

We find that parameter estimates are, in general, strongly robust. On the contrary,
the standard errors and the Hausman test appear to be quite sensitive to the bandwidth
parameter and to the presence of extreme shocks in the series considered, such as the
COVID-19 pandemic period. Although investigating this aspect is outside the scope
of the present paper, we believe that further work on the robustness of nonparametric
methods with respect to outliers would be very important.

In conclusion, we believe that the time-varying IV estimator put forward by GKM
is a very valuable tool that displays remarkable robustness properties under general
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conditions. However, it is advisable to carry out a comprehensive set of robustness
checks in empirical applications, since the consequences of data outliers and/or kernel
weighting choices may be far from obvious.
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Appendix A: Definitions and notation

A.1 Estimators and the Hausman test

The two estimators from GKM that we analyze in this paper are

1. The time-varying OLS estimator

β̂ t =
⎛

⎝
T∑

j=1

bH ,| j−t |x j x′
j

⎞

⎠

−1 ⎛

⎝
T∑

j=1

bH ,| j−t |x j y j

⎞

⎠ (A1)

2. The time-varying IV estimator9

β̃ t =
⎛

⎝
T∑

j=1

bH ,| j−t |ψ̂
′
j z j x

′
j

⎞

⎠

−1 ⎛

⎝
T∑

j=1

bH ,| j−t |ψ̂
′
j z j y j

⎞

⎠ (A2)

9 Denoted β̃1,t in GKM.
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where bH ,| j−t | = K
( | j−t |

H

)
is a kernel weight with bandwidth parameter H =

T h1 and ψ̂ t is used to indicate the time-varying first-stage OLS estimates of
ψ t , possibly allowing for a different kernel bandwidth L = T h2 in the first
stage regression. In GKM, another IV estimator is also analyzed, namely β̃2,t =
(∑T

j=1 bH ,| j−t |ψ̂
′
t z j x

′
j

)−1 (∑T
j=1 bH ,| j−t |ψ̂

′
t z j y j

)
, that is asymptotically equiva-

lent to β̃ t ; however, we do not consider it in our replication since the empirical
application focuses on β̃ t , which appears to be the preferred form.

Note that both estimators can be written as

β̄ t = [
W′

tX
]−1W′

ty, (A3)

where Wt and X are matrices with T rows and p columns and y is a T -dimensional
vector. While the matricesX and y simply contain the observations of the explanatory
and dependent variables, respectively, theWt matrix contains kernel-weighted entries.

For example, in the case of the time-varying OLS estimator β̂ t (eq. (11) in GKM),
the s-th row of Wt equals

[Wt ]′s = bH ,|s−t |x′
s, (A4)

or, in matrix notation (see Kapetanios et al. (2019)),

WOLS
t = DtX, (A5)

where Dt is a diagonal T × T matrix whose element [Dt ]i,i equals

[Dt ]i,i = bH ,|i−t |. (A6)

The time-varying Hausman test is given by the following quadratic form:

K 2
t

K2,t
V ′
T ,t 
̂

−1
ν̂ν̂,t VT ,t σ̂

−2
û,t

d−→ χ2
r , (A7)

where

Kt = ∑T
j=1 bH ,| j−t |; K2,t = ∑T

j=1 b
2
H ,| j−t |;


̂ν̂ν̂,t = K−1
t

∑T
j=1 bH ,| j−t |ν̂ j ν̂

′
j ; σ̂ 2

û,t = K−1
t

∑T
j=1 bH ,| j−t |û2j ;

VT ,t =
(∑T

j=1 bH ,| j−t | x̂ j x̂
′
j

)1/2 (∑T
j=1 bH ,| j−t |x j x′

j

)1/2 (
β̃ t − β̂ t

)
,

ν̂ j and û j denote the of the first- and second-stage residuals, respectively, and x̂ j are
the first-stage fitted values.
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Conversely, the “Global Hausman Test” proposed by GKM for a given time span
[T0, T1] is defined as

HT0,T1 = 1√
T1 − T0

T1∑

t=T0+1

Kt K
−1
2,t σ̂

−1
̂
−1/2
ν̂ν̂,t VT ,t ,

H = H′
T0,T1HT0,T 1

d−→ χ2
r . (A8)

A.2 Smoothingmatrix

Consider the series of the fitted values of the dependent variable ŷ = (ŷ1, . . . , ŷT )′
obtained from the model in Eq. (1). This T -dimensional vector can be expressed as

ŷ = Hhy, (A9)

where the “smoothing matrix” Hh mentioned in Sect. 4.2 is given by

Hh =

⎡

⎢
⎢
⎢
⎣

x′
1
x′
2

. . .

x′
T

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

G1
G2
...

