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Abstract: In a seismic context, it is fundamental to deploy distributed sensor networks for Structural
Health Monitoring (SHM). Indeed, regularly gathering data from a structure/infrastructure gives
insight on the structural health status, and Artificial Intelligence (AI) technologies can help in
exploiting this information to generate early warnings useful for decision-making purposes. With
a perspective of developing a remote monitoring platform for the built environment in a seismic
context, the authors tested self-sensing concrete beams in loading tests, focusing on the measured
electrical impedance. The formed cracks were objectively assessed through a vision-based system.
Also, a comparative analysis of AI-based and statistical prediction methods, including Prophet,
ARIMA, and SARIMAX, was conducted for predicting electrical impedance. Results show that the
real part of electrical impedance is highly correlated with the applied load (Pearson’s correlation
coefficient > 0.9); hence, the piezoresistive ability of the manufactured specimens has been confirmed.
Concerning prediction methods, the superiority of the Prophet model over statistical techniques was
demonstrated (Mean Absolute Percentage Error, MAPE < 1.00%). Thus, the exploitation of electrical
impedance sensors, vision-based systems, and AI technologies can be significant to enhance SHM
and maintenance needs prediction in the built environment.

Keywords: self-sensing concrete; monitoring; electrical impedance; monitoring platform; Artificial
Intelligence; vision systems; crack detection; early warning

1. Introduction

Structural Health Monitoring (SHM) tools are fundamental to optimise the life cycle
of a structure or an infrastructure, enhancing both the quality of its performance and the
intervention costs needed for its management [1]. Many different technologies can be
applied in this context, both hardware and software ones. For example, it is possible to
mention accelerometers [2], strain sensors [3], vision systems [4], and electrical impedance
sensors [5]. Sensing technologies and data processing techniques rapidly evolve, giving
more and more opportunities for the smart monitoring of structures, which is sometimes
different from traditional sensors. Sabato et al. [6] highlighted the potentialities of non-
contact systems (e.g., thermal cameras, laser-based systems, etc.) for large structures
(requiring dedicated extra-large strain sensors—e.g., Sun et al. [7] proposed wide-range
Fiber Bragg Grating sensors, which proved to be linear and stable), ensuring high spatial
resolution as well as effectiveness in cost and ease of use. Also, vibration-based methods
are flexible enough to be scaled to different application fields [8]. Sadhu et al. reviewed
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SHM techniques based on Building Information Modelling (BIM) and virtual reality [9],
underlining the relevance of the acquired big data and the necessity of appropriate data
management systems to deal with them. However, electrical impedance sensors play a
pivotal role since they are frequently combined with self-sensing materials [10]: conductive
additions are inserted in the mix design to enhance the electrical conductivity of the material.
In this way, the passage of electric current is eased and the utilization of sensors measuring
electrical impedance or conductivity is supported. Different types of electrical sensors
can be applied, but the use of a 4-wire configuration and of alternating current (AC) is
fundamental to avoid the polarization of the electrode–material interface and of the material
itself, respectively [11,12]. Moreover, different types of sensors exist, such as embedded or
surface electrodes; however, for continuous monitoring, the latter surely provides a more
robust and accurate system with respect to the former [13] (whose contact with the material
is difficult to maintain for long times). In a seismic context the application of self-sensing
materials and related electrical impedance sensors can be particularly beneficial since it
enables the structure to perceive external loads, hence supporting early warning generation
and easing prompt interventions.

Owing to the significant progress in SHM tools, integrating different sensors providing
an insight on the health of buildings has become commonplace in contemporary construc-
tion. Monitoring systems undoubtedly outperform inspection strategies [5] since they
provide regular data in a continuous manner and usually are automated. This avoids the
presence of operators, which could be unpractical and also dangerous in certain scenarios
(e.g., after an earthquake) [14,15]. Moreover, distributed sensor networks can provide
data on multiple points of a structure, depicting the global scene in a more accurate and
complete manner while also distinguishing among different parts of the same building,
for example.

In a seismic context, monitoring the structural health status of a structure/infrastructure,
especially a critical one, is pivotal [16]. Early warnings alerting stakeholders of eventual
abnormalities can support timely and efficient interventions as well as the design of a
priority map of actions to be undertaken during emergencies [17]. When an issue is
evidenced by data from monitoring, further inspections can be put in place. The evaluation
of cracks plays an important role; traditional measurement methods include steel ruler,
magnified graticule, plastic tell-tale, glass tell-tale, brass screw, calliper, and displacement
transducers [18–20]. Alternative methods have been recently investigated, like capacitive
dense sensor array and vision system-based methods for detection, quantification, and
localization of the defect [21–23]. They are advantageous since they can be used as semi-
automatic systems for a quick evaluation of the fissure defects in construction products,
hence increasing efficiency in inspection operations.

