
Biomedical Signal Processing and Control 85 (2023) 104936

A
1

Contents lists available at ScienceDirect

Biomedical Signal Processing and Control

journal homepage: www.elsevier.com/locate/bspc

Decoding transient sEMG data for intent motion recognition in transhumeral
amputees
Andrea Tigrini a,∗, Ali H. Al-Timemy b, Federica Verdini a, Sandro Fioretti a, Micaela Morettini a,
Laura Burattini a, Alessandro Mengarelli a

a Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
b Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq

A R T I C L E I N F O

Keywords:
Myoelectric control
Transient sEMG
Pattern recognition
Shoulder joint
Transhumeral amputees

A B S T R A C T

The use of surface electromyographic (sEMG) signals, alongside pattern recognition (PR) systems, is fundamen-
tal in the design and control of assistive technologies. Transient sEMG signal epochs at the early beginning
of the movement provide important information for upper-limb intent of motion recognition. However, only
few studies investigated the role of transient sEMG for myoelectric control architectures. Therefore, in this
work, focus was given to transient sEMG signals of intact-limb (IL) subjects and transhumeral amputees
(AMP), who performed a series of shoulder movements. The role of the window length for feature extraction
was investigated by sub-windowing the transient epochs at 200, 150, 100, and 50 ms window length (WL).
Gaussian kernel discriminant analysis (SRKDA) and support vector machine (SVM) were used for recognizing
seven classes of motion at different hold-out percentage of training/testing data, i.e. 70%–30%, 60%–40%
and 50%–50%. In all the latter conditions, the median classification accuracy and F1 score were greater
than 80% for both IL and AMP groups when using SRKDA. Wilcoxon rank sum test was employed to verify
possible differences between WL conditions. Although the latter did not show significant differences, 100 ms
WL showed the best classification performances for both groups (classification accuracy greater than 90%,
near that of a usable PR system). Results demonstrated that a reliable motion intent recognition of shoulder
joint in transhumeral amputee patients can be obtained employing transient sEMG epochs. This can be used
in a better design of myoelectric control architectures of assistive technologies, involving the upper-limb for
clinical use.
1. Introduction

Although the recognition of hand gestures is one of the most
investigated topic in the development of myoelectric interfaces s [1–
4] through surface electromyographic (sEMG) signals, it should be
highlighted that other joint motions start to be deeply investigated for
myoelectric control, such as the shoulder [5–8]. Under such frame-
work of applications, the decoding of shoulder degrees of freedom is
paramount [9–11], and robust pattern recognition architectures (PRA),
able to provide good recognition performances on limited EMG win-
dows, are becoming central in the development of control policies for
assistive technologies involving shoulder joint
[6,9,12]. Indeed, the delivery of an assistive action by the device
can occur only if the motion intent is properly decoded [13,14]. For
this reason the majority of the studies focused on the classification
of static sEMG epochs [9,13,14], hence admitting a certain amount
of delay between the effective decoding of the neuromuscular control
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command and the actuation of task delivered by the machine. On the
other hand, relative few studies took into account the role of transient
sEMG epochs which can be observed at the early beginning of the
movement [6,11,12,15]. The importance of dealing with transient EMG
epochs is twofold. Firstly, they demonstrated to be relevant for the
prediction of the human intent of motion [8,11,16]. