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A R T I C L E  I N F O   

Handling Editor: Zhifu Mi  

JEL classification: 
O13 
Q12 
D24 
Keywords: 
Farm-level data 
Granularity and aggregation 
Joint production and total factor productivity 
GHG emissions 
Crop diversity 
Dynamic spatial panel models 

A B S T R A C T   

This paper looks for empirical support to the existence of a positive nexus between economic and environmental 
performance in farming as implied by the Sustainable Intensification hypothesis. As the ecological scale at which 
this nexus actually occurs is unobservable, the paper juxtaposes its estimation at three spatial scales, the farm 
level and two regional levels. Starting with a common theoretical background, the paper estimates a dynamic 
spatial panel model on these alternative scales. Identification issues (granularity, aggregation bias and spatial 
dependence) may generate significantly discrepant estimates eventually questioning the reliability of these re-
sults. The empirical study investigates the relationship between total factor productivity, greenhouse gas 
emissions and crop diversity using a 2008–2018 panel of Italian farms. Results show that the productivity- 
environment nexus changes and may even revert its sign when passing from farm-level to aggregate data. The 
implications of these results for evidence-based policy making are discussed.   

1. Introduction 

Ensuring sustainable food production is the heart of the “Farm to 
Fork Strategy” of the European Union (EU). This strategy recognizes the 
importance of achieving greater sustainability standards while ensuring 
higher returns to farmers, by creating added value and reducing costs 
(European Commission, 2020a). Eventually, this strategy can be inten-
ded as the EU variant of the so-called Sustainable Intensification (SI) of 
agriculture, that is, the production of more food with fewer resources 
and lower emissions (Godfray et al., 2010). At the farm level, SI can be 
considered a win-win farm management strategy that assists the balance 
between environmental sustainability and resource productivity (Fir-
bank et al., 2013; Gadanakis et al., 2015; Yu and Wu, 2018). The SI 
hypothesis thus implies a positive nexus between economic (i.e, pro-
ductive) and environmental performance in agriculture (Omer et al., 
2010; Le Mouël et al., 2018). 

The present paper deals with the empirical support for this hypoth-
esis and focuses on the suitable spatial scale of analysis in this respect. 
Empirical literature on the existence and the form of this nexus is 

relatively abundant (Di Falco and Perrings, 2003; Di Falco and Chavas, 
2008; Omer et al., 2007, 2010), but it provides contrasting evidence 
(Koiry and Huang, 2023; Sidhoum et al., 2023) and, above all, it sub-
stantially disregards the issue of the appropriate scale of analysis 
informing the policy decision making. This can be surprising as a sig-
nificant part of the wide and multidisciplinary literature on the envi-
ronmental implications of farming, and on the associated policy 
measures, stresses its site specificity and, therefore, the relevance of the 
spatial scale of analysis (Leip et al., 2008; Gocht and Röder, 2014; 
Clough et al., 2020). In fact, data concerning the production decisions 
that eventually induce the productivity-environment nexus are typically 
collected at the farm scale and can only be aggregated further to 
investigate the nexus at coarser regional scales. 

The main contribution of the present paper is twofold. First, it aims 
to develop a conceptual framework deriving the productivity- 
environment nexus within a coherent farm level production decision 
making but also explicating the possible sources of discrepancy across 
the “ideal” scale of analysis and the available levels of observation. 
These sources originate from the spatial dimension of data: space 
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matters and, therefore, it must be properly considered in the empirical 
assessment of the productivity-environment nexus. In particular, three 
aspects will be highlighted: the granularity bias, the aggregation issues 
and the spatial dependence. 

Second, the paper derives a spatially explicit empirical specification 
of this theoretical framework and applies it to real data in order to assess 
if and how largely this discrepancy occurs. The lack of robustness on the 
existence of the productivity-environment nexus, in turn, may seriously 
question viability and consistency of an evidence-based policy making in 
this field. 

The empirical application concerns the productivity-environment 
nexus within a 2008–2018 panel of Italian farms. Italian agriculture is 
usually considered an interesting case study for the wide heterogeneity 
of its farming conditions also with specific reference to their environ-
mental implications (Coderoni and Esposti, 2018). At this farm scale 
identification issues due to granularity may arise. They can be either 
mitigated or exacerbated by aggregating these data a higher-level scale 
of analysis, that of 90 NUTS3 or 21 NUTS2 Italian regions over the same 
time period. 

The productivity indicator here used is the Total Factor Productivity 
(TFP). Productivity performance is universally measured as TFP growth 
(OECD, 2001a). However, traditional “Unadjusted” TFP (UTFP) mea-
sures do not account for non-marketable outputs, like environmental 
“goods” (positive externalities) and “bads” (negative externalities) 
produced by agricultural activities. Nonetheless, some of these “goods” 
or “bads” can be accurately measured by appropriate environmental 
indicators to accompany the UTFP thus allowing the investigation of 
their reciprocal interdependence. 

Among these good and bad outputs associated with agricultural ac-
tivity, here we focus on the provision of ecosystem services and the 
emission of greenhouse gases (GHG) whose reduction is a primary EU 
climate objective (European Commission, 2020b). A suitable indicator 
for the provision of ecosystem services by agricultural activities can be 
given by crop diversification at the farm level, which has shown to have 
positive effects on soil fertility, nutrient cycling, carbon sequestration, 
water regulation, pest control, and small positive effects on biodiversity 
(Tamburini et al., 2020). These two non-marketable goods express the 
two possibly competing dimensions of the environmental implications 
of farming and, therefore, of the productivity-environment nexus (Le 
Mouël et al., 2018). 

The rest of the paper is structured as follows. Section 2 overviews the 
recent literature on the productivity-environment nexus with specific 
reference to agriculture and the role of the spatial scale of analysis. The 
contribution the present paper aims to provide to this literature is 
highlighted. Section 3 develops the theoretical background and the 
consequent empirical model. Section 4 details how space, i.e. the scale of 
analysis, may interfere with this conceptual modelling, discusses the 
three aforementioned potential sources of bias and derives the dynamic 
spatial panel model that is eventually estimated. Section 5 presents the 
adopted datasets, the productivity measure, and the environmental in-
dicators. Econometric implications are also discussed. Section 6 illus-
trates the estimation results and, in particular, discusses the discrepancy 
emerging between the three scales of analysis. On the basis of this, 
Section 7 concludes by drawing some implications for policy making. 

2. Contribution to the literature in the field 

The co-existence of higher productivity and sustainability in agri-
culture represents a global policy objective (Bureau and Antón, 2022; 
Stetter et al., 2022). Pursing this objective requires an appropriate 
empirical support, that is, a reliable and regular assessment of both 
productivity and environmental progresses in farming and of their in-
dependence. Over the last decades, a growing literature has tried to deal 
with this empirical challenge by incorporating non-marketable envi-
ronmental outputs into traditional production theory to obtain an esti-
mation of the so-called Environmentally-Adjusted TFP (EATFP) (for a 

review see Scheel, 2001; Zhou et al., 2008; OECD, 2022). These adjusted 
performance measures are empirically obtained through modifications 
of standard parametric and non-parametric productivity and efficiency 
analysis techniques (Coelli et al., 2007; Sidhoum et al., 2023). 

This empirical literature can be roughly classified into three groups 
depending on how environmental performances are taken into account:1 

i) entering environmental bads/goods as additional inputs outputs and 
then adopting conventional methods of productivity measurement such 
as index number (or growth accounting) approaches, Data Envelopment 
Analysis or stochastic functions estimation (Färe et al., 1989; Reinhard 
et al., 2000); ii) the frontier eco-efficiency models, that derive 
eco-efficiency measures within the production frontier framework as the 
ratio between the economic output value and an indicator of the envi-
ronmental pressures generated by the production processes (Pic-
azo-Tadeo et al., 2014); iii) the nutrients balance-based models, that rely 
on the so-called materials balance principle establishing that the total 
amount of materials must equalize in either desirable or undesirable 
inputs and outputs (Kuosmanen and Kuosmanen, 2013). 

The present analysis can be brought back to the first group of studies, 
but it does not aim to estimate the EATFP. Though following the same 
theoretical framework, it rather aims to derive the elasticities of non- 
marketable good and bad outputs with respect to the conventional 
TFP calculation. Eventually, the present work focuses on that 
productivity-environment nexus that is required by a proper EATFP 
calculation. In this respect, the main methodological contribution of this 
study with respect to the EATFP literature consists in dealing with the 
identification issues (i.e., estimation biases) often overlooked in con-
ventional EATFP studies. They all have to do with the role of space and 
the consequent scale of analysis. 