In this context, tools supported by Artificial Intelligence (AI) and Internet of Things
(IoT) technologies enable action in near real-time, while also providing data remotely and
alerting the interested parties to support decision making with accurate objective data [24].
To this aim, evaluating the measurement uncertainty of the employed sensors is fundamen-
tal. Indeed, AI algorithms have also recently been widely employed both for classification
and regression purposes in the construction sector, leading to the ability to process vast
amounts of sensor data swiftly and accurately, providing real-time insights into a building
performance based on regression, and then anticipating any anomalies using classification
techniques. Many studies demonstrate the potential of machine learning (ML) and deep
learning (DL) models to predict the fragility and vulnerability of structures. They can learn
complex patterns and relationships from input data, making increasingly accurate and
reliable forecasts. Galdelli et al. [25] addressed the critical issue of predictive maintenance
on infrastructures, particularly focusing on high-risk structures such as bridges, dams,
and tunnels, by introducing a novel concept that employs a remote machine vision and
sensor-based inspection system designed for predictive maintenance of infrastructures.
Such approaches involve integrating advanced robotic technologies with computational
systems remotely to make decisions on infrastructure health. Numerous sensors in these
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systems generate other data that can be useful in the additional attributes of the buildings.
Statistical methods such as ARIMA (Autoregressive Integrated Moving Average) have
been proven effective in monitoring built environments since the development stage and
successfully demonstrate capabilities as early warning systems [26]. Further, a compar-
ative study for the specific application of resilience testing of steel structure bridge data
indicated that SARIMAX (Seasonal Autoregressive Integrated Moving Average with exoge-
nous factors) is a perfect model for evaluating time series data and performing anomaly
detection simultaneously [27]. Even if these statistical approaches are accurate, they are
often complex in implementation and offer little flexibility, especially when it comes to
incorporating exogenous variables. Indeed, a compromise between model complexity,
performance, and features should always be sought. Recently, newer approaches have
emerged across various forecasting applications, such as ML and DL [27], overcoming
complex implementation limitations while maintaining comparable performance. In the
context of ML approaches, Dipietrangelo et al. [28] focused on the application of ML to
SHM with a specific emphasis on detecting impacts on an aluminium plate; they used
polynomial regression and a shallow neural network. The study involved comparing the
models for impact detection in SHM; it was observed that the shallow neural network
performed better between the applied ML models; however, optimization is still ongoing.
Notably, Prophet is an open-source forecasting approach developed by Facebook and has
showcased promising results in many time series prediction studies [29].

A great potential can be seen also in the context of exploiting data from SHM tech-
niques to assess any structural faults in the built environment. There is a need for further
exploration of the monitoring capabilities of ML and statistical models in scenarios involv-
ing cracking phenomena and the associated forces to comprehensively assess these models’
efficacy in damage prediction.

The aim of this paper is to present a measurement procedure involving self-sensing
materials, hardware sensors, and AI-based software to be integrated in a monitoring
platform specifically developed for SHM in a seismic context. This contributes to the field
of structural engineering and seismic safety by exploiting self-sensing materials, effective
and accurate sensors, and advanced processing techniques to exploit monitoring data for
early warning purposes, making structures more resilient towards natural hazards like
earthquakes. In particular, loading tests were designed and performed to evaluate the
piezoresistive behaviour of scaled concrete beams with self-sensing capabilities; both force
and electrical impedance signals were acquired, and the caused damages were objectively
quantified through an approach based on a vision system to recognise defects on concrete
surfaces according to Steger’s theory [30]. Moreover, the authors evaluated the performance
of different AI models in damage prediction (useful for early warning purposes), looking for
a compromise between complexity and performance. Thus, the evaluation encompassed
considerations on model complexity and effectiveness to determine the most suitable
approach for the specific application in enhancing damage prediction accuracy.

This research activity was performed within the national project reCITY (“Resilient
City—Everyday Revolution”–PON R&I 2014–2020 e FSC “Avviso per la presentazione di
Ricerca Industriale e Sviluppo Sperimentale nelle 12 aree di Specializzazione individuate
dal PNR 2015–2020”, identification code ARS01_00592) [31]. The objective of the project is to
realize a holistic system, considering social, economic, and technological aspects, aimed at
enhancing the resilience of a community in emergency situations. In particular, the authors
are involved in the development of a monitoring system based on innovative materials
and related sensors to enhance the resilience of critical structures and infrastructures in a
seismic context.

The remainder of this paper is organised as follows: materials and methods of the
study are described in Section 2; results are outlined and discussed in Section 3. Finally, the
authors provide their final remarks in Section 4.
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2. Materials and Methods

A total of 6 scaled concrete beams were manufactured with a limestone Portland
cement CEM II/A-LL 42.5R as binder at a water/cement ratio of 0.50; half of them (labelled
as D, E, and F) were dedicated to the measurement of the fracture load, the others (labelled
as A, B, and C) were kept for this study. Coarse gravel (10–15 mm), intermediate gravel
(5–10 mm), and calcareous sand (0–8 mm) were used as aggregates. Two conductive
additions were employed to lend concrete the self-sensing capability, namely 6 mm long
recycled carbon fibres (RCF) supplied by Procotex Belgium SA and biochar filler (BCH)
provided by RES Italia. The former were used at 0.05 vol% and the latter at 0.5 vol% on
the total mix. The mix design is reported in Table 1. The casting procedure was performed
with a concrete mixer; first, the sand and gravels (both intermediate and coarse types) were
stirred then cement was added and mixed together. Hence, first BCH and then RCF were
included and dispersed. Finally, water was added, and further mixing was carried out. The
fresh mixture was poured into prismatic moulds (10 cm × 10 cm × 50 cm).

Table 1. Mix design of concrete specimens.

Cement
[kg/m3]

Water
[kg/m3]

Air
[%] Sand [kg/m3]

Intermediate
Gravel [kg/m3]

Coarse Gravel
[kg/m3] RCF [kg/m3] BCH [kg/m3]

470.0 235.0 2.5 795.0 321.0 476.0 0.9 10.0

The two conductive additions used in this work were chosen and dosed based on the
results of a previous study (performed within the European H2020 EnDurCrete project, GA
n. 760639 [32]). This study led to the patent n. 102020000022024 “Eco-compatible and self-
sensing mortar and concrete compositions for manufacturing reinforced and non-reinforced
constructive elements, related construction element and methods for the realization of self-
monitorable building structures” [33]. Indeed, this combination of conductive additions
was also tested within the reCITY project and turned out to be the optimal one to enhance
the self-sensing properties of cement-based specimens. The proposed solution can be
considered both cost-effective (given their low dosages and since RCF are recycled materials
and biochar is a by-product) and efficient in terms of self-sensing ability; moreover, they
are in line with the objectives of sustainability and circular economy.

