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LP-based dual bounds
for the maximum quasi-clique problem

Fabrizio Marinelli**, Andrea Pizzuti®, Fabrizio Rossi”
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Abstract

A ~-quasi-clique is a simple and undirected graph with edge density of at least
~. Given a graph G, the maximum 7-quasi-clique problem (y-QCP) consists of
finding an induced ~y-quasi-clique with the maximum number of vertices. v-QCP
generalizes the well-known maximum clique problem and its solution is useful
for detecting dense subgraphs. After reviewing known integer linear program-
ming formulations and dual bounds for 7v-QCP, a new formulation obtained by
decomposing star inequalities and combining edge inequalities is proposed. The
model has an exponential number of variables but a linear number of constraints
and its linear relaxation allows the computation by column generation of dual
bounds for large and dense graphs. The connectivity of y-quasi-cliques is also
discussed and a new sufficient connectivity condition presented. An extensive
computational experience shows the quality of the computed dual bounds and
their performance in a branch-and-price framework, as well as the practical
effectiveness of the connectivity condition.

Keywords: quasi-clique, mixed integer programming, integer reformulation

1. Introduction

A clique is a complete graph, i.e., a graph with an edge for any pair of

vertices, and it is one of the basic combinatorial structures in graph theory.
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The mazimum cliqgue problem (MCP) consists of finding an induced clique of
maximum order in a simple and undirected graph G [23]. Solutions of the
MCP are meaningful, at least in principle, for a wide range of applications,
e.g., social network analysis, coding theory, telecommunication and genetics. In
fact, cliques express an ideal aggregation measure and are representative when
it is interesting to evaluate the degree of interaction between entities. However,
the search for a complete structure like a clique often prevents the discovery of
similarly interesting dense subgraphs. Furthermore, graphs derived from real-
world applications are generated from incomplete data and are often acquired
through error-prone processes. For these reasons, several clique relaxations have
been defined and the corresponding mazimum relazed-clique problems (MRCP-s)
have been investigated [25]. Clique relaxations can be classified according to the
number of relaxed properties: first-order relaxations are defined by slackening
a single clique-typifying property related, for instance, to the degree (k-core,
k-plez), the distance (k-clique, k-club), the density (v-quasi-clique, k-defective
cliqgue) and the connectivity (k-block, k-bundle) [17]. Higher-order relaxations
can also be considered by relaxing more than one properties at the same time,
see [25].

Among discrete optimization problems deriving from clique relaxations, there
is a pair of N"P-hard reciprocal problems: the mazimum quasi-cligue problem
(v-QCP) [26] and the k-densest subgraph problem (KDSP). The former asks for
the maximum-order induced subgraph with edge density of at least ~y of a simple
undirected graph G, whereas the latter calls for the densest subgraph of G of
order k. Another problem closely related to the y-QCP is the maximum degree-
based v-QCP [24]. A degree-based y-quasi-clique is a subgraph H = (Q, Eg) of
a graph G induced by the set of vertices () such that the degree of any vertex of
H is at least y(]Q| — 1). It is easy to see that any degree-based y-quasi-clique
is a vy-quasi-clique but not vice-versa.

The ~-QCP is both theoretically and computationally difficult. Critical as-
pects (among others) lie in the lack of the hereditary property and in the exis-

tence of disconnected optimal quasi-cliques. Recall that a property P of graphs



is an infinite class of graphs which is closed under isomorphism and it is hered-
itary if every induced subgraph of every member of P is also in P [5]. This
implies that the inclusionwise maximality of the vertex-set of a graph satis-
fying a hereditary property can be tested in polynomial time. However, it is
well known that «-quasi-cliques are only quasi-hereditary. In fact, to obtain an
induced y-quasi-clique K from a y-quasi-clique H = (Q, F) it is sufficient to re-
move a vertex v from H with deg(v) < % but this makes not straightforward
the maximality check of non-trivial y-quasi-cliques.

The connectivity role in 7-QCP is also not completely settled. Allowing
disconnected ~-quasi-cliques clearly extends the solution space but the compu-
tational consequences have not been investigated. Note that, differently from
other clique relaxations (k-plex, k-defective clique, and k-bundle) for which dis-
connected subgraphs can be optimal solutions only if sufficiently small, the size
of a disconnected y-QCP optimal solution is generally not limited from above
[17]. However, many real applications implicitly ask to find dense connected
subgraphs in order to properly capture the relations between elements of clus-
ters, and a solution comprised of more than one connected component misses
this aspect and may become less meaningful for the application (the presence of
disconnected optimal solutions could be even more frequent in both the vertex-
weighted and edge-weighted version of v-QCP). Therefore, the quasi-clique def-
inition (and similar) should include the connectivity property to some extent.
Section 4 is devoted to discuss such issues.

Several heuristic approaches were proposed to solve the v-QCP, or problems
with a slightly different definition of y-quasi-clique [4][8][16]. In [1] the authors
describe a greedy randomized adaptive search procedure (GRASP) to detect
maximal quasi-cliques in massive sparse graphs, where the local search phase
exploits the concept of vertex potential to move up to local optima; Tsourakakis
et al. [30] present two heuristics, one based on iterated elimination of the vertex
with the smallest degree, and the other performing a local search looking for a
sequence of induced subgraphs with non-decreasing value of density.

To the best of our knowledge, the reference exact methods for v-QCP are



the MIP-based approach presented in [31] and the combinatorial branch-and
bound algorithm described in [22]; for KDSP instead, the state-of-the-art exact
method is the enumeration scheme with dual bounds computed via semidefinite
programming proposed in [18].

In this paper we develop earlier ideas originally formulated in [19]. We firstly
review the main combinatorial and LLP-based dual bounds for 7-QCP available
in the literature. Then, we propose an integer reformulation [D,] of v-QCP and
a surrogate relaxation [D5] of [D,] that provides dual bounds as good as those
computed by the linear relaxation of [D,].

The surrogate relaxation uses a number of constraints linear in the number
of vertices of the graph and therefore it can be exploited for computing dual
bounds on large and dense graphs, or even directly solved by branch-and-price.
Then, we present a new sufficient condition for obtaining connected vy-quasi-
cliques that dominates the previous result reported in the literature.

The outline of the paper is as follows: in Section 2 the y-QCP is formalized,
then mixed integer linear programming formulations (MILPs) and combinatorial
dual bounds from the literature are reviewed; a Dantzig-Wolfe [11] reformulation
and a branch-and-price algorithm are presented in Section 3; in Section 4 a new
sufficient condition for solutions connectivity is given; finally, computational

results are reported in Section 5 while conclusions are captured in Section 6.

2. Problem definition, MILP formulations and bounds

The v-QCP can be formalized as follow. Let H = (Q, Eg) = G[Q] be the
subgraph of G = (V| E) induced by the set of vertices @ C V. Given vy € (0,1],
an optimal solution of y-QCP is an induced subgraph H of maximum order |Q*|

and with a number of edges |Eq-| > - w

2.1. MILP formulations

Veremyev et al. [31] propose four MILP formulations for v-QCP, the tightest
of which, reported in the following, consists of O(|V|+|E|) variables and O(|E|)

constraints. Let x;, ¢ € V, and z., e € F, be binary variables with z; = 1 iff



i€Q,and z. =1iff e € Eg. Moreover, let yi, k € K = {kg,...,ku}, be the

binary variable with y;, = 1 if H is of order k. The formulation reads as:

(2F Q°] = max Y (1)
i€V
Ze Sxia Ze S‘Tj Ve:{z,]}GE (2)

in < Z ky (3)

i€V keK
> =1 (4)
keK
k(k—1)
DI T S 5)
keK c€E
Ziy Zey Yi € {0,1} VieV,\Vee EVk e K (6)

Edge e = {i,j} belongs to the y-quasi-clique H if (and only if) vertex ¢ and j
are both in @), see constraints (2). The order k of H is defined by constraints
(3) and (4), and constraint (5) bounds from below the density of H by .
[C,] can be easily modified to model other density-based clique relaxations:

a formulation for the maximum s-defective clique problem can be obtained by
replacing constraint (5) with

Z @yk < Z Ze +s

kEK c€E
whereas a formulation for the maximum degree-based v-QCP results by replac-

ing (5) with the set of constraints

v k-1 <Y s+l — 1)1 - ) VieV.