Whether and how productivity and environmental performances 
affect each other is largely an empirical issue, mostly because this nexus 
is highly place dependent, thus it is heterogeneous across farms and farm 
typologies. It follows that the main methodological challenge in carrying 
out such an investigation concerns how to take this scale and place 
dependency properly into account. In particular, several studies have 
shown that the observed relationship between productivity and envi-
ronmental performance is largely dependent on the aggregation level of 
the data used (Baldoni et al., 2017, 2018). Moving from micro to macro 
data, sign and statistical significance of this relationship can change. 
This should not surprise as the different aggregation levels actually 
provide different information (Fuglie et al., 2016; Baldoni and Esposti, 
2021). One reason for this discrepancy is the so-called aggregation bias 
that can occur because spatial aggregation (i.e., aggregating farm-level 
data at some geographical scale) usually affects the measurements 
(Jansen and Stoorvogel, 1998; Wade et al., 2019) and thus can conceal 
different micro behaviours in both TFP and environmental performance 
calculation. 

Aggregation seems particularly problematic for environmental per-
formance indicators as they are strongly scale dependent, thus they can 
interact with productivity differently whether they are measured at the 
farm or at some aggregation level. In the case of ecosystem services, an 
example can be water quality. It is best assessed at the catchment level 
since it is the result of many farm practices. Thus, higher aggregation 
levels (i.e., NUTS 2 or NUTS3 regions) can mask substantial local vari-
ations thus diverting the attention from areas or localities where un-
sustainable and unresilient agriculture is practiced (Fuglie et al., 2016). 
Another interesting example is provided by agricultural GHG emissions. 
At the micro level, farms can be both net emitters (i.e., when emissions 
are higher than carbon sequestration in soil and biomasses) or net sinks, 
and net emitters and net sinks can locally co-exist. However, when some 
regional level is considered, the whole region can become a net emitter 

1 There have also been attempts to smartly combine some of the features of 
these different approaches. See, for instance, Pethig (2006), Murty et al. (2012), 
Murty and Russell (2022) and Sidhoum et al. (2023). 
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or sink, thus missing the co-existence of different micro-level 
performances. 

To avoid the aggregation bias, recent literature has strongly sug-
gested to focus on farm-level analysis (Kimura and Sauer, 2015; Serra 
et al., 2014; Gadanakis et al., 2015; Sheng et al., 2015; Koiry and Huang, 
2023; Sidhoum et al., 2023) as microdata allow identifying the hetero-
geneous productivity-environment nexus across farms and, conse-
quently, across space (Cui et al., 2016). However, though with less 
emphasis, recent literature in the field evokes that also the use of 
spatially explicit micro-data may raise a major issue due to the presence 
of place effects. The latter may induce a bias in the estimation of the 
productivity-environment nexus whenever data are surveyed, or, in 
general, not randomly distributed across space (Dingel and Tintelnot, 
2021; Schoefer and Ziv, 2021). Moreover, when these micro data are 
used the presence of spatial dependence cannot be ruled and, in any 
case, it occurs differently compared to the macro-level data (Baldoni and 
Esposti, 2021). 

Although all these empirical issues (see Section 4 for further details) 
attracted much attention in recent literature, the problem of the scale of 
analysis in assessing the productivity-environment nexus has never been 
explicitly put in the forefront of the investigation. This paper aims to fill 
this gap by estimating the same dynamic specification of the 
productivity-environment nexus on both micro (i.e., farm-level) and 
macro data (i.e., some geographical aggregation) thus making explicit 
the actual relevance of these biases, and the possible trade-off between 
them at different scales. 

3. The theoretical framework 

A nexus between agricultural productivity and environmental per-
formance occurs because, in farming, any production decision directly 
or indirectly induces an environmental consequence. The scale at which 
this consequence takes place is here called the Ecological Scale (ES). 
Ideally, at this scale the “real” productivity-environment nexus should 
be investigated (Chakir, 2009; Chaudhary et al., 2016; Gerber et al., 
2016). In fact, the underlying production decisions are taken, and 
possibly observed, at a different scale, what we call here the Behavioural 
Scale (BS). With a very good approximation, the farm level evidently 
corresponds with this latter scale. ES and BS do not correspond mainly 
because the ES may vary depending on the specific environmental aspect 
under consideration and on the specific local context. In most cases the 
ES is finer than the BS as it mostly coincides with the field, the crop or 
the herd level. In other cases, however, it can be coarser since it emerges 
as a combination of multiple farm choices (sometime, this is called the 
landscape scale) (Herzog et al., 2006). 

Due to this case-by-case varying scale of occurrence, the ES is not 
normally observed while at the BS observations are usually and sys-
tematically available. Nonetheless, discrepancy between these two 
levels (or scale discrepancy) may create problems in the empirical iden-
tification and estimation of this nexus. One main reason is that within 
and among farms, this nexus can show significant diversity and het-
erogeneity that the analyst can hardly control for. This heterogeneity 
may mitigate, or even vanish, whenever farms are aggregated at a higher 
level (here called the Regional Scale, RS), that has also the advantage to 
take the different farm size into account, thus giving more importance to 
units that are actually more relevant for the overall productivity- 
environment nexus. 

Since the origin of the nexus is behavioural, it remains true that the 
conceptual framework on which to ground its investigation must 
concern the farmers’ decision making. The objective here is to connect 

this theoretical modelling with the empirical investigation at the core of 
the present study. Fig. 1 diagrammatically illustrates the conceptual 
linkages occurring among the three abovementioned different scales and 
the identification issues (or biases) emerging when passing from one 
level to another. For a full understanding of Fig. 1, the reader can refer to 
Section 4 where the discrepancies and pros and cons of the different 
scales of analysis are scrutinized. 

In order to derive the decision-making theoretical framework at the 
BS (farm level), consider a panel of N production units observed over T 
periods. Represent the unit-specific production technology with the 
production set Yi, {Yi = yi ∈ RL : Fi(y)≤ 0}, where: yi = (yi1, yi2,…,

yil,…, yiL) ∈ RL indicates a generic production plan with L goods rep-
resenting either inputs or outputs. Fi(y) is the transformation function. 
Any yi such that Fi(y) = 0 lies on the boundary of the transformation 
function, and it is usually designed as transformation frontier. 

As most of the empirical literature in the field (OECD, 2001b; Brandt 
et al., 2013, 2014; Cárdenas Rodríguez et al., 2018a,b), we consider the 
transformation function an appropriate conceptual tool for the present 
analysis. Since to Fi the usual assumptions and restrictions on non-joint 
production technologies (including free disposability) do not apply, it 
seems suitable to accommodate all the possible different forms of pro-
duction jointness that can be encountered in agriculture, especially 
when dealing with a large sample of heterogenous farms. The not 
exhaustive overview of possible forms of jointness reported by OECD 
(2001b, pp. 124–131) clearly demonstrates that any more specific 
definition of the production set would exclude some of the possible 
forms of jointness possibly occurring in agriculture. Such more restric-
tive (usually parametric) specifications would be needed when the 
objective of the analysis is the identification and estimation (either 
parametric or non-parametric) of the production technology and of all 
the underlying relations across inputs and outputs (Murty, 2015). But 
the focus here is not on technology estimation, but only on deriving a 
theoretically consistent and empirically tractable 
productivity-environmental relationship. Therefore, the implicit nature 
of Fi(y) minimizes the restriction to be imposed on the relationship be-
tween inputs and outputs and makes it general and generic enough to 
admit a wide range of production jointness. 

