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LP-based dual bounds
for the maximum quasi-clique problem

Fabrizio Marinellia,∗, Andrea Pizzutia, Fabrizio Rossib

aUniversità Politecnica delle Marche, Ancona, Italy
bUniversità degli Studi dell’Aquila, L’Aquila, Italy

Abstract

A γ-quasi-clique is a simple and undirected graph with edge density of at least

γ. Given a graph G, the maximum γ-quasi-clique problem (γ-QCP) consists of

finding an induced γ-quasi-clique with the maximum number of vertices. γ-QCP

generalizes the well-known maximum clique problem and its solution is useful

for detecting dense subgraphs. After reviewing known integer linear program-

ming formulations and dual bounds for γ-QCP, a new formulation obtained by

decomposing star inequalities and combining edge inequalities is proposed. The

model has an exponential number of variables but a linear number of constraints

and its linear relaxation allows the computation by column generation of dual

bounds for large and dense graphs. The connectivity of γ-quasi-cliques is also

discussed and a new sufficient connectivity condition presented. An extensive

computational experience shows the quality of the computed dual bounds and

their performance in a branch-and-price framework, as well as the practical

effectiveness of the connectivity condition.

Keywords: quasi-clique, mixed integer programming, integer reformulation

1. Introduction

A clique is a complete graph, i.e., a graph with an edge for any pair of

vertices, and it is one of the basic combinatorial structures in graph theory.
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The maximum clique problem (MCP) consists of finding an induced clique of

maximum order in a simple and undirected graph G [23]. Solutions of the

MCP are meaningful, at least in principle, for a wide range of applications,

e.g., social network analysis, coding theory, telecommunication and genetics. In

fact, cliques express an ideal aggregation measure and are representative when

it is interesting to evaluate the degree of interaction between entities. However,

the search for a complete structure like a clique often prevents the discovery of

similarly interesting dense subgraphs. Furthermore, graphs derived from real-

world applications are generated from incomplete data and are often acquired

through error-prone processes. For these reasons, several clique relaxations have

been defined and the corresponding maximum relaxed-clique problems (MRCP-s)

have been investigated [25]. Clique relaxations can be classified according to the

number of relaxed properties: first-order relaxations are defined by slackening

a single clique-typifying property related, for instance, to the degree (k-core,

k-plex ), the distance (k-clique, k-club), the density (γ-quasi-clique, k-defective

clique) and the connectivity (k-block, k-bundle) [17]. Higher-order relaxations

can also be considered by relaxing more than one properties at the same time,

see [25].

Among discrete optimization problems deriving from clique relaxations, there

is a pair of NP-hard reciprocal problems: the maximum quasi-clique problem

(γ-QCP) [26] and the k-densest subgraph problem (KDSP). The former asks for

the maximum-order induced subgraph with edge density of at least γ of a simple

undirected graph G, whereas the latter calls for the densest subgraph of G of

order k. Another problem closely related to the γ-QCP is the maximum degree-

based γ-QCP [24]. A degree-based γ-quasi-clique is a subgraph H = (Q,EQ) of

a graph G induced by the set of vertices Q such that the degree of any vertex of

H is at least γ(|Q| − 1). It is easy to see that any degree-based γ-quasi-clique

is a γ-quasi-clique but not vice-versa.

The γ-QCP is both theoretically and computationally difficult. Critical as-

pects (among others) lie in the lack of the hereditary property and in the exis-

tence of disconnected optimal quasi-cliques. Recall that a property P of graphs
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is an infinite class of graphs which is closed under isomorphism and it is hered-

itary if every induced subgraph of every member of P is also in P [5]. This

implies that the inclusionwise maximality of the vertex-set of a graph satis-

fying a hereditary property can be tested in polynomial time. However, it is

well known that γ-quasi-cliques are only quasi-hereditary. In fact, to obtain an

induced γ-quasi-clique K from a γ-quasi-clique H = (Q,E) it is sufficient to re-

move a vertex v from H with deg(v) < 2·|E|
|Q| but this makes not straightforward

the maximality check of non-trivial γ-quasi-cliques.

The connectivity role in γ-QCP is also not completely settled. Allowing

disconnected γ-quasi-cliques clearly extends the solution space but the compu-

tational consequences have not been investigated. Note that, differently from

other clique relaxations (k-plex, k-defective clique, and k-bundle) for which dis-

connected subgraphs can be optimal solutions only if sufficiently small, the size

of a disconnected γ-QCP optimal solution is generally not limited from above

[17]. However, many real applications implicitly ask to find dense connected

subgraphs in order to properly capture the relations between elements of clus-

ters, and a solution comprised of more than one connected component misses

this aspect and may become less meaningful for the application (the presence of

disconnected optimal solutions could be even more frequent in both the vertex-

weighted and edge-weighted version of γ-QCP). Therefore, the quasi-clique def-

inition (and similar) should include the connectivity property to some extent.

Section 4 is devoted to discuss such issues.

Several heuristic approaches were proposed to solve the γ-QCP, or problems

with a slightly different definition of γ-quasi-clique [4][8][16]. In [1] the authors

describe a greedy randomized adaptive search procedure (GRASP) to detect

maximal quasi-cliques in massive sparse graphs, where the local search phase

exploits the concept of vertex potential to move up to local optima; Tsourakakis

et al. [30] present two heuristics, one based on iterated elimination of the vertex

with the smallest degree, and the other performing a local search looking for a

sequence of induced subgraphs with non-decreasing value of density.

To the best of our knowledge, the reference exact methods for γ-QCP are
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the MIP-based approach presented in [31] and the combinatorial branch-and

bound algorithm described in [22]; for KDSP instead, the state-of-the-art exact

method is the enumeration scheme with dual bounds computed via semidefinite

programming proposed in [18].

In this paper we develop earlier ideas originally formulated in [19]. We firstly

review the main combinatorial and LP-based dual bounds for γ-QCP available

in the literature. Then, we propose an integer reformulation [Dγ ] of γ-QCP and

a surrogate relaxation [DS
γ ] of [Dγ ] that provides dual bounds as good as those

computed by the linear relaxation of [Dγ ].

The surrogate relaxation uses a number of constraints linear in the number

of vertices of the graph and therefore it can be exploited for computing dual

bounds on large and dense graphs, or even directly solved by branch-and-price.

Then, we present a new sufficient condition for obtaining connected γ-quasi-

cliques that dominates the previous result reported in the literature.

The outline of the paper is as follows: in Section 2 the γ-QCP is formalized,

then mixed integer linear programming formulations (MILPs) and combinatorial

dual bounds from the literature are reviewed; a Dantzig-Wolfe [11] reformulation

and a branch-and-price algorithm are presented in Section 3; in Section 4 a new

sufficient condition for solutions connectivity is given; finally, computational

results are reported in Section 5 while conclusions are captured in Section 6.

2. Problem definition, MILP formulations and bounds

The γ-QCP can be formalized as follow. Let H = (Q,EQ) = G[Q] be the

subgraph of G = (V,E) induced by the set of vertices Q ⊆ V . Given γ ∈ (0, 1],

an optimal solution of γ-QCP is an induced subgraph H of maximum order |Q∗|

and with a number of edges |EQ∗ | ≥ γ · |Q
∗|(|Q∗|−1)

2 .

2.1. MILP formulations

Veremyev et al. [31] propose four MILP formulations for γ-QCP, the tightest

of which, reported in the following, consists of O(|V |+ |E|) variables and O(|E|)

constraints. Let xi, i ∈ V , and ze, e ∈ E, be binary variables with xi = 1 iff
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i ∈ Q, and ze = 1 iff e ∈ EQ. Moreover, let yk, k ∈ K = {kL, . . . , kU}, be the

binary variable with yk = 1 if H is of order k. The formulation reads as:

[Cγ ] : |Q∗| = max
∑
i∈V

xi (1)

ze ≤ xi, ze ≤ xj ∀e = {i, j} ∈ E (2)

∑
i∈V

xi ≤
∑
k∈K

kyk (3)∑
k∈K

yk = 1 (4)

γ
∑
k∈K

k(k − 1)

2
yk ≤

∑
e∈E

ze (5)

xi, ze, yk ∈ {0, 1} ∀i ∈ V,∀e ∈ E,∀k ∈ K (6)

Edge e = {i, j} belongs to the γ-quasi-clique H if (and only if) vertex i and j

are both in Q, see constraints (2). The order k of H is defined by constraints

(3) and (4), and constraint (5) bounds from below the density of H by γ.

[Cγ ] can be easily modified to model other density-based clique relaxations:

a formulation for the maximum s-defective clique problem can be obtained by

replacing constraint (5) with∑
k∈K

k(k − 1)

2
yk ≤

∑
e∈E

ze + s

whereas a formulation for the maximum degree-based γ-QCP results by replac-

ing (5) with the set of constraints

γ(
∑
k∈K

kyk − 1) ≤
∑

e={i,j}∈E

ze + γ(kU − 1)(1− xi) ∀i ∈ V.

The size of [Cγ ] grows with the density of G whereas an alternative MILP,

originally presented in [26], does not. Such a formulation is obtained by lin-

earizing the quadratic constraint that models the density threshold condition
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|EQ∗ | ≥ γ · |Q
∗|(|Q∗|−1)

2 . Namely, by introducing an additional variable wi, for

each i ∈ V , such that:

wi = γxixi +
∑
j∈V

(aij − γ)xixj

where aij is equal to one if {i, j} ∈ E and zero otherwise, the γ-QCP can be

formulated as follows:

[Pγ ] : |Q∗| = max
∑
i∈V

xi (7)∑
i∈V

wi ≥ 0 (8)

wi ≤ uixi, wi ≥ lixi ∀i ∈ V (9)

wi ≤ γxi +
∑
j∈V

(aij − γ)xj − li(1− xi) ∀i ∈ V (10)

wi ≥ γxi +
∑
j∈V

(aij − γ)xj − ui(1− xi) ∀i ∈ V (11)

xi ∈ {0, 1}, wi ∈ R ∀i ∈ V (12)

where ui and li respectively are upper and lower bounds on the value of wi

obtained by setting:

ui = (1− γ)
∑
j∈V

aij , li = −(n− 1−
∑
j∈V

aij)γ ∀i ∈ V.