The concrete specimens were cured in environmental conditions (i.e., a temperature of
20 ± 1 ◦C and relative humidity of 50 ± 5%); during this period, the electrical impedance of
the material was measured at 1, 8, 14, 21, and 28 days. The measurements were performed
through the sensors embedded in the casting procedure (Figure 1). Moreover, the flexural
strength (Rf) was assessed after 28 days of curing to determine their fracture load and set
up the loading tests.
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kN. In particular, the scaled beam was positioned on two pins (inter-distance: 30 cm) and 
the load was applied on the specimen midline. The loading velocity was equal to 0.1 
mm/min. Three different load levels were considered: namely, 90% of fracture load (t1), 
fracture load (t2), and load causing a crack aperture of approximately 1 mm (t3). The ap-
plied force was measured with a load cell embedded in the mechanical press; during the 
load application, electrical impedance measurements were also carried out. The experi-
mental test setup is reported in Figure 2. 
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loading tests. The external electrodes (i.e., working and counter electrodes) are used to 
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and current provides the electrical impedance, from which the electrical resistivity can be 
derived (taking into account the cell constant correction factor, which, however, is quite 

Figure 1. Concrete specimen sensorized for electrical impedance measurement and related acquisition
board: (a) scheme and pictures of (b) bottom and (c) top views.

2.1. Loading Tests

After the curing period, the specimens were subjected to flexural loading tests, using a
mechanical press (Zwick Roell, Ulm, Germany) with a maximum applicable load of 600 kN.
In particular, the scaled beam was positioned on two pins (inter-distance: 30 cm) and the
load was applied on the specimen midline. The loading velocity was equal to 0.1 mm/min.
Three different load levels were considered: namely, 90% of fracture load (t1), fracture load
(t2), and load causing a crack aperture of approximately 1 mm (t3). The applied force was
measured with a load cell embedded in the mechanical press; during the load application,
electrical impedance measurements were also carried out. The experimental test setup is
reported in Figure 2.
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Figure 2. Experimental test setup of loading tests.

2.2. Electrical Impedance Measurements

As in the measurements during the curing period, electrical impedance was assessed
according to the 4-wire Wenner’s method in alternating current in order to avoid the
polarization both at the electrode–material interface and of the material itself, respectively;
a single frequency equal to 10 kHz was used for the acquisitions during both curing and
loading tests. The external electrodes (i.e., working and counter electrodes) are used to
inject the excitation current, whereas the corresponding voltage is measured between the
two internal electrodes (i.e., sensing and reference electrodes). The ratio between voltage
and current provides the electrical impedance, from which the electrical resistivity can be
derived (taking into account the cell constant correction factor, which, however, is quite
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impractical to be used for in-field applications). It is worth noting that this parameter refers
to a limited volume of the material, which corresponds to a hemisphere whose radius is
equal to the electrode spacing. The measurements of electrical impedance were performed
with a low-cost system based on the AD5940 chip (Analog Devices, Wilmington, MA, USA)
embedded in the EVAL-AD5940BIOZ board, which is particularly suitable for distributed
sensor networks. The test settings were defined and validated in a previous research
activity performed by some of the authors [5].

The acquired data were stored in a local database and made available in the FIWARE
platform [34] thanks to IoT capabilities of the system. FIWARE is a robust and open-
source platform designed to facilitate the development of scalable and interoperable smart
applications, making it particularly apt for handling diverse data streams associated with
different forecasting models. It provides a standardized set of APIs and components for
building smart applications by offering real-time data processing pipelines and a range
of reusable enablers. While the collected data were initially processed offline during
the model development phase, leveraging FIWARE allowed the realization of real-time
IoT data collection for subsequent iterations. This shift to real-time data processing was
crucial for accurately optimizing and benchmarking the forecasting models regarding
efficiency and reliability. Then, the approach can be easily extended [35] thanks to its
dynamicity and responsivity towards data inputs, enhancing the adaptability of the models
to changing conditions as if they were collected in real-time. The current pilot study focuses
on developing forecasting models and implementing a real-time forecasting pipeline; the
development of a warning system is outside the scope of the ongoing investigation. This
delineation allows for a focused exploration of the model effectiveness before expanding
the scope to incorporate real-time forecasting functionalities in future stages of the project.

The electrical impedance signals were evaluated in relation to the external load applied
to the specimen; to this aim, the force data measured by the load cell were considered. The
measurement correlation and sensitivity with respect to the applied force was evaluated
in the different test times. It is worth noting that the part of the signal corresponding to
the crack formation was excluded from these analyses since there is a high peak forming
due to the interruption of the electrical current path, and this clearly differentiates from the
applied force signal.

2.3. Crack Assessment

In order to have an objective assessment and metrological characterization of the cracks
caused by the load tests, concrete fissures were analysed with a vision system consisting
of a monochromatic high resolution industrial camera for 2D visible image acquisition
(Basler ace uMED, Basler Inc., Ahrensburg, Germany) and a depth sensor (Intel RealSense
D435i, Intel, Santa Clara, CA, USA) for depth signal acquisition (i.e., coordinates between
the surface of interest and the employed sensor) (Figure 3). In the field of measurements
based on vision systems, several limitations must be considered to ensure accuracy and
reliability. The resolution of the camera plays a crucial role: a higher resolution offers more
details but requires more power and processing time. Conversely, a lower resolution may
fail to capture the finest details. Ambient lighting conditions significantly affect the quality
of the captured image; inconsistent or inadequate lighting can cause poor contrast and
shading, leading to inaccuracies. These factors define the boundaries within which vision
systems operate and emphasise the need for careful calibration and environmental control.
To prevent these issues, the Basler camera has been chosen for its high resolution and ability
to capture details, especially for photos taken closely.