GT

⎤

⎥
⎥
⎥
⎦

(A10)

using the same notation of Eq. (A3), with

Gt = [
W′

tX
]−1W′

t , (A11)

depending on h through WOLS
t = DtX or WI V

t = Dt X̂, with X̂ denoting the fitted
values in the “first stage” regression.

Appendix B: The behavior of the time-varying Hausman test in pres-
ence of both exogenous and endogenous covariates

In this appendix, we first provide a proof concerning the degrees of freedom of the
Hausman test discussed in Sect. 2 and then we perform a simulation exercise on an
ad hoc data generating process that includes both an exogenous and an endogenous
variable.

B.1 Proof that the degrees of freedom of the time-varying Hausman test is r

Using the notation in Sect. 2 and Appendix A, the IV estimator β̃ t can be written as
in Eq. (A3), with

WI V
t = Dt X̂ = DtZ∗�̂∗, (B12)
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where Z∗ and �̂∗ are matrices such that

Z∗ =

⎡

⎢
⎢
⎢
⎣

z′1
z′2

. . .

z′T

⎤

⎥
⎥
⎥
⎦

, �̂∗ =

⎡

⎢
⎢
⎢
⎣

�̂1

�̂2
...

�̂T

⎤

⎥
⎥
⎥
⎦

. (B13)

Now suppose that X can be split as [X1|Y] where X1 contains the exogenous
regressors (that is, those columns that are contained in the space spanned by Z) and
Y the endogenous ones, so that they have p − r and r columns, respectively. The
parameter vectors can be split accordingly as

β̄
′
t = [ᾱt |γ̄ t ]′. (B14)

Note that in this case the leftmost p−r columns ofWI V
t coincide with those ofWOLS

t ,
and are equal to DtX1.

We now prove that the vector of contrasts β̂ t − β̃ t , which is the essential ingredient
of VT ,t in Eq. (A7) (Equation (29) in GKM), can be written as a linear combination
of γ̂ t − γ̃ t , which contains r elements. Consider the OLS and IV residuals for the full
sample, based on the estimated parameter vector at time t :

ē(t) = y − Xβ̄ t = y − X1ᾱt − Yγ̄ t . (B15)

For the two estimators considered and any t , the following expression holds:

y − Yγ̄ t = X1ᾱt + ē(t). (B16)

Define the matrix

St = (
X′
1DtX1

)−1 X′
1Dt , (B17)

and premultiply Eq. (B16) by St :

St
(
y − Yγ̄ t

) = ᾱt , (B18)

since the columns of DtX1 are a subset of those of Wt , so X′
1Dt ē(t) = 0. Therefore,

for the time-varying OLS and IV estimators you get, respectively,

St
(
y − Yγ̂ t

) = α̂t (B19)

St
(
y − Yγ̃ t

) = α̃t (B20)

and thus

α̂t − α̃t = StY(γ̃ t − γ̂ t ). (B21)
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Table 2 Comparing degrees of freedom for the Hausman test. Rejection rate at t = T /2

h1 h2 T = 100 T = 200 T = 400 T = 1000

Just-Identified case

d f = 1 0.4 0.4 0.029 0.028 0.022 0.026

0.4 0.5 0.039 0.036 0.029 0.048

0.5 0.4 0.033 0.031 0.032 0.025

0.5 0.5 0.034 0.036 0.035 0.041

d f = 2 0.4 0.4 0.004 0.007 0.006 0.007

0.4 0.5 0.011 0.012 0.009 0.008

0.5 0.4 0.005 0.011 0.006 0.007

0.5 0.5 0.005 0.011 0.009 0.012

Over-Identified case

d f = 1 0.4 0.4 0.045 0.047 0.041 0.034

0.4 0.5 0.052 0.049 0.053 0.049

0.5 0.4 0.043 0.050 0.036 0.051

0.5 0.5 0.039 0.052 0.042 0.051

d f = 2 0.4 0.4 0.006 0.007 0.009 0.008

0.4 0.5 0.016 0.012 0.016 0.021

0.5 0.4 0.011 0.015 0.011 0.013

0.5 0.5 0.012 0.011 0.008 0.011

As a consequence, the p-vector of contrasts β̂ t − β̃ t can be written as

β̂ t − β̃ t =
[−StY

I

]
(
γ̂ t − γ̃ t

)
, (B22)