Formulation [Cγ ] rapidly grows due to its O(|E|) constraints and therefore it

is suitable for computing dual bounds only on graphs sparse enough. On the

contrary, the number of variables and constraints of [Pγ ] grow linearly with |V |

and does not depend on graph density, but the bound provided by the linear

relaxation of [Pγ ] is weaker than the one obtained by [Cγ ] (see Section 5).

A smaller formulation on dense graphs can be derived by looking at com-

plementary γ-quasi-cliques, i.e., induced subgraphs G[Q] with a density that

does not exceed γ ∈ [0, 1) [6]. Any γ-quasi-clique on G then corresponds to a

complementary (1− γ)-quasi-clique on the complement graph Ḡ = (V, Ē), both
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induced by the subset of vertices Q. Hence, an optimal solution of γ-QCP can

be achieved by solving to optimality the maximum complementary (1−γ)-quasi-

clique problem by means of the integer program [C̄γ ] consisting of (1), (3), (4),

(6) plus the following constraints:

xi + xj − 1 ≤ ze ∀e = {i, j} /∈ E (13)∑
e/∈E

ze ≤ (1− γ)
∑
k∈K

k(k − 1)

2
yk (14)

The formulation is a straightforward adaptation of [Cγ ]; constraints (13) is

expressed for each edge in Ē and ensures the presence of an edge e = {i, j}

within the complementary (1 − γ)-quasi-clique if (and only if) both endpoints

i and j are selected. Finally, inequality (14) models the density restriction of a

complementary (1−γ)-quasi-clique. Formulation [C̄γ ] uses O(|V |+|Ē|) variables

and O(|Ē|) constraints.

2.2. Primal and dual bounds

A lower bound kL to |Q∗| is given by the order of any clique of G. On the

other hand, a basic upper bound to |Q∗| is in [26]:

kU =

⌊
1

2
+

1

2

√
1 +

8|E|
γ

⌋
.

A better upper bound k̄U can be obtained in O(|V | log |V |) as follows, see also

[22]. Any γ-quasi-clique H = (Q,EQ) fulfils by definition |Q|(|Q| − 1) ≤ 2
|EQ|
γ .

Moreover, |EQ| =
∑
i∈Q

dHi
2 ≤

∑
i∈Q

min{|Q|−1,di}
2 , where di is the degree of i in

G and dHi is the degree of i in H. Therefore:

|Q|(|Q| − 1) ≤ 1

γ

∑
i∈Q

min{|Q| − 1, di} ≤
1

γ

|Q|∑
i=1

min{|Q| − 1, di}

where the last inequality holds if vertices of G are sorted by non-increasing

degrees, i.e., di ≥ dj for i < j. It easy to see that the largest integer Q
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that satisfies the above inequality is a valid upper bound k̄U for |Q∗|, and that

k̄U < kU for the |Q∗| < |V |.

Let ω(G) be the clique number of graph G, i.e. the order of the maximum

clique of G. If 1 − 1
ω(G) < γ, an alternative upper bound kωU on |Q∗| has been

defined in [26] as:

kωU =

⌊
ω(G)γ

1− ω(G) + ω(G)γ

⌋
≥ |Q∗| (15)

Unlike the aforementioned bounds, kωU does not depend directly on the order

and the size of G. Figure 1 shows the value of kωU with respect to ω(G) and

γ. Although particularly useful when applied to sparse graphs, in which ω(G)

value is limited, it rapidly becomes poor on dense graphs. For instance let us

consider a graph G with |E| = 20, 000, more than 230 vertices, and ω(G) = 31.

Given γ = 0.97, it results kωU = 429 and kU = 203. Moreover, the efficacy of kωU

diminishes as γ gets smaller; for instance, kωU with γ = 0.9 is only defined up to

ω(G) ≤ 9. Computing ω(G) can be extremely time consuming on sufficiently

large graphs, so that a reasonable choice can be to substitute ω(G) with a

suitable upper bound ωU (G) within (15). However, condition 1 − 1
ωU (G) < γ

must hold, limiting the applicability of the substitution, and the resulting bound

degrades as ωU (G) loses tightness.

3. Star-based reformulation

Model [Cγ ] can be reformulated by integer decomposition [11]. Let di be

the degree of vertex i ∈ V , N(i) the set of neighbours of i, and S(i) the set of

incidence edges of i that, for the sake of conciseness, we call the star of i. The

star constraint

∑
e∈S(i)

ze ≤ (kU − 1)xi (16)

is a valid inequality for the convex hull of the integer solutions to [Cγ ]. Namely,

the set of integer points that non-trivially satisfy (16) corresponds to the col-

lection Si = {Si1, Si2, . . .} of all the nonempty partial stars of i containing less

8



𝛾 = 0.99

𝑘𝑈
𝜔

𝜔 𝐺

𝛾 = 0.98𝛾 = 0.97𝛾 = 0.96

𝛾 = 0.95

𝛾 = 0.9

𝛾 = 0.8

Figure 1: kωU for several γ values and ω(G) ≤ 50

than kU edges. Let Sji ⊂ Si be the collection of the partial stars including the

edge {i, j} ∈ E. Then for any e = {i, j} ∈ E, the variables xi and ze of [Cγ ]

can be rewritten as

xi =

|Si|∑
h=1

λih ze =

|Sji |∑
h=1

λih

|Si|∑
h=1

λih ≤ 1 λih ∈ {0, 1},

where variable λih is equal to 1 if the partial star Sih is selected, and 0 otherwise.
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The resulting MIP formulation reads as follows:

[Dγ ] : |Q∗| = max
∑
i∈V

|Si|∑
h=1

λih (17)

|Si|∑
h=1

λih ≤ 1 ∀i ∈ V (18)

|Sji |∑
h=1

λih −
|Sij |∑
h=1

λjh = 0 ∀e = {i, j} ∈ E (19)

∑
i∈V

|Si|∑
h=1

λih ≤
∑
k∈K

kyk (20)∑
k∈K

yk = 1 (21)

∑
k∈K

⌈
γk(k − 1)

2

⌉
yk −

1

2

∑
i∈V

|Si|∑
h=1

|Sih|λih ≤ 0 (22)

λih ∈ {0, 1} ∀i ∈ V, h ∈ {1, . . . , |Si|}(23)

yk ∈ {0, 1} ∀k ∈ K (24)

Constraint (18) requires that at most one partial star can be selected for each

vertex. Constraints (19) impose a consistent selection of partial stars, that is,

if a partial star Sih is chosen and Sih contains the edge {i, j} , then a partial

star Sjp including the edge {j, i} must be selected too. To this purpose, the

coefficient of the variable λih is +1 for edges {i, j} ∈ Sih with i < j and −1

otherwise. Constraints (20), (21) and (22) directly derive from [Cγ ]

Figure 2 shows the coefficients matrix of constraints (18) and (19) for the

kite graph (the kite has |V | = 5 and |E| = 6, see [7]). Gray columns describe

the optimal solution for γ = 0.8, corresponding to the clique induced by vertices

{1, 2, 3}. The clique is composed by overlapping partial stars S11, S21 and S31,

where edges are weighted 1
2 in density constraint (22).

Since each star inequality (16), together with the variable bound constraints,

defines an integral polyhedron, the continuous relaxations of [Cγ ] plus star

inequalities and the integer reformulation [Dγ ] have the same optimal value.

Therefore, the dual bound provided by [Dγ ] is at least as tight the one pro-
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Figure 2: Star reformulation on a kite graph, |V | = 5, |E| = 6

S 1 S 2 S 3 S 4 S 5

V 1 1 1 1 1 1 1 < 1

2 1 1 1 1 1 1 < 1

3 1 1 1 1 1 1 < 1

4 1 < 1

5 1 1 1 < 1

E  {1, 2} 1 1 1  -1  -1  -1  = 0

 {1, 3} 1 1 1  -1  -1  -1  = 0

 {1, 4} 1 1 1  -1  = 0

 {2, 3} 1 1 1  -1  -1  -1  = 0

 {2, 5} 1 1 1  -1 -1  = 0

 {3, 5} 1 1 1  -1  -1  = 0

vided by [Cγ ], where possible improvements arise from star constraints (16)

or the rounding up of the yk’s coefficients in (22). For instance, on a set of

sparse graphs taken from [31] the effect of star constraints appears extremely

limited, with a mean percentage improvement of 0.4% for γ = 0.9. When edge-

weighted graphs are taken into account [28], the problem can be generalized to

the weighted γ-QCP. In this case, the polyhedron described by each correspond-

ing weighted star constraint plus variable bound constraints becomes fractional

and [Dγ ] is an integer reformulation providing tighter dual bounds.