The fact that we do not impose restrictions on the technology does 
not mean that for some of the non-market (i.e., environmental) outputs 
some technological relationships can’t be expected ex ante. This is 
evidently the case of pollution phenomena that usually depend on the 
use of some specific inputs to which they are linked by a well-defined 
materials balance, like the GHG emissions here considered. A relevant 
part of GHG emissions (the part concerning CO2 emissions) can be 
evidently linked to the use of fossil fuels and energy as production in-
puts. However, this representation wouldn’t be helpful for that other 
part of farm-level GHG emissions (e.g., the part concerning CH4 emis-
sions). In this latter case, the relevant relationship does not only concern 
inputs but rather livestock activities and the respective market outputs. 
More in general, as will be clarified in Section 5 and Appendix 3 (see 
Table A1), agricultural GHG emissions can hardly be modelled within a 
pollution-generating technology representation, that is, driven by a 
single set of pollution-generating inputs, but may rather originate from 
many different sources, in different forms, under different production 
choices and types of farming. Moreover, in principle, it would be 
possible to explicitly consider those farm-level mitigating or abatement 
technologies eventually affecting this materials-balance linkage be-
tween inputs, market and non-market outputs (Pethig, 2006; Murty 
et al., 2012).2 But the multiplicity of linkages would make the modelling 

2 We wish to thank an anonymous referee for helpful comments on this issue 
and for some suggestions on possible directions of future research in this 
respect. 
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also of these abatement technologies quite complex.3 In addition, within 
a largely heterogeneous sample, these farm-level linkages may sub-
stantially weaken and may even vanish or become unobservable when 
the analysis is performed at some aggregation level.4 

In order to preserve this generality, consider a unit-specific trans-
formation function Fi(Y,G,B,K,L,M, t), where Y indicates the aggregate 
of firm market outputs, G a desirable non-market output (that is, a 
positive externality like ecosystem services), B an undesirable non- 
market output (that is, a negative externality like GHG emissions), K 
the capital input, L the labour input, M all the remaining production 
factors and t is the usual time trend proxying the unobserved level of the 
technology. By defining At and A0 the technological level at time t and in 
the initial period, respectively, λ i the conventional unit-specific exog-
enous Hicks-neutral technological change rate, and assuming that all 
production units are technically efficient, we can write the 

transformation function as (Cárdenas Rodríguez et al., 2018a, 2018b): 

AitFi(Y,G,B,K,L,M)= 1,with Ait = A0eλit (1) 

This transformation function can be used to specify the productivity- 
environment nexus expressed by the elasticity of the market output Y 
with respect to the two non-marketed outputs G and B. By totally log- 
differentiating (1) over time (Hulten, 1992; Cárdenas Rodríguez et al., 
2018a, 2018b) and rearranging terms5, we eventually obtain the 
following relation:6 

yit − [εKit(kit − mit)+ εLit(lit − mit)+mit] = λ∗it + εGitgit + εBitbit (2)  

where: yit , kit, mit, lit , git , bit are the growth rates of Y, K, M, L, G and B, 
respectively; εX = (∂lnYi /∂lnXi) = (∂Yi /∂Xi)(Xit /Yit) are the elasticities 
of Y with respect to the various inputs; εGit and εBit are the elasticities of 
Y with respect to the two non-marketed outputs; λ∗it = − λi/θYit is the 
EATFP, that is, the productivity growth that also takes into account the 
growth of non-marketed outputs, where θYit = (∂lnFi /∂lnYi) = (∂Fi /∂Y)
(Yit /Fit) denotes the elasticity of the transformation function with 
respect to Y. 

As the two non-market outputs are costless or priceless, they are 
unintended, that is, not considered in the i-th unit maximization 
choices.7 Therefore, the difference between UTFP and EATFP in (2) does 
not rely on the different optimizing behavior of farms but on the joint 
production of the environmental outputs as implied by the underlying 
farm-specific technology Fi. According to (2), the observed UTFP growth 
can be decomposed into the two unit-specific terms on the right-hand 
side: the idiosyncratic Hicks-neutral exogenous technological change 
corrected by term θYit , λ∗it ; the relationship between market-outputs, Y, 
and the two non-market outputs (G and B), as expressed by term (+
εGitgit + εBitbit). This latter has not to be intended as a causal linkage, 
that is, as the growth of G and B having an impact on Y. This term rather 

Fig. 1. Diagrammatic conceptualization of the 
methodological and empirical issues under analysis 
Boxes represent the different possible scales of investiga-
tion and thick arrows the flow of information or data 
among them. The BS box is thicker as it represents the 
scale the theoretical model refers to. 
Grey circles express the structural linkages among vari-
ables as emerging from either theoretical modelling or 
empirical observation or estimation. The thin arrows 
indicate their expected correspondence or concordance. 
Terms along the arrows indicate the possible identifica-
tion issues and sources of estimation bias.   

3 Non-farming activities may allow a more explicit modelling of the pro-
duction jointness underlying environmental performance. The typical case is 
that of a pollution-generating technology where one (or more) pollution- 
generating input contributes to both the intended output and to the unin-
tended pollution. In such case, an abatement technology can also be admitted as 
a sort of an additional output. Murty et al. (2012) present an interesting 
approach where pollution takes the form of a by-production rather than a 
joint-production technology and it is more properly modelled as the intersec-
tion between two productions sets (or transformation functions), that is, the 
conventional intended production technology and an unintended-output sub--
technology. However, though extendible to other forms of by-production 
(Murty and Russell, 2022), this interesting approach is distant from several 
cases encountered in farming, where not only good and bad unintended outputs 
coexist, but also a unidirectional linkage between a single input and one of 
these unintended outputs is hardly detectable. Even when the bad output is 
some form of pollution, in the agricultural case this pollution may originate 
from quite diverse activities and production choices. Therefore, this 
by-production approach seems to be suitable in farming only when a very 
specific and well confined production activity and pollutant are considered. 
This is the case, for instance, of milk production and nitrogen pollution inves-
tigated by Sidhoum et al. (2023).  

4 This incongruity across the different scales can occur in both directions. For 
instance, a farm highly specialized in permanent crops can provide a net sink of 
carbon (with Land Use, Land-Use Change and Forestry, LULUCF, sequestration) 
offsetting its GHG emissions, but if these latter are summed with those of other 
farms at the NUTS3 or NUTS 2 level, this mitigation effect disappears. Similarly, 
some mitigation solutions can be captured at the landscape level but not at the 
farm level. For instance, if livestock farms are organized in networks for biogas 
recovery, the gas emission balance of a manure delivering farm takes this 
manure into account but not the respective biogas recovery. 

5 For details on the derivation, refer to Appendix 1 of the Supplementary 
Material.  

6 As clarified in Appendix 1 of the Supplementary Material, εGit and εBit 

should enter (2) with opposite signs. However, as the objective here is not to 
provide a correction of the TFP measure (the EATFP) but only to assess the 
nexus between conventional productivity and these unintended environmental 
performances, here εGit and εBit are reported with a positive sign. Eventually, 
they become conventional regression coefficients with either positive or nega-
tive sign to be established by the econometric estimation.  

7 If not the case, Cárdenas Rodríguez et al. (2018b, pp. 159–160) show that 
the UTFP would require a further adjustment in order to properly adjust the 
elasticities of market output (Y) with respect to production inputs (K, L and M). 
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expresses the production jointness between the market outputs Y (on 
which the profit maximizing behavior of the i-th unit applies) and G and 
B, that is, the generation of the positive and negative externalities 
(Cárdenas Rodríguez et al., 2018a,b; OECD, 2022). 

The abovementioned multiplicity and complexity of the relation-
ships between inputs, market outputs and non-market outputs, com-
bined with the wide cross-farm heterogeneity and the aggregation 
issues, severely questions the predictability of the sign of elasticities εGit 
and εBit of interest here, even in the case of a conventional pollution 
process like GHG emissions. In any case, even though their sign is not 
easily predictable ex ante, elasticities εGit and εBit still express the pro-
duction jointness between Y and G and B, respectively. A positive 
(negative) elasticity indicates that a greater Y level brings about a higher 
(lower) level of G or B. Therefore, a positive productivity-environment 
nexus would imply a positive elasticity for G and a negative elasticity 
for B. 

It is worth noticing that elasticities εGit and εBit can be also inter-
preted as the shadow values of G and B in terms of Y: they correspond to 
the units of Y associated to a unit increase of these environmental goods. 
From the derivation above, it follows that εGit = − MRTGYit(Git /Yit) and 
εBit = − MRTBYit(Bit /Yit), where MRT indicates the Marginal Rate of 
Transformation between market and non-market goods. More explicitly, 
if multiplied by the market price of Y (pYit), these elasticities express the 
additional cost (G) and the additional value (B) associated to the pro-
duction of Y, i.e. their shadow prices pGit = − pYitMRTGYit and pBit = −

pYitMRTBYit (Cárdenas Rodríguez et al., 2018a, p. 70). These shadow 
prices reflect the cost (benefit) incurred (received) by the farmers 
because of the externalities associated to the production of Y and, thus, 
they represent unobserved private costs or private values to be distin-
guished from social costs and social values. 

