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Abstract: Knowledge about the anatomical structures of the left heart, specifically the atrium (LA) 
and ventricle (i.e., endocardium—Vendo—and epicardium—LVepi) is essential for the evaluation 
of cardiac functionality. Manual segmentation of cardiac structures from echocardiography is the 
baseline reference, but results are user-dependent and time-consuming. With the aim of supporting 
clinical practice, this paper presents a new deep-learning (DL)-based tool for segmenting anatomical 
structures of the left heart from echocardiographic images. Specifically, it was designed as a 
combination of two convolutional neural networks, the YOLOv7 algorithm and a U-Net, and it aims 
to automatically segment an echocardiographic image into LVendo, LVepi and LA. The DL-based 
tool was trained and tested on the Cardiac Acquisitions for Multi-Structure Ultrasound 
Segmentation (CAMUS) dataset of the University Hospital of St. Etienne, which consists of 
echocardiographic images from 450 patients. For each patient, apical two- and four-chamber views 
at end-systole and end-diastole were acquired and annotated by clinicians. Globally, our DL-based 
tool was able to segment LVendo, LVepi and LA, providing Dice similarity coefficients equal to 
92.63%, 85.59%, and 87.57%, respectively. In conclusion, the presented DL-based tool proved to be 
reliable in automatically segmenting the anatomical structures of the left heart and supporting the 
cardiological clinical practice. 

Keywords: left heart segmentation; echocardiography; YOLOv7; deep learning; convolutional  
neural networks; U-Net 
 

1. Introduction 
Echocardiography is a non-invasive medical technique able to acquire images of the 

heart; it can be used to evaluate cardiac structure and function. Echocardiographic images 
are frames of a video usually acquired during all phases of the cardiac cycle. The frames 
with the highest information are the end-systolic (ES) and the end-diastolic (ED) frames. 
The echocardiographic exam is still manually performed by clinicians who optimize the 
image acquisition, detect the cardiac chambers and segment the anatomical structures. In 
practice, they move an echocardiographic probe on the patient’s chest to optimize 
visualization, and consequently, variations in imaging accuracy arise. When the quality 
of the image is sufficiently strong, clinicians move a pointer on the echocardiographic 
screen and manually segment and measure dimensions of cardiac anatomical structures. 
Thus, echocardiography is still user-dependent and subjective [1]. In many clinical 
applications, echocardiographic image segmentation is a crucial step [2]. For example, it 
allows the measurement of the myocardial thickness in the case of myocardial ischemia 
[3], the estimation of valve area in the case of ventricular stenosis [4] or the quantification 
of ventricular volume during the cardiac cycle to assess the ejection fraction in the case of 
heart failure [5]. 
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To reduce the subjectiveness of echocardiography and to support clinicians in cardiac 
structure segmentation, the use of automatic algorithms as decision support systems is 
desirable. However, getting reliable ones remains challenging. Indeed, ultrasound images 
are usually characterized by a low signal-to-noise ratio [6], location and dimensions of 
anatomical structures may act as confounders due to intrasubject variability, and the 
application of conventional image processing methods (e.g., edge detection and shape 
models) may face many technical issues [7], such as the inference of physical properties 
from pixel intensity. Moreover, an echocardiography test is usually composed of a 
sequence of images, frames of a video, that represent all phases of a cardiac cycle; thus, 
automatic processing of ultrasound images should be fast and able to deal with a high 
amount of data. 

Deep learning (DL) methods may appear as efficient alternatives to conventional 
image processing methods [8–10]. In particular, convolutional neural networks (CNNs) 
are powerful tools able to automatically learn and extract relevant features from the input 
images [11]. Thus, in the context of echocardiography, the DL-method may support 
identification and segmentation of the main anatomical structures of the left heart. Thus, 
the aim of the present work is to present a new DL-based tool to identify and segment the 
most important anatomical structures of the left heart, namely, the left ventricular 
endocardium, the left ventricular epicardium and the left atrium. 