Model [Dγ ] consists of an exponential number of variables in |E| and there-

fore the solution of its continuous relaxation requires a column generation ap-

proach. The search for useful columns (i.e., partial stars) requires to solve for

each vertex i the following pricing problem. Let σi, δ, ψ ∈ R+ and πe ∈ R be

the values of dual variables associated to constraints (18),(20),(22) and (19),

respectively, and let we be a binary variable equal 1 if edge e belongs to the

partial star (0 otherwise). The reduced cost of the most profitable partial star
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of vertex i is:

c̄(i) =− σi − δ + max
∑
e∈S(i)

(
1

2
ψ + Γ(e)πe)we (25)

with Γ(e = {i, j}) = −1 if i < j and Γ(e) = 1 otherwise. The pricing problem

search for the set of at most (kU − 1) edges that maximize c̄(i) (25). Such a set

can be obtained simply by ranking the edges of S(i) by non decreasing values

of ( 1
2ψ + Γ(e)πe).

Formulations [Cγ ] and [Dγ ] are not suitable for solving the γ-QCP on dense

graphs due their O(|E|) constraints, and even the continuous relaxation can be

difficult to solve for moderate size instances. However, at the cost of a small loss

in the dual bounds quality, a surrogate relaxation [DS
γ ] of [Dγ ] can be considered

by replacing constraints (19) with the following ones:

|Si|∑
h=1

|Sih|λih −
∑

j∈N(i)

|Sij |∑
h=1

λjh = 0 ∀i ∈ V (26)

Constraint (26) are obtained, for each vertex i, by summing up all constraints

in (19) for e = {i,N(i)}. Hence, [DS
γ ] has O(|V |) constraints. Now, let θi ∈ R

be the values of the dual variable related to (26). The pricing problem for [DS
γ ]

associated to vertex i can be easily derived from (25) by properly adapting it

into

c̄(i) =1− σi − δ + max
∑
e∈S(i)

(
1

2
ψ − θi + θj)we (27)

3.1. A branch-and-price algorithm

Formulation [DS
γ ] is in principle not tighter than both [C̄γ ] and [Cγ ]. Nev-

ertheless, it has the same dual bound provided by [Cγ ] (which we recall being

much better than both k̄U and the linear relaxation of [Pγ ]) but it is consid-

erably smaller, having only O(|V |) constraints. These features make the linear

relaxation of [DS
γ ] an interesting bound for large and/or dense instances, either

embedding the column generation procedure into a combinatorial branch-and-

bound scheme (like the one proposed in [22]), or considering to solve the integer

program [DS
γ ] directly by branch-and-price.
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In the following, we describe a straightforward implementation of a branch-

and-price algorithm that, although lacking of several performance boosting ele-

ments (acceleration and stabilization techniques, early termination and effective

primal heuristics, see [12]), shows the practical viability of [DS
γ ]. The pricing

strategy and the branching rule of this prototype version are the following.

As reported in Section 3, each iteration of the column generation scheme

requires, for each i ∈ V , the solution of the pricing problem (27). The pric-

ing phase can follows various strategies: one can sequentially generate all the

promising columns associated with a vertex i before moving to another vertex;

alternatively, one can generate for each vertex a limited subset of columns (even

just one column). Preliminary tests showed that the latter strategy is more ef-

fective, though it requires a large number of iterations producing a large number

of columns. To overcome this drawback, we keep the size of the master problem

under a given threshold (8000 columns in our setting) by periodically deleting

variables with the most negative reduced cost.

The branching is performed on the binary variables xi (i ∈ V ) of the compact

formulation [Cγ ], i.e., the vertex i is either included in the γ-quasi-clique or

deleted from the graph associated to the subproblem. The branching on xi is

implemented on [DS
γ ] by modifying the i-th constraint (18) in

|Si|∑
h=1

λih = 1 (xi = 1)

and
|Si|∑
h=1

λih = 0 (xi = 0).

Consequently, the structure of the pricing problem (27) remains untouched since

the changes only involve the star S(i). In particular, given a subproblem P of

the search tree, let F0 be the set of vertices deleted from G in P , and F1 the set

of vertices included in the partial γ-quasi-clique associated to P . The solution

of the i-th pricing problem on vertex i, must be a partial star S∗ ∈ Si such that:

- S∗ does not contain edges in S(j) for any j ∈ F0;
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- if i ∈ F1, then S∗ contains the edge {i, j} for any j ∈ F1 ∩N(i);

- |S∗| ≤ kU − 1− (|F1| − |F1 ∩N(i)| − |F1 ∩ {i}|).

Finally, branching is performed on the vertex i with the larger number of

fractional star variables λih. The tree search is performed selecting the sub-

problem with the best bound, because depth-first search, although accelerates

updating the current LP and its solution, has been proven ineffective.

4. Quasi-clique connectivity

In several real-world applications, finding cohesive clusters is naturally re-

ferred to the identification of single connected components on graphs [17]. In

[15] a thorough discussion of approaches for the community detection problem is

presented and the connectivity is assumed as a required property. Such assump-

tion is often reasonable as disjointed clusters actually represent clusters whose

mutual interaction can be assumed irrelevant with respect to the aggregation

properties of interest. By contrast, solutions composed of multiple connected

components are suitable or even characterizing for alternative problems, such

as clique relaxation packing problems or maximal clique relaxation enumeration

problems, which arise by generalizing the corresponding optimization problems

originally defined on cliques [9][2].

Optimal k-core, k-defective and γ-quasi cliques can be disconnected and there-

fore the corresponding MRCPs should explicitly require the connectivity con-

dition. One can argue that connectivity can be ensured by considering alter-

native clique relaxations, such as k-club (an induced subgraph of diameter at

most k, see [3][20]) or k-block (an induced subgraph whose minimum vertex cut

is at least k, see [10][17]), for which optimal solutions are always connected.

Generally speaking however, the purpose of k-clubs and k-blocks is to guaran-

tee respectively a given degree of reachability and robustness, whereas density

based relaxations, such as k-defective and γ-quasi-cliques, are useful to deal with

noisy and missing data. Moreover, although a γ-quasi-clique can be composed
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by several very dense disconnected subgraphs, typically the significant γ thresh-

old (γ > 0.5) results in solutions made of a single large connected component

along with other small ones. On the other hand, it is easy to see that a γ-quasi-

clique can be composed by k connected components of the same order only if

γ < 1/k. This also implies that cut-edges of a connected solution generally link

a large component to small ones.

We suppose that the lack of an explicit request of connectivity within formu-

lations of MRCP can be attributed to the easiness of modeling it in mathemat-

ical programming terms. Indeed, several solution approaches can be conceived

that take advantage of connectivity. For instance, in a branch-and-bound the

selection of the branching variable can be done assuming the connectivity of the

chased solution.

Ensuring the connectivity within MILP formulations can be done in several

ways, typically by recalling variables and constraints used to model connectivity

in Hamiltonian or shortest path problems [29]. Indeed, a large body of research

exists on this topic, see for example [27] and the references therein, as well as

the recent polyhedral study of the connected subgraph polytope [32].

As example, connectivity can be guaranteed for γ-QCP (and similarly for

other MRCPs) by introducing variables ci ∈ {0, 1} for each vertex i ∈ V , where

ci is set to 1 iff vertex i is selected as source, and flow variables fij ∈ R for each

edge {i, j} ∈ E. Optimal connected γ-quasi-cliques can be found by solving a

MILP formulation that adds to the formulation [Cγ ] in Section 2 the following

constraints:
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∑
i∈V

ci = 1 (28)

ci ≤ xi ∀i ∈ V (29)∑
h∈V

xh − 1− ku(1− ci) ≤
∑

j∈N(i):i<j

fij −
∑

j∈N(i):j<i

fji ∀i ∈ V (30)

∑
h∈V

xh − 1 + ku(1− ci) ≥
∑

j∈N(i):i<j

fij −
∑

j∈N(i):j<i

fji ∀i ∈ V (31)

−ku(1 + ci − xi)− 1 ≤
∑

j∈N(i):i<j

fij −
∑

j∈N(i):j<i

fji ∀i ∈ V (32)

ku(1 + ci − xi)− 1 ≥
∑

j∈N(i):i<j

fij −
∑

j∈N(i):j<i

fji ∀i ∈ V (33)

−(ku − 1)ze ≤ fij ≤ (ku − 1)ze ∀e = {i, j} ∈ E (34)

ci ∈ {0, 1} ∀i ∈ V (35)

By means of (28) and (29), one vertex is selected as source node among the

ones belonging to the γ-quasi-clique. Constraints (30)-(33) resemble single-flow

constraints for TSP adapted on undirected graphs: (30) and (31) enforces that

exactly |Q∗| − 1 units of flow leave the source, whereas (32) and (33) ensures

that a single unit of flow is absorbed by any other vertices of the γ-quasi-clique.

Finally, (34) and (35) set the bounds for fij variables and ci respectively, where

fij results zero if e = {i, j} /∈ EQ. On the whole, this method requires the

addition of O(|V |+ |E|) variables and constraints to [Cγ ].

In [25] the sufficient conditions that ensures the connectivity of optimal

solutions are depicted for the main first-order clique relaxations. In particular,

a solution of the γ-QCP with |Q| vertices is connected if⌈
γ

(
|Q|
2

)
−
(
|Q| − 1

2

)⌉
≥ 1 (36)

holds. Figure (3) reports the upper bound on |Q| set by inequality (36) with

respect to γ.

Firstly, condition is ineffective for γ < 0.64. Then, the values of |Q| required

are small even for reasonable values of γ. For instance, if γ = 0.9, the maximum
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𝛾

|𝑄|

Figure 3: Upper bound on |Q| values set by (36)

γ-quasi clique must contain at most 19 vertices to verify the condition and this

value is not meaningful for graphs of practical interest.

In the following we present results related to the structure of γ-quasi-cliques

based on the existence of small connected components. Recall that G[Q] refers

to the subgraph (Q,EQ) of G induced by the subset of vertices Q ⊆ V .