The measurement of the crack aperture was performed using an AI model trained
on a real concrete dataset, able to segment the material failure, hence localizing the defect
in combination with an algorithm based on Steger’s theory [36] for the detection and
measurement of curvilinear structures. To better identify the defects, it is necessary to
train the neural network with a consistent dataset of real-life images; hence, a dataset was
created with real images of cracks in concrete gathered both from websites and in-field.
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The neural network used for segmentation and defect identification is UNet [36]. It is
worthy to underline that the proposed approach allows the identification of a crack on the
picture of the cement-based element, to precisely locate it with sub-pixel resolution, and
to assess its aperture width [36]. The visible images were employed for the detection and
quantification of the crack aperture, utilizing the image reference system expressed in pixels.
Subsequently, the acquired depth values, when integrated with the camera parameters,
enabled the conversion to the real-world reference system from pixels to millimetres.
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It is worthy to underline that the experimental measurement of the concrete fissure
opening was performed after the loading tests and, in particular, after the external load
was removed from the specimen surface. This means that a partial closure of the crack
happened between the loading test and the crack characterization procedure with the
vision systems. The proposed approach can be put in place when the results from the
continuous monitoring system evidence some potential issues in the structure and maybe
some interventions are needed in the near future.

2.4. The Monitoring System and the AI Algorithms

The monitoring system and the AI algorithms employed in this study leverage a
cloud-based pipeline to collect and store time series data retrieved from different concrete
specimens. The study objectives entail a thorough investigation to ascertain the most suit-
able approach for damage prediction, comparing forecasting capabilities between statistical
models and AI techniques. Statistical models operate based on predefined patterns, offering
reliability in forecasting; in contrast, ML approaches are proficient in handling intricate
patterns within large-scale datasets. Therefore, guided by the literature, two prominent
statistical methodologies, i.e., ARIMA and SARIMAX, were utilized alongside the ML ap-
proach using Prophet as part of a comprehensive analysis. ARIMA and SARIMAX operate
based on predefined data assumptions, providing interpretability, while Prophet excels in
handling intricate patterns in large-scale datasets. However, the latter demands greater
computational resources and may lack interpretability. The comparison addresses key
aspects such as scalability, interpretability, robustness, and adaptability, offering valuable
insights for future research endeavours. The real part of electrical impedance was acquired
with a sampling time of 0.1 s, serving as input for developing and retraining statistical and
ML models (Figure 4). The corresponding values of force were additionally imported. The
models and the underlying working regression mechanism is now described in detail.
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The ARIMA model, a widely employed time series forecasting method, combines
autoregressive (AR) and moving average (MA) components with differencing to address
non-stationary time series data and is effective in capturing linear trends and seasonality in
time series data. The model hyperparameters (p, d, and q) play a crucial role in forecasting
future values based on historical data. The model represented as ARIMA(p, d, q) utilizes
three terms (p, q, and d) to forecast future values based on historical data, as expressed
in Equations (1) and (2), where p, q, and d values represent the hyperparameters for the
ARIMA model imported from the statsmodels library in Python (v. 3.10.3).

Yt = c + ϵt + ∑p
i=1 φiXt−i + ∑q

i=1 θiϵt−i + δt (1)

ARIMA(p, d, q) = AR(p) + I(d) + MA(q) (2)

where

- p is the autoregressive term; it represents the relationship between an observation
and past observations at multiple lag values, with higher values indicating a robust
autocorrelation at various lags;

- d is the differencing term; it signifies the relationship between the current observation
and past value at multiple lag values;

- q is the moving average term; it represents the connection between an observation
and a residual error from a moving average model applied to lagged observations;

- θ and ϕ are coefficients associated with the AR and MA components, respectively;
- ϵt is the error term.

A higher value of hyperparameters implies a model relying on more past observations
for predicting the current value. Since ARIMA cannot incorporate seasonal effects, a newer
model expands this with the additional seasonal component to it.

Seasonal ARIMA (SARIMA) with external variables, i.e., SARIMAX, is proposed
for subsequent statistical methods. The model expands upon ARIMA by incorporating
additional seasonal elements and external variables essential for handling periodic patterns
in time series data, represented by Equation (3):

ϕp(L) ϕP(Ls)∆d∆d
s ut = A(t) + θ q(L) θQ(Ls)ζt (3)

where it develops on the ARIMA by the following terms:

- ϕp(L) is the autoregressive component of order p;
- ϕp(Ls) is the seasonal autoregressive component of order p;
- ∆d is the non-seasonal differencing of order d;
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- ∆d
s is the seasonal differencing of order d;

- A(t) represents a deterministic trend, i.e., seasonality;
- θq(L) is the seasonal moving average component of order q;
- ζt is the seasonal error term;
- s is the seasonal period;
- P is the seasonal autoregressive component of order P;
- D is the seasonal differencing of order D;
- Q is the seasonal moving average component of order Q.

SARIMAX integrates seasonal autoregressive (P), seasonal differencing (D), and sea-
sonal moving average (Q) terms in conjunction with non-seasonal ARIMA components (p,
d, and q). This adds an ability to handle both seasonality and external factors. The seasonal
autoregressive term (P) captures the connection between an observation and its seasonal lag
values, considering the seasonal patterns within the dataset. Likewise, the seasonal moving
average term (Q) establishes the association between an observation and the residual error
derived from a seasonal moving average model applied to seasonal lagged observations.
Seasonal differencing (D) is applied to the seasonal observations to ensure the seasonal
stationarity of the data. By incorporating these seasonal components and non-seasonal
ARIMA elements, SARIMAX comprehensively addresses both non-seasonal and seasonal
patterns in time series data.