2. Related Works 
In the literature, nine papers [12–20] report the application of DL to segment 

echocardiography images. Leclerc et al. (2019) [13] compared multiple DL methods for 
left ventricular endocardium and myocardium segmentation and demonstrated the 
superiority of encoder–decoder-based architectures in relation to state-of-the-art non-DL 
methods. Moradi et al. (2019) [14] used the U-Net to segment the left ventricle by 
improving the U-Net architecture in MFP-U-Net. This new CNN had extra convolution 
layers for performing feature maps and improving the left ventricular segmentation 
performance. Kim et al. [15] aimed to segment the left ventricular endocardium and left 
ventricular myocardium. They designed algorithms considering porcine images and 
tested it on human images. Despite the adequate performance, the main limitation was 
related to the fact that the designed method was performed upon open-chest pigs, a 
technique which has better quality than human echocardiographic images. Girum et al. 
[16] combined a modified U-Net architecture with an FCN encoder in order to improve 
feature extraction and allow the system to learn from its own mistakes. Liu et al. [12] used 
a bilateral segmentation network to extract deep features and a pyramid local-attention 
algorithm to enhance features within compact and sparse neighboring contexts. Lei et al. 
[17] proposed Cardiac-SegNet, a system combining a U-Net (performing feature 
extraction), a fully convolutional single-state object detector (segmenting the image into 
the region of interest) and a mask head network (performing segmentation). Alam et al. 
[18] proposed a two-parallel pipeline for ES frame and ED frame segmentation by using 
DeepResU-Net. Distinct from the others, Saeed et al. [19] used self-supervised algorithms 
(DeepLapV3, SimCLR, BOYL and U-Net) to segment the left ventricle in order to 
overcame the lack of labeled data. Finally, Zhuang et al. (2021) [20] used an object-
detection method, the YOLOv3 algorithm, to detect three points of ventricular chamber 
and segment the ventricles. Despite the innovativeness of the methods and their high 
performance, all these studies focused on segmenting the ventricle but not all its 
anatomical structures. 

Comparison with the literature shows that the main innovative aspects of our DL-
based tool are: (1) it integrates the YOLOv7 algorithm as a module for chamber 
identification and a module for chamber segmentation by U-Net, supporting the clinicians 
in all phases of the echocardiographic exam, (2) it is able to segment three important 
anatomical structures of the left heart simultaneously, and (3) it is implemented in a cloud-
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computing environment, allowing the method to be easily-reproducible and machine-
independent. 

3. Materials and Methods 
3.1. Data 

The CAMUS dataset [9] was published in 2019 and included echocardiographic 
images acquired from 500 patients at University Hospital of St Etienne in France. The 
images were acquired by a Vivid E95 ultrasound scanner (from GE Vingmed Ultrasound) 
with a GE M5S probe (General Electrics Healthcare, Chicago, IL, USA). This dataset 
represents a clinically realistic scenario, avoiding any prerequisites or data selection. 
Indeed, images are characterized by different quality levels (manually classified as bad, 
medium and high quality from clinicians) and representing different cardiac statuses 
(ejection fractions of these patients vary from 6% to 86%). 

For each patient, two sequences were acquired showing the apical four-chamber and 
two-chamber views. According to the standard dimension criteria [17] (i.e., frames with 
the largest and lowest dimensions were set as ED and ES, respectively), ES and ED frames 
were determined. Each image was manually segmented into three regions, which were 
the left atrium (LA), left ventricular endocardium (LVendo) and left ventricular 
epicardium (LVepi). An annotation procedure was performed based on the opinions of 
three independent cardiologists. The masks created by the manual annotation procedure 
were considered ‘ground truth.’ Finally, 2000 echocardiographic images (500 patients by 
two chamber view by two frames) and the relative annotations were collected in the 
database. 

Only 1800 images of 450 patients out of 500 were publicly available and were 
considered in this study. Then, this dataset was divided into training set (60%), validation 
set (10%) and testing set (30%), including 270 patients (1080 annotated images), 45 patients 
(180 annotated images) and 135 patients (540 annotated images), respectively. 