The left-hand side of (2) can be observed as it corresponds to the 
conventional UTFP, while the unknown terms on the right-hand side, λ∗it , 
εGit and εBit, can be econometrically estimated given the observed terms 
UTFP, git and bit. Therefore, the empirical strategy here adopted, does 
not concentrate on computing the EATFP given some estimated values of 
εGit and εBit, but on estimating εGit and εBit given the observed UTFP. 
Nonetheless, the econometric identification and estimation of the right- 
hand side terms of (2) requires appropriate specifications and data 
availability. First, it requires the measurement of its left-hand term, i.e., 
the UTFP. As here a farm panel dataset is used, the index numbers 
approach allows computing the UTFP without the need of recovering the 
underlying technology under a large and unknown cross-farm hetero-
geneity (Baldoni et al., 2021). The adopted methodological approach 
thus consists of two stages. In the first stage, the left-hand side (2), the 
UTFP index, is measured through index number techniques8. In the 
second stage, this UTFP is regressed on the right-hand side terms of (2) 
(Chambers, 1988: 232; O’Donnell, 2016: 328–329). 

In this second stage of the analysis all the possible determinants of 
the observed UTFP, the stochastic terms included, are made explicit. 
Time and space (i.e., cross-farm) heterogeneity within the panel, as well 
as the stochastic nature of the i-th unit productivity in the right-hand 
side of (2), can be concentrated in the idiosyncratic term as λ∗it = μ0 +

μt + μi + μit , where μ0 represents the mean level across units and over 
time; μt the t-th time specific level common to all units; μi the i-th unit 
time-invariant specific level; μit represents the i-th unit time-variant 
(possibly stochastic) specific level. To allow parameter identification, 
in this second stage it will also be assumed that εGit = εGjs = εG and εBit =

εBjs = εB,∀i, j ∈ N,∀t, s ∈ T.9 It follows that (2) is rewritten as: 

ln UTFPit = μ0 + μt + μi + μit + εGgit + εBbit (3)  

where ln UTFPit is the i-th unit t-th time Theil-Tornquist discrete-time 
approximation of the respective Divisia productivity index. 

(3) can be interpreted as a regression equation where μit is the usual 
disturbance term (see below), μ0, μt and μi constant terms, εG and εB two 
regression coefficients whose sign can be either positive or negative. 
According to what discussed above, however, for a positive 
productivity-environment nexus to occur we expect εG to be positive and 
εB negative. However, interpreting (3) as a regression equation brings 
about a major econometric implication. It concerns the required 
assumption of git and bit as exogenous regressors. In fact, since G and B 
quantities are still the consequence (though not an object) of an opti-
mizing decision making, git and bit cannot be considered exogenous re-
gressors as they depend on the left-hand side of the equation. This 
endogeneity issue must be properly considered in the estimation stage. 

Not all unit- and time-specific determinants in (3) are unobserved. To 
take this into account, Eberhardt and Helmers (2010) propose the 
following general specification to explicitly distinguish between 
observed and unobserved productivity determinants: 

ln UTFPit = μ0 + μt + μi + εGgit + εBbit + ZiΓ + XitΠ + μit (4)  

where Zi and Xit are (1xk) and (1xh) vectors of time invariant and time- 
variant observable productivity determinants, respectively, and Γ and Π 
are the correspondent (kx1) and (hx1) vectors of unknown parameters to 
be estimated. 

As Griliches and Mairesse (1995) point out, term μit is unobserved by 
the analyst but is known by the decision maker. While from the 
econometrician’s perspective it simply represents a typical stochastic 
error term, for the farmer it is an available information (expressing some 
time-variant farm characteristic or condition) that affects input use de-
cisions. Therefore, inputs are partially determined by the unobserved 
time-variable characteristics contained in μit , so the usual exogeneity 
assumptions are unlikely to hold. Following Blundell and Bond (2000), 
Baldoni and Esposti (2021) and Baldoni et al. (2021), a theoretically and 
econometrically viable solution to this endogeneity problem consists in 
specifying the dynamic stochastic process generating μit as follows: 

μit = ρμit− 1 + uit (5)  

where uit is an i.i.d. ~ N(0,σ2) error term expressing deviations from the 
idiosyncratic productivity mean due to measurement errors, unexpected 
delays or other external circumstances (Van Beveren, 2010). The 
introduction of the AR(1) term aims to capture the impact of past pro-
ductivity shocks on current input decisions, so it internalizes that pro-
ducers might react with delay to changes in productivity (Bond and 
Söderbom, 2005). 

As from (4) it follows that μit− 1 = lnUTFPit− 1 − μ0 − μi − μt− 1 −

εGgit− 1 − εBbit− 1 − ZiΓ − Xit− 1Π , by replacing in (5) and rearranging we 
obtain: 

ln UTFPit = μ0 + μt + μi + ρlnUTFPit− 1 + εGgit + εBbit + εGgit− 1

+ εBbit− 1+ZiΓ + XitΠ + Xit− 1Π + uit (6)  

where μ0 = (1 − ρ)μ0, μt = μt − ρμt− 1, μi = (1 − ρ)μi, εG = − ρεG, εB =

− ρεB, Γ = (1 − ρ)Γ, Π = − ρΠ.10 

4. The spatial issues 

Starting from the sample of N farms, a relationship like (6) can be 
also estimated by aggregating farms at some geographical level (region) 
thus obtaining a panel of M regions (with M ≪ N) observed over T pe-
riods. In any case, in both the micro (N x T) and the macro (M x T) spatial 

8 See Appendix 2 and 3 of Supplementary Material.  
9 This assumption also responds to the need of providing an univocal, thus 

relevant from a policy perspective, estimation of the parameters of interest, εG 

and εB. 

10 These restrictions on parameters, especially those associated to terms git and 
bit and to terms Xit and Xit− 1 cannot be imposed ex ante and have to be sta-
tistically tested in post estimation. 
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panels the presence of a place effect is a major but often disregarded 
issue. This place effect has two major implications in the identification 
and estimation of the productivity-environment nexus. On the one hand, 
it may generate biases whose nature and relevance substantially differ 
between the micro and the macro panel. On the other hand, it may bring 
about spatial dependence across contiguous units that also may essen-
tially differ between micro and macro-level data. 

4.1. The granularity bias 

The place effect consists in the fact that, within the adopted 
modelling approach, the i-th unit productivity performance and the 
productivity-environment nexus itself are idiosyncratic in the sense that 
they depend on the location of the unit itself. This effect of the location is 
partially stochastic and is expressed, in (6), by the term (μi + uit). The 
idiosyncratic time-invariant deterministic term (fixed effect) μi ex-
presses to what extent the place brings about a specific productivity 
performance. It captures a variety of specific environmental and socio- 
economic mechanisms and determinants that manifest themselves in 
the idiosyncratic productivity of any unit within that location. At the 
same time, stochastic terms uit are simply deviations around the true 
place effect. uit captures all the place-specific exogenous shocks in the 
productivity performance, thus deviations in the productivity- 
environment nexus, as well as unmeasured exogenous shocks (or mea-
surement errors) of terms git and bit. 

Estimating this place effect with the observed spatial units, and not at 
the unobservable ES at which it actually occurs, may generate a bias that 
we designate here as granularity bias (Schoefer and Ziv, 2021).11 In fact, 
the granularity bias is some combination of two distinct possible biases. 
To appreciate this, it is worth formulating a statistical definition of the 
true place effects for finite counts of idiosyncratically heterogeneous 
units (Schoefer and Ziv, 2021). Assume that agricultural production is 
heterogenous across a set L of locations indexed by l ∈ L. Each location 
has a count of potential Pl units, il ∈ Pl. Pl denotes the location-l infinite 
superpopulation of units, from which the finite observed population 
(census data, as in the real economy, or a possibly representative sam-
ple) is drawn. Assume that any unit in location l (il) is characterised by 
an idiosyncratic productivity (μl

it + ul
it). Also assume that any ul

it is a 
time-t draw from a potentially location-specific distribution ul

it ∼ Ξl(u)
with zero expected value, E[ul

it
⃒
⃒l] = 0,∀t ∈ T. This latent data generating 

process Ξl(u) does not describe the given finite population of observed 
units in location l but the respective unobserved superpopulation. Given 
this stochastic data generation process across space we can define 
E[μl

it +ul
it
⃒
⃒l] = μl as the true place effect, that is, the expected value of 

idiosyncratic productivity in location l within the respective super-
population. This true place effect is unobservable as it refers to the ES 
superpopulation which is itself unobservable but can be estimated from 
the observed units i ∈ Nl ∈ Pl here representing the farm level (i.e., the 
BS). 