On the other hand, Prophet builds on the statistical approaches as an advanced
forecasting algorithm in the realm of AI. The model was imported from the prophet library
written in Python and it represents the time series as the sum of three components: (i) trend,
(ii) seasonality, and (iii) holidays, as shown in Equation (4):

y(t) = g(t) + s(t) + h(t) + ε(t) (4)

where

- g(t) is the trend function, modelling non-periodic changes; it can be logarithmic;
- s(t) is the seasonality function, relying on the Fourier series; it provides a flexible

model of periodic effects to model changes that are repeated at regular time intervals
(e.g., weekly and yearly seasonality), and it is also possible to have more than one
seasonality in the same series;

- h(t) represents holidays; it models irregular events that temporarily alter the time
series;

- ε(t) is the error term, representing changes in the time series that the model does not
capture; it is regarded as a normal distribution.

Prophet decomposes the entered time series into additive components, modelling the
trends as a piecewise linear logistic growth curve. Seasonality is captured through Fourier
series expansion. It can model abrupt patterns, which can be entered on a custom basis
through holiday effects that are not activated in this case study.

The described models, guided by the force regressor, produce forecasts. The predicted
electrical impedance values, when combined with a strategically defined acceptable thresh-
old value, enable the implementation of an alert system (i.e., an early warning system).
This system signals deviations within a specified range, enhancing the capacity for timely
response and proactive damage mitigation.

2.5. Model Training and Hyperparameter Tuning Process

The training of the models employed a dual approach involving both model selection
and tuning, guided by cross-validation. The process is illustrated in Figure 4, where the
model input consists of the real value of electrical impedance (ZRe) and force (F) as an
additive regressor. To maintain consistency in scale across features and the target variable,
a MinMax scaler normalized the input data, promoting convergence during the model
learning process. Following normalization, the data underwent training on the designated
dataset, and cross-validation was instrumental in fine-tuning hyperparameters, which were
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subsequently chosen with a focus on minimizing errors. While ARIMA and SARIMAX
models necessitate the manual implementation of cross-validation techniques, for Prophet
it is possible to leverage the built-in functions, streamlining the process and enhancing
efficiency. These refined hyperparameters played a crucial role in generating accurate and
optimized forecasts. The dataset was split into training (90%) and testing (10%) sets.

The training dataset serves as an instructional set, enabling the model to learn intricate
patterns and relationships. In addition, a cross-validation technique was implemented,
where 10% of the training data were designated as a validation set to assess the model
performance, aiding in the tuning of hyperparameters and preventing overfitting by eval-
uating model generalization. The model was trained on a predetermined initial training
set, progressively expanding its size at regular intervals during each cross-validation fold.
The size of the folds was determined by two key parameters, namely period and horizon.
The period parameter dictates the length of a seasonal cycle, while the horizon parameter
defines the duration for future predictions. Predictions were made for the defined horizon
length during each fold, and this iterative process was applied across the entire time series
spanning the training and validation set, ensuring a thorough evaluation of the model
performance across diverse data segments. The model undergoes training on an initial set
in each cross-validation fold, gradually expanding the training size every period. We use
50% of the length of the validation set as the horizon and 50% of the horizon as the period,
as per suggestions of the model documentation. Predictions are then made for the defined
horizon length, iterating as set by the period, across the validation set to obtain the most
optimal hyperparameters. This iterative process provides a robust evaluation of the model
performance across various data segments. These hyperparameters are then used to evalu-
ate the model performance and its ability to generalize on testing datasets. Post-forecasting,
the denormalization process was applied to restore the results to their original scale. This
step was essential for the meaningful interpretation and practical application of the results.
The forecast in terms was performed over 10% of the time series, and the performance was
evaluated through the following metrics:

• Mean Absolute Error (MAE), which is the absolute value of the difference between the
paired accurate and predicted data;

• Mean Absolute Percentage Error (MAPE), which is the percentage expression of MAE
obtained through the normalization of the real data;

• Root Mean Square Error (RMSE), which is the average difference between the predicted
and real data;

• Correlation, which is the strength and direction of the linear relationship between the
predicted and the actual values.

3. Results and Discussion

In this section the results related to electrical impedance measurements and crack
aperture assessment are reported, as well as those related to prediction models.

3.1. Electrical Impedance Measurements

The electrical impedance values monitored during curing are reported in Figure 5.
As expected, the trend is increasing during to the material hydration process; the inter-
specimen variability is high, and this is due to the inner nature of concrete. An example
of the effect of the filtering procedure on the electrical impedance signal is reported
in Figure 6; the noise is significantly removed, and this allows for a better evaluation
of the correlation with the force signal as well as enhanced data quality for the predic-
tion models.
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When the flexural load is applied, in a perpendicular direction with respect to the 
electrodes array, the electrical impedance increases since the inter-electrode spacing wid-
ens. This can be observed in the graph of the real part of electrical impedance (ZRe) to-
gether with the force (F) signals over the test interval (Figure 7a). At the beginning of the 
trial there is a decrease in the electrical impedance, possibly because the initial load appli-
cation compresses the sensing volume, hence easing the passage of the electrical current 
(maybe voids are collapsed). Then, the flexure of the beam element prevails and affects 
the electrode array, therefore both ZRe and F signals show a similar increasing trend. The 
overall correlation between the two signals is very good, as can be verified in Table 2. 
There is no specific trend over time and, given the very high values obtained, we can con-
sider the results comparable among test times, indicating that the real part of electrical 
impedance follows very efficiently with the applied load both on intact specimens and in 
the case of the cracking phenomena that has already happened. Hence, the piezoresistivity 
property of the material is very good. 