that is a linear combination of a vector with r elements. Therefore, for any t the

covariance matrix of
(
β̂ t − β̃ t

)
has rank r , and the claim follows.

B.2 Simulation evidence

Weperform a simulation exercise to provide finite sample behavior of the time-varying
Hausman test when some of the covariates are considered endogenous.

Our simulation design is similar to the one used in Section C, but we add an
exogenous variable, xexot to the set of regressors. This additional explanatory variable
is drawn from a Gaussian distribution and the related regression parameter follows a√
T -rescaled random walk.
Table 2 reports the rejection rate of the Hausman test under the null hypothesis of

no endogeneity for a nominal size of 5%. We consider several sample sizes T and
bandwidth parameters (h1 and h2). In the table, d f denotes the considered degrees of
freedom of the limiting χ2 distribution.
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As we can see, the percentage of rejections for the test obtained with d f = 1 is
close to the nominal size in all the scenarios we consider. As expected, the test with
d f = 2 exhibits a large underrejection rate.

Appendix C: Simulation results

GKM propose two simulation designs based on the model in Eq. (1). The first is one
is a just-identified model of the type

yt = xtβt + ut , xt = ztψt + νt , t = 1, . . . , T , (C23)

while the second one is an over-identified model

yt = xtβt + ut , xt = z1,tψ1,t + z2,tψ2,t + νt , t = 1, . . . , T , (C24)

where yt is the dependent variable, xt is an explanatory variable, and z·,t is the instru-
ment; all are drawn from a Gaussian distribution. The error terms, ut and νt , are
generated according to

ut = se1,t + (1 − s)e2,t , νt = se1,t + (1 − s)e3,t , (C25)

where s = {0, 0.2, 0.5} governs the correlation between the error terms and where e·,t
denotes an i.i.d. Gaussian sequence. Finally, the parameters βt , ψ1,t and ψ2,t follow
a

√
T -rescaled random walk.
In the following Tables 3, 4, 5, 6, 7 and 8, we report the same descriptive statistics

used in GKM for both OLS and IV estimators: (1) median deviation; (2) absolute
median deviation; (3) interdecile range, and (4) 95% coverage rate. 96 basic scenarios
are considered, stemming from the possible combinations of (a) exact identification
vs over-identification (b) degree of endogeneity of the xt explanatory variable: none,
moderate and strong (c) sample size T = 100, 200, 400, 1000 (d) bandwidth choice:
h1 = 0.4, 0.5 and h2 = 0.4, 0.5. Each table refers to a different design and includes
different scenarios concerning the sample size T and the bandwidth parameters h1
and h2. As in GKM, the number of Monte Carlo replications is set to 1000.

Indicators (1) and (2) are broadly consistent with those of GKM, apart from the
OLS endogeneity bias being slightly larger in the just-identified case. On the contrary,
the decile range is narrower in our simulation for both OLS and IV, which seems
to indicate higher efficiency than reported in GKM.10 As for indicator (4) (the 95%
coverage rate), the figures we find are closer to the nominal value for the IV estimator.

The results for the Hausman test are reported in Table 9. For the Global Hausman
Test in Table 10, we find a slightly larger rejection rate (closer to the nominal level)
under the null compared to the original results, but apart from this we are able to
replicate Table 8 in GKM almost perfectly.