Given the description above, if the observed units are randomly 
sampled from Pl, by averaging across units Nl we may obtain an unbiased 
and consistent estimation of the true place effect μl. However, for phe-
nomena showing high site-specificity (as, arguably, agricultural pro-
duction) the place effect is itself farm-specific, but it does not correspond 
to the farm effect as any farm can contain several place effects. In this 
case, a random sample of farms (as well as any realized population) 
cannot be fully representative over the spatial dimension. As a given 
point in the space can be obviously occupied only by one unit, if this unit 
is not drawn the respective place cannot be represented. In other words, 
any observed spatial sample or population inevitably implies spatial 
gaps and, therefore, brings about a bias in the estimation of the true 

place effect.12 

But even if these imperfections were excluded, real data still bring 
about a second possible source of estimation bias. This latter bias con-
cerns the dispersion (i.e., the variance) of the true place effect. In fact, 
the true place effect variance can be decomposed as Var

(
μl

it + ul
it
⃒
⃒l
)
=

Var
(
μl + 1/Nl∑

i∈Nl ul
it
)
= Var

(
μl)+

(
1/Nl)2∑

i∈Nl
σl( ul

it
)2, where σl(ul

it)
2 is 

the variance of the unit-specific deviations ul
it from the true place effect 

in location l.13 Therefore, with finite populations or samples within a 
location, the variance of the place averages is an upward biased estimator 
of the variance of true place effect, thus of the true location-specific 
UTFP. This bias arises under finite observed units Nl combined with 
large idiosyncratic variance σl(ul

it)
2.14 The major consequence for the 

present analysis is that also the variance of the estimated parameters in 
(6) can be itself upward biased and this may substantially jeopardize 
their statistical significance (Goldberger, 1991: 165–267). 

4.2. The aggregation bias 

One possible way to escape the granularity bias simply consists in 
eliminating granularity itself. Granularity disappears when the super-
population and the observed units, therefore the true place effects and 
the estimated place effects, correspond. This is what happens when a 
model like (6) is estimated not on the farm sample but on a regional 
sample of M units (regions), with M ≪ N. In such case, units become 
regions and place effects become region effects. In practice, unlike micro 
data, in aggregate units it is i ≡ l,∀i ∈ M,∀l ∈ L; thus M = L. Moreover, in 
macro data the observed variance of the disturbance term corresponds 
to the variance of the true place effects and the idiosyncratic dispersion 
(σl) does not occur (namely, it is σl = 0). 

Even though aggregating units to some regional level gets rid of 
granularity, aggregate spatial analyses are not exempt from statistical 
problems as they may suffer from a spatial aggregation bias. A detailed 
analysis of this bias is beyond the scope of the present paper (see 
Anselin, 2002, for an in-depth discussion). Nonetheless, two main as-
pects of this possible bias are of major interest here. First, an aggregation 
bias may occur simply because aggregating micro units to some 
geographical level always re-proportions the variables themselves 
whenever micro units show heterogenous size. In such a circumstance 
(which evidently occurs in most real-case analyses), any aggregation of 
units across space implicitly weights respective units on the base of their 
size.15 As anticipated, this kind of implicit weighting may be desirable 
for a size-dependent environmental performance (i.e., most pollution 
phenomena), while it may generate a bias for a size-independent envi-
ronmental performance (as can be the case of biodiversity protection). 

The second aspect is that the determinants of the productivity- 
environment nexus may substantially differ passing from the farm 
level to a given aggregate geographical scale, even when not particularly 
large (for instance, the landscape scale; García Cidad et al., 2003: 14; 
Herzog et al., 2006; Stetter et al., 2022). Therefore, if the micro scale 

11 In general terms, it corresponds to what is also designated, within this 
literature, as spatial sampling bias (Baldoni and Esposti, 2021). 

12 These gaps may reflect underlying economic forces like selection on entry 
and exit (within the population), as well as practical issues like the sampling 
design (within the sample) or errors or uncertainties in units’ location (Anselin, 
2001, 2002; Arbia et al., 2015).  

13 Where, by construction, Cov

(

μl, 1
Nl

∑

i∈Nl
ul

it

)

= 0.  

14 The size of the idiosyncratic variance seems particularly critical here as the 
dispersion of productivity across farms is typically quite high and this is true for 
the Farm Accountancy Data Network (FADN) sample under investigation 
(Baldoni and Esposti, 2021).  
15 For instance, if some large or dominant units (i.e., farms) are present, the 

aggregate analysis tend to mostly capture the relationship among variables 
occurring in these units. 
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presents evidence that is closer to the “true” effect to be identified (that 
of the ES), working at the macro level may produce spurious evidence as 
some farm-level determinants vanishes over spatial aggregation while 
other determinants emerge. As emphasized in the recent empirical 
literature (Baldoni and Esposti, 2021), only using a dense-enough ag-
gregation level the micro-level spatial properties can be preserved and 
the aggregation bias prevented or minimized. 

The combination of granularity bias and spatial aggregation bias 
may eventually generate a discrepancy in the productivity-environment 
nexus found across alternative scales of analysis and this raises the 
question on the most appropriate level of investigation for policy mak-
ing. Given this possible discrepancy between the farm and the regional 
levels, it seems worth to perform the empirical analysis at these different 
scales also to carry out a comparison among the respective results and to 
assess the robustness of empirical evidence across spatial scales. But 
there is a third major empirical complication, that of spatial depen-
dence, that suggests repeating the investigation at different spatial 
scales. 

4.3. Spatial dependence 

A further implication of place effects concerns the assumption that, 
in (6), uit is an i.i.d. ~ N(0,σ2) disturbance term. If this term is place- 
specific, we cannot exclude that these terms are also space-dependent, 
that is, E(uit, ujt)∕=0 for some contiguous units i, j∈(1, …,N) and i∕=j. In 
order to admit both productivity dynamics and space dependence, we 
can augment (5) as follows: 

μit = ρμit− 1 + δW μit + eit (7)  

where W is the NxN (or MxM) spatial weight matrix W, expressing the 
degree of contiguity of any i-th unit with the surrounding space and δ is 
the spatial correlation parameter. Spatial lag δW is aimed to capture the 
spatial dependence of productivity generated by productivity spillovers. 
Thus, eit returns to be the usual spherical disturbance i.i.d. ~ N(0,σ) as 
the original spatial dependence in uit is now made explicit in term δW. 

It follows that (6) can be rewritten in compact vector notation as: 

lnUTFPt = μ0IN + μtIN + ρlnUTFPt− 1 + δWlnUTFPt + εGitgit + εBitbit

+ εGitgit− 1 + εBitbit− 1 + εGitWgit + εBitWbit + Zα + WZα + Xtβ + WXtβ

+ Xt− 1β + μ − δWμ + et

(8)  

where: IN (IM) is the Nx1 (Mx1) identity vector; μ is the Nx1 (Mx1) 
vector of the time-invariant unit-specific productivity μi; lnUTFPt is the 
Nx1 (Mx1) vector of time t productivity levels; gt and bt are the Nx1 
(Mx1) vectors of time t environmental good and bad output levels; 
Z and Xt are the Nxk (Mxk) and Nxh (Mxh) matrices of time-invariant 
and time-variant observable productivity determinants, respectively. 
Coefficients in (8) are defined as follows : μ0 = (1 − ρ − δ)μ0, μt = (1 −

δ)μt − ρμt− 1, ρ = (1 − ρ), εG = − δεG, εB = − δεB, α = − δα, β = −

δβ, β = − ρβ, μ = ρμ. ρ and δ are the two unknown autoregressive co-
efficients, α and α are the two (kx1) vectors of unknown coefficients 
associated with the exogenous time-invariant variables Z and β, β, β are 
(hx1) vectors of unknown coefficients associated with the exogenous 
time-variant variables contained in X. et is the Nx1 (Mx1) vector of 
disturbances i.i.d. ~N(0,σ2I). It is worth noticing that in (8), since 
temporary shocks in gt, bt and Xt may be location specific, they may also 
be directly transmitted across space (via terms εGWgt ,εBWbtand WXtβ). 
The consequence is that the productivity-environment nexus itself can 
diffuse over space. 