3.2. Deep-Learning-Based Tool for Segmentation of Anatomical Structured of the Left Heart 
The proposed DL-based tool, represented in Figure 1, is composed of four steps: (1) 

the detection of the left heart by YOLOv7, (2) an image crop and resizing, (3) the U-Net 
application and (4) the segmentation of anatomical structures of the left heart. Its 
implementation was performed on Google Colab Pro, a cloud service allowing the 
possibility of selecting high system RAM (32 GB) and GPU hardware acceleration 
(NVIDIA Tesla P100 with 16 GB of video RAM) settings. Python language was used for 
all computation, by considering the Keras library built on TensorFlow backend. 
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Figure 1. Block diagram of the proposed DL-based tool for segmentation of anatomical structures 
of the left heart by the use of echocardiographic images. Electrocardiographic images are initially 
analyzed by YOLOv7 (step 1) algorithm to identify the coordinates of the left atrium (LA, in blue) 
and of the left ventricle (LV, in orange). The coordinates of LA and LV are used to image cropping 
and resizing (step 2) and then, processed images are processed by U-Net (step 3). Finally, the 
obtained 4-class probability matrix is used to obtain the predicted segmented images by 
segmentation (step 4). 

3.2.1. Detection of Anatomical Structures of the Left Heart by YOLOv7 
The YOLO algorithm (i.e., You Only Look Once), was introduced in 2016 [21]. The 

main idea behind this algorithm was framing detection as a regression problem, so only 
one network is able to perform both predictions of the bounding box and its probability. 
YOLO works by dividing the input image into a grid of cells, which serves as the basis for 
predicting the presence and location of objects in the image; this makes it faster and more 
efficient than other object-detection algorithms that perform region-based processing; 
after predictions have been made for all cells, YOLO performs non-max suppression to 
eliminate redundant detections and return the most likely object detections. 

The most recent version of YOLO is version 7. The authors of YOLOv7 implemented 
several structural modifications, such as the extended efficient layer aggregation network, 
model scaling techniques, re-parameterization planning and auxiliary head coarse-to-fine. 
All these modifications allowed YOLOv7 to overcome the previous versions, offering 
higher accuracy, faster performance, improved scalability, and greater flexibility for 
customization. YOLOv7 is free to use under GNU General Public License v3.0 license [22]. 

In this paper, we considered the free version of YOLOv7, which was trained on the 
training dataset with the aim of localizing the LA and LV from both four-chamber and 
two-chamber views. Input and output of YOLOv7 (Figure 1—step 1) are the 
echocardiographic images and the coordinates of LA and LV, respectively. The 
architecture of YOLOv7 was maintained unchanged; the initial learning rate and the 
number of epochs were set at 0.01 and 100, respectively. 

3.2.2. Image Crop and Resizing 
Echocardiographic images have to be cropped to accord with the YOLOv7 output 

and resized in order to match the settings of the segmentation algorithm. Thus, the 
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electrocardiographic images were cropped to accord with the coordinates of LA and LV 
and resized to 320 pixels × 320 pixels: if the image was bigger that normalized dimensions, 
it was resized by interpolation; otherwise, if the image was lower than normalized 
dimensions, it was zero-padded. The inputs of the image crop and resizing are the 
echocardiographic images and the coordinates of the region of interest, while the outputs 
are the processed images (Figure 1—step 2). 

3.2.3. U-Net Application 
U-Net is a CNN whose architecture was designed for image segmentation tasks [20]. 

This architecture has a U-shape and, thus, it is composed of two paths, which are the 
encoder and the decoder. The encoder consists of multiple stages, and it has the aim of 
extracting high-level features; at each stage, the spatial resolution is decreased, and the 
number of channels is increased. The decoder also consists of multiple stages, but it has 
the aim of reconstructing the information derived by encoder; at each stage, the spatial 
resolution is increased, and the number of channels is decreased. The encoder path uses 
max pooling to decrease the spatial resolution while increasing the number of feature 
channels, and the decoder path uses transposed convolution layers to increase the spatial 
resolution while decreasing the number of feature channels. ‘Skip connections’ allow U-
Net to combine low-level features from the early layers with high-level features from the 
later layers, which improves object localization and segmentation. Finally, the architecture 
includes a final layer that outputs a probability distribution over the classes for each pixel. 