Lemma 1. Let G be connected and G[Q] be a γ-quasi-clique formed by µ con-

nected components with at least one component having at most three vertices.

Then, there exists a γ-quasi-clique of the same order and no smaller size with

at most µ− 1 connected components.

Proof. Let X be a connected component of G[Q] with at most 3 vertices,

and P = p1 − . . . − pq be the longest simple path connecting X to some other

connected component of G[Q], say Y , with p1 vertex of X and pq vertex of Y

(P always exists since G is connected). If q ≤ 4, (part of) X can be replaced

by (part of) P thus reducing the number of connected components of G[Q] by

one, while the number of edges (vertices) of G[Q] does not decrease (increase).

If q > 4, there are at least 3 vertices {u, v, w} in G\G[Q] that can be connected

to some other connected component of G[Q] (since G is connected). Hence
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the vertices of X can be replaced by u, v, w without losing any edge and thus

obtaining a γ-quasi-clique with at most µ− 1 connected components. �

The above lemma can be used to get the following result related to the

maximum number of connected components of a γ-quasi-clique:

Lemma 2. Let G[Q] be a γ-quasi-clique with µ connected components and such

that

|EQ| >
(
|Q| − 4(µ− 1)

2

)
+ 6(µ− 1) (37)

holds. If G is connected, then a γ-quasi-clique with |Q| vertices and at most

µ− 1 connected components can be easily obtained by G[Q].

Proof. Inequality (37) forces G[Q] to have a number of edges that strictly

exceeds the total number of edges incident on |Q| vertices disjointed into a clique

Y of order |Q| − 4(µ − 1) and µ − 1 cliques of 4 vertices each one (connected

components with less than 4 vertices can be excluded by Lemma 1). For the

properties of the binomial coefficient, removing vertices of Y (up to a minimum

order of 4) to enlarge the other µ− 1 cliques cannot increase the total number

of edges of the µ cliques. Hence, the right-hand side of (37) defines an upper

bound on the number of edges for any induced subgraph of G with |Q| vertices

divided into µ (or more) connected components. Therefore, if |EQ| is greater

than such bound there exists at least a connected component in G[Q] with at

most three vertices. The thesis follows by Lemma 1. �

A sufficient condition for the connectivity of γ-QCP solutions can be obtained

by setting µ = 2 in Lemma 2.

Proposition 1. If G is connected and |EQ| ≥ 17+ |Q|2 (|Q|−9) then either G[Q]

is a connected γ-quasi-clique, or a connected γ-quasi-clique with |Q| vertices can

be easily obtained from G[Q].
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Furthermore, the following dominance result holds:

Proposition 2. The sufficient condition reported in Proposition 1 dominates

condition (36) for any |Q| ≥ 5.

Proof. Let G[Q] be a γ-quasi-clique such that (36) is valid. By definition

|EQ| ≥ γ
(|Q|

2

)
holds. Then, by inequality (36) it follows⌈
|EQ| −

(
|Q| − 1

2

)⌉
= |EQ| −

(
|Q| − 1

2

)
≥ 1

where the second member is given by the difference of two integer terms. The

statement then derives by algebraic manipulations. �

To show that the two conditions are not equivalent, we provide a simple

example. Let |Q| = 10, |EQ| = 36 and γ = 0.8. Clearly, G[Q] is a γ-quasi-

clique. It is easy to see that condition (36) is not satisfied, whereas Proposition

1 proves that G[Q] is connected.

Note that Proposition 1 cannot explicitly detect the connectivity of γ-QCP

solutions made of at most 4 vertices. Nevertheless, Lemma 1 implicitly ensures

the connectivity of all γ-quasi-cliques with at most 7 vertices on connected

graphs. Indeed, any partition of these vertices into two (or more) disjointed

subsets would have (at least) a connected component made by at most 3 vertices.

Hence, Proposition 1 integrated with Lemma 1 dominates (36) for any value of

|Q|.

Finally, even if we contextualized the discussion to the γ-QCP, any result

independent by γ can be straightforwardly inherited for analyzing the connec-

tivity of solutions related to other optimization problems defined on graph, such

as problems within the family of MRCP for which solutions can be disconnected

(e.g., k-core, k-bundle).

5. Computational results
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We carried out an extensive experimental campaign that mainly aim to study

the quality of combinatorial and LP based dual bounds as well as the effective-

ness of the sufficient conditions to recognize connected γ-quasi-cliques.

The column generation and branch-and-price algorithms have been coded in

C++ and all the linear programs solved by IBMr CPLEXr 12.5.0.0 on a Intelr

Core i7-7500U 2.70 GHz machine with 16Gb RAM. A CPU time limit of 7200

seconds has been used for all the experiments, and all the integer programs

have been set with K = {kL = 2, . . . , k̄U} (see (24)). Solutions obtained by

the greedy vertex elimination procedure of [30] have been used to measure the

optimality gap (when optimal solutions were not available), and to evaluate the

effectiveness of connectivity conditions.

Experiments have multiple purposes: in §5.1 the quality of the formulations

[Cγ ], [C̄γ ], [DS
γ ] and [Pγ ] has been evaluated with respect to the graph density

d and parameter γ. In §5.2 the combinatorial dual bounds kU and k̄U have

been compared to each other, whereas CPU times and tightness of the dual

bounds provided by [DS
γ ] have been reported in §5.3. Finally, the branch-and-

price results have been analyzed in §5.4 and the effectiveness of the sufficient

connectivity conditions discussed in §5.5.

Detailed numerical results are listed in the Appendix. In the following we

illustrate the experiments by means of performance profiles [13]: given a perfor-

mance indicator β of two algorithms and/or programs a and b, e.g. the optimal-

ity gap or the CPU running time, the performance profile of a plots the fraction

of the number of instances (the ordinate) for which the ratio βa/min{βa, βb} is

less than or equal to a given threshold (the abscissa). For the sake of readability,

the abscissa axis is in logarhitmic scale in all the following charts.

5.1. LP-based dual bounds: sensitivity analysis

We perform a sensitivity analysis of models in sections 2 and 3 by using six

values of γ = {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and 80 Erdös-Rényi uniform random
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graphs [14] with |V | = 50. The graphs are grouped into 4 classes Rp of 20 in-

stances each, where p ∈ {0.2, 0.4, 0.6, 0.8} indicates the mean density d, e.g., R0.2

is the set of 20 random graphs whose mean density is d = 0.2. Let |Q∗| be the op-

timal (or the best) integer solution provided by CPLEX and QUβ the dual bound

computed by means of the formulation β, with β ∈ {[Cγ ], [DS
γ ], [C̄γ ], [Pγ ]}. The

performance is evaluated in terms of the percentage optimality gap

OGβ = 100 ·
QUβ − |Q∗|

QUβ
. (38)

Generally speaking, the optimality gaps often reach high values and the dual

bounds are quite weak (see Table 2 in the Appendix for details). However, the

best one always dominates k̄U . The gaps decrease as the density of the graphs

gets larger or the γ diminishes. In any case, the bound provided by [Pγ ] is

always dominated by either QU[Cγ ] or QU
[C̄γ ]

.

For each class of graphs and value of γ, Figure 4 shows the best percentage

gap between OG[Cγ ] and OG[C̄γ ]: white bars indicate that OG[Cγ ] is better than

OG[C̄γ ], black bars otherwise.
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𝑂𝐺[𝐶𝛾] O𝐺[  𝐶𝛾]

Figure 4: min{OG[Cγ ], OG[C̄γ ]} for different γ and graph densities
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[Cγ ] achieves the best results for d ≤ 0.4 but one case (γ = 0.5 on class R0.4).

For larger densities, [C̄γ ] performs better in all the non-trivial cases, i.e., when

the optimal solution corresponds to the trivial upper bound |V |. Formulations

[Cγ ] and [C̄γ ] therefore looks to be complementary with respect to the graph

density: [Cγ ] is suitable for computing dual bounds on sparse graphs, whereas

[C̄γ ] is convenient on dense graphs. As a consequence of this combined behaviour

random graphs with d ≤ 0.5 appear the hardest to solve.

Looking at the formulation [DS
γ ], the dual bound QU[DSγ ] still continues to be

slightly tighter than QU[Cγ ] (see Table 2) though [DS
γ ] is a surrogate relaxation of

[Dγ ]. On the other hand, the computational burden to solve the linear relaxation

of [Dγ ] becomes much higher as the graph density increases, making [Dγ ] poorly

competitive. As a final remark, the computation of all the dual bounds always

required a negligible CPU time, given the small order of the considered random

graphs.

5.2. Combinatorial dual bound comparison

The dual bounds kU and k̄U has been compared to each other on two groups

of instances: the 16 benchmark sparse graphs used in [31], and the 64 benchmark

DIMACS instances [21] for γ = {0.5, 0.7, 0.8, 0.9} (see Table 3 and Table 4 in

the Appendix). The graphs in the former set are very sparse (average density

d = 0.008) and represent real-world networks in the fields of social networks,

biology, telecommunications and transportation. Those in the latter set are

denser graphs (average density d = 0.621) often used as benchmarks for clique

problems.

The percentage optimality gap (38) has been computed by means of the best

known lower bound |Ql|, i.e., the maximum between an optimal solution value

(if available) and the heuristic solution value.

