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Abstract The nonlinear dynamics of composite plates with thermomechanical
coupling is analytically addressed in order to describe the main bifurcation phe-
nomena triggering the involved pre- and post-buckling response scenario. The
static buckling occurrence, and two resonance conditions around the unbuckled
and buckled equilibria are investigated by means of the asymptotic multiple scale
method, together with the double-zero bifurcation marking the occurrence of dy-
namical buckling. The resulting modulation equations and the steady state me-
chanical and thermal responses are determined and compared with the numerical
outcomes in order to verify the adequacy and effectiveness of the refined scalings
adopted in the multiple scale analyses to describe the various bifurcation scenar-
ios.

Keywords Laminated plate · Thermomechanical coupling · Nonlinear dynamics ·
Multiple scale method · Stability and bifurcation · Mechanical buckling

1 Introduction

The nonlinear dynamical behavior of composite plates in a thermomechanical
framework is a topic of practical interest in a variety of applications, mostly in
aerospace [1], but also in mechanical and civil engineering, as well as in micro-
electro-mechanics. As concerns thermomechanical modeling of structures, partially
(or one-way) coupled [2–12] as well as fully (or two-way) coupled [13–20] formu-
lations have been proposed in the literature. The former neglect the interaction
between mechanical and thermal variables, thus considering an assumed or in-
dependently derived temperature distribution to be included into the mechanical
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response as known terms involving temperature effects. Conversely, the fully cou-
pled models deal at one time with temperature and displacement variables, so that
the thermal energy equation is coupled with the governing mechanical equations
via the presence of additional mechanical terms, in a mathematically inseparable
context. Although being certainly more involved from a computational viewpoint,
the fully coupled models are able to take the actual thermomechanical interaction
into account, which can be crucial for catching meaningful effects at both material
and structure levels.

When dealing with the nonlinear dynamic behavior of thermomechanical plates,
various models of different order and richness have been proposed in the literature,
mostly using finite element approaches [6–10]. However, the inherent complexity
of these numerical analyses may meaningfully affect a correct interpretation of
the nonlinear phenomena. Conversely, resorting to reduced order models which
preserve the main features of the underlying continuum formulations may prove
essential to pursue easier analyses and a deeper understanding of the basic, yet
possibly involved, effects of coupling on the finite amplitude vibrations of geomet-
rically nonlinear structures.

In this framework, two different 2D models of laminated plates with von
Kármán nonlinearities have been proposed in the literature, by either neglect-
ing [21] or considering [22] shear deformability, and by consistently assuming a
corresponding linear or cubic variation of the unknown thermal field along the
plate thickness. For symmetric cross-ply laminates, a proper and controllable di-
mension reduction accomplished via Galerkin approximations has allowed in both
cases to end up to a minimal model (with one mechanical and two thermal equa-
tions/unknowns) still exhibiting the fundamental features of geometrical nonlin-
earity and thermomechanical coupling embedded in the underlying continuum
models. A systematic numerical investigation of the general nonlinear features of
local and global response has allowed the authors to discuss the system response
to different thermal boundary conditions possibly included in the model formu-
lation, as well as to mechanical and thermal external excitations. The outcomes
have highlighted the transition to mechanically- or thermally-induced buckled re-
sponses [23, 24], with also a focus on the different role played by coupling terms
in different excitation conditions [25]. Furthermore, global dynamics has shown
to be of major importance for reliably catching the non-trivial influence of the
slow transient thermal dynamics on the steady outcome of the faster mechanical
response [26].

Overall, the nonlinear behavior of the thermomechanical plate turns out to
be characterized by a rich and involved scenario with multistability regions and
chaotic solutions, whose description can be only achieved by means of refined nu-
merical tools. Yet, unveiling and analyzing the essential dynamical phenomena
underlying the system response can be crucial for a deep understanding of the
nonlinear dynamics of reduced order models. Indeed, the use of analytical asymp-
totic approaches, such as the multiple time scale method [27], can allow to shed
light on the often disordered and abundant results provided by numerical investi-
gations [28], and to predict, describe, and potentially modify the behavior of the
coupled system.

Actually, to the best of the authors’ knowledge, the effective use of multiple
scales for dealing with coupled thermomechanical problems is still quite limited;
see, e.g., the analysis of nonlinear dynamics and bifurcations of coupled thermo-
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optical MEMS oscillators in [29]. Indeed, due to the multiphysics nature of the
involved models, the two-field different effects ensuing from the concurrent pres-
ence of fast mechanical and slow thermal dynamical evolutions, and also consist-
ing of different roles played by the coupling terms in the mechanical and thermal
responses, need to be correctly contemplated in order to properly define the per-
turbation procedures. This being an issue that has recently been addressed also in
the general framework of a possibly systematic and efficient reduction of tempera-
ture dependent equations of structural dynamics, where a multiple scale approach
may allow to consistently account for the coexisting slow/fast thermo/mechanical
settings [30].

In this framework, the dynamics of the previously obtained reduced model of
shear deformable thermomechanical plate with cubic temperature variation along
the plate thickness [22], is herein analyzed in weakly nonlinear regime under me-
chanical excitations, with three main dynamical phenomena being detected. In or-
der to investigate each of them by means of the asymptotic multiple scale method,
hints obtained from the previous numerical analyses are properly implemented.
Analytical procedures with different scaling of the variables and parameters, as
well as different orders of development, are presented, and the existence and sta-
bility of mechanical and thermal responses are discussed.

The paper is organized as follows. In Section 2, the thermomechanical plate
model is summarized, with the main assumptions in the background and the re-
duced order equations of motion. An illustrative behavior of the system response in
strongly nonlinear regime is also described, along with the identification of the es-
sential dynamical phenomena. The following three sections analyze the asymptotic
primary resonant response of the model in pre-buckling (Sect. 3) and post-buckling
(Sect. 4) conditions, as well as the double-zero bifurcation marking the boundary
in between them (Sect. 5). All the involved analytical treatments are presented
in corresponding Appendices. Comparisons of analytical predictions with numer-
ical outcomes are also accomplished for the three considered cases. Eventually,
concluding remarks are reported in Sect. 6.

2 Model and dynamical response

The model under analysis is represented by a rectangular laminated plate with
von Kármán nonlinearities, third-order shear deformability, and consistent cubic
variation of the temperature along the thickness, whose formulation is presented
in [22], to refer to for all details. Furthermore, the relevant dimensionless model
has been adopted in [23–26], where nondimensionalization with respect to time,
plate thickness, and external frequency has been assumed in order to numerically
investigate the nonlinear dynamical response just at primary resonance. To ap-
ply an asymptotic approach requiring the explicitation of the forcing frequency,
nondimensionalization with respect to the system mechanical natural frequency
is adopted herein. Accordingly, and assuming isothermal edges and free heat ex-
change on the upper and lower surfaces, the following three coupled dimensionless
ordinary differential equations (ODEs) of motion describing the plate dynamics
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are obtained:

Ẅ + a12Ẇ + (1− p)W + a14W
3 + a15TR1 + a16TR0W − f cosΩt = 0

ṪR0 + a22TR0 + a23α1T∞ + a24WẆ = 0

ṪR1 + a32TR0 + a33Ẇ = 0

(1)

in terms of the nondimensional reduced variables W (t) (deflection of the center
of the plate), TR0(t) (membrane temperature) and TR1(t) (bending temperature).
The nondimensional mechanical excitations consist of a uniform steady in-plane
compressive force p on the plate edges, and a distributed harmonic transverse
mechanical excitation of amplitude f and frequency Ω. The thermal boundary
condition included in the membrane temperature equation is assumed to represent
a free heat exchange between the plate and the environment, with the relevant
constant thermal difference being represented by the parameter T∞. Coefficients
aij incorporate the geometrical and physical properties of the model, and the
numerical values selected to develop the following numerical investigations are
reported in Appendix A.

The interaction terms between mechanical and thermal variables are present
in all equations and highlight a full thermomechanical coupling. Although the
model is formulated to include different kinds of (body and/or boundary) thermal
excitations [22], in the following analyses the sole boundary thermal condition is
considered, together with the purely mechanical excitations.