keK e={i,j}€E

The size of [C,] grows with the density of G whereas an alternative MILP,
originally presented in [26], does not. Such a formulation is obtained by lin-

earizing the quadratic constraint that models the density threshold condition



1Q"11Q"|-1)
[Eq-| =7 =75

. Namely, by introducing an additional variable w;, for
each ¢ € V, such that:
W; = YTy + Z(aij — 'y)x,-xj
jeVv
where a;; is equal to one if {¢,j} € E and zero otherwise, the -QCP can be

formulated as follows:

P Q] = max 3 @
eV
> wi >0 (8)
eV
w; < yrp + Z(aij — ’y)l’j — ll(l — J}l) VieV (10)
jev
w; > yx; + Z(aij —vz; —ui(l — ;) VieV (11)
JjeEV
X € {0, 1},wi eR VieV (12)

where u; and [; respectively are upper and lower bounds on the value of w;
obtained by setting:
u; = (1—7)Zaij, l; = —(n—l—Zaij)'y VieV.
jev jev

Formulation [C,] rapidly grows due to its O(|E|) constraints and therefore it
is suitable for computing dual bounds only on graphs sparse enough. On the
contrary, the number of variables and constraints of [P,] grow linearly with |V|
and does not depend on graph density, but the bound provided by the linear
relaxation of [P,] is weaker than the one obtained by [C,] (see Section 5).

A smaller formulation on dense graphs can be derived by looking at com-
plementary y-quasi-cliques, i.e., induced subgraphs G[Q] with a density that
does not exceed v € [0,1) [6]. Any ~y-quasi-clique on G then corresponds to a

complementary (1 —~)-quasi-clique on the complement graph G' = (V, E), both



induced by the subset of vertices (). Hence, an optimal solution of v-QCP can
be achieved by solving to optimality the maximum complementary (1—-)-quasi-
clique problem by means of the integer program [C.,] consisting of (1), (3), (4),

(6) plus the following constraints:

itz —1<z Ve={i,j} ¢ £ (13)
Y-y D, (14
et E keK

The formulation is a straightforward adaptation of [C,]; constraints (13) is
expressed for each edge in £ and ensures the presence of an edge e = {i,j}
within the complementary (1 — 7)-quasi-clique if (and only if) both endpoints
i and j are selected. Finally, inequality (14) models the density restriction of a
complementary (1—)-quasi-clique. Formulation [C.,] uses O(|V|+|E|) variables
and O(|E|) constraints.

2.2. Primal and dual bounds

A lower bound kj, to |Q*| is given by the order of any clique of G. On the
other hand, a basic upper bound to |Q*| is in [26]:
11 8|E|
[T Y S i Y
U {2 + 3 + 5 J
A better upper bound kg can be obtained in O(|V|log|V|) as follows, see also
[22]. Any v-quasi-clique H = (Q, Eg) fulfils by definition |Q|(|Q] — 1) < 2@.
Moreover, [Eq| =)_,cq g <>licq w, where d; is the degree of i in
G and d¥ is the degree of i in H. Therefore:

Q|
ZWMQAMKi;mMQJM}

i€Q

1
QIIQI-1) < S

where the last inequality holds if vertices of G are sorted by non-increasing

degrees, i.e., d; > d; for ¢ < j. It easy to see that the largest integer @



that satisfies the above inequality is a valid upper bound k¢ for |Q*|, and that
ku < ky for the |Q*| < |V|.

Let w(G) be the clique number of graph G, i.e. the order of the maximum
clique of G. If 1 — ﬁ < 7, an alternative upper bound kj on |Q*| has been
defined in [26] as:

w w(G)y .
K = L ~2(0) +w(G)7J = 1@

(15)

Unlike the aforementioned bounds, kg does not depend directly on the order
and the size of G. Figure 1 shows the value of kf; with respect to w(G) and
~. Although particularly useful when applied to sparse graphs, in which w(G)
value is limited, it rapidly becomes poor on dense graphs. For instance let us
consider a graph G with |E| = 20,000, more than 230 vertices, and w(G) = 31.
Given v = 0.97, it results kf; = 429 and ky = 203. Moreover, the efficacy of kf;
diminishes as 7 gets smaller; for instance, k7 with v = 0.9 is only defined up to
w(G) < 9. Computing w(G) can be extremely time consuming on sufficiently
large graphs, so that a reasonable choice can be to substitute w(G) with a
suitable upper bound wy (G) within (15). However, condition 1 — #(G) <7
must hold, limiting the applicability of the substitution, and the resulting bound

degrades as wy (G) loses tightness.

3. Star-based reformulation

Model [C,] can be reformulated by integer decomposition [11]. Let d; be
the degree of vertex i € V', N(i) the set of neighbours of i, and S(4) the set of
incidence edges of i that, for the sake of conciseness, we call the star of . The

star constraint

S s < (ke — D (16)

e€sS (i)
is a valid inequality for the convex hull of the integer solutions to [C,]. Namely,
the set of integer points that non-trivially satisfy (16) corresponds to the col-

lection S; = {Si1, Si2, ...} of all the nonempty partial stars of ¢ containing less
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Figure 1: kg for several v values and w(G) < 50

than ky edges. Let Sij C &; be the collection of the partial stars including the
edge {i,j} € E. Then for any e = {4,j} € E, the variables z; and z. of [C,]

can be rewritten as

|S; | 571 |S: ]

T = Z/\ih Ze = ZAih ZAih <1 Ain € {0, 1},
h—1 h=1 h=1

where variable \;j, is equal to 1 if the partial star S;;, is selected, and 0 otherwise.



The resulting MIP formulation reads as follows:

1S, |
(D] : Q7| =max > > i (17)
i€V h=1
|Si
inh <1 VieV (18)
|SJ |S’\
me “Y Xn=0 Ve={ijlcE (19)
h=1
\57:\
SN X<k (20)
i€V h=1 keK
=1 (21)
keK
h(k — |S:i]
> { 5 w k—*ZZISMMO (22)
keK i€V h=1

Xin €{0,1}  VieV,he{l,...,|5]}23)

y €{0,1}  VkeK (24)

Constraint (18) requires that at most one partial star can be selected for each
vertex. Constraints (19) impose a consistent selection of partial stars, that is,
if a partial star S;;, is chosen and S;; contains the edge {i,j} , then a partial
star Sj, including the edge {j,i} must be selected too. To this purpose, the
coefficient of the variable \;; is +1 for edges {i,j} € S;, with i < j and —1
otherwise. Constraints (20), (21) and (22) directly derive from [C,]

Figure 2 shows the coefficients matrix of constraints (18) and (19) for the
kite graph (the kite has |V| = 5 and |E| = 6, see [7]). Gray columns describe
the optimal solution for v = 0.8, corresponding to the clique induced by vertices
{1,2,3}. The clique is composed by overlapping partial stars S11, S21 and Ss1,
where edges are weighted 3 in density constraint (22).

Since each star inequality (16), together with the variable bound constraints,
defines an integral polyhedron, the continuous relaxations of [C,] plus star
inequalities and the integer reformulation [D,] have the same optimal value.

Therefore, the dual bound provided by [D,] is at least as tight the one pro-

10



Figure 2: Star reformulation on a kite graph, |V| =5, |E| =6

S, S, Ss S4  Ss
v 1 (111111 < 1
2 111111 <1
3 111111 <1
4 1 <1
5 111|<1
E{L23{1 1 1 -1-1 -1 =0
31 1 1 -1-1 -1 0
e 11 1 -1 0
{2, 3} 1 1 1 |-1 -1 - =0
{2, 5} 11 1 “1-1 | =0
{3,5} 11 1] -1 -1 =0

vided by [C,], where possible improvements arise from star constraints (16)
or the rounding up of the y;’s coefficients in (22). For instance, on a set of
sparse graphs taken from [31] the effect of star constraints appears extremely
limited, with a mean percentage improvement of 0.4% for v = 0.9. When edge-
weighted graphs are taken into account [28], the problem can be generalized to
the weighted v-QCP. In this case, the polyhedron described by each correspond-
ing weighted star constraint plus variable bound constraints becomes fractional
and [D,] is an integer reformulation providing tighter dual bounds.