In this paper, the inputs of the U-Net were the processed images (Figure 1—step 3), 
having a size of 320 pixels × 320 pixels. The architecture of the proposed U-Net (Figure 2) 
was composed of an encoder composed of 5 stages, the feature map of which converged 
to 20 × 20 × 512, and a decoder composed of 5 stages and using transposed layers to 
perform up-sampling. The number of classes was set at 4, which are pixels belonging to 
LA, LVendo, LVepi and background. Supervised learning was applied, as well as the Dice 
coefficient (DCS) as loss function (Equation (1)): 

LDCS=1 − 1
∑ αkk k

�∑ αkk k
2×∑ ui

kµi
k

i∈I

∑ ui
k

i∈I +∑ µi
k

i∈I
�  (1) 

where u is the predicted output of the network, µ is a one-hot encoding of the ground 
truth segmentation map, αk is the weight associated to class k ∈ 1, 2, 3 (class related to 
background was ignored) being the pixel class. Adam was used as the optimization 
algorithm [23] (learning rate equal to 0.001, β1 equal to 0.9, β2 = 0.999, momentum equal to 
0.99 and batch size equal to 10), and the number of epochs was set at 60. Values of all 
hyperparameters were empirically selected [24]. Outputs of the U-Net were a four-class 
matrix containing the probability of having a specific pixel in a specific class (Figure 1—
step 3). 



Diagnostics 2023, 13, 1683 6 of 11 
 

 

 
Figure 2. Architecture of proposed U-Net. 

3.2.4. Segmentation of Anatomical Structures of the Left Heart 
U-Net provided a 4-class matrix containing the probability of having a specific pixel 

in a specific class. In order to obtain the predicted segmented images by segmentation 
(Figure 1—step 4), the pixels with the highest probability of belonging to LA, LVepi, 
LVendo or background were selected to be part of LA, LVepi, LVendo or background, 
respectively. 

3.3. Evaluation Metrics 
With the aim of evaluating the strength of the method, each image’s Dice similarity 

coefficients (DSC), Hausdorff’s distance (HD) and Jaccard index (JAC) were computed 
[25]. Calculation of all these evaluation metrics permitted a comparison between the LA, 
LVepi and LVendo of the predicted segmented images and the ground truth. 

DSC and JAC for each i class can be defined as following (Equations (2) and (3)): 

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖  =  2∙𝑇𝑇𝑇𝑇
2∙𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

  (2) 

𝐽𝐽𝐽𝐽𝐽𝐽𝑖𝑖  =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

  (3) 

where TP are the true positives (pixels correctly classified in class i according to the 
ground truth), FP are the false positive (pixels wrongly classified in class i according to 
the ground truth) and TN are true negatives (pixels correctly not classified in class i 
according to the ground truth). 

For each class, HD between the point P of the predicted class and the point GT of the 
ground truth class consisteds of the maximum of Euclidean distances, as shown in 
(Equation (4)): 

𝐻𝐻𝐻𝐻(𝑃𝑃,𝐺𝐺𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃 { 𝑚𝑚𝑚𝑚𝑚𝑚 𝐺𝐺𝐺𝐺{||𝑃𝑃,𝐺𝐺𝐺𝐺||}}  (4) 

Considering the preprocessing of images (resizing), HD is represented in pixels. 
Distribution of DSC, JAC and HD of all patients are reported as mean value and standard 
deviations and classified according to the dataset (training, validation, or testing). 

4. Results 
Distributions of DSC, JAC and HD of all patients were classified according to the 

dataset (training, validation, or testing), and reported in Table 1. An example of cardiac 
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segmentation into LA, LVepi and LVendo for both ES and ED is reported in Figure 3. Our 
DL-based tool provided very high results for cardiac segmentation of LA (DSC = 87.57%, 
JAC = 79.75% and HD = 4.07 pixels), LVepi (DSC = 85.59%, JAC = 75.38% and HD = 4.96 
pixels) and LVendo (DSC = 92.63%, JAC = 86.76% and HD = 3.07 pixels). Despite the very 
high performance in all classes, the best recognized class was LVendo (DSC = 92.63 ± 
6.60%, JAC = 86.76 ± 8.40% and HD = 3.81 ± 1.09 pixels). 