The numerical dynamical behavior of the plate in strongly nonlinear regime at
primary external resonance has been the subject of previous publications [23–26],
which have already shown a quite rich and involved scenario with multistable re-
gions and also chaotic responses. In particular, bifurcation diagrams of the three
variables as a function of mechanical precompression p and thermal boundary
condition T∞ are reported in Fig. 1. Both parameters have been shown to play
a role in modifying the mechanical linear stiffness due to the thermomechanical
coupling inside the mechanical equation. Indeed, they produce the same effect on
the mechanical and bending thermal variables, so that it is possible to reproduce
exactly the diagrams of Fig. 1(a),(b) by alternatively applying a properly scaled
thermal excitation or a mechanical precompression. Differently, the membrane
temperature, which is directly activated by the thermal boundary condition, ex-
hibits different responses, as shown in Fig. 1(c). In general, the diagrams highlight
the transition to mechanically- or thermally-induced buckled responses, with the
passage from a monostable dynamics for low values of the parameters, to a rich
multistable behavior in the high values region.

The bifurcation diagrams are realized by means of the software AUTO [31] plot-
ting, for each branch, the maximum and minimum values of the relevant variable,
so that it is immediate to verify not only the stability range of each solution, but
also its amplitude. Accordingly, in the multistable region, a variety of 1-period so-
lutions can be detected, with a couple of low-amplitude buckled responses (orange
P1I/red P1II) and a couple of high-amplitude buckled solutions (cyan P1III/blue
P1IV), coexisting with the gray P1 solution. The latter represents the sole solution
existing in the pre-buckling regime, while in the post-buckling region it becomes
a cross-well response oscillating around both varied equilibria.

In the light of these results, the objective of the present work is to unveil
the bifurcation phenomena triggering the development of this rich multistable
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(a) (b)

(c)

Fig. 1 For Ω = 1 and f = 1, bifurcation diagrams of mechanical displacementW (a), bending
temperature TR1 (b) and membrane temperature TR0 (c) as a function of mechanical precom-
pression p and thermal variation T∞. Circle: saddle-node bifurcation; Square: transcritical
bifurcation; Diamond: period-doubling bifurcation. (Color figure online)

scenario and to comprehensively investigate it via an asymptotic approach. To
this aim, several bifurcation diagrams are obtained in the weakly nonlinear regime
by lowering the forcing amplitude of the mechanical excitation in order to follow
the evolution of the stable branches. One example is reported in Fig. 2, where
the forcing amplitude is one tenth of the value previously considered. From the
diagram, it can be observed that the six 1-period solutions are associated with
four main phenomena, namely: (i) A static pitchfork bifurcation inducing the
mechanical buckling, when the mechanical precompression p nullifies the linear
mechanical stiffness; (ii) a primary resonance involving the pre-buckling branch;
(iii-iv) a primary resonance at each of the two symmetric post-buckling branches.

Hence, as first analysis, the static equilibria of the coupled system (1) are
analytically determined as follows, by solving the relevant undamped unforced
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W

p

e1
e2

e3

Fig. 2 For Ω = 1, T∞ = 0 and f = 0.1, bifurcation diagram of mechanical displacementW as
a function of mechanical precompression p. Circle: saddle-node bifurcation; Square: pitchfork
bifurcation; Diamond: period-doubling bifurcation. Green diagram: static buckling; yellow-
squared region: primary resonance around pre-buckling equilibrium; magenta-squared regions:
primary resonance around post-buckling equilibria. (Color figure online)

model:

e1 = {We1 , TR0e1 , TR1e1} = {0,−a23α1T∞
a22

, 0},

e2,3 = {We2,3 , TR0e2,3 , TR1e2,3} = {±
√
a22(p− 1) + a16a23α1T∞√

a14a22
,−a23α1T∞

a22
, 0}

(2)
The e1 equilibrium corresponds to the pre-buckling configuration representing
the mechanical rest position, while e2 and e3 represent the two stable buckled
non-trivial solutions arising from the pitchfork bifurcation. The p − T∞ relation
describing the buckling condition, i.e. the static pitchfork bifurcation equation, is
readily obtained as:

p = −α1a16a23T∞
a22

+ 1 (3)

The subsequent investigation of the resonance conditions is then developed by
studying the weakly nonlinear dynamics around the detected equilibria. Due to
the symmetry of the buckled branches, the analysis will be focused only on the
positive buckled equilibrium.

3 Primary resonance around pre-buckling equilibrium

The weakly nonlinear dynamics analysis is accomplished by means of the asymp-
totic Multiple Scale Method [27] in order to study the system response around the
e1 equilibrium: W (t) = We1 + W̃ , TR0(t) = TR0e1 + T̃R0, TR1(t) = TR1e1 + T̃R1.
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Accordingly, the system equations read:

¨̃W + a12
˙̃W + ω2W̃ + a14W̃

3 + a15T̃R1 + a16T̃R0W̃ − f cosΩt = 0

˙̃TR0 + a22T̃R0 + a24W̃
˙̃W = 0

˙̃TR1 + a32T̃R0 + a33
˙̃W = 0

(4)

where the coefficient ω2 of the linear mechanical stiffness is defined as

ω2 = 1− p− a16a23α1T∞
a22

(5)

It is worth noting that the term related to the thermal boundary condition T∞ in
the membrane equation of system (1) in not present in (4). Indeed, it is a time-
independent term which influences the membrane temperature of equilibrium e1;
however, due to the ensuing thermal coupling inside the mechanical equation, it
is also able to modify the linear mechanical stiffness, as shown in Eq. (5).

Due to the presence of only cubic nonlinear term in the mechanical equation
(4), three time scales have been introduced, i.e., T0 = t, T1 = ϵt, T2 = ϵ2t, where
ϵ is a small dimensionless ordering parameter. Moreover, primary resonance is
investigated by imposing ω2 = Ω2 + ϵ σ, with σ being the detuning parameter.

In order to properly scale system variables and parameters, useful information
can be obtained from the numerical analyses of the nonlinear response [26]. In
fact, several outcomes in local and global dynamics have pointed out the different
time scales on which thermal (slow) and mechanical (fast) dynamics evolve, with
the thermal transient being very long with respect to the mechanical one. This be-
havior is typical for systems with multiphysics coupling, and strongly modifies the
mechanical steady response of the coupled system with respect to an uncoupled
model. Furthermore, detailed numerical investigations have allowed us to discuss
the role of the coupling terms inside the three equations [25]. They result to be
crucial into the thermal equations in order to determine the temperature response
[32], while having a marginal effect on the mechanical equation, whose dynam-
ics evolves much quicker than the coupled thermal one. For the purposes of the
present work, this behavior suggests to associate the thermal variables to a time
scale different from that of the mechanical variable in the multiple scale approach.
Moreover, coupling terms into thermal equations should appear at lower orders
than those into the mechanical equation, in order to properly describe the slower
thermal evolution.

Accordingly, variables and parameters are properly scaled to obtain the follow-
ing perturbation scheme:

• Order ϵ Mechanical equation: linear stiffness (generating solution)

• Order ϵ2 Mechanical equation: cubic term, damping, excitation, detuning

Thermal equations: mechanical coupling terms (a24, a33)

• Order ϵ3 Mechanical equation: thermal coupling terms (a15, a16)

Details about the asymptotic procedure are reported in Appendix B. The fol-
lowing amplitude modulation equations (AMEs) for the mechanical amplitude in
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polar form result

ȧ = 2(c11i sin θ + c1r cos θ) + c21ra−
3

2
c3ia

2 sin θ +
c4r
4
a3 (6)

aθ̇ = 2(c11i cos θ − c1r sin θ) + c21ia−
1

2
c3ia

2 cos θ +
c41i
4
a3 +

c5i
16
a5

while the reconstructed solutions read

W (t) =We1 + W̃ = a cosψ + c6 a
3 cos(3ψ)

TR0(t) = TR0e1 + T̃R0 = TR0e1 + c7 a
2 cos(2ψ) + c8 a

2 sin(2ψ)

TR1(t) = TR1e1 + T̃R1 = c9 a cosψ + c10 a sinψ

(7)

where a and θ are the real amplitude and phase of the mechanical response, re-
spectively, ψ = Ωt + θ, and the expressions of cjk and cj1k (k = i, r) coefficients
are reported in Appendix B.

It is worth highlighting that mechanical and thermal excitations represented
by p and T∞, respectively, are taken into account into the asymptotic equations
by the detuning parameter σ, through Equation (5). In turn, σ is included in the
coefficients c11i = c11i(σ), c21i = c21i(σ, σ

2), c41i = c41i(σ). This means that the
excitations modify constant, linear and cubic terms into the modulation equations.
As concerns the reconstructed solutions, the mechanical response is a combination
of harmonic and order-3 superharmonic contributions, while the thermal solutions
are obtained as single-contribution responses. In particular, membrane response
is order-2 superharmonic due to the quadratic nature of the mechanical coupling
a24WẆ into the membrane thermal equation, while bending temperature has
only harmonic contributions due to the linear coupling with mechanical response
through the a33Ẇ term into the bending thermal equation.