10 We believe there is a little editorial issue in GKM: in Tables 1–6, rows 4–8 seem to be swapped with
rows 9–12.
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Table 3 Just-Identified Case, s = 0

h1 h2 T Median Deviation Abs. Med. Dev. Decile Range 95% Coverage
β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t

0.4 0.4 100 0.001 −0.005 0.162 0.338 1.018 1.698 0.826 0.938

0.4 200 −0.001 −0.005 0.134 0.292 1.034 1.596 0.848 0.944

0.4 400 0.002 0.001 0.114 0.255 1.021 1.520 0.863 0.949

0.4 1000 −0.000 −0.002 0.091 0.219 1.018 1.451 0.882 0.954

0.4 0.5 100 −0.006 −0.014 0.163 0.403 1.034 2.377 0.825 0.940

0.5 200 −0.002 0.001 0.136 0.343 1.032 2.114 0.847 0.944

0.5 400 −0.001 −0.009 0.112 0.298 1.039 1.976 0.868 0.949

0.5 1000 −0.001 −0.003 0.090 0.247 1.020 1.785 0.887 0.949

0.5 0.4 100 −0.003 −0.007 0.157 0.289 0.879 1.208 0.775 0.912

0.4 200 −0.003 −0.007 0.129 0.240 0.921 1.220 0.790 0.922

0.4 400 −0.000 −0.000 0.106 0.201 1.002 1.243 0.797 0.920

0.4 1000 0.000 0.003 0.083 0.168 0.949 1.152 0.803 0.918

0.5 0.5 100 −0.003 −0.006 0.158 0.321 0.877 1.415 0.778 0.924

0.5 200 0.002 0.003 0.130 0.267 0.930 1.375 0.787 0.925

0.5 400 0.001 −0.002 0.107 0.224 0.974 1.337 0.793 0.922

0.5 1000 −0.000 −0.001 0.082 0.186 0.958 1.285 0.808 0.928

Table 4 Just-Identified Case, s = 0.2

h1 h2 T Median Deviation Abs. Med. Dev. Decile Range 95% Coverage
β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t

0.4 0.4 100 0.042 0.021 0.161 0.297 1.019 1.564 0.805 0.921

0.4 200 0.043 0.011 0.134 0.259 1.027 1.503 0.833 0.930

0.4 400 0.041 0.004 0.114 0.228 1.019 1.421 0.848 0.939

0.4 1000 0.042 0.006 0.094 0.197 1.032 1.380 0.862 0.945

0.4 0.5 100 0.041 −0.009 0.162 0.349 1.028 2.089 0.808 0.920

0.5 200 0.043 −0.000 0.135 0.296 1.025 1.929 0.829 0.930

0.5 400 0.040 0.002 0.112 0.260 1.010 1.784 0.851 0.936

0.5 1000 0.042 0.005 0.092 0.215 1.017 1.614 0.862 0.938

0.5 0.4 100 0.043 0.005 0.160 0.258 0.879 1.109 0.752 0.893

0.4 200 0.041 0.015 0.130 0.216 0.924 1.155 0.767 0.903

0.4 400 0.042 0.010 0.110 0.184 0.949 1.141 0.763 0.896

0.4 1000 0.041 0.013 0.087 0.149 0.981 1.127 0.762 0.899

0.5 0.5 100 0.039 0.007 0.157 0.289 0.877 1.342 0.760 0.910

0.5 200 0.043 0.002 0.129 0.237 0.923 1.282 0.772 0.909

0.5 400 0.042 0.005 0.109 0.201 0.967 1.286 0.760 0.901

0.5 1000 0.042 0.004 0.087 0.165 0.959 1.209 0.764 0.908
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Table 5 Just-Identified Case, s = 0.5

h1 h2 T Median Deviation Abs. Med. Dev. Decile Range 95% Coverage
β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t