Model [D,] consists of an exponential number of variables in |E| and there-
fore the solution of its continuous relaxation requires a column generation ap-
proach. The search for useful columns (i.e., partial stars) requires to solve for
each vertex i the following pricing problem. Let 0;,6,7% € RT and 7. € R be
the values of dual variables associated to constraints (18),(20),(22) and (19),
respectively, and let w, be a binary variable equal 1 if edge e belongs to the

partial star (0 otherwise). The reduced cost of the most profitable partial star

11



of vertex 1 is:

&(i)=—0; — 5+ max Y ( w+r Te)We (25)

eesS( )

with I'(e = {4,j}) = —1if ¢ < j and I'(e) = 1 otherwise. The pricing problem
search for the set of at most (ky — 1) edges that maximize &(z) (25). Such a set
can be obtained simply by ranking the edges of S(i) by non decreasing values
of (31 +I'(e)me).
Formulations [C,] and [D,] are not suitable for solving the v-QCP on dense
graphs due their O(|E|) constraints, and even the continuous relaxation can be
difficult to solve for moderate size instances. However, at the cost of a small loss
in the dual bounds quality, a surrogate relaxation [D5] of [D,] can be considered
by replacing constraints (19) with the following ones:

|Si] 1S5

Z\Smum = > D> Ap=0  VieV (26)

JEN(i) h=1
Constraint (26) are obtained, for each vertex ¢, by summing up all constraints
in (19) for e = {i, N(i)}. Hence, [D5] has O(|V]) constraints. Now, let 6; € R
be the values of the dual variable related to (26). The pricing problem for [D:Yq ]
associated to vertex ¢ can be easily derived from (25) by properly adapting it
into

. 1
¢(i) =1 — 0y — § + max e%%)(yﬁ —0; +6;)we (27)

3.1. A branch-and-price algorithm

Formulation [D] is in principle not tighter than both [C,] and [C,]. Nev-
ertheless, it has the same dual bound provided by [C,] (which we recall being
much better than both ky and the linear relaxation of [P,]) but it is consid-
erably smaller, having only O(|V]) constraints. These features make the linear
relaxation of [D,f | an interesting bound for large and/or dense instances, either
embedding the column generation procedure into a combinatorial branch-and-
bound scheme (like the one proposed in [22]), or considering to solve the integer

program [DZ] directly by branch-and-price.

12



In the following, we describe a straightforward implementation of a branch-
and-price algorithm that, although lacking of several performance boosting ele-
ments (acceleration and stabilization techniques, early termination and effective
primal heuristics, see [12]), shows the practical viability of [D;Yg] The pricing
strategy and the branching rule of this prototype version are the following.

As reported in Section 3, each iteration of the column generation scheme
requires, for each i € V, the solution of the pricing problem (27). The pric-
ing phase can follows various strategies: one can sequentially generate all the
promising columns associated with a vertex i before moving to another vertex;
alternatively, one can generate for each vertex a limited subset of columns (even
just one column). Preliminary tests showed that the latter strategy is more ef-
fective, though it requires a large number of iterations producing a large number
of columns. To overcome this drawback, we keep the size of the master problem
under a given threshold (8000 columns in our setting) by periodically deleting
variables with the most negative reduced cost.

The branching is performed on the binary variables z; (i € V') of the compact
formulation [C], i.e., the vertex ¢ is either included in the 7y-quasi-clique or
deleted from the graph associated to the subproblem. The branching on x; is
implemented on [D5] by modifying the i-th constraint (18) in

|S;]

Z Ain=1 (x; =1)
h=1

and
[Sil

> Ain=0 (z; = 0).

h=1
Consequently, the structure of the pricing problem (27) remains untouched since
the changes only involve the star S(¢). In particular, given a subproblem P of
the search tree, let Fy be the set of vertices deleted from G in P, and F} the set
of vertices included in the partial y-quasi-clique associated to P. The solution

of the i-th pricing problem on vertex i, must be a partial star S* € S; such that:

- S* does not contain edges in S(j) for any j € Fo;

13



- if i € Fy, then S* contains the edge {i,j} for any j € Fy N N(3);
- 157 <k = 1= ([P = [Fx 0 N(@)| = [Fy 0 {i}]).

Finally, branching is performed on the vertex ¢ with the larger number of
fractional star variables A;;. The tree search is performed selecting the sub-
problem with the best bound, because depth-first search, although accelerates

updating the current LP and its solution, has been proven ineffective.

4. Quasi-clique connectivity

In several real-world applications, finding cohesive clusters is naturally re-
ferred to the identification of single connected components on graphs [17]. In
[15] a thorough discussion of approaches for the community detection problem is
presented and the connectivity is assumed as a required property. Such assump-
tion is often reasonable as disjointed clusters actually represent clusters whose
mutual interaction can be assumed irrelevant with respect to the aggregation
properties of interest. By contrast, solutions composed of multiple connected
components are suitable or even characterizing for alternative problems, such
as clique relazation packing problems or maximal clique relazation enumeration
problems, which arise by generalizing the corresponding optimization problems
originally defined on cliques [9][2].

Optimal k-core, k-defective and y-quasi cliques can be disconnected and there-
fore the corresponding MRCPs should explicitly require the connectivity con-
dition. One can argue that connectivity can be ensured by considering alter-
native clique relaxations, such as k-club (an induced subgraph of diameter at
most k, see [3][20]) or k-block (an induced subgraph whose minimum vertez cut
is at least k, see [10][17]), for which optimal solutions are always connected.
Generally speaking however, the purpose of k-clubs and k-blocks is to guaran-
tee respectively a given degree of reachability and robustness, whereas density
based relaxations, such as k-defective and y-quasi-cliques, are useful to deal with

noisy and missing data. Moreover, although a y-quasi-clique can be composed

14



by several very dense disconnected subgraphs, typically the significant v thresh-
old (v > 0.5) results in solutions made of a single large connected component
along with other small ones. On the other hand, it is easy to see that a vy-quasi-
clique can be composed by k connected components of the same order only if
~ < 1/k. This also implies that cut-edges of a connected solution generally link
a large component to small ones.

We suppose that the lack of an explicit request of connectivity within formu-
lations of MRCP can be attributed to the easiness of modeling it in mathemat-
ical programming terms. Indeed, several solution approaches can be conceived
that take advantage of connectivity. For instance, in a branch-and-bound the
selection of the branching variable can be done assuming the connectivity of the
chased solution.

Ensuring the connectivity within MILP formulations can be done in several
ways, typically by recalling variables and constraints used to model connectivity
in Hamiltonian or shortest path problems [29]. Indeed, a large body of research
exists on this topic, see for example [27] and the references therein, as well as
the recent polyhedral study of the connected subgraph polytope [32].

As example, connectivity can be guaranteed for v-QCP (and similarly for
other MRCPs) by introducing variables ¢; € {0, 1} for each vertex i € V, where
c; is set to 1 iff vertex 7 is selected as source, and flow variables f;; € R for each
edge {i,j} € E. Optimal connected y-quasi-cliques can be found by solving a
MILP formulation that adds to the formulation [C,] in Section 2 the following

constraints:

15



dei=1 (28)

eV

c < x; VieV (29)

San-1-k(-c)< Y fij- Z fii VieV  (30)
heVv JEN(i):i<j JEN(i):j<i

th_1+ku(1_cz) 2 Z fij_ Z fji VZGV (31)
heV JEN ()< FEN(i):j<i

—ku(l+c—z)—1< Z fig — Z i VieV (32)
JEN(i):i<j JEN(i):5<i

ku(ltci—z)—1> Y fij— > fii VieV  (33)
JEN(i):i<j JEN(i):5<i

—(ky —Dze < fij < (ku—1D)ze Ve={i,jt € E (34)
¢, €{0,1} VieV (35)

By means of (28) and (29), one vertex is selected as source node among the
ones belonging to the y-quasi-clique. Constraints (30)-(33) resemble single-flow
constraints for TSP adapted on undirected graphs: (30) and (31) enforces that
exactly |Q*| — 1 units of flow leave the source, whereas (32) and (33) ensures
that a single unit of flow is absorbed by any other vertices of the y-quasi-clique.
Finally, (34) and (35) set the bounds for f;; variables and ¢; respectively, where
fij results zero if e = {i,j} ¢ Eq. On the whole, this method requires the
addition of O(|V| + |E|) variables and constraints to [C,].