To analytically determine the nonlinear mechanical frequency, the undamped
unforced amplitude modulation equations (6) are obtained by nullifying the forcing
and damping coefficients of Eqs. (4), i.e. a12 = f = a24 = a33 = 0. The resulting
equations are:

ȧ = 0 (8)

aθ̇ = c21ia+
c41i
4
a3 +

c5i
16
a5

The former equation states that the amplitude is time-independent, while integra-
tion of the latter furnishes the phase angle θ linearly depending on time according
to the function

θ(t) = θ0 +ϖt, ϖ =
(
c21i +

c41i
4
a2 +

c5i
16
a4

)
(9)

where ϖ represents the amplitude-dependent nonlinear mechanical frequency.
Validation of the asymptotic procedure is performed by comparing the ana-

lytical results obtained for the three variables of the thermomechanical problem
(red curves) with the outcomes from numerical integration of system ODEs (1)
(black curves), in terms of response diagrams versus the varying bifurcation pa-
rameter (p or T∞) (Fig.3) and of periodic solutions in the state planes (Fig.4). The
analytical results from Eqs. (6) and (7) are obtained by means of Mathematica
[33]. As regards the bifurcation diagrams of Fig.3, the real asymptotic mechanical
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a

p

T∞

(a)

TR1

p

T∞

(b)

TR0

p
(c)

TR0

T∞

Fig. 3 For Ω = 1 and f = 0.05, comparison between numerical (black) and asymptotic
(red) responses for mechanical amplitude a (a), bending temperature TR1 (b) and membrane
temperature TR0 (c). Precompression p or, alternatively, thermal difference T∞ is assumed as
bifurcation parameter.
The blue dashed curve in (a) represents the analytical backbone curve. Circle: saddle-node

bifurcation.(Color figure online)

amplitude from (6) is compared with the numerical amplitude obtained as semi-
difference between the maximum and minimum values of the periodic response:
anum = (max(W )−min(W ))/2. Note that in this way the static component of the
numerical response (which in this case is actually vanishing) is filtered out. Dif-
ferently, the maximum numerical oscillation of each thermal variable is compared
with the corresponding maximum asymptotic value furnished by the reconstructed
solutions (7). The asymptotic (red) and numerical (black) diagrams completely
overlap for all variables. Thus, the proposed perturbation procedure proves capa-
ble of almost perfectly reproducing the behavior of the system, both around and
outside the resonance region, also when the response amplitudes reach moderately
severe values in the resonance peak. Moreover, the nonlinear mechanical frequency
(9) has been plotted to obtain the analytical backbone curve (blue dashed curve in
Fig.3(a)) which is able to accurately reproduce the trend of the resonance curve.

It is worth highlighting that the proposed asymptotic treatment holds not only
for variations of the mechanical prestress, but also for the possible presence of a
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-5.×10-7 0 5.×10-7
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0

1.×10-6

TR0

T

R0
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-0.0002

0
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R1
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0

0.5
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(b)

-0.00001 0 0.00001

-0.00002

0

0.00002

TR0

T

R0

-0.001 0 0.001
-0.001

0

0.001

TR1

T

R1

Fig. 4 For Ω = 1 and f = 0.05, p = 0.3, low-amplitude (a) and high-amplitude (b) 1-period
solutions in the mechanical and thermal state planes. Black curves: numerical response; red
curves: asymptotic response. (Color figure online)

temperature difference between plate and environment. Indeed, figure 3 confirms
that, also in the analytical treatment, p and T∞ produce equivalent effects in terms
of mechanical displacement W and bending temperature TR1, while the thermal
variation T∞ makes the membrane temperature TR0 settle onto a straight line, as
expected (Fig.3(c), right panel).

Finally, figure 4 shows the ability of the obtained results in perfectly reproduc-
ing the low-amplitude nonresonant system response in the mechanical and thermal
state planes (Fig.4(a)). However, looking at the high-amplitude resonant solution,
the mechanical response is seen to be well reproduced, while the asymptotic ther-
mal solutions exhibit a slight difference with respect to the numerical outcomes
(Fig.4(b)). This is due to the fact that a single harmonic contribution has been
considered in the thermal solutions (7), without transferring the order-3 superhar-
monic contribution of the mechanical response into the thermal response. However,
the difference is only marginal and concerns the form of the solution rather than
its amplitude.
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4 Primary resonance around post-buckling equilibrium

The analysis around the buckled e2 equilibrium (W (t) = We2 + W̃ , TR0(t) =
TR0e2 + T̃R0, TR1(t) = TR1e2 + T̃R1) leads to the following set of equations:

¨̃W + a12
˙̃W + ω2W̃ + a14W̃

3 +
3

2a141
ωW̃ 2 + a15T̃R1 + a16(ωa141 + W̃ )T̃R0 − f cos (Ωt) = 0

˙̃TR0 + a22T̃R0 + a24
˙̃W (ωa141 + W̃ ) = 0

˙̃TR1 + a32T̃R0 + a33
˙̃W = 0

(10)
where

ω2 = 2

(
p− 1 +

a16a23α1T∞
a22

)
, a141 =

1√
2a14

(11)

Additional terms in mechanical and membrane thermal equations can be rec-
ognized with respect to the pre-buckling analysis. Consequently, the asymptotic
procedure in post-buckling regime requires a different scaling of variables and pa-
rameters, and different expansions to higher orders are needed to account for the
main effects due to the presence of both quadratic and cubic nonlinearities into
the mechanical equation. Accordingly, five time scales have been introduced, i.e.,
T0 = t, T1 = ϵt, T2 = ϵ2t, T3 = ϵ3t, T4 = ϵ4t, while primary resonance is investi-
gated by imposing ω2 = Ω2+ ϵ2σ, with σ being the detuning parameter. Variables
and parameters are properly scaled in order to obtain the following perturbation
scheme:

• Order ϵ Mechanical equation: linear stiffness (generating solution)

• Order ϵ2 Mechanical equation: quadratic term

Thermal equations: mechanical coupling terms (a24, a33)

• Order ϵ3 Mechanical equation: cubic term, damping, excitation, detuning

Thermal equations: correction

• Order ϵ4 Mechanical equation: thermal coupling terms (a15, a16)

Thermal equations: correction

• Order ϵ5 Mechanical equation: correction

Details about the asymptotic procedure are reported in Appendix C. The following
modulation equations for the mechanical amplitude in polar form result

ȧ = +2(c1i sin θ + c1r cos θ) + c2ra+
5c3ia

2 sin θ

4
+
c4ra

3

4

aθ̇ = 2(c1i cos θ − c1r sin θ) + c2ia−
c3ia

2 cos θ

4
+
c4ia

3

4
+
c5ia(t)

5

16

(12)
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while the reconstructed solutions read

W (t) =We2 + W̃ =We2 − 3c6a
2 − 27c7a

4 + a cosψ + c8a cos(2ψ − θ)

+ (c6a
2 + 14c7a

4) cos(2ψ) + c9a
2 sin(2ψ) + c10a

3 cos(3ψ) + c7a
4 cos(4ψ)

TR0(t) = TR0e2 + T̃R0 = TR0e2 + c11 cos(ψ − θ) + c12a cosψ + c13a
3 cosψ

+ c14a
2 cos(2ψ) + c15a

3 cos(3ψ) + c16 sin(ψ − θ) + c17a sinψ + c18a
3 sinψ

+ c19a
3 sin(3ψ) + c20a

2 sin(2ψ)

TR1(t) = TR1e2 + T̃R0 = c21 cos(ψ − θ) + c22a cosψ + c23a
3 cosψ

+ c24a
2 cos(2ψ) + c25a

3 cos(3ψ) + c26 sin(ψ − θ) + c27a sinψ

+ c28a
3 sinψ + c29a

2 sin(2ψ) + c30a
3 sin(3ψ)

(13)

where a and θ are the real amplitude and phase of the mechanical response, re-
spectively, ψ = Ωt + θ, and the expressions of cjk and cj1k (k = i, r) coefficients
are reported in Appendix C. It is worth noting that the obtained AMEs for the
mechanical response are formally equal to those obtained from the pre-buckling
analysis (6) presented in the previous section, although with different cij expres-
sions. Differently, the analytical expressions of the mechanical and thermal solu-
tions are enriched by several contributions with respect to the pre-buckling case
(7), due to the increased number of perturbation orders here considered.