0.4 0.4 100 0.332 0.081 0.337 0.282 1.017 1.414 0.419 0.896

0.4 200 0.330 0.070 0.332 0.243 1.039 1.413 0.346 0.904

0.4 400 0.330 0.051 0.330 0.211 1.022 1.357 0.271 0.913

0.4 1000 0.326 0.042 0.327 0.173 1.074 1.323 0.178 0.921

0.4 0.5 100 0.335 0.056 0.341 0.330 0.987 1.976 0.416 0.901

0.5 200 0.327 0.046 0.329 0.270 1.028 1.761 0.349 0.906

0.5 400 0.330 0.032 0.330 0.231 1.042 1.646 0.267 0.916

0.5 1000 0.330 0.023 0.330 0.189 1.052 1.508 0.176 0.923

0.5 0.4 100 0.321 0.078 0.329 0.248 0.869 1.067 0.359 0.861

0.4 200 0.329 0.066 0.332 0.211 0.948 1.110 0.263 0.866

0.4 400 0.334 0.061 0.335 0.180 0.968 1.116 0.175 0.865

0.4 1000 0.326 0.044 0.327 0.140 1.011 1.103 0.109 0.863

0.5 0.5 100 0.329 0.060 0.336 0.271 0.857 1.194 0.355 0.879

0.5 200 0.331 0.044 0.333 0.227 0.955 1.255 0.255 0.884

0.5 400 0.327 0.034 0.328 0.188 0.991 1.210 0.183 0.878

0.5 1000 0.330 0.023 0.330 0.144 1.017 1.165 0.103 0.878

Table 6 Over-Identified Case, s = 0

h1 h2 T Median Deviation Abs. Med. Dev. Decile Range 95% Coverage
β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t

0.4 0.4 100 0.003 0.003 0.149 0.219 1.001 1.204 0.801 0.889

0.4 200 −0.002 −0.002 0.126 0.189 1.025 1.209 0.829 0.909

0.4 400 −0.002 −0.004 0.105 0.167 1.023 1.178 0.853 0.919

0.4 1000 0.001 −0.000 0.083 0.135 1.028 1.164 0.872 0.925

0.4 0.5 100 −0.005 −0.005 0.151 0.236 0.993 1.332 0.805 0.896

0.5 200 −0.001 −0.001 0.125 0.202 1.013 1.270 0.829 0.908

0.5 400 −0.002 −0.005 0.104 0.179 1.039 1.293 0.857 0.921

0.5 1000 −0.001 −0.002 0.084 0.145 1.011 1.200 0.869 0.920

0.5 0.4 100 0.000 0.002 0.148 0.201 0.839 0.951 0.754 0.869

0.4 200 0.002 0.004 0.122 0.169 0.903 1.009 0.761 0.868

0.4 400 0.001 0.000 0.101 0.143 0.954 1.035 0.765 0.867

0.4 1000 −0.000 −0.001 0.079 0.112 0.974 1.038 0.775 0.874

0.5 0.5 100 0.004 0.002 0.150 0.216 0.852 1.011 0.749 0.868

0.5 200 −0.001 0.000 0.122 0.179 0.935 1.072 0.759 0.874

0.5 400 0.003 0.000 0.102 0.150 0.958 1.073 0.765 0.877

0.5 1000 −0.001 −0.001 0.079 0.117 0.970 1.044 0.772 0.879
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Table 7 Over-Identified Case, s = 0.2

h1 h2 T Median Deviation Abs. Med. Dev. Decile Range 95% Coverage
β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t

0.4 0.4 100 0.030 0.012 0.148 0.194 1.015 1.156 0.782 0.876

0.4 200 0.034 0.011 0.121 0.167 1.009 1.145 0.812 0.891

0.4 400 0.030 0.004 0.101 0.143 1.016 1.130 0.829 0.898

0.4 1000 0.032 0.005 0.082 0.117 1.003 1.096 0.848 0.910

0.4 0.5 100 0.029 0.005 0.144 0.212 0.978 1.236 0.791 0.879

0.5 200 0.030 0.007 0.122 0.179 0.997 1.226 0.811 0.891

0.5 400 0.032 0.004 0.101 0.153 0.996 1.190 0.831 0.900

0.5 1000 0.033 0.004 0.082 0.124 1.029 1.180 0.849 0.908

0.5 0.4 100 0.033 0.013 0.148 0.187 0.835 0.921 0.723 0.833

0.4 200 0.029 0.001 0.120 0.154 0.914 0.985 0.739 0.846

0.4 400 0.032 0.008 0.102 0.128 0.949 0.990 0.729 0.836

0.4 1000 0.032 0.004 0.081 0.104 0.970 1.013 0.728 0.839

0.5 0.5 100 0.030 0.001 0.147 0.194 0.866 0.982 0.724 0.843

0.5 200 0.035 0.012 0.123 0.162 0.915 1.018 0.730 0.847

0.5 400 0.032 0.006 0.102 0.136 0.958 1.035 0.731 0.844

0.5 1000 0.032 0.005 0.080 0.105 0.972 1.029 0.727 0.841

Table 8 Over-Identified Case, s = 0.5

h1 h2 T Median Deviation Abs. Med. Dev. Decile Range 95% Coverage
β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t β̂t β̃1,t