Numerical results are reported in the Appendix, Tables 5 and 6. The per-

formance profile on the quality of the two bounds is depicted in Figure 5. The

cumulative distributions show that (i) k̄U always dominates kU (as expected),

(ii) the weakness of kU is more pronounced on sparse graphs for which the ratio
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OGkU /OGk̄U is always ≥ 2 and reaches peaks of 25.9, and (iii) OGk̄U improves

OGkU of at least 50% in roughly the 80% of DIMACS graphs.
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Figure 5: Performance profile of gaps OGkU and OGk̄U

Besides trivial-instances and three additional cases with γ = 0.5, in which

both OGkU and OGk̄U are ≤ 1.02%, the average optimality gaps always result

considerably large, in particular for sparse graphs, and grow for increasing val-

ues of γ. The mean ratio OGkU /OGk̄U decreases as γ increases on DIMACS

instances (from 3.97 for γ = 0.5 to 1.83 for γ = 0.9) and exhibits an opposite

behaviour on sparse graphs (from 4.43 for γ = 0.5 to 8.96 for γ = 0.9).

As remarked in §2.2, the clique-based bound kωU defined by (15) rapidly

becomes weak on dense graphs. Indeed, it can be exploited only in two DIMACS

instances, namely D35 and D38 with γ = 0.9, provided that we assume the best

known lower bound ωL(G) on the clique number ω(G) as the optimal clique

number [21]. Under this hypothesis, the quality of kωU appears largely better

than k̄U , with an absolute reduction of 72 vertices in D35 and 104 vertices in

D38, respectively. Nevertheless, the optimality gap still remains large, i.e. 350%

for the former instance and 710% for the latter. We point out that the bound

kωU is defined up to ω(G) = 9 for γ = 0.9, and we used ωL(G) = 8 for D35 and
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ωL(G) = 9 for D35 that are very close to the upper limit. In all other DIMACS

instances, the value of ωL(G) is already sufficiently large to make kωU unusable.

5.3. LP-based dual bound comparison

On the same set of instances (Table 3 and Table 4) we compared the linear

relaxation of integer programs [DS
γ ], [Cγ ] and [C̄γ ] for γ = {0.5, 0.7, 0.8, 0.9}.

Numerical results on gaps and CPU times are reported in Tables 7 and 8 (sparse

graphs) and Tables 9 and 12 (DIMACS graphs).

Sparse graphs. Figures 6 and 7 depict the performance profiles of percentage

optimality gaps and running times, respectively. The dual bound provided by

[Cγ ] is not strictly dominated for all the values of γ. However, the quality of

[DS
γ ] is comparable to that of [Cγ ] since the mean ratio between gaps is 1.08, and

in the 73.44% of the cases the bounds coincide. Moreover, QU[DSγ ] improves on

average the combinatorial bound k̄U by 134.15% (γ = 0.5), 140.34% (γ = 0.7),

139.43% (γ = 0.8) and 138.63% (γ = 0.9).

We do not report the performance of [Pγ ] and [C̄γ ] because the former pro-

vides a dual bound always dominated by the other formulations, whereas the

latter is either not able to provide a bound within the time limit (given its

O(|Ē|) constraints) or QU
[C̄γ ]

is dominated by both QU[Cγ ] and QU[DSγ ].

The computation of QU[DSγ ] is faster than that of QU[Cγ ] (up to 20%) in about

the 60% of the 64 cases, whereas QU[Cγ ] is obtained roughly 3.5 time faster in

about the 6% of the cases: the whole CPU times to get the bounds for all the

64 cases are 1919.27 seconds for the former and 2062.90 seconds for the latter,

with an overall gap of 7.48%. Varying the value of γ seems to not affect the

computational time significantly and there is no evidence of correlation between

the two measures.
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Figure 6: Performance profile of gaps OG[DSγ ] and OG[Cγ ] on sparse graphs.
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Figure 7: Performance profile of CPU running times for computing QU
[DSγ ]

and QU
[Cγ ]

on sparse

graphs.

Dense graphs. Figures 8 and 9 show the performance profiles (percentage opti-

mality gaps and running times, respectively) of the formulations [DS
γ ] and [C̄γ ].
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QU
[C̄γ ]

is better than QU[DSγ ] in 90.25% of the cases providing a smaller gap up to

86%. However, [C̄γ ] is not able to produce a valid bound within the time limit

in 9.10% of the cases. In particular, on D1-D12 instances QU
[C̄γ ]

is, on average,

61.76% tighter than QU[DSγ ] for γ = 0.8 and 79.79% for γ = 0.9, whereas it is

48.86% tighter for γ = 0.9 on the nontrivial instances of the subclass D51-D60.

Instead, QU[DSγ ] is generally better in groups D13-D19 and D35-D49: in the for-

mer, [DS
γ ] dominates [C̄γ ] for larger values of γ, whereas in the latter [DS

γ ] is

worse only for instances with high density value (d above 0.74) where however

[C̄γ ] is not able to give a valid bound in 12 cases.

We do not report the performance profile of formulation [Cγ ] because when

the solution of the continuous relaxation of [Cγ ] does not reach the time limit,

the dual bounds QU[Cγ ] and QU[DSγ ] are always very close to each other. Indeed,

[Cγ ] is not able to provide a valid bound in 31 of the 256 cases and, for the

remaining instances, [DS
γ ] is only slightly better with a 0.12% of mean gap. As

a final remark on the quality of bounds, QU[DSγ ] improves k̄U by 7.85%, 7.74%,

5.79% and 6.37% for γ = 0.5, 0.7, 0.8 and 0.9, respectively.
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Figure 9: Performance profile of CPU running times for computing QU
[DSγ ]

and QU
[C̄γ ]

on

DIMACS graphs.

The CPU time required for computing QU[DSγ ] is always much smaller than

that needed for obtaining QU
[C̄γ ]

: in 50% of the cases up to 16 times, in 8% of

the cases up to 3 orders of magnitude. In particular, the column generation

procedure ran for 208.42 seconds, 0.81 seconds on average, to compute the

QU[DSγ ] bound of all the instances; CPLEX reached the CPU time limit 31 and

15 times to compute respectively QU[Cγ ] and QU
[C̄γ ]

, and required 424.66 and

290.69 seconds on average to get the bound for the remaining instances. On

the base of the cases in which time limit was reached, it appears that DIMACS

instances become harder as γ increases. Looking more in detail, D26-D29 is

the only subgroups in which the time spent by [C̄γ ] has been roughly the same

as [DS
γ ] and the bound is better. For several cases of D1-D12 and D51-D60, as

example, the better dual bound provided by [C̄γ ] has been obtained by spending

much more time.

Generally speaking, the above results show that [C̄γ ] is advantageous for

computing bounds on quite dense graphs (d > 0.4), with a density threshold

which slightly increases as γ grows, e.g., on instances D14 and D17, QU
[C̄γ ]

is the
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best bound for γ = 0.5 and then becomes dominated for greater values of γ.

In any case, the employment of [C̄γ ] requires a significant amount of CPU time

that rapidly increases with the size of the graph, appearing much less scalable

if compared to [DS
γ ].

5.4. Branch-and-price results

The surrogate relaxation [DS
γ ] is a valid alternative to rapidly compute dual

bounds on large and dense graphs. Therefore, the branch-and-price algorithm

described in Section 3.1 has been tested on DIMACS instances (with γ = 0.9).

Table 1 reports the cases solved to optimality; all other results are listed in the

Appendix, Table 13. The first three columns of Table 1 report the optimality

gap, the running time T[DSγ ] and the number of columns generated by the branch-

and-price algorithm. The following columns list the optimality gaps and the

CPU times T[Cγ ] and T[C̄γ ] used by CPLEX for solving the MIPs [Cγ ] and [C̄γ ],

respectively. The optimality gap (38) is computed by using the current primal

solution value and the largest dual bound among the active nodes of the search

tree. The term “limit” indicates that the algorithm did not close the optimality

gap after two hours of CPU time.

22 out of 64 instances have been solved to optimality within the time limit.

In particular:

• the continuous relaxations of [DS
γ ], [Cγ ] and [C̄γ ] provide the optimal value

in ten cases, thus ending the search at the root node of the enumeration

tree. In eight of such cases, the column generation runs approximately

one order of magnitude faster.

• The instances D13 and D28 have been solved by all the integer programs

[DS
γ ], [Cγ ] and [C̄γ ], yet T[DSγ ] is larger than the best between T[Cγ ] and

T[C̄γ ]. However, the branch-and-price is faster than CPLEX on D16 where

CPLEX took 6323.84 seconds on [Cγ ] and runs out on [C̄γ ].

• In the two non-trivial cases D30 and D35 the branch-and-price was the
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only one able to find an optimal solution within the time limit, whereas

CPLEX ended with huge optimality gaps ranging from 280% to 2500%.

• Finally, CPLEX found an optimal solution in the remaining seven cases

(six due to [C̄γ ] and one to [Cγ ]), whereas the branch-and-price reached

the time limit with a mean optimality gap of 54%.

The solution of the integer programs [DS
γ ], [Cγ ] and [C̄γ ] reached the time

limit in all the remaining 42 instances, see Table 13. Except two cases (D1 and

D26), G[DSγ ] is always much better than min{OG[Cγ ], OG[C̄γ ]}, though it still is

quite large (544% on average), and CPLEX even was not able to compute the

continuous relaxation of [Cγ ] and [C̄γ ] in 14 and 4 cases, respectively.

As a final remark, the number of columns computed by the column genera-

tion is always quite large, suggesting that the solution policy of the |V | pricing

problems per iteration is one of the most critical issue of the branch-and-price

algorithm which deserve further investigation.