As for the pre-buckling analysis, the nonlinear mechanical frequency can be
analytically determined by studying the undamped unforced amplitude modula-
tion equations (12), which are obtained by nullifying the forcing and damping
coefficients in Eqs. (10), i.e. a12 = f = a24 = a33 = 0:

ȧ = 0 (14)

aθ̇ = c2ia+
c4i
4
a3 +

c5i
16
a5

Integrating the latter equation allows us to get the amplitude-dependent nonlin-
ear mechanical frequency ϖ, which can be employed to obtain the mechanical
backbone curve:

θ(t) = θ0 +ϖt, ϖ =
(
c2i +

c4i
4
a2 +

c5i
16
a4

)
(15)

Like the amplitude modulation equations, also the nonlinear mechanical frequen-
cies have the same expressions in pre-buckling and post-buckling resonances, with
different definitions of the relevant coefficients.

Comparison between numerical (black curves) and analytical (red curves) re-
sults is reported in Fig.5 in terms of mechanical and thermal bifurcation diagrams.
As in the previous section, the asymptotic mechanical amplitude obtained from
the AMEs (12) is compared with the semi-difference of maximum and minimum
values of the numerical oscillation from the ODEs (1). Note that also in this case
the non-vanishing static component of the overall numerical response is filtered
out. Analytical thermal responses are obtained in terms of maximum values of the
corresponding reconstructed solutions (13).

Looking at Figs.5(a),(b), a very good agreement between numerical and an-
alytical outcomes can be observed for the mechanical displacement W and the
bending temperature TR1. Differently, the asymptotic response of the membrane
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p
(c)
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T∞

Fig. 5 For Ω = 1 and f = 0.05, comparison between numerical (black) and asymptotic
(red) responses for mechanical amplitude a (a), bending temperature TR1 (b) and membrane
temperature TR0 (c). Precompression p or, alternatively, thermal difference T∞ is assumed as
bifurcation parameter. The blue dashed curve in (a) represents the analytical backbone curve.
Circle: saddle-node bifurcation; square: pitchfork bifurcation. (Color figure online)

temperature TR0 for varying precompression p (left panel of Fig.5(c)) is acceptable
near the resonance condition, with a slight overestimation of the peak, which is
coherent with the trend of the bending temperature (Fig.5(b)), and also with the
reconstructed mechanical response (see Fig.9(b) forward). Away from the reso-
nance region, however, the numerical membrane response is not correctly repro-
duced by the analytical results, especially in the lowest range of p values where the
pre- and post-buckling branches should be connected to each other through the
pitchfork bifurcation point. Observing the expressions of the analytical solutions
in pre- and post-buckling regimes, the pre-buckling membrane response (second of
(7)) is seen to be governed by the order-2 superharmonic contribution, coherently
with the quadratic nature of the coupling term present in the membrane equation
(a24 term in (4)). In the post-buckling regime, conversely, the reconstructed mem-
brane response (13) is characterized by several frequency contents, including all
harmonic contributions originated by the a24ωa141Ẇ term in equation (10), which
is absent in the pre-buckling system. Since the asymptotic procedure provides for
the imposition of the resonance condition (11) (and relevant square root), such
ω-dependent term becomes dominant in the membrane response, not only in the
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TR0

p

Fig. 6 For Ω = 1 and f = 0.05, comparison between numerical response (black), asymptotic
response with resonance conditions applied in all terms (red), and asymptotic response with
resonance conditions applied only in the purely mechanical terms (green), for the membrane
temperature TR0. Circle: saddle-node bifurcation. (Color figure online)

resonance region but also in the nonresonant range and around the bifurcation
point. Such observation suggests to asymptotically study the thermal response
outside the resonance region by applying the same asymptotic procedure, without
however resonating the ω-dependent terms related to the thermal variable. This
approach sounds reasonable in physical terms since the thermal solution is not
directly forced by the harmonic excitation but is merely dragged into the overall
response by the mechanical component.

Therefore, an alternative asymptotic procedure is developed by imposing the
resonance condition only to the terms related to W and W 2 in the mechanical
equation (10). Following the same scheme previously described allows us to deter-
mine the AMEs for the mechanical variable, which turn out to be formally identical
to those in (12). The expressions of the cij coefficients are equal too, apart from
a slight difference in the a16-dependent terms of the c2r, c2i coefficients, which
anyway have a completely negligible influence on the mechanical response. The
bending thermal response is not influenced by the different imposition of the res-
onance condition, while the analytical membrane temperature, which is formally
identical to (13), shows different expressions of the coefficients (see Eq. (70) in Ap-
pendix C). The behavior of the resulting membrane thermal response is described
by the green curve of Fig.6, which is compared with the previous analytical re-
sults (red curve) and with the ODEs numerical integration (black curve). The new
asymptotic solution is able to correctly reproduce the numerical outcomes even far
from the resonance region, while the resonance peak is slightly underestimated due
to the minor contribution provided by the dragging harmonic component which
dominates the (mechanical) response in this region.

The post-buckling solutions in the mechanical and thermal phase planes are
reported in Fig.7 and confirm the goodness of the overall asymptotic approach
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Fig. 7 For Ω = 1, f = 0.05, p = 2.0, low-amplitude (a) and high-amplitude (b) 1-period solu-
tions in the mechanical and thermal state planes. Black curves: numerical response; red curves:
asymptotic response with resonance conditions applied in all terms; green curves: asymptotic
response with resonance conditions applied only to the purely mechanical terms. (Color figure
online)

for both resonant and nonresonant responses. It is worth underlining that the
symmetry distortion effect in the shape of the resonant mechanical response, now
entailed by the even superharmonic contributions also present in the analytical so-
lution with respect to the pre-buckling one, is fully consistent with the numerical
outcome. As regards the membrane thermal response, the nonresonant solution
is slightly overestimated by the asymptotic procedure with resonance in all ω-
dependent terms (red curve), while it is correctly reproduced by the asymptotic
approach without resonance in the ω-dependent terms related to the thermal vari-
able (green curve). However, as far as the resonant solution is concerned, the latter
approach not only slightly underestimates the response amplitude, as already seen
before in Fig.6, but it also worse reproduces the overall form of the numerical
solution, which is evidently influenced by the order-1 and order-3 contributions
provided by the mechanical variable. Conversely, the red response, with resonance
in all terms, proves to better fit the numerical solution in the resonant case.

5 Asymptotic analysis of double-zero bifurcation

In order to properly define the range of validity of the asymptotic responses de-
termined in the previous sections, the pitchfork bifurcation separating the pre-
and post-buckling solutions is here investigated. Such bifurcation corresponds to
the static bifurcation of system equilibria defined by relation (3) when the anal-
ysis is extended to the dynamic nonlinear regime. Thus, as before, its occurrence
is induced by the vanishing of the linear mechanical stiffness. The study is per-
formed by referring to the dynamical system around e1 equilibrium (4), when the
linear frequency is scaled according to ω2 = ϵω̂2 (with the hat thereafter skipped),
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in addition to the observations on the scaling of parameters and variables made
in Section 3. It can be deduced that the bifurcation under analysis is associated
with a Jordan block of the Jacobian matrix leading to a double-zero eigenvalue.
As shown in the literature, the double-zero bifurcation has to be analysed by
means of fractional power series expansions [34, 35]. The asymptotic procedure
is presented in Appendix D, and calls for the introduction of three time scales,
i.e., T0 = t, T1 = ϵ1/2t, T2 = ϵt, and for the scaling of the mechanical harmonic
excitation to the generating order due to the nonresonant region under analysis,
according to the following perturbation scheme:

• Order ϵ Mechanical equation: external excitation

(complementary and particular solution)

• Order ϵ3/2 Mechanical equation: correction

Thermal equations: mechanical coupling terms (a24, a33)

• Order ϵ2 Mechanical equation: linear stiffness, cubic term, damping,

thermal coupling terms (a15, a16)

The resulting real amplitude modulation equation for the mechanical displace-
ment, which is an order-2 differential equation, is

Ä = c1A+ c3A
3 (16)

where c1 and c3 coefficients are defined in Appendix D. The fixed points of Eq.
(16) are obtained by setting A = cost, and read

Ae = {0,

√
ω2(p)− c11f2

c3
,−

√
ω2(p)− c11f2

c3
} (17)

where c11 = 2a16a24

4a2
22Ω

2+4Ω4 − 3a14

2Ω4 . In (17), it is worth noting the dependence of the

fixed points on both mechanical excitations, i.e. precompression p and harmonic
forcing amplitude f , which are chosen as control parameters to investigate the
variation of the fixed points.