In (8) parameters cannot be identified and estimated unless some 
further restrictions are imposed (Baldoni and Esposti, 2021). In fact, the 
representation of the productivity-environment nexus transmission 
across space can be achieved through simpler specifications (LeSage and 
Pace, 2009; Elhorst, 2010; Baldoni and Esposti, 2021). In particular, the 

so-called Dynamic Spatial Lag Model (DSLM) with fixed effects (Debarsy 
et al., 2012), which admits only the endogenous spatial interaction, 
represents an informative and simpler alternative: 

lnUTFPt = μ0IN + μtIN + ρlnUTFPt− 1 + δWlnUTFPt + εGgt + εBbt

+ εGgt− 1 + εBbt− 1 + Zα + Xtβ + Xt− 1β + μ + et (9) 

The assumption is that there is no direct spatial diffusion of the 
productivity-environment nexus, as well as of the other characteristics 
of the cross-sectional units represented by Xt. In other words, in (9) the 
productivity-environment nexus can diffuse over space only indirectly 
via the spatial dependence of TFP. This is the empirical specification that 
will be considered henceforth. 

In principle, it could be argued that this spatial dependence is more 
likely to occur at the ES, thus also at the BS, rather than at the RS. In fact, 
even in the simplified specification (9) the meaning and implications of 
the space-dependent productivity-environment nexus is different be-
tween micro level and macro level data as it captures different phe-
nomena (Anselin, 2002). On the one hand, the complex linkages among 
fields and farms are typically local and highly affected by structural and 
production similarity. At an aggregate level, such complexity vanishes. 
On the other hand, aggregate units may generate a “gravity” impact on 
neighbours for which there is no correspondence at the micro level. 
Therefore, there can be a substantial difference in empirically investi-
gating spatial dependence in the productivity-environment nexus at 
these alternative scales (García Cidad et al., 2003). Making this differ-
ence emerge is a further motivation for applying and estimating model 
specification (9) in both the farm-level and the two regional-level 
datasets, the only difference being the definition of matrix W (see 
below). 

Fig. 1 recaps all the issues that emerge, moving through the different 
spatial scales, in passing from the theoretical model to the econometric 
estimation. It elucidates why the actually estimated vector of model 
parameters (thus, the productivity-environment nexus) may differ be-
tween the farm and the regional scales (vectors B and C in Fig. 1, 
respectively) and both may differ from the “true” unknown vector (A in 
Fig. 1; thus: B∕=A∕=C). Some of these sources of under-identification or 
estimation bias may be controlled for by the analyst. Within the DSLM 
specification (9), the sources of heterogeneity to be controlled for are 
both observables (Z, Xt) and unobservables (fixed-effects μ and distur-
bance terms et). Other sources, however, cannot be controlled for, that 
is, the granularity and aggregation bias. Consequently, we can only 
observe their impact ex post by comparing B and C estimates. This dif-
ference reveals whether there is concordance or contradiction between 
the estimated nexus at the three scales of analysis. An inconsistency 
would severely question the viability of an evidence-based policy mak-
ing in this field. 

5. The empirical study 

5.1. The datasets 

The 2008–2018 Italian Farm Accountancy Data Network (FADN) 
dataset is used. It consists of an unbalanced panel of farms, ranging from 
11,389 farms (in 2008) to 10,386 farms (in 2018), with a total amount of 
119,229 observations over the whole period. A balanced panel can be 
also extracted. It consists of 1,658 farms observed for the entire period 
(11 years). This balanced panel is used in the present study for the farm- 
level estimation of model (9), while the unbalanced panel is used to 
construct the regional datasets (see below). The FADN sample is only a 
small fraction of the population of commercial farms in Italy (Baldoni 
et al., 2021). Therefore, whenever the investigation concerns aspects for 
which space matters (i.e., a place-effect very likely occur), the use of this 
farm-level dataset is likely to incur the abovementioned granularity 
bias. 

Following Baldoni and Esposti (2021), a possible empirical strategy 
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to overcome this problem consists in aggregating these farm-level data 
at some geographical scale (typically, administrative levels). The 
resulting regional data has a lattice structure; thus, it does not suffer 
from granularity. Due to the aggregation bias, however, at the regional 
scale the productivity-environment nexus might emerge as an artefact. 
In the present case, both Italian NUTS3 and NUTS2 regions represent 
suitable aggregation levels. These two macro datasets consist of a 
balanced panel of 90 and 21 regions, respectively. To form these macro 
panels, the full FADN unbalanced sample is aggregated, and model (9) 
then estimated at these geographical levels. 

5.2. The performance indicators 

Relative levels of UTFP for units and years in the panel are derived as 
ratios of output quantity indexes on input quantity indexes at each 
corresponding aggregation level (either farms or NUTS2/NUTS3 re-
gions). The output index contains crop and livestock products while 
inputs include labour, fertilizers, pesticides, external services, water, 
energy, seeds, feeding stuff, capital services, farm reuses and other costs. 
Aggregation of outputs and inputs is obtained using Fisher indexes and 
transitivity of the indicator is achieved through the minimum spanning 
tree approach (Hill, 1999, 2004). 

For the calculation of the GHG emission indicator, we follow the 
IPCC methodology (IPCC, 2006), as in Coderoni and Vanino (2022), 
where a linear relationship is assumed between emission factors and 
activity data. For any i-th unit an any time t, the Carbon Footprint Index 
(CFIit) is calculated by firstly deriving the GHG emissions at the farm 
level and then eventually aggregating them at the relevant higher level 
(NUTS3 and NUTS2 regions). Secondly, as emissions are size-dependent 
while UTFP is not, an index is computed by fixing as basis the initial year 
emission level. This CFIit expresses the environmental bad output (B) 
and its growth rate (cfiit) the consequent bit variable in (9). 

As regards ecosystem services, a crop diversity index is used as a 
reliable proxy.16 By reviewing 98 meta-analyses and performing a 
second-order meta-analysis based on 41,946 comparisons between 
diversified and simplified practices, Tamburini et al. (2020) have 
recently shown that crop diversity is strongly associated with the pro-
vision of different ecosystem services. A Crop Diversity Index ()CDIit is 
here computed as a Shannon diversity index. This index is separately 
computed on the three datasets (farm-level, NUTS3 and NUTS2 regions) 
using the respective crop shares on total Utilized Agricultural Area 
(UAA). This CDIit variable expresses the environmental good output (G), 
and its growth rate (cdiit) the consequent git variable in (9). More details 
on the methodologies adopted to compute these performance indicators 
and the respective descriptive statistics are provided in Appendices 3 
and 4 (Supplementary Material). 

5.3. Model specification and estimation 

Model in (9) is a dynamic, AR(1), spatial panel model whose esti-
mation raises several issues and requires an appropriate strategy. Bal-
doni and Esposti (2021) compare the pros and cons of alternative 
estimation approaches suggesting that the two-step GMM-SYS estimator 
represents a suitable and robust solution on both micro and macro 
datasets. This solution is thus adopted to estimate model (9) parameters. 

This estimation approach still encounters the possible endogeneity of 
some regressor, beside term ln UTFPit− 1. In particular, the well-known 
endogeneity issue implied by production function estimation (Gri-
liches and Mairesse, 1995) remains a concern. Here it applies to the 
non-market outputs G and B. As already mentioned, terms git and bit in 
(9) are possibly endogenous as they depend on the input use decisions 

and on the consequent level of market output Y that also affect the 
left-hand side of (9), i.e., the UTFP (Hulten, 1992: 968). Consequently, in 
the above-mentioned estimation git and bit are instrumented by the 
respective suitable lagged values. 

The list of regressors included in (9) is completed by the following 
additional variables. Zi = Yeari,s where Years are time dummies (s in-
dicates the year); Xit = (FORit, PSit) where: FORit expresses the farm/ 
region forest area on total land; PSit is the farm’s physical size expressed 
by the UAA. PSit, may itself express the farmers’ choices depending on 
current and past productivity levels, as well as the possible returns to 
scale at the farm level. Consequently, endogeneity cannot be excluded 
also for PSit and in model estimation this variable is instrumented by the 
respective suitable lagged values. 

Finally, the NxN (MxM) spatial matrix W is specified to express the 
proximity among units. Proximity is here intended as both contiguity 
and distance. Therefore, neighbourhoods are identified by a combina-
tion of radial distance and a queen contiguity matrix: the i-th row/j-th 
column element is fixed at 1 if the j-th and i-th units are contiguous 
(corner or edge neighbour), or the former falls within the pre- 
determined radial distance from the latter, and at 0 otherwise. For any 
given dataset, alternative matrices W can be thus specified by varying 
the radial distance that defines the contiguity. Alternative specifications 
are thus adopted to assess the robustness of results. 