Table 1. Distribution of DSC, JAC and HD for all patients, classified according to the dataset 
(training, validation, or testing). The number of patients and images presented in each dataset are 
also reported. 

 Training Dataset Validation Dataset Testing Dataset 
Number of patients 270 45 135 
Number of images 1080 180 540 

O
ve

ra
ll 

LA 
DSC (%) 95.12 ± 3.91 93.76 ± 7.36 87.57 ± 13.48 
JAC(%) 90.90 ± 5.41 88.86 ± 8.85 79.75 ± 15.76 

HD (pixels) 3.60 ± 0.83 3.68 ± 0.82 4.07 ± 1.08 

LVepi 
DSC (%) 91.79 ± 2.47 89.08 ± 3.29 85.59 ± 7.14 
JAC(%) 84.93 ± 4.12 80.47 ± 5.25 75.38 ± 9.17 

HD (pixels) 4.32 ± 0.73 4.62 ± 0.81 4.96 ± 1.09 

LVendo 
DSC (%) 95.18 ± 2.24 92.76 ± 4.64 92.63 ± 6.60 
JAC(%) 90.89 ± 3.90 86.81 ± 7.24 86.76 ± 8.40 

HD (pixels) 3.41 ± 0.81 3.66 ± 0.87 3.81 ± 1.09 

 
Figure 3. Example of cardiac segmentation into LA (white class), LVepi (light grey) and LVendo 
(dark grey). 

 



Diagnostics 2023, 13, 1683 8 of 11 
 

 

5. Discussion 
It is widely known that the segmentation of anatomical structures in the heart is an 

essential task, because the extracted features may be linked to cardiac dysfunctions, and 
thus clinically important for the detection of heart failure and infarction and the prediction 
of the occurrence of sudden cardiac death. Segmentation of the left ventricular structures 
is definitely clinically important. However, left atrium segmentation may further improve 
cardiac status evaluations and clinical diagnoses based on echocardiographic screening. 
Thus, differently from most of the works in the literature which simply identify the left 
ventricle, this study proposes a deep-learning-based tool able to segment the left 
ventricular endocardium, left ventricular epicardium and left atrium by combining an 
object-detection method, the YOLOv7 algorithm, with another convolutional neural 
network, U-Net. We selected the YOLOv7 algorithm because it guarantees high accuracy 
in combination with a low computational time. These properties make YOLOv7 a proper 
method for detecting anatomical structures from echocardiographic images. Indeed, 
echocardiographic tests are usually composed of different frames of a video, and the 
clinicians usually use this test to follow the cardiac movement. Thus, a fast detection 
algorithm may help the clinicians in real-time detection and evaluation of the anatomical 
structures of the left heart and, thus, of the global cardiac status. Moreover, combining 
detection and segmentation guarantees good performance even when training the tool 
using both two-chamber and four-chamber views at the same time, implying that there is 
no need to train two separate tools for each view. 

Another advantage of our deep-learning-based tool is its high flexibility. Indeed, the 
tool showed reliable performance even though working with images characterized by 
different levels of quality (manually classified as bad, medium and high quality by 
clinicians), representing different cardiac statuses (ejection fractions of these patients 
varied from 6% to 86%). Considering the high complexity of our method, we decided to 
implement the deep-learning-based tool using cloud computing. This technology allows 
the method to be trained and tested in a machine-independent environment. Additionally, 
this design setting guarantees an easy reproducibility and integrability within any 
support-level of the pipeline. With this aim, we selected the Pro version of Google Colab, 
because it allows the selection of high RAM (34 GB) and GPU (NVIDIA Tesla P100—16 
Gb video RAM) hardware acceleration settings. Despite the significant advantages 
provided by the Google Colab environment, our proposed method was not free of 
implementation challenges. Indeed, YOLOv7 and U-Net systems have 37,201,950 
parameters and 8,544,548 parameters to be trained, respectively. Thus, the training 
computational time is around 8 h, when using the strong GPU of Google Colab. Moreover, 
our deep-learning-based tool considers a uniform size of chambers identified by YOLOv7 
(Figure 1—Step 2), slightly limiting the information that U-Net may process. Thus, future 
studies will exploit novel solutions in order to speed up the training and may consider 
images with different sizes than the inputs of our U-Net. 