In [25] the sufficient conditions that ensures the connectivity of optimal
solutions are depicted for the main first-order clique relaxations. In particular,

a solution of the v~-QCP with |Q)| vertices is connected if

H(5)- (%)= &

holds. Figure (3) reports the upper bound on |Q| set by inequality (36) with
respect to 7.
Firstly, condition is ineffective for v < 0.64. Then, the values of |Q| required

are small even for reasonable values of v. For instance, if v = 0.9, the maximum
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Figure 3: Upper bound on |Q| values set by (36)

~y-quasi clique must contain at most 19 vertices to verify the condition and this
value is not meaningful for graphs of practical interest.

In the following we present results related to the structure of vy-quasi-cliques
based on the existence of small connected components. Recall that G[Q)] refers

to the subgraph (@, Eg) of G induced by the subset of vertices Q@ C V.

Lemma 1. Let G be connected and G[Q)] be a v-quasi-clique formed by p con-
nected components with at least one component having at most three vertices.
Then, there exists a y-quasi-clique of the same order and no smaller size with

at most p — 1 connected components.

PrROOF. Let X be a connected component of G[Q)] with at most 3 vertices,
and P = p; — ... — pg be the longest simple path connecting X to some other
connected component of G[Q], say Y, with p; vertex of X and p, vertex of ¥
(P always exists since G is connected). If ¢ < 4, (part of) X can be replaced
by (part of) P thus reducing the number of connected components of G[Q] by
one, while the number of edges (vertices) of G[Q] does not decrease (increase).
If g > 4, there are at least 3 vertices {u, v, w} in G\G[Q)] that can be connected

to some other connected component of G[Q] (since G is connected). Hence
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the vertices of X can be replaced by u, v, w without losing any edge and thus

obtaining a y-quasi-clique with at most u — 1 connected components. O

The above lemma can be used to get the following result related to the

maximum number of connected components of a y-quasi-clique:

Lemma 2. Let G[Q] be a y-quasi-clique with . connected components and such

that
Bol> (M7 ) ot (37)

holds. If G is connected, then a y-quasi-clique with |Q| vertices and at most

w— 1 connected components can be easily obtained by G[Q)].

PROOF. Inequality (37) forces G[Q] to have a number of edges that strictly
exceeds the total number of edges incident on |Q| vertices disjointed into a clique
Y of order |Q| —4(p — 1) and p — 1 cliques of 4 vertices each one (connected
components with less than 4 vertices can be excluded by Lemma 1). For the
properties of the binomial coefficient, removing vertices of Y (up to a minimum
order of 4) to enlarge the other p — 1 cliques cannot increase the total number
of edges of the u cliques. Hence, the right-hand side of (37) defines an upper
bound on the number of edges for any induced subgraph of G with |@Q| vertices
divided into g (or more) connected components. Therefore, if |Eg| is greater
than such bound there exists at least a connected component in G[Q] with at

most three vertices. The thesis follows by Lemma 1. U

A sufficient condition for the connectivity of v-QCP solutions can be obtained

by setting i = 2 in Lemma 2.

Proposition 1. If G is connected and |Eg| > 17—1—%(\@ —9) then either G[Q]
is a connected y-quasi-clique, or a connected y-quasi-clique with |Q| vertices can

be easily obtained from G[Q].
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Furthermore, the following dominance result holds:

Proposition 2. The sufficient condition reported in Proposition 1 dominates

condition (56) for any |Q| > 5.

PRrOOF. Let G[Q] be a 7-quasi-clique such that (36) is valid. By definition
|Eq| > v('9!) holds. Then, by inequality (36) it follows

120~ (91| = 1Eal - (195 1) 2

where the second member is given by the difference of two integer terms. The

statement then derives by algebraic manipulations. O

To show that the two conditions are not equivalent, we provide a simple
example. Let |Q] = 10, |Eg| = 36 and v = 0.8. Clearly, G[Q] is a y-quasi-
clique. Tt is easy to see that condition (36) is not satisfied, whereas Proposition
1 proves that G[Q)] is connected.

Note that Proposition 1 cannot explicitly detect the connectivity of v-QCP
solutions made of at most 4 vertices. Nevertheless, Lemma 1 implicitly ensures
the connectivity of all y-quasi-cliques with at most 7 vertices on connected
graphs. Indeed, any partition of these vertices into two (or more) disjointed
subsets would have (at least) a connected component made by at most 3 vertices.
Hence, Proposition 1 integrated with Lemma 1 dominates (36) for any value of
QL.

Finally, even if we contextualized the discussion to the v-QCP, any result
independent by « can be straightforwardly inherited for analyzing the connec-
tivity of solutions related to other optimization problems defined on graph, such
as problems within the family of MRCP for which solutions can be disconnected

(e.g., k-core, k-bundle).

5. Computational results
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We carried out an extensive experimental campaign that mainly aim to study
the quality of combinatorial and LP based dual bounds as well as the effective-
ness of the sufficient conditions to recognize connected vy-quasi-cliques.

The column generation and branch-and-price algorithms have been coded in
C++ and all the linear programs solved by IBM® CPLEX® 12.5.0.0 on a Intel®
Core i7-7500U 2.70 GHz machine with 16Gb RAM. A CPU time limit of 7200
seconds has been used for all the experiments, and all the integer programs
have been set with K = {kr, = 2,...,ky} (see (24)). Solutions obtained by
the greedy vertex elimination procedure of [30] have been used to measure the
optimality gap (when optimal solutions were not available), and to evaluate the

effectiveness of connectivity conditions.

Experiments have multiple purposes: in §5.1 the quality of the formulations
[C,], [C], [D,f | and [P,] has been evaluated with respect to the graph density
d and parameter 7. In §5.2 the combinatorial dual bounds ky and ky have
been compared to each other, whereas CPU times and tightness of the dual
bounds provided by [D5] have been reported in §5.3. Finally, the branch-and-
price results have been analyzed in §5.4 and the effectiveness of the sufficient
connectivity conditions discussed in §5.5.

Detailed numerical results are listed in the Appendix. In the following we
illustrate the experiments by means of performance profiles [13]: given a perfor-
mance indicator S of two algorithms and/or programs a and b, e.g. the optimal-
ity gap or the CPU running time, the performance profile of a plots the fraction
of the number of instances (the ordinate) for which the ratio 8,/ min{s,, 5s} is
less than or equal to a given threshold (the abscissa). For the sake of readability,

the abscissa axis is in logarhitmic scale in all the following charts.

5.1. LP-based dual bounds: sensitivity analysis

We perform a sensitivity analysis of models in sections 2 and 3 by using six

values of v = {0.5,0.6,0.7,0.8,0.9,0.95} and 80 Erdés-Rényi uniform random
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graphs [14] with |V| = 50. The graphs are grouped into 4 classes R, of 20 in-
stances each, where p € {0.2,0.4,0.6,0.8} indicates the mean density d, e.g., Ro.2
is the set of 20 random graphs whose mean density is d = 0.2. Let |Q*| be the op-
timal (or the best) integer solution provided by CPLEX and Qg the dual bound
computed by means of the formulation 8, with 8 € {[C,], [D5],[C,], [P;]}. The
performance is evaluated in terms of the percentage optimality gap
QY- 1]
QF

Generally speaking, the optimality gaps often reach high values and the dual

OGg =100 - (38)

bounds are quite weak (see Table 2 in the Appendix for details). However, the
best one always dominates k. The gaps decrease as the density of the graphs
gets larger or the 7 diminishes. In any case, the bound provided by [P,] is
always dominated by either QY, ; or QU ..
[Cy] (C5]
For each class of graphs and value of «y, Figure 4 shows the best percentage
gap between OG|c,) and OG ¢ : white bars indicate that OG|c,) is better than
OG|¢., black bars otherwise.
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[C,] achieves the best results for d < 0.4 but one case (y = 0.5 on class R 4).
For larger densities, [C,] performs better in all the non-trivial cases, i.e., when
the optimal solution corresponds to the trivial upper bound |V|. Formulations
[C,] and [C,] therefore looks to be complementary with respect to the graph
density: [C,] is suitable for computing dual bounds on sparse graphs, whereas
[C,] is convenient on dense graphs. As a consequence of this combined behaviour
random graphs with d < 0.5 appear the hardest to solve.