5.5. Effectiveness of connectivity conditions

The γ-quasi-cliques found by the primal heuristic on the set of uniform

random graphs are all connected. Inequality (36) certifies the connectivity of

the solutions in 184 of 480 cases. Proposition 1 verifies additional 107 solutions,

for a total of 291 positive occurrences. The numerical results show that both

the sufficient conditions are weaker for small values of γ and large density of

graphs. This seems reasonable because the order |Q| of γ-quasi-cliques usually

get larger on instances with such features, thus making sufficient conditions

poorly effective. Indeed, Proposition 1 recognizes that the computed solution

is connected only on the 28.13% of DIMACS instances, though the solutions

obtained for this set of graphs are all connected for any value of γ. In particular,

inequality (36) is fulfilled by 17 solutions, whereas Proposition 1 is verified in

other 55 additional cases. On the other hand, 15 of the 64 solutions computed for
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Table 1: DIMACS instances solved to optimality

Branch-and-Price [Cγ ] [C̄γ ]

ID OG[DSγ ] (%) T[DSγ ] (sec.) #Cols OG[Cγ ] (%) T[Cγ ] (sec.) OG[C̄γ ] (%) T[C̄γ ] (sec.)

D13 0.00 526.42 53615 0.00 70.13 0.00 638.28

D14 13.88 limit 1004282 0.00 1523.36 0.00 1728.64

D15 36.50 limit 1137644 17.46 limit 0.00 2443.88

D16 0.00 1917.41 238162 0.00 6323.84 53.33 limit

D20 0.00 0.30 0 0.00 774.34 0.00 0.63

D22 0.00 < 0.005 0 0.00 0.13 0.00 0.14

D23 61.46 limit 11751925 0.00 583.88 0.00 28.22

D24 0.00 0.02 0 0.00 8.56 0.00 0.20

D28 0.00 184.66 214746 0.00 2.89 0.00 4.23

D29 218.97 limit 5904127 231.25 limit 0.00 374.58

D30 0.00 912.08 211144 1589.14 limit 280.00 limit

D32 0.00 0.03 0 0.00 8.80 0.00 0.14

D33 0.00 0.34 0 0.00 591.05 0.00 0.44

D34 0.00 < 0.005 0 0.00 0.06 0.00 0.06

D35 0.00 2619.77 866671 2500.00 limit 2060.00 limit

D51 36.50 limit 2358977 852.31 limit 0.00 102.05

D52 10.06 limit 2644217 172.73 limit 0.00 18.06

D53 0.00 0.02 0 0.00 3.38 0.00 0.14

D54 0.00 0.02 0 0.00 3.33 0.00 0.17

D55 0.00 0.02 0 0.00 3.16 0.00 0.22

D60 0.00 0.05 0 0.00 39.50 0.00 0.70

D62 1.33 limit 1439865 1.54 limit 0.00 2.08

the sparse graph instances are disconnected (actually, four of them can easily be

made connected since they are composed by only two connected components,

one of which consisting of at most 3 vertices) and Proposition 1 is able to

recognize the 67.92% of the 53 connected (or easily connectable) γ-quasi-cliques

found. In particular, 15 connected solutions fulfill the sufficient condition (36)

and other 21 additional cases are certified by Proposition 1, generally for higher

values of γ; e.g., all primal solutions are proved connected for γ = 0.9.

6. Conclusions and perspectives

In this paper a new MIP reformulation [Dγ ] for the γ-QCP, obtained by

decomposing star inequalities, has been presented. The bound provided by

[Dγ ] is as good as that computed by the tightest formulation [Cγ ] reported

in the literature and experiments show that also the surrogate relaxation [DS
γ ]
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roughly provide the same bounds. However, [DS
γ ] seems to be more scalable since

the column generation procedure becomes much faster as the density of graphs

increases. On dense graphs the best dual bound is provided by formulation

[C̄γ ], that models the γ-QCP by recalling the concept of complementary (1−γ)-

quasi-clique. Nevertheless, [C̄γ ] is computationally demanding for sufficiently

large graphs and solving [DS
γ ] by column generation remains a valid alternative,

considering that the required CPU time is extremely limited.

Furthermore, the importance of taking into account the connectivity of

MCRP solutions has been discussed. We presented a new sufficient condition

to verify the connectivity of γ-quasi-cliques and, more in general, of solutions of

graph optimization problems that lack of an explicit constraint of connectivity.

For the γ-QCP, our result dominates the previous one reported in the literature

and tests showed that it is also quite effective in practice. Indeed, it was able

to prove the connectivity of primal solutions in the 49.87% of the total cases,

whereas the benchmark condition was limited to the 27.00% of the instances.

Computational experiments highlighted that the γ-QCP is a challenging

problem in practice and for several instances the optimality gap is very large.

Although the star-based reformulation helps to compute good dual bounds in

shorter time and can be successfully embedded in an exact procedure, yet our

basic implementation of a branch-and-price algorithm does not definitively out-

perform the CPLEX MIP-solver on [C̄γ ] or [Cγ ]. As future work, firstly we aim

to enhance time performance of [Dγ ] by exploring a dynamic strategy based

on lazy constraints to lighten formulation, where edge-flow constraints (19) are

checked on the fly to ensure feasibility. Then, we are interested to the imple-

mentation of polyhedral cuts (e.g., generalized neighborhood, matching, forest)

in order to tighten formulations [Dγ ] and [DS
γ ], and to the enhancement of the

pricing strategy in order to reduce the number of generated columns. On this

ground, we look at the design and implementation of a full branch-and-cut-and-

price procedure able to solve challenging instances of γ-QCP to optimality.
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Pottié, O.: The max quasi-independent set problem. CSR 2010: Computer

Science – Theory and Applications, pp 60-71, 2010.
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[14] Erdös, P. and Rényi, A.: On Random Graphs. I. Publicationes Mathemat-

icae, 6: 290–297, 1959.

[15] Fortunato, S.: Community detection in graphs. Physics Report, 486(3–5):

75–174, 2010.

[16] Liu, G. and Wong, L.: Effective Pruning Techniques for Mining Quasi-

Clique. ECML PKDD ’08 Proceedings of the European conference on Ma-

chine Learning and Knowledge Discovery in Databases - Part II: 33–49,

2008.

[17] Gschwind, T., Irnich, S., Furini, F., and Wolfler Calvo, R.: Social net-

work analysis and community detection by decomposing a graph into re-

laxed cliques. Technical Report LM-2017-06, Chair of Logistics Management,

Gutenberg School of Management and Economics, Johannes Gutenberg Uni-

versity Mainz, Mainz, Germany.

[18] Krislock, N., Malick, J. and Roupin, F.: Computational results of a semidef-

inite branch-and-bound algorithm for k-cluster. Computers & Operations Re-

search, 66: 153–159, 2016.

33



[19] Marinelli, F., Pizzuti, A. and Rossi, F.: A star-based reformulation for the

maximum quasi-clique problem. Proceedings of the 16th CTW on Graphs

and Combinatorial Optimization: 118–121, 2018.

[20] Moradi, E. and Balasundaram, B.: Finding a maximum k-club using the

k-clique formulation and canonical hypercube cuts. Optimization Letters,

12(8): 1947–1957, 2018.

[21] Rossi, R.A. and Ahmed, N.K.: The network Data Repository

with Interactive Graph Analytics and Visualization. Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015,

http://networkrepository.com.

[22] Pajouh, F.M., Miao, Z. and Balasundaram, B.: A branch-and-bound ap-

proach for maximum quasi-cliques. Annals of Operations Research. 216: 145–

161, 2014.

[23] Pardalos, P.M. and Xue, J.: The maximum clique problem. Journal of

Global Optimization. Optim. 4(3): 301–328, 1994.

[24] Pastukhov, G., Veremyev, A., Boginski, V. and Prokopyev, Oleg A.: On

maximum degree-based γ-quasi-clique problem: Complexity and exact ap-

proaches. Networks 71(2): 136–152, 2018.

[25] Pattilo, J., Youssef, N. and Butenko, S.: On clique relaxation models in

network analysis. European Journal of Operational Research. 226(1): 9–18,

2013.

[26] Pattilo, J., Veremyev, A., Butenko, S. and Boginski, V.: On the maximum

quasi-clique problem. Discrete Applied Mathematics. 161: 244–257, 2013.

[27] Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J. P. and Andrés

Weintraub: Imposing connectivity constraints in forest planning models. Op-

erations Research, 61(4): 824–836, 2013.

34



[28] San Segundo, P., Coniglio S., Furini, F. and Ljubić, I.: A new branch-and-
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Appendix

In this section we report the detailed numerical results discussed in Section 5.

Table 2 lists the percentage optimality gaps obtained with the linear relaxations

of the integer programs. Each entry is the average computed on the elements

of one of the four considered classes of random graphs. Bold numbers indicate

whenever a formulation strictly dominates all the others. Attributes of sparse

and dense graphs (order, size and density) are indicated in Tables 3 and 4,

respectively.

Tables 5 and 6 show the percentage optimality gaps OGkU and OGk̄U be-

tween the value |Ql| provided by the greedy vertex elimination heuristic and the

dual bounds kU and k̄U respectively. A “-” mark indicates an instance for which

the dual bounds are trivially equal to |V | and the primal solution is optimal.

Percentage optimality gaps and CPU running times for solving the continu-

ous relaxations of integer programs [DS
γ ], [Cγ ] and [C̄γ ] are reported in Tables

7 and 8 (sparse graphs), and Tables 9-12 (DIMACS dense graphs); bold values

refer to strictly better gaps or CPU times.

Finally, Table 13 reports the optimality gaps for the DIMACS instances for

which neither the branch-and-price nor CPLEX running on the MIPs [Cγ ] and

[C̄γ ] have been able to solve the instance within the time limit of 7200 seconds.