In order to compare our deep-learning-based tool with the literature, we considered 
all the papers that performed a similar analysis and organized their contents in Table 2. If 
the work included more than one dataset, we reported only the results on the CAMUS 
dataset. Nevertheless, the comparison can be performed only qualitatively, due to the high 
variability of dataset, validation methods, included frames and chamber views, number 
and type of considered segmented anatomical structures, and evaluation metrics. In our 
study, we relied only upon the static data division of the CAMUS dataset. Other studies 
have used datasets (an echo-dynamic dataset [17] or a huge dataset of porcine images [11]) 
as training dataset and then the CAMUS dataset as testing dataset. This mixture of data 
makes the performance interpretation very difficult because training and testing data are 
not acquired in the same conditions. Three studies [9,10,14] have applied the cross-
validation technique. Despite cross-validation being considered a robust validation 
method, it does not allow for the use of a unique model that can be inserted in the real 
clinical scenario. Distinct from all the other methods in the literature, we merged images 
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of different views (two- and four-chamber views) and different frames (ES and ED). 
Indeed, when implementing the YOLOv7 as an object-detection algorithm before the 
segmentation, our deep-learning-based tool does not need a priori classification of views 
and frames, since it is able to manage all images together without the need of applying 
the same architecture to different image configurations and the provision of separate 
results. Finally, only two studies in the literature [13,14] focused on the segmentation of 
three cardiac anatomical structures. Despite their slightly higher performances, both 
studies selected the images a priori according to cardiac chamber views and did not apply 
an automatic cardiac structure identification. Thus, even though not providing the highest 
performance, our proposed deep-learning-based tool seems to be the best method in terms 
of generalization. 

Table 2. Comparison of our deep-learning-based tool with studies in the literature.  

Ref. 
Dataset  

(Patients/Images) 
Dataset 

Split View Classes Method 
Performance (on CAMUS Dataset) 

LA LVepi LVendo 

[13] 
CAMUS 

(406/1624) 

10-fold 
cross-

validation 

Two and four 
chamber 

LVendo 
and LVepi U-Net n.a. 

ED: 
DSC = 95.4 ±2.3 
HD = 6.0 ± 3.4 

ES:  
DSC = 94.5 ±3.9 
HD = 6.1 ±4.6 

ED:  
DSC = 93.9 ± 4.3 
HD = 5.3 ± 3.6 

ES:  
DSC = 91.6 ±6.1 
HD = 5.5 ±3.8 

[14] 

(1) CAMUS 
(500/n.a.) 

(2) custom dataset 
(137/n.a.) 

5-fold cross-
validation 

Four 
chambers LV 

MFP-U-
Net n.a. 

DSC = 95 .3 ± 1.9 
HD = 3.5 ± 0.9 

[15] 

(1) custom dataset 
(8/1649) 

(2) CAMUS 
 (450/1800) 

n.a. 
Two and four 

chambers 
LVepi and 

LVendo SegAN n.a. 
DSC = 85.9 ± 6.4 
HD = 6.2 ± 1.2 

DSC = 91.7 ± 7.1 
HD = 5.1 ± 1.7 

[16] 
CAMUS 

(450/1800) 
Static data 

division 
Two and four 

chambers 

LA, LVepi 
and 

LVendo 
LFB-Net 

Four-chamber 
view:  

DSC = 92.0 ± 4.0 
 HD = 5.2 ± 3.5  
Two-chamber 

view:  
DSC = 92.0 ± 5.0 
HD = 4.8 ± 2.8 

Four-chamber 
view:  

DSC = 86.0 ± 6.0 
HD = 6.7 ± 3.0  
Two-chamber 

view:  
DSC = 88.0 ± 4.0  
HD = 7.1 ± 3.9 

Four-chamber 
view:  

DSC = 94.0 ± 3.0  
HD = 5.0 ± 2.8 
Two-chamber 

view:  
DSC = 94.0 ± 3.0  
HD = 5.6 ± 3.2 

[12] 

(1) EchoNet-
Dynamic  

(2500/5000) 
(2) CAMUS  
(500/2000) 

Static data 
divison 

Two and four 
chambers 

LVepi and 
LVendo 

PLANet n.a. 