Figure 8 shows the fixed points evolution in the (p, f, A) space, and highlights
the effect of the harmonic forcing amplitude on the behavior of the nontrivial fixed
points, which arise for higher and higher p values as the forcing amplitude increases.
In particular, the AME fixed points are seen to coincide with the static equilibria
e1,2,3 of the system (red curves) when the unforced system is considered. In fact,
recalling the expression of ω2 ((5)) and that of c3 coefficient, it is straightforward
to reduce Eqs. (17) to Eqs.(2) when f = 0. The pitchfork bifurcation is detected by
the fixed point intersection, i.e., double-zero bifurcation occurs when Ae2,e3 = 0,
corresponding to

f =
ω(p)
√
c11

(18)

The pitchfork bifurcation threshold in the (p, f) plane is reported in Fig.9(a)
with dashed lines. In particular, the asymptotic relation (18) (red dashed curve)
is compared with numerical outcomes obtained through continuation technique
(black dashed curve). The saddle-node bifurcation loci deriving from the previous
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Fig. 8 For Ω = 1 and T∞ = 0, fixed points Ae of AME (16) in the (p, f, A) space. (Color
figure online)

f
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(a)

(b)

W

p
(b)

Fig. 9 For Ω = 1 and T∞ = 0, stability chart in the (p, f) plane (a); Bifurcation diagram of the
maximum displacementW for f = 0.05 (b). Black lines: numerical ODEs integration; red lines:
asymptotic results. Saddle-node bifurcation: solid lines (a)/circle (b); Pitchfork bifurcation:
dashed lines (a)/square (b). Red regions: asymptotic bistability; overlapped gray/red regions:
numerical/asymptotic bistability. (Color figure online)

analyses at pre- and post-buckling resonances (represented by circles in Figs. 3, 5
and 9(b)) are also reported in Fig. 9(a) by solid lines.

Indeed, the figure represents a chart characterizing the overall behavior of the
system in terms of stability of all detected 1-period solutions, thus including and
summarizing the results presented in the previous sections. The saddle-node bifur-
cations identify bistability regions (coloured regions) characterized by the concur-
rent presence of resonant and nonresonant responses, which exist around pre- and
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post-buckling resonances. The pitchfork bifurcation ensuing from the asymptotic
treatment herein accomplished separates the ranges of applicability of the results
obtained in the pre-buckling and post-buckling regimes. For easier reading of the
chart, Figure 9(b) shows the bifurcation diagram of the maximum value of the
mechanical displacement W , for f = 0.05 and in a range of precompression values
such to include both pre- and post-buckling resonance regions.

With a view to validating the analytical results, the chart confirms the ex-
cellent ability of the presented analyses to reproduce the overall response of the
system, not only in terms of amplitude of the mechanical and thermal responses,
but also as regards their existence and stability, marked by the various identified
local bifurcations, even for moderately high values of the excitation parameters.
In fact, the analytical red curves and regions in Fig. 9(a) are almost completely
indistinguishable from the black curves (and ensuing gray regions) obtained via
continuation of the numerical outcomes from ODEs (1), just with slight discrep-
ancies when moving away from the resonance conditions or for high values of the
forcing amplitude.

6 Conclusions

The weakly nonlinear dynamics of a thermomechanical plate has been investi-
gated by means of asymptotic approaches aimed at understanding and describing
the main dynamical phenomena which underly the rich multistable scenario char-
acterizing the strong nonlinear behavior. For low values of the mechanical forcing
excitation, three main dynamical phenomena have been investigated, namely the
responses at primary resonance around pre- and post-buckling equilibria, and a
double-zero bifurcation marking the dynamical buckling of the plate.

The different features of the equation systems governing the dynamics in pre-
and post-buckling regimes has called for the development of specific asymptotic
procedures. Moreover, the multiphysics context characterized by the contemporary
presence of thermal (slow) and mechanical (fast) dynamics has required a careful
evaluation in the scaling of variables as well as of coupling terms into the mechan-
ical and thermal equations. The analytical outcomes of the investigations around
the two primary resonances reveal that the mechanical amplitude is governed
by formally identical equations in pre-buckling and post-buckling conditions, of
course with a different expression of the coefficients. Differently, the reconstructed
mechanical and thermal solutions in post-buckling regime are characterized by a
much richer content of superharmonic contributions than in the pre-buckling case,
due to the higher asymptotic order which has been necessary to achieve in order
to account for all the attain and coupling terms exhibited by the model.

To analytically determine the bifurcation equation describing the dynamical
buckling, a fractional-order multiple scale approach has been applied to the system
with vanishing linear stiffness. The equilibrium analysis of the ensuing order-2
differential equation describing the dynamics of the real mechanical amplitude
has proved to be efficient in furnishing the frequency-forcing amplitude relation
describing the boundary between pre- and post-buckling behaviors.

All asymptotic procedures have demonstrated their ability in grasping the ac-
tual dynamics of the thermomechanical model obtained by numerical simulations,
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overall framing the relevant results within a consistent and comprehensive inter-
pretative scenario. Reliability of the analytical results has been verified in terms
of existence and stability of the detected periodic responses, as well as in terms of
portraits of the mechanical and thermal solutions in the phase plane. It is worth
underlining that the proposed procedures account for the possible contemporary
variation of both mechanical excitations, represented by in-plane precompression
and transversal harmonic forcing, and thermal boundary condition accounting for
free heat exchange between plate and environment. As a consequence, the obtained
analytical relations represent a manageable and versatile tool for parametric anal-
ysis and design of plate dynamics in a full thermomechanical environment. Of
course, considering different thermal boundary conditions would lead to a differ-
ent set of equations of motion, as illustrated in [22, 24], which would require a
different organization of all asymptotic procedures.
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Appendix A Material properties and equation coefficients

The dynamical behavior of the thermomechanical model is investigated by considering an
epoxy/carbon fibre composite plate of dimensions a = b = 1 m and h = 0.01 m. The material’s
elastic and thermal properties, which are assumed to be independent of the temperature, are
taken from [36], and read:

Y1 = 1.72 · 1011
N

m2
, ν12 = 0.25, ρ = 1940

kg

m3
, λ11 = 36.42

W

m ·K
,

α1 = 0.57 · 10−6 1

K
, Y2 = 6.91 · 109

N

m2
, G12 = 3.45 · 109

N

m2
,

λ22 = 0.96
W

m ·K
, α2 = 35.6 · 10−6 1

K
, cv = 400

J

kg ·K
,

δ = 330
N · s
m3

, H = 100
W

m2 ·K

(19)

where Y1, Y2, G12 are longitudinal modulus of rigidity in x and y direction and shear modulus,
respectively; ν12 is the Poisson’s ratio; ρ and δ are mass density and damping coefficient;
λ11, λ22, λ33 are the thermal conductivities along the x, y and z directions; α1, α2 are the
thermal expansions along x and y directions; cv is the specific heat at constant strain, and
H is the boundary conductance. The subsequent value of the mechanical natural frequency is
286.67Hz. After nondimensionalization, the numerical coefficients of Eqs. (1) are:

a12 = 0.0593, a14 = 0.6859, a15 = −0.2729, a16 = −0.9036,

a22 = 7.81 · 10−5, a23 = −1.2391, a24 = 1.08 · 10−4,

a32 = 6.06 · 10−4, a33 = 0.001195

(20)

Appendix B Multiple Scale analysis of the pre-buckling equilibrium

To develop the asymptotic procedure to the system (4), three time scales are introduced, i.e.,
T0 = t, T1 = ϵt, T2 = ϵ2t, and, consistently, the time derivatives are expressed as

d/dt = D0 + ϵD1 + ϵ2D2

d2/dt2 = D2
0 + 2ϵD0D1 + ϵ2D2

1 + 2ϵ2D0D2

(21)

where Di = ∂/∂Ti. Due to the presence of only cubic nonlinear term in the mechanical
equation, and in order to account for the different time evolution of the mechanical variable
with respect to the thermal ones, variables are scaled as follows:

W̃ = ϵ1/2 Ŵ , T̃R0 = ϵ3/2 T̂R0, T̃R1 = ϵ3/2 T̂R1 (22)

so that their expression as perturbation of the reference equilibrium reads:

W̃ (t) = ϵ1/2W0(T0, T1, T2) + ϵ3/2W1(T0, T1, T2) + ϵ5/2W2(T0, T1, T2)

T̃R0(t) = ϵ3/2T00(T0, T1, T2) + ϵ5/2T01(T0, T1, T2) + ϵ7/2T02(T0, T1, T2)

T̃R1(t) = ϵ3/2T10(T0, T1, T2) + ϵ5/2T11(T0, T1, T2) + ϵ7/2T12(T0, T1, T2)