0.4 0.4 100 0.231 0.061 0.244 0.188 0.996 1.101 0.513 0.834

0.4 200 0.240 0.049 0.247 0.160 1.043 1.139 0.440 0.852

0.4 400 0.237 0.039 0.239 0.136 1.045 1.105 0.381 0.868

0.4 1000 0.237 0.029 0.238 0.109 1.052 1.107 0.282 0.883

0.4 0.5 100 0.237 0.045 0.250 0.198 0.984 1.156 0.506 0.845

0.5 200 0.236 0.030 0.242 0.166 1.026 1.184 0.445 0.856

0.5 400 0.241 0.020 0.243 0.138 1.030 1.153 0.373 0.877

0.5 1000 0.240 0.014 0.241 0.112 1.035 1.125 0.278 0.888

0.5 0.4 100 0.232 0.063 0.249 0.184 0.904 0.940 0.443 0.793

0.4 200 0.233 0.048 0.241 0.150 0.919 0.950 0.361 0.790

0.4 400 0.241 0.044 0.244 0.126 0.979 0.998 0.275 0.794

0.4 1000 0.239 0.031 0.241 0.100 0.986 0.995 0.186 0.792

0.5 0.5 100 0.230 0.047 0.246 0.185 0.863 0.917 0.446 0.803

0.5 200 0.231 0.030 0.238 0.152 0.916 0.959 0.368 0.801

0.5 400 0.237 0.022 0.241 0.128 0.969 0.997 0.282 0.805

0.5 1000 0.240 0.017 0.241 0.099 0.998 0.999 0.183 0.807
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Table 9 Table 7, Hausman test
rejection rate at t = T /2

s h1 h2 T = 100 T = 200 T = 400 T = 1000

0 0.4 0.4 0.013 0.024 0.015 0.019

0.4 0.5 0.017 0.011 0.027 0.028

0.5 0.4 0.020 0.023 0.033 0.027

0.5 0.5 0.015 0.017 0.028 0.022

0.2 0.4 0.4 0.022 0.020 0.022 0.024

0.4 0.5 0.021 0.023 0.031 0.029

0.5 0.4 0.033 0.034 0.042 0.048

0.5 0.5 0.026 0.027 0.041 0.056

0.5 0.4 0.4 0.174 0.253 0.377 0.468

0.4 0.5 0.190 0.250 0.359 0.479

0.5 0.4 0.282 0.422 0.529 0.652

0.5 0.5 0.303 0.406 0.512 0.665

Table 10 Global Hausman test
rejection rate, T0 = 5 and
T1 = T − 5

s h1 h2 T = 100 T = 200 T = 400 T = 1000

0 0.4 0.4 0.070 0.070 0.093 0.085

0.4 0.5 0.062 0.071 0.074 0.100

0.5 0.4 0.075 0.087 0.107 0.121

0.5 0.5 0.053 0.081 0.110 0.102

0.2 0.4 0.4 0.091 0.105 0.121 0.245

0.4 0.5 0.073 0.093 0.129 0.212

0.5 0.4 0.090 0.121 0.159 0.258

0.5 0.5 0.078 0.120 0.164 0.230

0.5 0.4 0.4 0.687 0.850 0.949 0.997

0.4 0.5 0.626 0.792 0.936 0.996

0.5 0.4 0.677 0.873 0.963 0.998

0.5 0.5 0.668 0.835 0.952 0.997

Appendix D: Phillips curves: exact replication

Figure 8 reports the parameters estimates of the “traditional” Phillips curve obtained
setting h1 = h2 = 0.5.

Appendix E: Phillips curve: extended replication

Figure 9 shows estimated coefficients and confidence intervals for both OLS and IV
estimators, setting h1 = h2 = 0.5. See Sect. 4.1.
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Fig. 8 PC Replication,
h1 = h2 = 0.5. Note: see Fig. 3

Fig. 9 Traditional PC: 1959:02–2013:07, h1 = h2 = 0.5. Note: see Fig. 3

Appendix F: The Kalman-filter apparatus: a comparison

In this appendix, we provide a comparison between the time-varying OLS (TV-OLS)
estimator discussed in GKM and an estimator obtained by the Kalman-filter apparatus
(KF hereafter). To this aim, we compare TV-OLS and KF estimates on simulated data
and on the “traditional” Phillips curve proposed in Sect. 3.2.
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Fig. 10 Comparing TV-OLS and KF: simulated data. Note: results for β1,t and β2,t (above); β3,t and
β4,t (below). Each panel reports the true value of the parameter (black line), the estimates from TV-OLS
(red line) and KF (blue line) and their 95% confidence intervals (light gray and dark gray shaded areas,
respectively). TV-OLS bandwidth parameter h ≈ 0.30

In order to obtain the KF estimator, we consider, for t = 1, . . . , T , the following
state-space representation of model

yt = x′
tβ t + ut ,

β t+1 = β t + ηt , (F26)

where the states β t are the time-varying parameters, which are assumed to be inde-
pendent random walk processes11 and the rest of notation coincides with the one in
Sect. 2.

In thefirst exercise,wegenerated data according to themodel inEq. (F26),where the
ut terms are random draws from a Gaussian distribution and xk,t , with k = 2, . . . , 4,12

are generated as independent AR(1) processes with first-order autocorrelation equal to
0.95. In order to simulate time-varying coefficients with a high degree of smoothness,
the β t coefficients were generated as detrended cumulated random walk (that is, I (2))
processes. Therefore, we are using a state-space representation that is technically
misspecified, given the way we generated the β t processes. Estimation is carried out
by maximum likelihood, with a diffuse prior for the state as in Durbin and Koopman
(2012); the estimate of the β t parameters can then be recovered by smoothing the state
vector.

11 This choice is not the only one present in the literature, but it is very common among practitioners. For
a fuller description, see Harvey (1990), Section 7.7.1.
12 We denote the constant term as x1,t .
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Fig. 11 Comparing TV-OLS and KF: “traditional” Phillips curve. Note: each panel reports the true value
of the parameter (black line), the estimates from TV-OLS (red line) and KF (blue line) and their 95%
confidence intervals (light gray and dark gray shaded areas, respectively). TV-OLS bandwidth parameter
h ≈ 0.65

Figure 10 reports the simulated β t parameters and their estimates via TV-OLS
and KF. Here, for the TV-OLS we choose the automatic bandwidth selection outlined
in Sect. 4.2. KF and TV-OLS estimates appear to be generally similar with the latter
exhibiting a path slightlymore volatile then theKF one.Moreover, it must be remarked
that TV-OLS is several order of magnitudes less demanding than KF in terms of
computational complexity:KF estimates entail a fullMaximum-Likelihood estimation
routine, which could take a long CPU time to converge, if at all. TV-OLS, on the other
hand, requires no numerical optimization.

Finally, Fig. 11 shows the estimated coefficients of the “traditional” Phillips curve
in Eq. (2). The results of the KF and TV-OLS estimators are very much alike, as they
both provide evidence of very little time-variation of the parameter μt , while the time
paths of γt and αt are very similar to each other.
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Fig. 12 Excluding Covid-19: Epanechnikov kernel. Note: the two columns report IV estimates and first-
stage residuals of the endogenous variable �ut , obtained by excluding (left) the Covid-19 period and with
the full sample (right). Epanechnikov kernel function, bandwidth parameters h1 = h2 = 0.7. Shaded area
denotes 90% confidence interval

Fig. 13 Bandwidth: local effects on standard errors. Note: the two panels report estimated α̃t and 90%
confidence intervals for the model in Eq. (2), Epanechnikov kernel. The left panel is obtained with h1 =
h2 = 0.7 and right one with h1 = h2 = 0.5. Shaded area denotes 90% confidence interval

Appendix G: Additional figures

We report an alternative version of Figs. 6 and 7 where estimation is performed by
relying on the Epanechnikov kernel function rather than the Gaussian kernel (see
Figs. 12, 13).
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