ED:  
DSC = 96.2 ± 1.2 
HD = 4.6 ± 1.5 

ES:  
DSC = 95.6 ± 1.4 
HD = 4.6 ± 1.4 

ED:  
DSC = 95.1 ± 1.8  
HD = 4.2 ± 1.4 

ES:  
DSC = 93.1 ± 3.2 
HD = 4.3 ± 1.5 

[17] 
CAMUS  

(450/1800) 
5-fold cross-
validation, 

Two and four 
chambers 

LA, LVepi 
and 

LVendo 

Cardiac- 
SegNet 

ED: 
DSC = 89.5 ± 8.5 
HD = 2.2 ± 4.1 

ES: 
DSC = 92.2 ± 5.5 
HD = 2.7 ± 3.5 

ED: 
DSC = 96.0 ± 1.6 
HD = 2.9 ± 2.1 

ES: 
DSC = 95.3 ± 2.2 
HD = 2.8 ± 2.2 

ED: 
DSC = 94.8 ± 2.4 
HD = 2.3 ± 1.8 

ES: 
DSC = 92.7 ± 4.3 
HD = 2.3 ± 2.3 

[18] 
custom dataset  

(380/380) 
Static data 

division 
Four 

chambers 
LV 

Deep 
Res-U-Net 

n.a. 

ES : DSC = 82.1 ±0.8  
JAC = 66.9 ± 6.4  
HD = 23.8 ± 0.1 

ED : DSC = 86.5 ± 1.1 
JAC = 63.7 ± 9.6 
HD = 19.7 ± 0.2 
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[19] 

(1) EchoNet-
Dynamic 

(10,024/20,048) 
(2) CAMUS 
 (400/800) 

Static data 
division 

Four 
chambers 

LV DeepLabV
3 

n.a. DSC = 93.1 ± 0.04 

[20] custom dataset n.a. n.a. LVendo 
YOLOv3 

(Darknet5
3) 

n.a. n.a. DSC = 93.6 ± 2.0 
HD = 6.7 ± 1.8 

This 
study 

CAMUS 
(450/1800) 

Static data 
division 

Two and four 
chambers 

LA, LVepi 
and 

LVendo 

YOLOv7 
and U-Net 

DSC = 87.6± 
13.5 

JAC = 79.8 ± 
15.8 

HD = 4.1 ± 1.1 

DSC = 85.6 ± 7.1 
JAC = 75.4 ± 9.2 
HD = 5.0 ± 1.1 

DSC = 92.6 ± 6.6 
JAC = 86.8 ± 8.4 
HD = 3.8 ± 1.1 

n.a.—not applicable. 

Ultimately, it is worthwhile to observe that our proposed method was designed to be 
clinically applicable. It considered annotations of three independent cardiologists as the 
gold standard, in order to minimize the well-known effects of inter-cardiologist variability 
and subjectivity. Indeed, we believe that final diagnostic decision regarding the 
segmentation of anatomical structures of the left heart should be taken by clinicians, and 
ultimately only supported by an automatic tool as ours. Future studies will definitely 
confirm the clinical usability of our deep-learning-based tool by collaborating with 
clinicians in real clinical scenarios. 

6. Conclusions 
Echocardiographic imaging of the left heart is an efficient and flexible tool which can 

be applied in clinical practice. Considering its performance here, future studies will focus 
on the implementation of a real-time version of the algorithm and on its usefulness for the 
estimation of important clinical indices, such as the ejection fraction. 
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