Looking at the formulation [D§ ], the dual bound Qﬁj 51 still continues to be
slightly tighter than Q%w] (see Table 2) though [D;9 | is a surrogate relaxation of
[D]. On the other hand, the computational burden to solve the linear relaxation
of [D,] becomes much higher as the graph density increases, making [D.,] poorly
competitive. As a final remark, the computation of all the dual bounds always

required a negligible CPU time, given the small order of the considered random

graphs.

5.2. Combinatorial dual bound comparison

The dual bounds ki and kg has been compared to each other on two groups
of instances: the 16 benchmark sparse graphs used in [31], and the 64 benchmark
DIMACS instances [21] for v = {0.5,0.7,0.8,0.9} (see Table 3 and Table 4 in
the Appendix). The graphs in the former set are very sparse (average density
d = 0.008) and represent real-world networks in the fields of social networks,
biology, telecommunications and transportation. Those in the latter set are
denser graphs (average density d = 0.621) often used as benchmarks for clique
problems.

The percentage optimality gap (38) has been computed by means of the best
known lower bound |Q!|, i.e., the maximum between an optimal solution value
(if available) and the heuristic solution value.

Numerical results are reported in the Appendix, Tables 5 and 6. The per-
formance profile on the quality of the two bounds is depicted in Figure 5. The
cumulative distributions show that (i) ky always dominates ky (as expected),

(i) the weakness of ki is more pronounced on sparse graphs for which the ratio
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OGy,, /OGy,, is always > 2 and reaches peaks of 259, and (iii) OGy,, improves
OGy,,, of at least 50% in roughly the 80% of DIMACS graphs.
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Figure 5: Performance profile of gaps OGy,, and OG,;U

Besides trivial-instances and three additional cases with v = 0.5, in which
both OGy,, and OGy,, are < 1.02%, the average optimality gaps always result
considerably large, in particular for sparse graphs, and grow for increasing val-
ues of . The mean ratio OGy, /OGy,, decreases as 7 increases on DIMACS
instances (from 3.97 for v = 0.5 to 1.83 for v = 0.9) and exhibits an opposite
behaviour on sparse graphs (from 4.43 for v = 0.5 to 8.96 for v = 0.9).

As remarked in §2.2, the clique-based bound k{ defined by (15) rapidly
becomes weak on dense graphs. Indeed, it can be exploited only in two DIMACS
instances, namely D35 and Dsg with v = 0.9, provided that we assume the best
known lower bound wr,(G) on the clique number w(G) as the optimal clique
number [21]. Under this hypothesis, the quality of k{; appears largely better
than kg, with an absolute reduction of 72 vertices in D35 and 104 vertices in
Dsg, respectively. Nevertheless, the optimality gap still remains large, i.e. 350%
for the former instance and 710% for the latter. We point out that the bound
kg is defined up to w(G) = 9 for v = 0.9, and we used w(G) = 8 for D35 and
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wr,(G) =9 for D35 that are very close to the upper limit. In all other DIMACS

instances, the value of wy,(G) is already sufficiently large to make k{5 unusable.

5.8. LP-based dual bound comparison

On the same set of instances (Table 3 and Table 4) we compared the linear
relaxation of integer programs [DJ], [C,] and [C,] for v = {0.5,0.7,0.8,0.9}.
Numerical results on gaps and CPU times are reported in Tables 7 and 8 (sparse

graphs) and Tables 9 and 12 (DIMACS graphs).

Sparse graphs. Figures 6 and 7 depict the performance profiles of percentage
optimality gaps and running times, respectively. The dual bound provided by
[C,] is not strictly dominated for all the values of 7. However, the quality of
[Df ] is comparable to that of [C,] since the mean ratio between gaps is 1.08, and
in the 73.44% of the cases the bounds coincide. Moreover, Q[%ﬁ] improves on
average the combinatorial bound ky by 134.15% (v = 0.5), 140.34% (y = 0.7),
139.43% (v = 0.8) and 138.63% (v = 0.9).

We do not report the performance of [P,] and [C,] because the former pro-
vides a dual bound always dominated by the other formulations, whereas the
latter is either not able to provide a bound within the time limit (given its
O(|E|) constraints) or Q%v] is dominated by both ijcv] and Q[%s].

The computation of ijDs] is faster than that of Q%W] (up to 20%) in about
the 60% of the 64 cases, whereas ijcw} is obtained roughly 3.5 time faster in
about the 6% of the cases: the whole CPU times to get the bounds for all the
64 cases are 1919.27 seconds for the former and 2062.90 seconds for the latter,
with an overall gap of 7.48%. Varying the value of « seems to not affect the

computational time significantly and there is no evidence of correlation between

the two measures.
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Figure 6: Performance profile of gaps OG[DS] and OG[C.Y] on sparse graphs.
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Dense graphs. Figures 8 and 9 show the performance profiles (percentage opti-

mality gaps and running times, respectively) of the formulations [D] and [C].
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Q%w] is better than QFDEI in 90.25% of the cases providing a smaller gap up to
86%. However, [C,] is not able to produce a valid bound within the time limit
in 9.10% of the cases. In particular, on D1-D1o instances Q%w} is, on average,
61.76% tighter than ng§] for v = 0.8 and 79.79% for v = 0.9, whereas it is
48.86% tighter for v = 0.9 on the nontrivial instances of the subclass Ds1-Dgg.
Instead, Q[UDg] is generally better in groups Di3-Dig and Dss-Dyg: in the for-
mer, [Df ] dominates [C,] for larger values of v, whereas in the latter [D:Yq] is
worse only for instances with high density value (d above 0.74) where however
[C,,] is not able to give a valid bound in 12 cases.

We do not report the performance profile of formulation [C,] because when
the solution of the continuous relaxation of [C,] does not reach the time limit,
the dual bounds QFCV} and ijDs«] are always very close to each other. Indeed,
[C,] is not able to provide a valid bound in 31 of the 256 cases and, for the
remaining instances, [D:Yg ] is only slightly better with a 0.12% of mean gap. As
a final remark on the quality of bounds, Q[LJTDE] improves ki by 7.85%, 7.74%,
5.79% and 6.37% for v = 0.5,0.7,0.8 and 0.9, respectively.
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Figure 8: Performance profile of gaps OG[DS] and OG[@W] on DIMACS graphs.
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The CPU time required for computing Q[UD 51 is always much smaller than
that needed for obtaining Q%W]: in 50% of the cases up to 16 times, in 8% of
the cases up to 3 orders of magnitude. In particular, the column generation
procedure ran for 208.42 seconds, 0.81 seconds on average, to compute the
QFDEI bound of all the instances; CPLEX reached the CPU time limit 31 and
15 times to compute respectively Q%V] and Q%w], and required 424.66 and
290.69 seconds on average to get the bound for the remaining instances. On
the base of the cases in which time limit was reached, it appears that DIMACS
instances become harder as 7 increases. Looking more in detail, Dag-Dag is
the only subgroups in which the time spent by [C,] has been roughly the same
as [D:f] and the bound is better. For several cases of D1-D15 and Ds1-Dgg, as
example, the better dual bound provided by [C’A,] has been obtained by spending
much more time.

Generally speaking, the above results show that [C,] is advantageous for

computing bounds on quite dense graphs (d > 0.4), with a density threshold

which slightly increases as vy grows, e.g., on instances D14 and Dq7, Q% ] is the
Y
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best bound for v = 0.5 and then becomes dominated for greater values of ~.
In any case, the employment of [C,] requires a significant amount of CPU time
that rapidly increases with the size of the graph, appearing much less scalable

if compared to [DS].

5.4. Branch-and-price results

The surrogate relaxation [D*Vg ] is a valid alternative to rapidly compute dual
bounds on large and dense graphs. Therefore, the branch-and-price algorithm
described in Section 3.1 has been tested on DIMACS instances (with v = 0.9).
Table 1 reports the cases solved to optimality; all other results are listed in the
Appendix, Table 13. The first three columns of Table 1 report the optimality
gap, the running time 7} DS and the number of columns generated by the branch-
and-price algorithm. The following columns list the optimality gaps and the
CPU times Tic ) and Tj¢ ) used by CPLEX for solving the MIPs [C,] and [C,],
respectively. The optimality gap (38) is computed by using the current primal
solution value and the largest dual bound among the active nodes of the search
tree. The term “limit” indicates that the algorithm did not close the optimality
gap after two hours of CPU time.