(23)

Parameter scaling is performed by assuming small damping and small transversal excitation,
while coupling terms are scaled to properly account for the different time scale at which thermal
variables evolve with respect to the mechanical one:

a12 = ϵ â12, f = ϵ3/2 f̂ , a15 = ϵ â15, a16 = ϵ1/2 â16, a24 = ϵ1/2 â24, a33 = ϵ â33
(24)

To study the response around primary resonance, detuning parameter σ is introduced:

ω2 = Ω2 + ϵ σ (25)
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Once scaled by ϵ−1/2, the resulting perturbation equations at each order read:

• Order ϵ D2
0W0 +Ω2W0 = 0 (26)

• Order ϵ2 D2
0W1 +Ω2W1 = −a12D0W0 − a14W

3
0 − 2D0D1W0 − σW0 + f cos(ΩT0)

D0T00 + a22T00 = −a24W0D0W0 (27)

D0T10 + a32T10 = −a33D0W0

• Order ϵ3 D2
0W2 +W2Ω

2 = −a12D0W1 − a12D1W0 − 3a14W1W
2
0 − a15T10

− a16T00W0 − 2D0D1W1 −D2
1W0 − 2D0D2W0 − σW1 (28)

D0T01 + a22T01 = −a24W0D0W1 − a24W0D1W0 − a24W1D0W0 −D1T00

D0T11 + a32T11 = −a33D0W1 − a33D1W0 −D1T10

At first order, the solution of the mechanical equation (26) reads

W0 = A(T1, T2)e
iΩT0 + c.c. (29)

with A(T1, T2) undetermined function of the slow time scales and c.c. complex conjugate terms
(the overbar will denote the complex conjugate and i is the imaginary unit). Substituting W0

in the first equation of (27), and imposing the solvability condition implies

D1A =
i
(
−f + 2(σ + ia12Ω)A+ 6a14A2Ā

)
4Ω

(30)

The particular solutions at order ϵ2 are

W1 =
a14A3e3iΩT0

8Ω2
+ c.c.

T00 =
a24ΩA2e2iΩT0

ia22 − 2Ω
+ c.c.

T10 =
a33ΩAeiΩT0

ia32 −Ω
+ c.c.

(31)

In view of Eqs. (29)-(31), the solvability condition of the mechanical problem at the third order
(28) yields

D2A = c1r + ic1i + (c2r + ic2i)A+ ic3iA
2 − 2ic3iAĀ+ (c4r + ic4i)A

2Ā+ ic5iA
3Ā2 (32)

where

c1r =
a12f

16Ω2
, c1i =

fσ

16Ω3
, c2r =

a15a32a33

2
(
a232 +Ω2

) , c2i = −
a212
8Ω

−
a15a33Ω

2
(
a232 +Ω2

) −
σ2

8Ω3
, (33)

c3i = −
3a14f

16Ω3
, c4r =

3a12a14

4Ω2
+

a16a22a24

2
(
a222 + 4Ω2

) , c4i = −
3a14σ

4Ω3
−

a16a24Ω

a222 + 4Ω2
, c5i = −

15a214
16Ω3

According to the usual reconstitution procedure [37], the amplitude derivatives with respect
to time t are obtained from (21)

Ȧ = ϵD1A+ ϵ2D2A (34)

The ϵ parameter is completely reabsorbed through a backward rescaling, and recalling Eqs.
(30) and (32), the complex amplitude modulation equation for the mechanical variable results

Ȧ = c1r + ic11i + (c21r + ic21i)A+ ic3iA
2 − 2ic3iAĀ+ (c4r + ic41i)A

2Ā+ ic5iA
3Ā2 (35)

where

c11i = −
f

4Ω
+ c1i, c21r = c2r −

a12

2
, c21i = c2i +

σ

2Ω
, c41i =

3a14

2Ω
+ c4i (36)



22 Valeria Settimi, Giuseppe Rega

The complex-valued modulation equation for the mechanical amplitude A can be conveniently
expressed in polar form applying the following transformation

A =
1

2
a(t)eiθ(t), Ā =

1

2
a(t)e−iθ(t) (37)

Separating real and imaginary parts leads

ȧ = 2(c11i sin θ + c1r cos θ) + c21ra−
3c3ia

2 sin θ

2
+
c4ra3

4
(38)

aθ̇ = 2(c11i cos θ − c1r sin θ) + c21ia−
c3ia

2 cos θ

2
+
c41ia

3

4
+
c5ia

5

16

where the time dependence of a and θ has been omitted for the sake of readability. Finally, the
system asymptotic solutions can be reconstructed at second order by recalling equations (29)

and (31). Moreover, remembering that W (t) = We1 + W̃ , TR0(t) = TR0e1 + T̃R0, TR1(t) =

TR1e1 + T̃R1, mechanical and thermal solutions can be expressed in trigonometric form as

W (t) = a cosψ + c6 a
3 cos(3ψ) (39)

TR0(t) = TR0e1 + c7 a
2 cos(2ψ) + c8 a

2 sin(2ψ) (40)

TR1(t) = c9 a cosψ + c10 sinψ (41)

where ψ = Ωt+ θ and

c6 =
a14

32Ω2
, c7 = −

a24Ω2

a222 + 4Ω2
, c8 =

a22a24Ω

2
(
a222 + 4Ω2

) , c9 = −
a33Ω2

a232 +Ω2
, c10 =

a32a33Ω

a232 +Ω2

Appendix C Multiple Scale analysis of the post-buckling equilibrium

Due to the presence of quadratic and cubic nonlinear terms in the mechanical equation (10),
five time scales are introduced, i.e., T0 = t, T1 = ϵt, T2 = ϵ2t, T3 = ϵ3t, T4 = ϵ4t, so that
time derivatives are expressed as

d/dt = D0 + ϵD1 + ϵ2D2 + ϵ3D3 + ϵ4D4

d2/dt2 = D2
0 + 2ϵD0D1 + ϵ2(D2

1 + 2D0D2) + 2ϵ3(D1D2 +D0D3)

+ ϵ4(D2
2 + 2D1D3 + 2D0D4)

(42)

where Di = ∂/∂Ti. To account for the different time evolution of the mechanical variable with
respect to the thermal ones, variables are scaled as follows:

W̃ = ϵ Ŵ , T̃R0 = ϵ2 T̂R0, T̃R1 = ϵ2 T̂R1 (43)

so that their expression as perturbation of the reference equilibrium reads:

W̃ (t) = ϵW0(T0, T1, T2, T3, T4) + ϵ2W1(T0, T1, T2, T3, T4) + ϵ3W2(T0, T1, T2, T3, T4)

+ ϵ4W3(T0, T1, T2, T3, T4) + ϵ5W4(T0, T1, T2, T3, T4)

T̃R0(t) = ϵ2T00(T0, T1, T2, T3, T4) + ϵ3T01(T0, T1, T2, T3, T4) + ϵ4T02(T0, T1, T2, T3, T4)

+ ϵ5T03(T0, T1, T2, T3, T4) + ϵ6T04(T0, T1, T2, T3, T4)

T̃R1(t) = ϵ2T10(T0, T1, T2, T3, T4) + ϵ3T11(T0, T1, T2, T3, T4) + ϵ4T12(T0, T1, T2, T3, T4)

+ ϵ5T13(T0, T1, T2, T3, T4) + ϵ6T14(T0, T1, T2, T3, T4)
(44)

As for the pre-buckling resonance analysis, parameter scaling is performed by assuming small
damping and small transversal excitation, while coupling terms are scaled to properly account
for the different time scale at which thermal variables evolve with respect to the mechanical
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one. Due to the increased number of time scales considered and to the different contributions
into mechanical and membrane thermal equations, parameter scaling is adjusted as follows:

a12 = ϵ2 â12, a15 = ϵ2 â15, a16 = ϵ2 â16, f = ϵ3 f̂ , a24 = ϵ â24, a33 = ϵ â33 (45)

To study the response around primary resonance, detuning parameter σ is introduced:

ω2 = Ω2 + ϵ2 σ (46)

while ω is derived from the square root of (46) through series expansion to the first order
around σ = 0: ω = Ω + ϵ2σ/(2Ω) +O(σ2).