Observing the graphs of the correlation between the electrical impedance and the 
applied force (Figure 7b), it is possible to evidence a sensitivity decreasing at higher force 
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filtered one in black).

When the flexural load is applied, in a perpendicular direction with respect to the
electrodes array, the electrical impedance increases since the inter-electrode spacing widens.
This can be observed in the graph of the real part of electrical impedance (ZRe) together
with the force (F) signals over the test interval (Figure 7a). At the beginning of the trial
there is a decrease in the electrical impedance, possibly because the initial load application
compresses the sensing volume, hence easing the passage of the electrical current (maybe
voids are collapsed). Then, the flexure of the beam element prevails and affects the electrode
array, therefore both ZRe and F signals show a similar increasing trend. The overall
correlation between the two signals is very good, as can be verified in Table 2. There is
no specific trend over time and, given the very high values obtained, we can consider the
results comparable among test times, indicating that the real part of electrical impedance
follows very efficiently with the applied load both on intact specimens and in the case of
the cracking phenomena that has already happened. Hence, the piezoresistivity property
of the material is very good.

Observing the graphs of the correlation between the electrical impedance and the
applied force (Figure 7b), it is possible to evidence a sensitivity decreasing at higher force
values. Hence, we can infer that the degradation/cracking phenomena occurring in the
specimen somehow impacts on the method sensitivity towards the external load, probably
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because voids are forming and this hinders the passage of the electrical current. This means
that the system promptly detects the applied load, but it could be not so reactive in sensing
changes if the load is maintained for a prolonged time and increases slowly (but this is not
the case for earthquake-related loads). However, it is possible to confirm the suitability of
the method to monitor external loading and promptly identify crack formation. Indeed,
when a crack has formed, we can notice a very high peak in the electrical impedance, due
to the complete interruption of the electrical path (Figure 8).
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Table 2. Correlation coefficient between electrical impedance and force signals.

Specimen Test Time Correlation Coefficient

A
t1 0.89
t2 0.98
t3 0.99

B
t1 0.99
t2 0.97
t3 0.98

C
t1 0.99
t2 0.96
t3 0.97
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3.2. Assessment of Crack Aperture

The specimen was analyzed in terms of crack aperture considering the defects appear-
ing on the specimen sides as identified in Figure 9.
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Considering a single image, the quantified value represents the mean width of the
crack, determined along the identified curvilinear abscissa. An exemplification of a demar-
cated fissure is depicted in Figure 11.
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The result reports three distinct measurements per specimen, corresponding to the
calculated widths for each observed face, detailed in Figure 12.
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Figure 12. Crack width measurement for each side of each specimen (A, B, and C).

Defect assessment, illustrated in the previous lines, was performed using a computer
vision tool aligned with the state-of-the-art [23]. In fact, defect identification and seg-
mentation was executed using a neural network (i.e., UNet) but with a different defect
measurement method, based on Steger’s algorithm [30], with respect to the method of
Wu et al. [23]. Moreover, as performed in [23], the depth coordinates were also used. As
stated above, the accuracy of the employed method is sub-pixel.

3.3. Predictive Crack Detection AI Models Based on Electrical Impedance Data

Table 3 displays the performance metrics of the tested forecasting models, i.e., ARIMA,
SARIMAX, and Prophet, applied to predict the real part of the electrical impedance of
specimens A, B, and C at test times t2 and t3 as per the discussed methods. In fact,
at time t1, the forecasting algorithms were not employed since no cracks or fractures
had formed in the specimens due to an applied force lower than the fracture load. For
specimen A at t2, Prophet outperforms ARIMA and SARIMAX with lower MAE, RMSE,
and MAPE, as well as a higher correlation. This trend continues for t3. Similarly, for
specimens B and C, Prophet consistently exhibits superior performance compared to
ARIMA and SARIMAX across the evaluated metrics and test times. Notably, at t3, ARIMA
and SARIMAX show a substantial decline in performance for specimen A, with negative
correlations indicating poor predictive accuracy. In contrast, Prophet maintains reliable
predictions across all scenarios.

Table 3. Standard quantitative evaluation metrics for forecasting model comparison.

Specimen

A B C

Test
Time Approach MAE

(Ω)
RMSE

(Ω)
MAPE

(%)
Correlation

(%)
MAE
(Ω)

RMSE
(Ω)

MAPE
(%)

Correlation
(%)

MAE
(Ω)

RMSE
(Ω)

MAPE
(%)

Correlation
(%)