22 out of 64 instances have been solved to optimality within the time limit.

In particular:

e the continuous relaxations of [D5], [C,] and [C,] provide the optimal value
in ten cases, thus ending the search at the root node of the enumeration
tree. In eight of such cases, the column generation runs approximately

one order of magnitude faster.

e The instances D13 and Dsg have been solved by all the integer programs
(D3], [C,] and [C,], yet T ps) is larger than the best between Tjc ) and
Ti¢,)- However, the branch-and-price is faster than CPLEX on D where
CPLEX took 6323.84 seconds on [C,] and runs out on [C,].

e In the two non-trivial cases Dsg and D35 the branch-and-price was the
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only one able to find an optimal solution within the time limit, whereas

CPLEX ended with huge optimality gaps ranging from 280% to 2500%.

e Finally, CPLEX found an optimal solution in the remaining seven cases
(six due to [C,] and one to [C,]), whereas the branch-and-price reached

the time limit with a mean optimality gap of 54%.

The solution of the integer programs [D5], [C;] and [C,] reached the time
limit in all the remaining 42 instances, see Table 13. Except two cases (D; and
Do), G[Dg] is always much better than min{OG[CW],OG[CW]}, though it still is
quite large (544% on average), and CPLEX even was not able to compute the
continuous relaxation of [C,,] and [C,] in 14 and 4 cases, respectively.

As a final remark, the number of columns computed by the column genera-
tion is always quite large, suggesting that the solution policy of the |V| pricing

problems per iteration is one of the most critical issue of the branch-and-price

algorithm which deserve further investigation.

5.5. Effectiveness of connectivity conditions

The ~-quasi-cliques found by the primal heuristic on the set of uniform
random graphs are all connected. Inequality (36) certifies the connectivity of
the solutions in 184 of 480 cases. Proposition 1 verifies additional 107 solutions,
for a total of 291 positive occurrences. The numerical results show that both
the sufficient conditions are weaker for small values of v and large density of
graphs. This seems reasonable because the order |@Q| of y-quasi-cliques usually
get larger on instances with such features, thus making sufficient conditions
poorly effective. Indeed, Proposition 1 recognizes that the computed solution
is connected only on the 28.13% of DIMACS instances, though the solutions
obtained for this set of graphs are all connected for any value of . In particular,
inequality (36) is fulfilled by 17 solutions, whereas Proposition 1 is verified in
other 55 additional cases. On the other hand, 15 of the 64 solutions computed for
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Table 1: DIMACS instances solved to optimality

Branch-and-Price [C5] (Cy]

ID [|OGps; (%) T[D:?] (sec.)| #Cols [|0OG|c,) (%)(Tic,) (sec.)||OG . ) (%)(Tjc.,) (sec.)
D3 0.00 526.42 53615 0.00 70.13 0.00 638.28
D14 13.88 limit 1004282 0.00 1523.36 0.00 1728.64
D15 36.50 limit 1137644 17.46 limit 0.00 2443.88
Dis 0.00 1917.41 238162 0.00 6323.84 53.33 limit
Do 0.00 0.30 0 0.00 774.34 0.00 0.63
Dog 0.00 < 0.005 0 0.00 0.13 0.00 0.14
Do3 61.46 limit 11751925 0.00 583.88 0.00 28.22
Doy 0.00 0.02 0 0.00 8.56 0.00 0.20
Dog 0.00 184.66 214746 0.00 2.89 0.00 4.23
Dog 218.97 limit 5904127 231.25 limit 0.00 374.58
D3p 0.00 912.08 211144 1589.14 limit 280.00 limit
D32 0.00 0.03 0 0.00 8.80 0.00 0.14
Das 0.00 0.34 0 0.00 591.05 0.00 0.44
D3y 0.00 < 0.005 0 0.00 0.06 0.00 0.06
D35 0.00 2619.77 866671 2500.00 limit 2060.00 limit
D5y 36.50 limit 2358977 852.31 limit 0.00 102.05
Ds2 10.06 limit 2644217 172.73 limit 0.00 18.06
Ds3 0.00 0.02 0 0.00 3.38 0.00 0.14
Dsy 0.00 0.02 0 0.00 3.33 0.00 0.17
Ds5 0.00 0.02 0 0.00 3.16 0.00 0.22
Dego 0.00 0.05 0 0.00 39.50 0.00 0.70
Deg2 1.33 limit 1439865 1.54 limit 0.00 2.08

the sparse graph instances are disconnected (actually, four of them can easily be
made connected since they are composed by only two connected components,
one of which consisting of at most 3 vertices) and Proposition 1 is able to
recognize the 67.92% of the 53 connected (or easily connectable) y-quasi-cliques
found. In particular, 15 connected solutions fulfill the sufficient condition (36)
and other 21 additional cases are certified by Proposition 1, generally for higher

values of 7; e.g., all primal solutions are proved connected for v = 0.9.

6. Conclusions and perspectives

In this paper a new MIP reformulation [D,] for the v-QCP, obtained by
decomposing star inequalities, has been presented. The bound provided by
[D,] is as good as that computed by the tightest formulation [C] reported

in the literature and experiments show that also the surrogate relaxation [D§ ]
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roughly provide the same bounds. However, [D“j ] seems to be more scalable since
the column generation procedure becomes much faster as the density of graphs
increases. On dense graphs the best dual bound is provided by formulation
[C,], that models the 7-QCP by recalling the concept of complementary (1—7)-
quasi-clique. Nevertheless, [C’v] is computationally demanding for sufficiently
large graphs and solving [DS] by column generation remains a valid alternative,
considering that the required CPU time is extremely limited.

Furthermore, the importance of taking into account the connectivity of
MCRP solutions has been discussed. We presented a new sufficient condition
to verify the connectivity of y-quasi-cliques and, more in general, of solutions of
graph optimization problems that lack of an explicit constraint of connectivity.
For the v-QCP, our result dominates the previous one reported in the literature
and tests showed that it is also quite effective in practice. Indeed, it was able
to prove the connectivity of primal solutions in the 49.87% of the total cases,
whereas the benchmark condition was limited to the 27.00% of the instances.

Computational experiments highlighted that the +-QCP is a challenging
problem in practice and for several instances the optimality gap is very large.
Although the star-based reformulation helps to compute good dual bounds in
shorter time and can be successfully embedded in an exact procedure, yet our
basic implementation of a branch-and-price algorithm does not definitively out-
perform the CPLEX MIP-solver on [C,] or [C,]. As future work, firstly we aim
to enhance time performance of [D,] by exploring a dynamic strategy based
on lazy constraints to lighten formulation, where edge-flow constraints (19) are
checked on the fly to ensure feasibility. Then, we are interested to the imple-
mentation of polyhedral cuts (e.g., generalized neighborhood, matching, forest)
in order to tighten formulations [D,] and [D5], and to the enhancement of the
pricing strategy in order to reduce the number of generated columns. On this
ground, we look at the design and implementation of a full branch-and-cut-and-

price procedure able to solve challenging instances of v-QCP to optimality.
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Appendix

In this section we report the detailed numerical results discussed in Section 5.
Table 2 lists the percentage optimality gaps obtained with the linear relaxations
of the integer programs. Each entry is the average computed on the elements
of one of the four considered classes of random graphs. Bold numbers indicate
whenever a formulation strictly dominates all the others. Attributes of sparse
and dense graphs (order, size and density) are indicated in Tables 3 and 4,
respectively.

Tables 5 and 6 show the percentage optimality gaps OGy, and OGF,, be-
tween the value |Q'| provided by the greedy vertex elimination heuristic and the
dual bounds ky and ky respectively. A “” mark indicates an instance for which
the dual bounds are trivially equal to |V| and the primal solution is optimal.

Percentage optimality gaps and CPU running times for solving the continu-
ous relaxations of integer programs [D5], [C,] and [C,] are reported in Tables
7 and 8 (sparse graphs), and Tables 9-12 (DIMACS dense graphs); bold values
refer to strictly better gaps or CPU times.