6. Results and discussion 

Model (9) is estimated on the three datasets and over alternative 
definitions of the spatial matrix W. Respective estimation results are 
reported, in sequence, in Tables 1–3.17 The usual tests performed on 
these GMM-SYS estimations (bottom of Tables 1–3) are concordant 
across the three levels of analysis. AR(1) and AR(2) tests confirm that the 
dynamic model (9) is properly specified, while the adopted instruments 
result to be valid as indicated by the Hansen test (Arellano, 2003). 

Comparing Tables 1 and 2 it emerges that some results are robust 
passing from the farm-level to the denser geographical aggregation 
(NUTS3 regions) while others are not. The former seems quite robust 
also across alternative definitions of matrix W. They concern the time 
and spatial correlation of the UTFP. 

These correlations emerge as the main drivers of the observed pro-
ductivity performance. Time correlation is positive and indicates some 
persistence of the exogenous productivity shocks, thus confirming pre-
vious evidence on agricultural productivity also in the Italian case 
(Esposti, 2000). In magnitude, this effect remains quite stable over the 
different radial distances (W matrices) and is similar in the farm-level 
and in the NUTS3-level datasets though a little higher in the latter 
case. Spatial dependence is also significantly positive and even more 
relevant, in magnitude. As it could be expected, productivity transmits 
to neighboring units. Therefore, if we combine this effect with time 
dependence, also this spatial transmission tends to have some persis-
tence over time. The size of this spatial dependence is similar in the 
micro and the NUTS3 datasets and in both cases, as expected, it increases 
by augmenting the radial distance defining proximity. 

After controlling for time and spatial dependence, however, there are 
no other clear linkages with the productivity performance. As expected, 
size matters only at the micro-level evidently as possible effect of returns 
to scale on the productivity performance. At the NUTS3 regional level, 
the physical size of farms, expressed as the farm average size within the 

16 Appendix 3 of the Supplementary Material discusses more in detail why a 
crop diversity index instead of a crop rotation index has been considered in the 
analysis. 

17 Due to space limitations, the estimated coefficients of the time (year) 
dummies are not reported. Most time dummies are statistically significant 
further supporting the dependence of the productivity performance on short- 
term shocks. 
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Table 1 
Model (9) estimates on the farm-level dataset under alternative W (radial distance in Km) - Estimated standard errors in parenthesis.  

Km 25 50 100 150 200 

Model Variable 
lnUTFPt− 1 0.127*** 0.127*** 0.128*** 0.134*** 0.134*** 

(0.016) (0.015) (0.015) (0.016) (0.016) 
WlnUTFPt 0.470*** 0.664*** 0.779*** 0.787*** 0.793*** 

(0.109) (0.111) (0.108) (0.113) (0.113) 
cfiit 0.001** 0.001** 0.001** 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) 
cfiit− 1 0.000 0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) 
cdiit 0.029 0.006 0.007 − 0.015 − 0.013 

(0.076) (0.074) (0.080) (0.073) (0.074) 
cdiit− 1 − 0.003 − 0.005** − 0.005** − 0.006** − 0.006** 

(0.002) (0.002) (0.002) (0.003) (0.002) 
FORit − 0.225 − 0.108 − 0.185 − 0.201 − 0.211 

(0.356) (0.353) (0.356) (0.346) (0.343) 
FORit− 1 − 0.110 − 0.266 − 0.240 − 0.216 − 0.198 

(0.349) (0.346) (0.350) (0.339) (0.336) 
PSit 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 

(0.001) (0.001) (0.001) (0.001) (0.001) 
PSit− 1 − 0.002* − 0.002* − 0.002* − 0.002* − 0.002** 

(0.001) (0.001) (0.001) (0.001) (0.001) 

N. of units (N) 1,658 1,658 1,658 1,658 1,658 
N. of observations (NxT) 14,922 14,922 14,922 14,922 14,922 
AR(1) test (p-value) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
AR(2) test (p-value) 0.194 0.280 0.258 0.204 0.185 
Hansen test (p-value) 0.307 0.417 0.510 0.255 0.195 

***p < 0.01, **p < 0.05, *p < 0.1. 

Table 2 
– Model (9) estimates on the NUTS3 regions dataset under alternative W (radial distance in Km) - Estimated standard errors in parenthesis.  

Km 50 100 150 200 250 300 

Model Variable 
lnUTFPt− 1 0.151*** 0.176*** 0.171*** 0.169*** 0.142** 0.138*** 

(0.051) (0.054) (0.057) (0.057) (0.056) (0.053) 
WlnUTFPt 0.456*** 0.662*** 0.780*** 0.825*** 0.749*** 0.936*** 

(0.154) (0.222) (0.261) (0.222) (0.245) (0.253) 
cfiit 0.037 0.040 0.029 0.050* 0.052 0.050 

(0.033) (0.031) (0.040) (0.029) (0.034) (0.033) 
cfiit− 1 − 0.027 − 0.027* − 0.033* − 0.027* − 0.025 − 0.027 

(0.018) (0.016) (0.020) (0.016) (0.019) (0.020) 
cdiit 0.663*** 0.529** 0.458 0.484* 0.582* 0.575* 

(0.256) (0.252) (0.315) (0.276) (0.318) (0.322) 
cdiit− 1 0.238 − 0.013 0.003 − 0.030 0.138 0.125 

(0.335) (0.249) (0.351) (0.290) (0.343) (0.336) 
FORit − 0.359 − 0.554 − 0.450 − 0.361 − 0.353 − 0.475 

(0.432) (0.574) (0.543) (0.553) (0.514) (0.516) 
FORit− 1 0.174 0.446 0.397 0.419 0.063 0.153 

(0.465) (0.549) (0.559) (0.515) (0.566) (0.535) 
PSit − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
PSit− 1 0.000* 0.000 0.000 0.000 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

N. of units (N) 90 90 90 90 90 90 
N. of observations (NxT) 810 810 810 810 810 810 
AR(1) test (p-value) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
AR(2) test (p-value) 0.117 0.122 0.092* 0.117 0.121 0.098* 
Hansen test (p-value) 0.450 0.861 0.367 0.932 0.471 0.560 

***p < 0.01, **p < 0.05, *p < 0.1. 
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region, does not bring about any linkage with productivity. Also, the 
presence of forest area does not statistically affect the productivity 
performance regardless the level of the investigation.18 

What really matters here, however, is the nexus between produc-
tivity and the two environmental indicators. The evidence emerging 
from estimates is mixed between the farm level and the NUTS3 dataset. 
At the farm level, the nexus of GHG emissions (cfi) with productivity is 
positive and statistically significant. Nonetheless, this nexus is weak as 
the estimated elasticity is actually about 0.1%. Moreover, this elasticity 
declines to 0 and loses statistical significance by expanding matrix W 
through a higher radial distance. The same pattern is observed for the 
lagged values of the cfi. 

These results are not completely unexpected as they confirm what 
obtained in previous studies in the field (Stetter et al., 2022, p. 733). 
Therefore, rather than being interpreted as evidence of some underlying 
model misspecification, this statistically weak and somehow counter-
intuitive evidence has to be intended as the consequence of the quite 
complex and heterogenous relationship occurring at the farm-level be-
tween GHG emission, conventional input use and market-output supply 
discussed in previous sections. These results evidently do not exclude the 
existence of farms whose higher technological level is compatible with 
higher TFP and the adoption of advanced technical solutions allowing a 
more efficient saving input use (fuel and energy, in particular) and/or 
mitigating or abatement technologies. For these farms a negative nexus 
between cfi and productivity should be observed. Evidently, however, 
this relationship is more than compensated by those farms whose more 
intense input use and the lacking adoption of mitigating solutions jus-
tifies the co-existence of higher TFP and higher GHG emissions. 

In the case of crop diversity (cdi) an opposite effect is observed. The 
elasticity associated to the current cdi value is not statistically different 
from 0 but it gains significance with the lagged cdi. The respective 
elasticity is still quite low (about 0.5%) and quite constant across 
alternative W matrices. The sign of the productivity-cdi nexus goes in the 
opposite direction compared to cfi: higher productivity is associated 
with lower cdi levels. In fact, if we combine the current and lagged cdi 
values the overall linkage with the unadjusted productivity is ques-
tionable as the current cdi shows an elasticity that, though not statisti-
cally significant from zero, is larger in magnitude but with the opposite 
sign than the lagged cdi. Therefore, by limiting the attention to the farm- 
level data, one could conclude that no productivity-environment nexus 
is found while a trade-off seems to rather emerge. However, the overall 
statistical significance of these relations seems quite limited, therefore 
caution is needed in drawing conclusions on these estimates. 