t2

ARIMA 1.19 1.41 0.34 98.50 1.47 1.61 0.42 99.35 1.21 1.33 0.23 98.93

SARIMAX 0.75 0.84 0.21 97.79 0.25 0.32 0.07 99.35 1.46 1.61 0.27 98.90

Prophet 0.51 0.54 0.15 98.91 0.21 0.28 0.06 99.56 0.64 0.69 0.12 98.69

t3

ARIMA 1.06 1.13 0.26 96.48 0.66 0.76 0.17 83.89 35.34 99.04 2.38 −5.31

SARIMAX 1.47 1.91 0.36 −96.48 0.92 1.20 0.24 84.03 43.56 103.80 3.00 −9.32

Prophet 0.34 0.40 0.09 96.84 0.23 0.51 0.06 83.87 11.65 12.33 0.93 5.04

Looking at each scenario independently, at test time t2 for specimen A the ARIMA
model produces an MAE of 1.19 Ω and an RMSE of 1.41 Ω. The MAPE is low (0.34%),
reflecting a small percentage of prediction error. The correlation is high (98.50%), indicating
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a strong linear relationship between predicted and observed values. In comparison, the
SARIMAX model for specimen A at t2 outperforms ARIMA with lower MAE (0.75 Ω),
RMSE (0.84 Ω), and MAPE (0.21%), along with a high correlation (97.79%), slightly lesser
than ARIMA. The Prophet model excels further, achieving the lowest MAE (0.51 Ω), RMSE
(0.54 Ω), and MAPE (0.15%) among the models, along with a high correlation (98.91%). This
suggests that Prophet provides more accurate and precise predictions for specimen A at test
time t2 compared to ARIMA and SARIMAX. Moving to test time t3, the ARIMA model for
specimen A exhibits higher MAE (1.06 Ω), RMSE (1.13 Ω), and MAPE (0.26%) compared to
t2, and the correlation drops to 96.48%, indicating a decrease in predictive performance.
The SARIMAX model also shows a decline in performance at t3 with higher MAE (1.47 Ω),
RMSE (1.91 Ω), and MAPE (0.36%), along with a negative correlation (−96.48%), suggesting
a reversal in the predicted and observed trends. In contrast, the Prophet model maintains
its accuracy at t3 for specimen A, demonstrating the lowest MAE (0.34 Ω), RMSE (0.40 Ω),
and MAPE (0.09%), along with a high correlation (96.84%).

For specimen B, at test time t2 the ARIMA model yields predictions with an MAE of
1.47 Ω, an RMSE of 1.61 Ω, an MAPE of 0.42%, and a high correlation of 99.35%. In compar-
ison, the SARIMAX model demonstrates improved performance with lower MAE (0.25 Ω),
RMSE (0.32 Ω), and MAPE (0.07%), coupled with a high correlation (99.35%). The Prophet
model excels further, achieving the lowest MAE (0.21 Ω), RMSE (0.28 Ω), and MAPE
(0.06%) among the models while maintaining a high correlation (99.56%). This indicates
that both SARIMAX and Prophet outperform ARIMA for specimen B at test time t2, with
Prophet showing the most accurate and precise predictions with a slight compromise on
correlation. Moving to test time t3, the ARIMA model for specimen B exhibits higher MAE
(0.66 Ω), RMSE (0.76 Ω), and MAPE (0.17%) compared to t2, and the correlation drops to
83.89%. The SARIMAX model also shows a decline in performance at t3, with higher MAE
(0.92 Ω), RMSE (1.21 Ω), and MAPE (0.24%), along with a correlation of 84.03%. In contrast,
the Prophet model maintains accuracy at t3 for specimen B, demonstrating the lowest MAE
(0.23 Ω), RMSE (0.508 Ω), and MAPE (0.06%), along with a high correlation (83.869%).

For specimen C, at test time t2 the ARIMA model achieves an MAE of 1.21 Ω, RMSE
of 1.33 Ω, a low MAPE of 0.23%, and a high correlation (98.93%). The SARIMAX model
performs similarly well, with a lower MAE (1.46 Ω), RMSE (1.61 Ω), and MAPE (0.27%),
along with a high correlation (98.90%). The Prophet model stands out, achieving the lowest
MAE (0.64 Ω), RMSE (0.70 Ω), and MAPE (0.12%) among the models, coupled with a high
correlation (98.69%). At test time t3, the ARIMA model for specimen C shows a higher
MAE (35.34 Ω), RMSE (99.04 Ω), and MAPE (2.38%) compared to t2, and the correlation
drops to −5.31%, indicating a significant decline in predictive accuracy. The SARIMAX
model also exhibits a decline in performance at t3 with a higher MAE (43.56 Ω), RMSE
(103.80 Ω), and MAPE (3.0%), along with a correlation of −9.32%. In contrast, the Prophet
model maintains accuracy at t3 for specimen C, demonstrating the lowest MAE (11.65 Ω),
RMSE (12.33 Ω), and MAPE (0.93%), along with a positive correlation of 5.038%.

The visual examination suggests that Prophet’s predictions align more closely with
the intricate dynamics of the original data, showcasing its versatility and effectiveness in
handling complex temporal patterns. Upon visually inspecting the forecasts as shown in
Figures 13–15, it becomes evident that Prophet has effectively encapsulated the essential
characteristics of the original data. The model employs a sophisticated modeling frame-
work that incorporates the Fourier series for handling seasonality and additive components
to accommodate holidays and trends. The rationale behind each prediction, therefore, is
dependent on the interplay and inherent non-linearities within these components, introduc-
ing a level of complexity that diverges from traditional statistical approaches. In contrast,
both SARIMAX and ARIMA, owing to their strongly linear nature in handling certain
test cases, tend to generate predictions in the form of straight lines, ultimately failing to
capture any underlying seasonality or intricate patterns present in the data. However,
Prophet not only demonstrates promising results in quantitative metrics, but also stands
out for its ability to capture nuanced patterns. The obtained results are aligned with the
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current state-of-the-art literature [26,27,29], confirming that AI models like Prophet exhibit
superiority over traditional machine learning models such as ARIMA and SARIMAX,
particularly in the intricate task of forecasting within complex datasets where external
variables are present. This reinforces the growing consensus on the efficacy of advanced
AI approaches in handling the intricacies of contemporary datasets for more accurate and
nuanced predictions.

Sensors 2024, 24, 572 16 of 20 
 

 

contrast, both SARIMAX and ARIMA, owing to their strongly linear nature in handling 
certain test cases, tend to generate predictions in the form of straight lines, ultimately fail-
ing to capture any underlying seasonality or intricate patterns present in the data. How-
ever, Prophet not only demonstrates promising results in quantitative metrics, but also 
stands out for its ability to capture nuanced patterns. The obtained results are aligned 
with the current state-of-the-art literature [26,27,29], confirming that AI models like 
Prophet exhibit superiority over traditional machine learning models such as ARIMA and 
SARIMAX, particularly in the intricate task of forecasting within complex datasets where 
external variables are present. This reinforces the growing consensus on the efficacy of 
advanced AI approaches in handling the intricacies of contemporary datasets for more 
accurate and nuanced predictions. 