A dash indicates that even the solution of the continuous relaxation was not

available within the time limit.
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Table 2: percentage optimality gaps on random graphs

R0.2 R0.4

γ OG[Cγ ] OG[DSγ ] OG[C̄γ ] OG[Pγ ] OG[Cγ ] OG[DSγ ] OG[C̄γ ] OG[Pγ ]

(%) (%) (%) (%) (%) (%) (%) (%)
0.5 66.91 66.05 97.50 141.38 26.63 26.60 22.01 26.90
0.6 86.92 86.22 123.92 203.69 62.82 62.79 63.60 66.61
0.7 110.36 109.35 157.11 279.57 99.66 99.62 110.46 112.51
0.8 119.65 118.93 169.10 335.80 134.41 134.17 154.58 160.82
0.9 137.61 135.98 193.50 415.98 196.31 194.72 222.65 245.88
0.95 174.43 171.86 232.25 518.15 204.80 201.08 230.78 264.36

R0.6 R0.8

0.5 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00
0.6 1.75 1.75 0.65 1.82 0.00 0.00 0.0 0.00
0.7 38.73 38.73 20.79 29.61 0.00 0.00 0.0 0.00
0.8 97.55 97.53 67.13 75.14 1.28 1.28 0.45 1.40
0.9 183.67 182.66 137.23 143.51 61.76 61.70 21.35 33.71
0.95 238.74 234.95 181.89 186.83 124.47 123.26 54.56 65.72

Table 3: Attributes of sparse graphs

ID Name |V | |E| d
I1 USAir97 332 2126 0.0387
I2 Harvard500 500 2043 0.0164
I3 Email 1133 5451 0.0085
I4 Homer 561 1628 0.0104
I5 SmallW 396 994 0.0127
I6 Erdos971 472 1314 0.0118
I7 Netscience 1589 2742 0.0022
I8 C.Elegans 453 2025 0.0198
I9 Erdos02 6927 8472 0.0004
I10 Geom 7343 11898 0.0004
I11 ca-HepTh 9877 25973 0.0005
I12 ca-GrQc 5242 14484 0.0011
I13 AS-735 7716 12572 0.0004
I14 PGPgiantcompo 10680 24316 0.0004
I15 EVA 8497 6711 0.0002
I16 California 9664 15969 0.0003
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Table 4: Attributes of DIMACS graphs

ID Name |V | |E| d ID Name |V | |E| d
D1 brock200-1 200 14834 0.75 D33 MANN-a45 1035 533115 1.00
D2 brock200-2 200 9876 0.50 D34 MANN-a9 45 918 0.93
D3 brock200-3 200 12048 0.61 D35 p-hat300-1 300 10933 0.24
D4 brock200-4 200 13089 0.66 D36 p-hat300-2 300 21928 0.49
D5 brock400-1 400 59723 0.75 D37 p-hat300-3 300 33390 0.74
D6 brock400-2 400 59786 0.75 D38 p-hat500-1 500 31569 0.25
D7 brock400-3 400 59681 0.75 D39 p-hat500-2 500 62946 0.50
D8 brock400-4 400 59765 0.75 D40 p-hat500-3 500 93800 0.75
D9 brock800-1 800 207505 0.65 D41 p-hat700-1 700 60999 0.25
D10 brock800-2 800 208166 0.65 D42 p-hat700-2 700 121728 0.50
D11 brock800-3 800 207333 0.65 D43 p-hat700-3 700 183010 0.75
D12 brock800-4 800 207643 0.65 D44 p-hat1000-1 1000 122253 0.24
D13 c-fat200-1 200 1534 0.08 D45 p-hat1000-2 1000 244799 0.49
D14 c-fat200-2 200 3235 0.16 D46 p-hat1000-3 1000 371746 0.74
D15 c-fat200-5 200 8473 0.43 D47 p-hat1500-1 1500 284923 0.25
D16 c-fat500-1 500 4459 0.04 D48 p-hat1500-2 1500 568960 0.51
D17 c-fat500-10 500 46627 0.37 D49 p-hat1500-3 1500 847244 0.75
D18 c-fat500-2 500 9139 0.07 D50 san1000 1000 250500 0.50
D19 c-fat500-5 500 23191 0.19 D51 san200-0.7-1 200 13930 0.70
D20 hamming10-2 1024 518656 0.99 D52 san200-0.7-2 200 13930 0.70
D21 hamming10-4 1024 434176 0.83 D53 san200-0.9-1 200 17910 0.90
D22 hamming6-2 64 1824 0.90 D54 san200-0.9-2 200 17910 0.90
D23 hamming6-4 64 704 0.35 D55 san200-0.9-3 200 17910 0.90
D24 hamming8-2 256 31616 0.97 D56 san400-0.5-1 400 39900 0.50
D25 hamming8-4 256 20864 0.64 D57 san400-0.7-1 400 55860 0.70
D26 johnson16-2-4 120 5460 0.76 D58 san400-0.7-2 400 55860 0.70
D27 johnson32-2-4 496 107880 0.88 D59 san400-0.7-3 400 55860 0.70
D28 johnson8-2-4 28 210 0.56 D60 san400-0.9-1 400 71820 0.90
D29 johnson8-4-4 70 1855 0.77 D61 sanr200-0.7 200 13868 0.70
D30 keller4 171 9435 0.65 D62 sanr200-0.9 200 17863 0.90
D31 keller5 776 225990 0.75 D63 sanr400-0.5 400 39984 0.50
D32 MANN-a27 378 70551 0.99 D64 sanr400-0.7 400 55869 0.70
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Table 5: percentage optimality gaps obtained with the dual bounds kU and k̄U

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID OGkU OGk̄U OGkU OGk̄U OGkU OGk̄U OGkU OGk̄U

(%) (%) (%) (%) (%) (%) (%) (%)
D1 - - - - 73.87 68.47 333.33 297.62
D2 1.53 1.02 354.05 294.59 582.61 460.87 1133.33 858.33
D3 - - 129.63 116.05 370.27 316.22 680.95 557.14
D4 - - 47.33 44.27 262.00 232.00 677.27 577.27
D5 - - - - 109.78 103.80 613.73 556.86
D6 - - - - 116.20 109.50 574.07 520.37
D7 - - - - 112.09 106.04 586.79 532.08
D8 - - - - 109.19 102.70 574.07 520.37
D9 - - 150.81 142.35 800.00 717.50 2090.32 1780.65
D10 - - 139.44 131.99 768.67 691.57 2093.55 1790.32
D11 - - 154.97 146.36 767.47 687.95 2090.32 1780.65
D12 - - 154.13 145.87 847.37 761.84 2241.38 1913.79
D13 160.00 16.67 247.37 31.58 287.50 37.50 346.15 46.15
D14 96.55 15.52 152.63 26.32 181.25 31.25 226.92 46.15
D15 24.32 15.54 62.50 28.13 84.81 35.44 110.77 47.69
D16 282.86 17.14 413.64 31.82 488.89 44.44 566.67 53.33
D17 33.33 15.74 74.64 28.23 97.11 35.84 128.37 48.23
D18 189.39 16.67 285.71 30.95 331.43 37.14 393.10 48.28
D19 85.98 15.24 142.45 27.36 177.01 36.78 219.72 49.30
D20 - - - - - - - -
D21 - - - - - - 84.59 77.26
D22 - - - - - - - -
D23 65.63 40.63 462.50 300.00 740.00 460.00 900.00 525.00
D24 - - - - - - - -
D25 - - 57.42 50.32 221.13 187.32 923.81 766.67
D26 - - - - 244.12 235.29 1000.00 920.00
D27 - - - - - - 590.14 581.69
D28 - - 212.50 175.00 360.00 280.00 450.00 325.00
D29 - - - - 100.00 97.06 540.00 490.00
D30 - - 41.38 37.07 227.66 200.00 752.94 641.18
D31 - - - - 59.32 54.66 516.52 466.96
D32 - - - - - - - -
D33 - - - - - - - -
D34 - - - - - - - -
D35 231.75 182.54 785.00 580.00 1169.23 830.77 1850.00 1250.00
D36 1.02 0.68 42.86 33.14 105.26 84.21 268.33 211.67
D37 - - - - 21.94 18.99 122.95 108.20
D38 277.66 223.40 1150.00 862.50 1552.94 1111.76 2550.00 1750.00
D39 - - 37.22 28.48 88.15 70.14 240.00 190.91
D40 - - - - 17.76 15.33 107.73 94.09
D41 329.57 266.96 1337.93 1003.45 2343.75 1681.25 3988.89 2744.44
D42 0.29 0.14 37.21 28.37 91.67 73.26 220.99 173.46
D43 - - - - 20.07 17.41 115.54 101.01
D44 402.88 326.62 1746.88 1306.25 2810.53 2010.53 4636.36 3172.73
D45 1.02 0.61 42.91 33.16 103.12 82.60 284.38 226.04
D46 - - - - 23.12 20.05 131.30 115.52
D47 396.74 324.19 2212.82 1674.36 3736.36 2704.55 5585.71 3864.29
D48 - - 36.22 27.67 85.83 68.22 231.56 183.48
D49 - - - - 18.29 15.85 111.08 97.54
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Table 6: percentage optimality gaps obtained with the dual bounds kU and k̄U

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID OGkU OGk̄U OGkU OGk̄U OGkU OGk̄U OGkU OGk̄U