The resulting perturbation equations at each order read:

• Order ϵ D2
0W0 +Ω2W0 = 0 (47)

• Order ϵ2 D2
0W1 +Ω2W1 = −2D0D1W0 −

3ΩW 2
0

2a141

D0T00 + a22T00 = −a141a24ΩD0W0 (48)

D0T10 + a32T10 = −33D0W0

• Order ϵ3 D2
0W2 +Ω2W2 = −a12D0W0 −

3ΩW1W0

a141
− a14W

3
0

− 2D0D1W1 −D2
1W0 − 2D0D2W0 − σW0 + f cos(ΩT0) (49)

D0T01 + a22T01 = −a141a24ΩD0W1 − a141a24ΩD1W0

− a24W0D0W0 −D1T00

D0T11 + a32T11 = −a33D0W1 − a33D1W0 −D1T10

• Order ϵ4 D2
0W3 +Ω2W3 = −a12D0W1 − a12D1W0 − 3a14W1W

2
0 − a141a16T00Ω

−
3σW 2

0

4a141Ω
−

3W2W0Ω

a141
−

3W 2
1Ω

2a141
− a15T10 − 2D0D1W2 −D2

1W1

− 2D0D2W1 − 2D1D2W0 − 2D0D3W0 − σW1 (50)

D0T02 + a22T02 = −
a141a24σD0W0

2Ω
− a141a24ΩD0W2 − a141a24ΩD1W1

− a141a24ΩD2W0 − a24W0D0W1 − a24W0D1W0 − a24W1D0W0

−D1T01 −D2T00

D0T12 + a32T12 = −a33D0W2 − a33D1W1 − a33D2W0 −D1T11 −D2T10

• Order ϵ5 D2
0W4 +Ω2W4 = −a12D0W2 − a12D1W1 − a12D2W0 − 3a14W2W

2
0

− 3a14W
2
1W0 − a141a16T01Ω −

3σW1W0

2a141Ω
−

3W3W0Ω

a141
−

3W1W2Ω

a141

− a15T11 − a16T00W0 − 2D0D1W3 −D2
1W2 − 2D0D2W2 − 2D1D2W1

−D2
2W0 − 2D0D3W1 − 2D1D3W0 − 2D0D4W0 − σW2 (51)

D0T03 + a22T03 = −
a141a24σD0W1

2Ω
−
a141a24σD1W0

2Ω
− a141a24ΩD0W3

− a141a24ΩD1W2 − a141a24ΩD2W1 − a141a24ΩD3W0 − a24W0D0W2

− a24W0D1W1 − a24W0D2W0 − a24W1D0W1 − a24W1D1W0

− a24W2D0W0 −D1T02 −D2T01 −D3T00

D0T13 + a32T13 = −a33D0W3 − a33D1W2 − a33D2W1 − a33D3W0

−D1T12 −D2T11 −D3T10

At first order, the solution of the mechanical equation (47) reads

W0 = A(T1, T2, T3, T4)e
iΩT0 + c.c. (52)

with A(T1, T2, T3, T4) undetermined function of the slow time scales. Substituting W0 in the
first equation of (48), and imposing the solvability condition implies

D1A = 0 (53)
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The particular solutions at order ϵ2 are

W1 = −
3AĀ

a141Ω
+
A2e2iΩT0

2a141Ω
+ c.c.

T00 =
a141a24Ω2AeiΩT0

ia22 −Ω
+ c.c.

T10 =
a33ΩAeiΩT0

ia32 −Ω
+ c.c.

(54)

Moving to the third order, equations (52)-(54) are substituted into equations (49); removing
secular terms into the mechanical equation leads to

D2A =
i
(
−f + 2(σ + ia12Ω)A− 24a14A2Ā

)
4Ω

(55)

Mechanical and thermal solutions at third order result

W2 =

(
a14

8Ω2
+

3

16a2141Ω
2

)
A3e3iΩT0 + c.c.

T01 =
2a24Ω

+ia22 − 2Ω
A2e2iΩT0 + c.c. (56)

T11 =
a33

a141(ia32 − 2Ω)
A2e2iΩT0 + c.c.

At fourth order, after substitution of solvability conditions and particular solutions at the
previous orders, eliminating secular terms implies

D3A =
i

2

(
a2141a16a24Ω

2

ia22 −Ω
+

a15a33

ia32 −Ω

)
A (57)

Particular solutions at fourth order read

W3 =
3σAĀ

4a141Ω3
+

3
(
20a14a2141 − 19

)
8a3141Ω

3
A2Ā2

+

(
fA

3a141Ω3
+

7
(
14a14a2141 − 3

)
16a3141Ω

3
A3Ā−

3σ + 4ia12Ω

12a141Ω3
A2

)
e2iΩT0

+
2a14a2141 + 1

16a3141Ω
3

A4e4iΩT0 + c.c. (58)

T02 =

(
ia141a22a24f

4(a22 + iΩ)2
+
a141a24(a12a22Ω − 2ia22σ + σΩ)A

2(a22 + iΩ)2

+
ia24

(
a22

(
12a14a2141 + 5

)
+ 5iΩ

)
A2Ā

2a141(a22 + iΩ)2

)
eiΩT0 −

3ia24
(
2a14a2141 + 11

)
A3e3iΩT0

16a141(a22 + 3iΩ)
+ c.c.

T12 =

(
ia32a33f

4Ω(a32 + iΩ)2
+
a32a33(a12Ω − iσ)A

2Ω(a32 + iΩ)2
+

6ia14a32a33A2Ā

Ω(a32 + iΩ)2

)
eiΩT0

−
3ia33

(
2a14a2141 + 3

)
A3e3iΩT0

16a2141Ω(a32 + 3iΩ)
+ c.c.

Finally, at fifth order, solvability condition for the mechanical equation of (51) provides

D4A =
f(a12Ω + iσ)

16Ω3
−
i
(
a212Ω

2 + σ2
)
A

8Ω3
+

3ia14fA2

4Ω3
−
ia14fAĀ

2Ω3
(59)

+
a14(−2a12Ω + 3iσ)A2Ā

Ω3
−

27ia214A
3Ā2

Ω3
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According to the usual reconstitution procedure [37], the amplitude derivatives with respect
to time t are obtained from (21)

Ȧ = ϵD1A+ ϵ2D2A+ ϵ3D3A+ ϵ4D4A (60)

The ϵ parameter is completely reabsorbed through a backward rescaling, and recalling Eqs.
(53), (55), (57), (59), the complex amplitude modulation equation for the mechanical variable
results

Ȧ = c1r + ic1i + (c2r + ic2i)A+ ic3iAĀ−
3

2
ic3iA

2 + (c4r + ic4i)A
2Ā+ ic5iA

3Ā2 (61)

where

c1r =
a12f

16Ω2
, c1i =

f
(
σ − 4Ω2

)
16Ω3

, c2r = −
a12

2
+

a16a22a24Ω2

4a14
(
a222 +Ω2

) +
a15a32a33

2
(
a232 +Ω2

) ,
c2i = −

a212Ω
2 + σ2 − 4σΩ2

8Ω3
−

a16a24Ω3

4a14
(
a222 +Ω2

) −
a15a33Ω

2
(
a232 +Ω2

) , c3i = −
a14f

2Ω3
,

c4r = −
2a12a14

Ω2
, c4i =

3a14
(
σ − 2Ω2

)
Ω3

, c5i = −
27a214
Ω3

(62)

The complex-valued modulation equation for the mechanical amplitude A can be conveniently
expressed in polar form applying the following transformation

A =
1

2
a(t)eiθ(t), Ā =

1

2
a(t)e−iθ(t) (63)

Separating real and imaginary parts leads

ȧ = +2(c1i sin θ + c1r cos θ) + c2ra+
5c3ia

2 sin θ

4
+
c4ra3

4
(64)

aθ̇ = 2(c1i cos θ − c1r sin θ) + c2ia−
c3ia

2 cos θ

4
+
c4ia

3

4
+
c5ia(t)

5

16
(65)

where the time dependence of a and θ has been omitted for the sake of readability. Finally,
the system asymptotic solutions can be reconstructed at fourth order by recalling equations
(52), (54), (56), (58). Moreover, remembering that W (t) = We2 + W̃ , TR0(t) = TR0e2 + T̃R0,

TR1(t) = TR1e2 + T̃R1, mechanical and thermal solutions can be expressed in trigonometric
form as

W (t) =We2 − 3c6a
2 − 27c7a

4 + a cosψ + c8a cos(2ψ − θ) + (c6a
2 + 14c7a

4) cos(2ψ)

+ c9a
2 sin(2ψ) + c10a

3 cos(3ψ) + c7a
4 cos(4ψ) (66)

TR0(t) = TR0e2 + c11 cos(ψ − θ) + c12a cosψ + c13a
3 cosψ + c14a

2 cos(2ψ) + c15a
3 cos(3ψ)

+ c16 sin(ψ − θ) + c17a sinψ + c18a
3 sinψ + c19a

3 sin(3ψ) + c20a
2 sin(2ψ) (67)

TR1(t) = c21 cos(ψ − θ) + c22a cosψ + c23a
3 cosψ + c24a

2 cos(2ψ) + c25a
3 cos(3ψ)

+ c26 sin(ψ − θ) + c27a sinψ + c28a
3 sinψ + c29a

2 sin(2ψ) + c30a
3 sin(3ψ) (68)
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where ψ = Ωt+ θ and

c6 =

√
a14

2
√
2Ω

−
√
a14σ

4
√
2Ω3

, c7 =

√
a314

16
√
2Ω3

, c8 =

√
2
√
a14f

3Ω3
, c9 =

a12
√
a14

3
√
2Ω2

, c10 =
a14

8Ω2
,

c11 =
a222a24Ωf√

2
√
a14

(
a222 +Ω2

)2 ,
c12 = −

a24Ω
(
−a12a322 + a12a22Ω2 + 3a222σ + 2a222Ω

2 + σΩ2 + 2Ω4
)

2
√
2
√
a14

(
a222 +Ω2

)2 ,

c13 =

√
a14a24Ω

(
17a222 + 5Ω2

)
4
√
2
(
a222 +Ω2

)2 , c14 = −
2a24Ω2

a222 + 4Ω2
, c15 = −

27
√
a14a24Ω

8
√
2
(
a222 + 9Ω2

) ,
c16 = −

a22a24
(
a222 −Ω2

)
f

2
√
2
√
a14

(
a222 +Ω2

)2 , c17 =
a22a24

(
a12a22Ω2 + a222

(
σ +Ω2

)
+Ω4

)
√
2
√
a14

(
a222 +Ω2

)2 , (69)

c18 = −
√
a14a22a24

(
11a222 −Ω2

)
4
√
2
(
a222 +Ω2

)2 , c19 =
9
√
a14a22a24

8
√
2
(
a222 + 9Ω2

) , c20 =
a22a24Ω

a222 + 4Ω2
,

c21 =
a232a33f(
a232 +Ω2

)2 , c22 =
a33

(
a12a32(a32 −Ω)(a32 +Ω)− 2

(
a232

(
σ +Ω2

)
+Ω4

))
2
(
a232 +Ω2

)2 ,

c23 =
3a14a232a33(
a232 +Ω2

)2 , c24 = −
√
2
√
a14a33Ω

a232 + 4Ω2
, c25 = −

9a14a33

8
(
a232 + 9Ω2

) ,
c26 = −

a32a33(a32 −Ω)(a32 +Ω)f

2Ω
(
a232 +Ω2

)2 , c27 =
a32a33

(
Ω2(2a32(a12 + a32)− σ) + a232σ + 2Ω4

)
2Ω
(
a232 +Ω2

)2 ,

c28 =
3a14a32a33

(
Ω2 − a232

)
2Ω
(
a232 +Ω2

)2 , c29 =

√
a14a32a33√

2
(
a232 + 4Ω2

) , c30 =
3a14a32a33

8a232Ω + 72Ω3

As alternative asymptotic procedure aimed at improving the description of the membrane
temperature dynamics, resonance condition is imposed only to the terms related to W and
W 2 in the mechanical equation (10). Using the same asymptotic scheme as the one previously
described, the analytical response of the membrane temperature, which is formally identical
to (67), shows different expressions of the following coefficients:

c11 = −
a17a222a24ω√

2
√
a14

(
a222 +Ω2

)2 ,
c12 =

a24ω
(
a12

(
a322 − a22Ω2

)
− 2

(
a222

(
σ +Ω2

)
+Ω4

))
2
√
2
√
a14

(
a222 +Ω2

)2 ,

c13 =

√
a14a24

(
a222(12ω + 5Ω) + 5Ω3

)
4
√
2
(
a222 +Ω2

)2 , c14 = −
a24Ω(ω +Ω)

a222 + 4Ω2
,

c15 = −
9
√
a14a24(ω + 2Ω)

8
√
2
(
a222 + 9Ω2

) , c16 =
a17a22a24ω

(
a222 −Ω2

)
2
√
2
√
a14Ω

(
a222 +Ω2

)2 ,
c17 =

a22a24ω
(
2a12a22Ω2 + a222

(
σ + 2Ω2

)
− σΩ2 + 2Ω4

)
2
√
2
√
a14Ω

(
a222 +Ω2

)2 ,

c18 = −
√
a14a22a24

(
a222(6ω + 5Ω) +Ω2(5Ω − 6ω)

)
4
√
2Ω
(
a222 +Ω2

)2 ,

c19 =
3
√
a14a22a24(ω + 2Ω)

8
√
2Ω
(
a222 + 9Ω2

) , c20 =
a22a24(ω +Ω)

2
(
a222 + 4Ω2

)

(70)

In turn, the coefficients of mechanical and bending thermal solutions are identical to those
of the fully resonant asymptotic procedure, apart from a very minor difference. Thus they are
not reported here, for the sake of brevity.
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Appendix D Multiple Scale analysis around double-zero bifurcation

Analysis near the bifurcation point is performed by introducing fractional power series expan-
sions to study Eq. (4). Accordingly, three time scales have been introduced, i.e., T0 = t, T1 =

ϵ1/2t, T2 = ϵt, and consistently, the time derivatives are expressed as

d/dt = D0 + ϵ1/2D1 + ϵD2

d2/dt2 = D2
0 + 2ϵ1/2D0D1 + ϵD2

1 + 2ϵD0D2

(71)

where Di = ∂/∂Ti. In order to account for the different time evolution of the mechanical
variable with respect to the thermal ones, variables are scaled as follows:

W̃ = ϵ1/2 Ŵ , T̃R0 = ϵ T̂R0, T̃R1 = ϵ T̂R1 (72)

so that their expression as perturbation of the reference equilibrium read:

W̃ (t) = ϵ1/2W0(T0, T1, T2) + ϵW1(T0, T1, T2) + ϵ3/2W2(T0, T1, T2)

T̃R0(t) = ϵT00(T0, T1, T2) + ϵ3/2T01(T0, T1, T2) + ϵ2T02(T0, T1, T2)

T̃R1(t) = ϵT10(T0, T1, T2) + ϵ3/2T11(T0, T1, T2) + ϵ2T12(T0, T1, T2)

(73)

Since analysis is developed far from resonance regions (nonresonance condition), the forcing

term is scaled to the generating order, i.e. f = ϵ1/2 f̂ , while the other parameters are scaled
as follows:

ω2 = ϵ ω̂2, a12 = ϵ â12, a15 = ϵ1/2 â15, a33 = ϵ1/2 â33 (74)

The resulting perturbation equations at each order read:

• Order ϵ D2
0W0 = f cos(ΩT0) (75)

• Order ϵ3/2 D2
0W1 = −2D0D1W0

D0T00 + a22T00 = −a24W0D0W0 (76)

D0T10 + a32T10 = −a33D0W0

• Order ϵ2 D2
0W2 = −ω2W0 − a14W

3
0 − a12D0W0 − 2D0D1W1 −D2

1W0

− 2D0D2W0 − a15T10 − a16T00W0 (77)

D0T01 + a22T01 = −a24W0D0W1 − a24W0D1W0 − a24W1D0W0 −D1T00

D0T11 + a32T11 = −a33D0W1 − a33D1W0 −D1T10

At first order, the solution of the mechanical equation (75) is combination of complemen-
tary and particular solution and reads

W0 = A(T1, T2)−
f

2Ω2
eiΩT0 + c.c. (78)

with A(T1, T2) undetermined real amplitude which is function of the slow time scales, and c.c.
complex conjugate terms.

At order ϵ3/2, substituting W0 in the first equation of (76) implies D2
0W1 = 0, which

furnishes null contribution to the modulation equation and to the mechanical solution, as well.
In turn, solving the thermal equations yields the following particular solutions:

T00 = −
a24fAeiΩT0

2ia22Ω − 2Ω2
−

a24f2e2iΩT0

4ia22Ω3 − 8Ω4
+ c.c.

T10 = −
a33feiΩT0

2ia32Ω − 2Ω2
+ c.c.

(79)

In view of Eqs. (78)-(79), the solvability condition of the mechanical problem at the order ϵ2

(77) yields
D2

1A = c1A+ c3A
3 (80)
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where

c1 = −ω2 +
3a14f2

2Ω4
−

2a16a24f2

4a222Ω
2 + 4Ω4

, c3 = −a14

Moving to the real time scale t, the resulting amplitude modulation equation is

Ä = c1A+ c3A
3 (81)
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