Finally, Table 13 reports the optimality gaps for the DIMACS instances for
which neither the branch-and-price nor CPLEX running on the MIPs [C,] and
[C,,] have been able to solve the instance within the time limit of 7200 seconds.
A dash indicates that even the solution of the continuous relaxation was not

available within the time limit.
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Table 2: percentage optimality gaps on random graphs

Ro.2 Ro.4

7 || OGIey1 | OGIps) | OGIe,) | OGIp, || OCIc,) | OCips) | OGie,) | OGP,
(%) (%) (%) (%) (%) (%) (%) (%)

0.5 66.91 66.05 97.50 | 141.38 26.63 26.60 22.01 | 26.90
0.6 86.92 86.22 | 123.92 | 203.69 62.82 62.79 63.60 66.61
0.7 || 110.36 | 109.35 | 157.11 | 279.57 99.66 99.62 | 11046 | 112.51
0.8 || 119.65 | 118.93 | 169.10 | 335.80 || 134.41 | 134.17 | 154.58 | 160.82
0.9 || 137.61 | 135.98 | 19350 | 415.98 || 196.31 | 194.72 | 222.65 | 245.88
0.95 || 174.43 | 171.86 | 23225 | 518.15 || 204.80 | 201.08 | 230.78 | 264.36

Ro.6 Ro.s
0.5 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00
0.6 1.75 1.75 0.65 1.82 0.00 0.00 0.0 0.00
0.7 38.73 38.73 20.79 | 29.61 0.00 0.00 0.0 0.00
0.8 97.55 97.53 67.13 | 75.14 1.28 1.28 0.45 1.40
0.9 || 183.67 | 182.66 | 137.23 | 143.51 61.76 61.70 21.35 | 33.71
0.95 || 238.74 | 234.95 | 181.89 | 186.83 || 124.47 | 123.26 | 54.56 | 65.72

Table 3: Attributes of sparse graphs

ID Name V] |E] d

I USAir97 332 2126 0.0387
Ip) Harvard500 500 2043 0.0164
I3 Email 1133 5451 0.0085
Iy Homer 561 1628 0.0104
I SmallW 396 994 0.0127
Is Erdos971 472 1314 0.0118
Iz Netscience 1589 2742 0.0022
Iy C.Elegans 453 2025 0.0198
Iy Erdos02 6927 8472 0.0004
To Geom 7343 11898 | 0.0004
I ca-HepTh 9877 25973 | 0.0005
112 ca-GrQc 5242 14484 | 0.0011
I3 AS-735 7716 12572 | 0.0004
I4 | PGPgiantcompo | 10680 | 24316 | 0.0004
Iis EVA 8497 6711 0.0002
I California 9664 15969 | 0.0003
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Table 4: Attributes of DIMACS graphs

1D Name V] |E| d 1D Name V] |E| d

D1 brock200-1 200 14834 0.75 D33 MANN-a45 1035 | 533115 | 1.00
Do brock200-2 200 9876 0.50 D34 MANN-a9 45 918 0.93
Ds brock200-3 200 12048 0.61 D35 p-hat300-1 300 10933 0.24
Dy brock200-4 200 13089 0.66 D3¢ p-hat300-2 300 21928 0.49
Ds brock400-1 400 59723 0.75 D37 p-hat300-3 300 33390 0.74
Deg brock400-2 400 59786 0.75 D3g p-hat500-1 500 31569 0.25
D7 brock400-3 400 59681 0.75 D39 p-hat500-2 500 62946 0.50
Dg brock400-4 400 59765 0.75 Dyo p-hat500-3 500 93800 0.75
Dy brock800-1 800 207505 | 0.65 Dy p-hat700-1 700 60999 0.25
Do brock800-2 800 208166 | 0.65 Dyo p-hat700-2 700 121728 | 0.50
D11 brock800-3 800 207333 | 0.65 Dys p-hat700-3 700 183010 | 0.75
D12 brock800-4 800 207643 | 0.65 D44 | p-hat1000-1 1000 | 122253 | 0.24
D3 c-fat200-1 200 1534 0.08 Dyss | p-hat1000-2 | 1000 | 244799 | 0.49
D14 c-fat200-2 200 3235 0.16 Dy4s | p-hatl000-3 | 1000 | 371746 | 0.74
D15 c-fat200-5 200 8473 0.43 D47 | p-hat1500-1 1500 | 284923 | 0.25
D1s c-fat500-1 500 4459 0.04 Dysg | p-hatl500-2 | 1500 | 568960 | 0.51
D17 c-fat500-10 500 46627 0.37 Dyg p-hat1500-3 1500 | 847244 | 0.75
Dqg c-fat500-2 500 9139 0.07 Dso san1000 1000 | 250500 | 0.50
D19 c-fat500-5 500 23191 0.19 Ds1 | san200-0.7-1 200 13930 0.70
Dy | hammingl0-2 | 1024 | 518656 | 0.99 D52 | san200-0.7-2 200 13930 0.70
D21 hamming10-4 1024 | 434176 | 0.83 Ds3 | san200-0.9-1 200 17910 0.90
Dog hamming6-2 64 1824 0.90 D54 | san200-0.9-2 200 17910 0.90
Do3 hamming6-4 64 704 0.35 D55 | san200-0.9-3 200 17910 0.90
Doy hamming8-2 256 31616 0.97 Dse | san400-0.5-1 400 39900 0.50
Das hamming8-4 256 20864 0.64 D57 | san400-0.7-1 400 55860 0.70
Dog | johnsonl6-2-4 120 5460 0.76 Dsg | san400-0.7-2 400 55860 0.70
Dy7 | johnson32-2-4 496 107880 | 0.88 Dsg | san400-0.7-3 400 55860 0.70
Dog johnson8-2-4 28 210 0.56 Dgo | san400-0.9-1 400 71820 0.90
Dog johnson8-4-4 70 1855 0.77 De1 sanr200-0.7 200 13868 0.70
Da3o keller4 171 9435 0.65 Dg32 sanr200-0.9 200 17863 0.90
D3y keller5 776 225990 | 0.75 Deg3 sanr400-0.5 400 39984 0.50
D3z MANN-a27 378 70551 0.99 Dey sanr400-0.7 400 55869 0.70
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Table 5: percentage optimality gaps obtained with the dual bounds ky; and ky

v=0.5 v=0.7 v=0.8 v=0.9
D || OGr, | OCr, || OGr, | OCr, || OCw, | OCi, || OGr, | OGr,
(%) (%) (%) (%) (%) (%) (%) (%)

Dy - - - - 73.87 68.47 333.33 297.62
D2 1.53 1.02 354.05 294.59 582.61 460.87 1133.33 858.33
D3 - - 129.63 116.05 370.27 316.22 680.95 557.14
Dy - - 47.33 44.27 262.00 232.00 677.27 577.27
Ds - - - - 109.78 103.80 613.73 556.86
Dg - - - - 116.20 109.50 574.07 520.37
Dy - - - - 112.09 106.04 586.79 532.08
Dg - - - - 109.19 102.70 574.07 520.37
Dy - - 150.81 142.35 800.00 717.50 2090.32 1780.65
Do - - 139.44 131.99 768.67 691.57 2093.55 1790.32
D11 - - 154.97 146.36 767.47 687.95 2090.32 1780.65
D2 - - 154.13 145.87 847.37 761.84 2241.38 1913.79
Di3 160.00 16.67 247.37 31.58 287.50 37.50 346.15 46.15
D1y 96.55 15.52 152.63 26.32 181.25 31.25 226.92 46.15
D15 24.32 15.54 62.50 28.13 84.81 35.44 110.77 47.69
Dig 282.86 17.14 413.64 31.82 488.89 44.44 566.67 53.33
D7 33.33 15.74 74.64 28.23 97.11 35.84 128.37 48.23
Disg 189.39 16.67 285.71 30.95 331.43 37.14 393.10 48.28
Dig 85.98 15.24 142.45 27.36 177.01 36.78 219.72 49.30
Dog - - - - - - - -
Doy - - - - - - 84.59 77.26
D22 - - - - - - - -
Da3s 65.63 40.63 462.50 300.00 740.00 460.00 900.00 525.00
D2y - - - - - - - -
Das - - 57.42 50.32 221.13 187.32 923.81 766.67
Dog - - - - 244.12 235.29 1000.00 920.00
Dor - - - - - - 590.14 581.69
Dog - - 212.50 175.00 360.00 280.00 450.00 325.00
Dag - - - - 100.00 97.06 540.00 490.00
D3 - - 41.38 37.07 227.66 200.00 752.94 641.18
D3y - - - - 59.32 54.66 516.52 466.96
D32 - - - - - - - -
D33 - - - - - - - -
D34 - - - - - - - -
D35 231.75 182.54 785.00 580.00 1169.23 830.77 1850.00 1250.00
Dsg 1.02 0.68 42.86 33.14 105.26 84.21 268.33 211.67
D37 - - - - 21.94 18.99 122.95 108.20
Dssg 277.66 | 223.40 1150.00 862.50 1552.94 | 1111.76 2550.00 | 1750.00
D39 - - 37.22 28.48 88.15 70.14 240.00 190.91
Dyo - - - - 17.76 15.33 107.73 94.09
Dy 329.57 | 266.96 1337.93 1003.45 2343.75 1681.25 3988.89 | 2744.44
Dyo 0.29 0.14 37.21 28.37 91.67 73.26 220.99 173.46
Dys - - - - 20.07 17.41 115.54 101.01
Dyy 402.88 | 326.62 1746.88 1306.25 2810.53 | 2010.53 4636.36 | 3172.73
Dys 1.02 0.61 42.91 33.16 103.12 82.60 284.38 226.04
Dyg - - - - 23.12 20.05 131.30 115.52
Dyr 396.74 | 324.19 2212.82 1674.36 3736.36 | 2704.55 5585.71 3864.29
Dys - - 36.22 27.67 85.83 68.22 231.56 183.48
Dy - - - - 18.29 15.85 111.08 97.54
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Table 6: percentage optimality gaps obtained with the dual bounds ki and ky