 
(a) 

 
(b) 

Figure 13. Forecasting using different approaches for specimen A at test time (a) t2 and (b) t3. Figure 13. Forecasting using different approaches for specimen A at test time (a) t2 and (b) t3.



Sensors 2024, 24, 572 17 of 20

Sensors 2024, 24, 572 17 of 20 
 

 

 
(a) 

 
(b) 

Figure 14. Forecasting using different approaches for specimen B at test time (a) t2 and (b) t3. 

 
(a) 

Figure 14. Forecasting using different approaches for specimen B at test time (a) t2 and (b) t3.

Sensors 2024, 24, 572 17 of 20 
 

 

 
(a) 

 
(b) 

Figure 14. Forecasting using different approaches for specimen B at test time (a) t2 and (b) t3. 

 
(a) 

Figure 15. Cont.



Sensors 2024, 24, 572 18 of 20

Sensors 2024, 24, 572 18 of 20 
 

 

 
(b) 

Figure 15. Forecasting using different approaches for specimen C at test time (a) t2 and (b) t3. 

4. Conclusions 
The present work focused on the exploitation of self-sensing materials and related 

sensors for the measurement of electrical impedance for a potential distributed sensor net-
work for buildings in seismic areas. Such an approach supports the development of early 
warning systems relying on the continuous monitoring of the structure, which are capable 
of promptly highlighting adverse events, potentially mining the safety and durability of 
a certain element thanks to the employment of AI techniques. 

In particular, the results show the following: 
- Electrical impedance measurements can follow the trend of applied external loads 

(correlation > 0.9), timely evidencing the occurrence of cracking phenomena; 
- Self-sensing materials (obtained with the addition of biochar and recycled carbon fi-

bers) promote the piezoresistive ability of cement-based materials, hence making a 
structure able to perceive its own structural health condition; 

- Vision-based techniques can be seen as an effective inspection method, accurately 
quantifying damage that can be identified through monitoring techniques (e.g., elec-
trical impedance measurements); 

- AI models can significantly enhance the ability to forecast and monitor complex sys-
tems, as evidenced by the comparison in predicting the real part of electrical imped-
ance. AI-based models demonstrate superior performance in quantitative metrics 
and can capture intricate patterns. The forecasts, when combined with strategically 
defined threshold values, potentially enable the implementation of an effective early 
warning system, which is pivotal in signaling deviations in electrical impedance 
within acceptable ranges (depending on the material mix design), empowering 
timely responses and proactive measures to mitigate potential damages. 
Thus, the proposed solution can be integrated in a monitoring platform, effectively 

supporting remote decision-making processes; in particular, in seismic areas where it is 
fundamental to monitor external forces, potentially mining the structural health of a cer-
tain building. This can assist decision makers in the management of emergency situations, 
hence improving the resilience not only of the building but of the whole community facing 
the natural hazards. The proposed methodology could also be extended and scaled to 
different types of natural hazards (e.g., floods or heat island), provided that suitable sen-
sors (accurate and low-cost at the same time) are installed in the structure to be monitored 
and that proper data processing approaches are adopted to highlight the features of inter-
est for the specific application. Indeed, the challenge is to try to identify the features that 

Figure 15. Forecasting using different approaches for specimen C at test time (a) t2 and (b) t3.

4. Conclusions

The present work focused on the exploitation of self-sensing materials and related
sensors for the measurement of electrical impedance for a potential distributed sensor
network for buildings in seismic areas. Such an approach supports the development
of early warning systems relying on the continuous monitoring of the structure, which
are capable of promptly highlighting adverse events, potentially mining the safety and
durability of a certain element thanks to the employment of AI techniques.

In particular, the results show the following:

- Electrical impedance measurements can follow the trend of applied external loads
(correlation > 0.9), timely evidencing the occurrence of cracking phenomena;

- Self-sensing materials (obtained with the addition of biochar and recycled carbon
fibers) promote the piezoresistive ability of cement-based materials, hence making a
structure able to perceive its own structural health condition;

- Vision-based techniques can be seen as an effective inspection method, accurately
quantifying damage that can be identified through monitoring techniques (e.g., elec-
trical impedance measurements);

- AI models can significantly enhance the ability to forecast and monitor complex
systems, as evidenced by the comparison in predicting the real part of electrical
impedance. AI-based models demonstrate superior performance in quantitative met-
rics and can capture intricate patterns. The forecasts, when combined with strategically
defined threshold values, potentially enable the implementation of an effective early
warning system, which is pivotal in signaling deviations in electrical impedance
within acceptable ranges (depending on the material mix design), empowering timely
responses and proactive measures to mitigate potential damages.

Thus, the proposed solution can be integrated in a monitoring platform, effectively
supporting remote decision-making processes; in particular, in seismic areas where it is
fundamental to monitor external forces, potentially mining the structural health of a certain
building. This can assist decision makers in the management of emergency situations,
hence improving the resilience not only of the building but of the whole community facing
the natural hazards. The proposed methodology could also be extended and scaled to
different types of natural hazards (e.g., floods or heat island), provided that suitable sensors
(accurate and low-cost at the same time) are installed in the structure to be monitored and
that proper data processing approaches are adopted to highlight the features of interest for
the specific application. Indeed, the challenge is to try to identify the features that are better
correlated with an external variable of interest, such as the external force in seismic areas,
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presence of water during floods, or temperature in heat islands. It is worthy to note that a
stable Internet connection as well as power supply should be guaranteed for remote access
to data, especially in real-time. Moreover, with the system being wired, care is needed for
system preservation, and sporadic maintenance may be needed.
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