If we move to the NUTS3 level, we observe that only part of the farm- 
level evidence about the productivity-environment nexus remains and 
survives aggregation. The current value of the cfi still shows a positive 
relationship with productivity but the respective elasticity loses statis-
tical significance even though its magnitude its much larger than what 
observed at the farm level. Moreover, this positive effect is almost 
entirely offset by the lagged value of cfi. Also, for the cdi we observe 
substantial differences with respect to the farm level. The elasticity 
associated to the current value is positive and statistically significant 
while the lagged value is not. Moreover, the magnitude of this elasticity 
is much higher indicating a very strong relationship between produc-
tivity and cdi. This nexus observed at the NUTS3 regional level seems to 
partially support the existence of a positive productivity-environment 
nexus: a statistically significant positive relation between productivity 
and crop diversity emerges in most of the estimated models, while the 
relation between productivity and emissions is less clear and seems to 
point at a negative lagged relation. 

None of these results is confirmed at the NUTS2 regional level 
(Table 3). This level of aggregation implies a very poor statistical quality 
of model estimates. No parameter is statistically significant but those 
associated to time dummies. Moreover, several parameter estimates 
assume unreliable size and seem highly unstable. Eventually, we can 

Table 3 
Model (9) estimates on the NUTS2 regions dataset under alternative W (radial distance in Km) - Estimated standard errors in parenthesisa.  

Km 50 100 150 200 250 300 

Model Variable 
lnUTFPt− 1 0.086 0.086 0.130 0.149* 0.074 0.079 

(0.140) (0.140) (0.102) (0.090) (0.120) (0.096) 
WlnUTFPt 6.736 6.736 3.635 5.570 7.430 10.218 

(9.307) (9.307) (8.911) (8.050) (8.615) (10.796) 
cfiit 0.195 0.195 0.206 0.193 0.198 0.191 

(0.313) (0.313) (0.318) (0.294) (0.271) (0.232) 
cfiit− 1 − 0.022 − 0.022 − 0.000 0.015 − 0.031 0.198 

(0.251) (0.251) (0.267) (0.271) (0.257) (0.350) 
cdiit − 1.211 − 1.211 − 0.785 − 0.354 − 1.165 1.160 

(3.130) (3.130) (2.982) (2.772) (1.703) (3.860) 
cdiit− 1 − 0.100 − 0.100 0.041 0.182 − 0.221 0.516 

(1.670) (1.670) (1.754) (1.680) (1.267) (1.821) 
FORit − 1.091 − 1.091 − 0.600 0.017 − 0.987 4.359 

(3.688) (3.688) (3.463) (3.254) (1.061) (7.113) 
FORit− 1 1.711 1.711 1.146 0.463 1.570 − 3.635 

(3.867) (3.867) (3.605) (3.412) (1.273) (6.960) 
PSit − 0.000 − 0.000 − 0.000 − 0.000 − 0.000 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
PSit− 1 0.000 0.000 0.000 0.000 0.000 − 0.000 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

N. of units (N) 21 21 21 21 21 21 
N. of observations (NxT) 189 189 189 189 189 189 
AR(1) test (p-value) 0.010** 0.010** 0.001*** 0.000*** 0.00288* 0.0741* 
AR(2) test (p-value) 0.119 0.119 0.149 0.296 0.0776 0.321 
Hansen test (p-value) 0.737 0.737 0.681 0.810 0.856 0.972 

***p < 0.01, **p < 0.05, *p < 0.1. 
a The estimates obtained with 50 and 100 km of radial distance are identical as they imply, for the NUTS2 regions, the same spatial matrix W. 

18 According to the model theoretical derivation, the parameters associated to 
the lagged values of FOR and PS should correspond to the parameters associated 
to the respective current values multiplied by -ρ, that is, the parameter of the 
time correlation dependence (see section 3). These parameter restrictions can 
be tested ex-post. Limiting the attention only to the statistically significant 
parameters, these tests accept the validity of these theoretical restrictions. Tests 
results are available upon request.ρ 
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conclude that pushing aggregation at this level (which is, by the way, the 
administrative level at which most EU policies are planned and imple-
mented) destroys any evidence on the linkages between agricultural 
productivity and environmental performance. 

This conclusion should not surprise since, as noticed, these linkages 
are already weak at the farm-level due to the large farm heterogeneity 
and the co-existence of contrasting relationships. When moving at an 
aggregate level some of these farm-level relationships, like the adoption 
of mitigating or abatement solutions, may disappear and even become 
unobservable while other effects may surface.19 Moreover, in the case of 
GHG emissions, at the aggregate level the change in output composition 
over time, particularly the relative decline of livestock activities within 
the regional agriculture, may assume high relevance while it is irrele-
vant at the farm scale. Eventually, at this coarser aggregation level, not 
only no nexus with the environmental indicators is detectable, but also 
the role of space becomes barely discernible. At this aggregation level 
agricultural productivity can be apparently explained only as the result 
of short-term exogenous shocks. 

The comparison of estimation results across these different scales of 
analysis eventually confirms that space matters but, at the same time, it 
is not conclusive with respect to be best choice to be made in this 
respect, that is, the most reliable scale. On the one hand, if we assume 
that the real productivity-environment nexus is that occurring at the 
farm level, the present study suggests that the granularity of the adopted 
farm sample may prevent from a clear identification of this nexus. If any, 
however, the relationship emerging at this level of the analysis would 
rather suggest a trade-off between productivity and environment in 
farming. On the other hand, aggregating micro data at some 
geographical level might preserve micro properties while strengthening 
their statistical robustness, but it might also alter the farm-level rela-
tionship and surface different evidence. When aggregation is pushed to a 
higher level most of the information about the underlying relationships 
is lost and the consequent empirical evidence seems statistically poor 
and unreliable. 

7. Concluding remarks 

According to many analysts, the future of agriculture consists in the 
adoption of techniques and solutions able to reconcile more food pro-
duction with the preservation of environmental resources it interacts 
and interferes with. Whether this kind of farming (also designated as 
Sustainable Intensification) already exists and prevails, or it has still to 
come, is debatable. Consequently, also whether current policies already 
provide enough incentives in this direction and should be just main-
tained and reinforced is widely discussed. In fact, if and where a nexus 
between higher productivity and better environmental indicators actu-
ally occurs requires an appropriate empirical assessment. This empirical 
investigation is challenging mostly because it has to do with the role of 
space. 

Three possible spatial scales of analysis can be considered: the 
ecological scale (usually unobservable), the behavioral scale (i.e., the 
farm level), the regional scale. The present paper develops a conceptual 
framework and a consequent empirical specification making explicit 
which identification issues and sources of bias can arise moving across 
these different scales. These biases may eventually motivate why 
inconsistent or even contrasting evidence is found at different levels. 

By using the Italian FADN sample data over the 2008–2018 period, 
the present study investigates the productivity-environment nexus 
making the role of space explicit and thus showing how the spatial scale 
of analysis may affect the empirical evidence. This is done by adopting 
the same dynamic spatial panel model specification both on the farm 
sample and on the region sample obtained by aggregating the farm data 
up to the NUTS3 and NUTS2 Italian regions. For their relevance and 

diversity, two jointed environmental indicators (GHG emissions and 
crop diversity) are considered and their relationship with the conven-
tional TFP measure explored. 

Results obtained confirm that space and geographical scale matter, 
namely, that the empirical evidence about the productivity-environment 
nexus is space-dependent. At the farm level, the productivity- 
environment nexus shows statistically poor evidence and, in any case, 
it rather emerges as a trade-off. Regional data, on the contrary, can 
provide more robust results when aggregation is maintained at a dense- 
enough scale (NUTS3 regions). In this case, the presence of a positive 
productivity-environment nexus finds some support though it could 
surface as an artefact of aggregation itself. 

The implication of such scale-dependent evidence for policy making 
should not be understated. At a first glance, it could be interpreted as the 
need for a careful evaluation on the most appropriate scale of policy 
design and implementation. In fact, the problem seems more serious 
than this: whatever is the scale of policy intervention, the lack of a 
robust evidence on the productivity-environment nexus puts at risk the 
existence itself of an evidence-based policy making in the field. 

Results here obtained are evidently only indicative and deserve 
further confirmation and modelling developments, including a more 
specific and sophisticated representation of the underlying technology, 
refinements of the econometric approach and extension of the analysis 
to other and larger datasets. Though the Italian agriculture shows a 
remarkable diversity in the farming conditions, the repetition of the 
present approach to other possibly more distinctive agricultural contexts 
may be helpful in assessing the generalizability of the present results. 
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