v=0.5 v=0.7 v=0.8 v=0.9
1D OGy,, OG,;U OG,, OG,;U OG,, OGEU OGy,, OG,—CU
(%) (%) (%) (%) (%) (%) (%) (%)
Dso - - 36.89 18.77 40.75 15.48 2094.12 | 1611.76
D51 - - - - 41.67 33.33 58.56 41.44
D52 - - - - 16.88 11.88 27.54 18.12
Ds3 - - - - - - - -
D5y - - - - - - - -
Dss5 - - - - - - - -
Dsg - - 36.29 18.55 41.07 16.07 1319.05 1009.52
D57 - - - - 49.60 40.80 66.82 48.82
Dss - - - - 46.67 38.04 63.72 46.05
Dsg - - - - 41.13 33.21 58.56 41.89
Dso - - - - - - - -
Dg1 - - 1.53 1.53 165.71 151.43 433.33 375.76
Dego - - - - - - 1.53 1.53
Dsg3 - - 576.00 486.00 1164.00 932.00 2192.31 | 1669.23
Deg4 - - - - 252.83 232.08 802.56 707.69
I 37.31 14.93 59.18 22.45 69.77 23.26 97.14 31.43
I 143.24 40.54 192.31 42.31 195.83 33.33 191.30 21.74
I3 492.00 184.00 792.86 278.57 800.00 261.54 746.15 223.08
n 145.45 69.70 277.78 138.89 326.67 153.33 328.57 128.57
I 125.00 57.14 211.76 94.12 257.14 107.14 327.27 127.27
Is 217.39 95.65 369.23 169.23 470.00 210.00 575.00 250.00
Iz 238.71 22.58 270.83 20.83 277.27 13.64 271.43 4.76
I 200.00 83.33 322.22 127.78 373.33 140.00 458.33 158.33
Ig 922.22 361.11 1318.18 472.73 1522.22 522.22 1612.50 525.00
Iio 395.45 109.09 607.69 169.23 616.67 158.33 608.70 130.43
I 475.00 44.64 615.79 60.53 628.57 54.29 627.27 45.45
Io 197.53 16.05 269.09 29.09 272.55 23.53 265.31 12.24
I3 522.22 202.78 691.67 241.67 831.58 273.68 1013.33 313.33
T4 327.40 53.42 438.78 71.43 448.89 64.44 452.38 54.76
I15 1722.22 | 766.67 2660.00 | 1080.00 3150.00 | 1200.00 2950.00 | 1025.00
e 873.08 342.31 1683.33 616.67 1566.67 | 533.33 1466.67 | 450.00
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Table 8: CPU times on sparse graphs (in sec.)

v=0.5 v=0.7 v=0.8 v=0.9
ID )| T,y | Tosy || Tiew) | Tosy || Ties) | Tios) || Ties | Tips)
I 0.45 0.39 0.72 0.36 0.83 12 0.88 0.27
Iz 1.06 0.31 0.98 0.64 1.53 0.52 1.11 0.33
I3 11.48 8.41 12.13 6.55 11.33 | 8.28 12.02 6.22
Iy 0.66 0.64 0.59 0.89 0.70 0.61 0.83 0.55
Is 0.09 0.23 0.23 0.22 0.31 0.14 0.25 0.09
Is 0.17 1.61 0.30 1.11 0.22 0.92 0.17 0.59
I7 0.97 1.11 0.95 1.02 1.30 0.77 1.00 1.19
Ig 0.95 0.59 1.05 0.56 0.80 0.56 0.94 0.36
Ig 5.98 2.28 6.38 17.11 6.94 15.86 6.59 16.27
Io || 11.17 | 30.69 10.11 | 36.36 9.69 31.7 9.55 31.36
111 225.55 | 210.61 291.54 | 180.00 278.91 253.8 348.85 | 263.52
Lo || 27.28 | 22.39 21.67 | 20.84 || 18.88 | 19.59 || 21.95 | 22.70
I3 8.55 12.55 7.49 11.95 7.47 10.20 7.72 13.09
Iy || 62.99 | 123.19 || 56.25 | 117.36 || 65.65 | 110.98 || 60.97 | 115.92
Iis 1.75 3.22 1.17 3.39 1.19 3.08 1.11 3.36
Iig || 100.61 | 43.09 || 11252 | 42.09 79.42 | 40.89 || 120.03 | 42.58
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Table 13: DIMACS instances not solved within time limit

Branch-and-Price MIPs

1D OG[D§/] (%) #Cols OG[CV] (%) OG[C«A’] (%)
Dy 251.11 2930023 3180.00 218.79
Do 40.00 4205293 2050.80 520.83
D3 486.36 2843859 1791.43 692.60
Dy 278.93 2333289 2799.80 314.25
Ds 62.07 1232015 6540.00 2116.90
Dg 468.94 1100520 10998.67 2262.60
D~ 473.68 1338862 8175.00 2662.88
Dg 459.27 1046925 10966.67 2108.60
Dy 1455.18 299444 - 7900.00
Dio 1459.42 296895 - 7900.00
D11 1496.80 310185 - 8788.89
D12 1593.68 311608 - 7900.00
Di7 44.38 624741 6800.00 3383.33
Dig 27.58 82466 516.67 59.26
D19 39.39 234664 44.81 58.21
D2y 23.31 257701 - 753.20
Das 458.90 1103522 5865.67 1067.64
Dag 550.00 6089940 1110.38 240.00
Doy 580.68 986462 - 1146.43
D31 457.65 397155 - 5230.33
D3¢ 24.59 1772277 1504.90 1591.89
D37 71.71 1461076 1199.05 170.41
Dsg 1016.67 764961 4528.67 3600.00
Dsg 143.78 913014 13850.00 501.53
Dauo 6.36 936627 20750.00 150.49
Dy 1472.96 361658 9549.50 4166.67
Dy 132.07 487322 19250.00 8650.00
Dys 94.89 481375 - 5647.38
Dyy 1806.42 209762 49900.00 5900.00
Dys 176.61 258266 - -
Dyg 109.41 243074 - 941.67
Dy7 2889.91 94781 - 7828.57
Dysg 143.38 107727 - -
Dy 92.92 73421 - -
Dso 1535.27 307602 - -
Dse 942.81 1448182 3599.33 1390.29
D57 45.24 1177209 10233.33 2087.80
Dss 43.25 1225530 7650.00 2080.00
Dsg 38.64 1370705 6100.00 1996.09
Dg1 294.44 3045987 1812.13 312.24
Dg3s 461.11 1232796 7298.33 2482.13
Dgy 628.57 1404281 10264.33 2601.88
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