(%) (%) (%) (%) (%) (%) (%) (%)
D50 - - 36.89 18.77 40.75 15.48 2094.12 1611.76
D51 - - - - 41.67 33.33 58.56 41.44
D52 - - - - 16.88 11.88 27.54 18.12
D53 - - - - - - - -
D54 - - - - - - - -
D55 - - - - - - - -
D56 - - 36.29 18.55 41.07 16.07 1319.05 1009.52
D57 - - - - 49.60 40.80 66.82 48.82
D58 - - - - 46.67 38.04 63.72 46.05
D59 - - - - 41.13 33.21 58.56 41.89
D60 - - - - - - - -
D61 - - 1.53 1.53 165.71 151.43 433.33 375.76
D62 - - - - - - 1.53 1.53
D63 - - 576.00 486.00 1164.00 932.00 2192.31 1669.23
D64 - - - - 252.83 232.08 802.56 707.69

I1 37.31 14.93 59.18 22.45 69.77 23.26 97.14 31.43
I2 143.24 40.54 192.31 42.31 195.83 33.33 191.30 21.74
I3 492.00 184.00 792.86 278.57 800.00 261.54 746.15 223.08
I4 145.45 69.70 277.78 138.89 326.67 153.33 328.57 128.57
I5 125.00 57.14 211.76 94.12 257.14 107.14 327.27 127.27
I6 217.39 95.65 369.23 169.23 470.00 210.00 575.00 250.00
I7 238.71 22.58 270.83 20.83 277.27 13.64 271.43 4.76
I8 200.00 83.33 322.22 127.78 373.33 140.00 458.33 158.33
I9 922.22 361.11 1318.18 472.73 1522.22 522.22 1612.50 525.00
I10 395.45 109.09 607.69 169.23 616.67 158.33 608.70 130.43
I11 475.00 44.64 615.79 60.53 628.57 54.29 627.27 45.45
I12 197.53 16.05 269.09 29.09 272.55 23.53 265.31 12.24
I13 522.22 202.78 691.67 241.67 831.58 273.68 1013.33 313.33
I14 327.40 53.42 438.78 71.43 448.89 64.44 452.38 54.76
I15 1722.22 766.67 2660.00 1080.00 3150.00 1200.00 2950.00 1025.00
I16 873.08 342.31 1683.33 616.67 1566.67 533.33 1466.67 450.00

40



T
a
b

le
7
:

p
er

ce
n
ta

g
e

o
p

ti
m

a
li
ty

g
a
p

s
o
n

sp
a
rs

e
g
ra

p
h

s

γ
=

0
.5

γ
=

0
.7

γ
=

0
.8

γ
=

0
.9

ID
|Q
l |

O
G

[C
γ

]
O
G

[D
S γ

]
|Q
l |

O
G

[C
γ

]
O
G

[D
S γ

]
|Q
l |

O
G

[C
γ

]
O
G

[D
S γ

]
|Q
l |

O
G

[C
γ

]
O
G

[D
S γ

]

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

I 1
6
7

0
.0

0
0
.0

0
4
9

0
.0

0
0
.0

0
4
3

0
.0

0
0
.0

0
3
5

8
.5
7

1
1
.4

3
I 2

3
7

1
0
.8

1
1
0
.8

1
2
6

1
5
.3

8
1
5
.3

8
2
4

8
.3

3
8
.3

3
2
3

4
.3

5
4
.3

5
I 3

2
5

2
8

2
8

1
4

6
4
.2

9
6
4
.2

9
1
3

5
3
.8

5
5
3
.8

5
1
3

3
8
.4

6
3
8
.4

6
I 4

3
3

3
.0
3

6
.0

6
1
8

3
3
.3
3

3
8
.8

9
1
5

4
0
.0
0

4
6
.6

7
1
4

3
5
.7

1
3
5
.7

1
I 5

2
8

3
.5
7

7
.1

4
1
7

2
3
.5

3
2
3
.5

3
1
4

2
8
.5
7

3
5
.7

1
1
1

4
5
.4
5

5
4
.5

5
I 6

2
3

1
3
.0

4
1
3
.0

4
1
3

4
6
.1

5
4
6
.1

5
1
0

6
0
.0
0

7
0
.0

0
8

8
7
.5

8
7
.5

I 7
3
1

0
.0

0
0
.0

0
2
4

4
.1

7
4
.1

7
2
2

4
.5

5
4
.5

5
2
1

0
.0

0
0
.0

0
I 8

3
0

3
.3

3
3
.3

3
1
8

2
2
.2

2
2
2
.2

2
1
5

2
6
.6
7

3
3
.3

3
1
2

4
1
.6
7

5
0
.0

0
I 9

1
8

1
1
.1
1

1
6
.6

7
1
1

3
6
.3

6
3
6
.3

6
9

4
4
.4
4

5
5
.5

6
8

3
7
.5
0

5
0
.0

0
I 1

0
4
4

0
.0
0

2
.2

7
2
6

2
3
.0

8
2
3
.0

8
2
4

1
6
.6

7
1
6
.6

7
2
3

8
.7

8
.7

I 1
1

5
6

0
.0

0
0
.0

0
3
8

1
0
.5

3
1
0
.5

3
3
5

8
.5

7
8
.5

7
3
3

3
.0

3
3
.0

3
I 1

2
8
1

2
.4

7
2
.4

7
5
5

1
2
.7

3
1
2
.7

3
5
1

7
.8

4
7
.8

4
4
9

2
.0

4
2
.0

4
I 1

3
3
6

0
.0

0
0
.0

0
2
4

8
.3

3
8
.3

3
1
9

2
1
.0

5
2
1
.0

5
1
5

3
3
.3

3
3
3
.3

3
I 1

4
7
3

2
.7
4

4
.1

1
4
9

1
2
.2

4
1
2
.2

4
4
5

6
.6

7
6
.6

7
4
2

2
.3

8
2
.3

8
I 1

5
9

0
.0

0
0
.0

0
5

4
0
.0

0
4
0
.0

0
4

5
0
.0

0
5
0
.0

0
4

2
5
.0

0
2
5
.0

0
I 1

6
2
6

3
4
.6

2
3
4
.6

2
1
2

1
0
8
.3

3
1
0
8
.3

3
1
2

8
3
.3

3
8
3
.3

3
1
2

5
8
.3
3

6
6
.6

7

41



Table 8: CPU times on sparse graphs (in sec.)

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID T[Cγ ] T[DSγ ] T[Cγ ] T[DSγ ] T[Cγ ] T[DSγ ] T[Cγ ] T[DSγ ]

I1 0.45 0.39 0.72 0.36 0.83 1.2 0.88 0.27
I2 1.06 0.31 0.98 0.64 1.53 0.52 1.11 0.33
I3 11.48 8.41 12.13 6.55 11.33 8.28 12.02 6.22
I4 0.66 0.64 0.59 0.89 0.70 0.61 0.83 0.55
I5 0.09 0.23 0.23 0.22 0.31 0.14 0.25 0.09
I6 0.17 1.61 0.30 1.11 0.22 0.92 0.17 0.59
I7 0.97 1.11 0.95 1.02 1.30 0.77 1.00 1.19
I8 0.95 0.59 1.05 0.56 0.80 0.56 0.94 0.36
I9 5.98 2.28 6.38 17.11 6.94 15.86 6.59 16.27
I10 11.17 30.69 10.11 36.36 9.69 31.7 9.55 31.36
I11 225.55 210.61 291.54 180.00 278.91 253.8 348.85 263.52
I12 27.28 22.39 21.67 20.84 18.88 19.59 21.95 22.70
I13 8.55 12.55 7.49 11.95 7.47 10.20 7.72 13.09
I14 62.99 123.19 56.25 117.36 65.65 110.98 60.97 115.92
I15 1.75 3.22 1.17 3.39 1.19 3.08 1.11 3.36
I16 100.61 43.09 112.52 42.09 79.42 40.89 120.03 42.58
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Table 13: DIMACS instances not solved within time limit

Branch-and-Price MIPs

ID OG[DSγ ] (%) #Cols OG[Cγ ] (%) OG[C̄γ ] (%)

D1 251.11 2930023 3180.00 218.79

D2 40.00 4205293 2050.80 520.83

D3 486.36 2843859 1791.43 692.60

D4 278.93 2333289 2799.80 314.25

D5 62.07 1232015 6540.00 2116.90

D6 468.94 1100520 10998.67 2262.60

D7 473.68 1338862 8175.00 2662.88

D8 459.27 1046925 10966.67 2108.60

D9 1455.18 299444 - 7900.00

D10 1459.42 296895 - 7900.00

D11 1496.80 310185 - 8788.89

D12 1593.68 311608 - 7900.00

D17 44.38 624741 6800.00 3383.33

D18 27.58 82466 516.67 59.26

D19 39.39 234664 44.81 58.21

D21 23.31 257701 - 753.20

D25 458.90 1103522 5865.67 1067.64

D26 550.00 6089940 1110.38 240.00

D27 580.68 986462 - 1146.43

D31 457.65 397155 - 5230.33

D36 24.59 1772277 1504.90 1591.89

D37 71.71 1461076 1199.05 170.41

D38 1016.67 764961 4528.67 3600.00

D39 143.78 913014 13850.00 501.53

D40 6.36 936627 20750.00 150.49

D41 1472.96 361658 9549.50 4166.67

D42 132.07 487322 19250.00 8650.00

D43 94.89 481375 - 5647.38

D44 1806.42 209762 49900.00 5900.00

D45 176.61 258266 - -

D46 109.41 243074 - 941.67

D47 2889.91 94781 - 7828.57

D48 143.38 107727 - -

D49 92.92 73421 - -

D50 1535.27 307602 - -

D56 942.81 1448182 3599.33 1390.29

D57 45.24 1177209 10233.33 2087.80

D58 43.25 1225530 7650.00 2080.00

D59 38.64 1370705 6100.00 1996.09

D61 294.44 3045987 1812.13 312.24

D63 461.11 1232796 7298.33 2482.13

D64 628.57 1404281 10264.33 2601.88
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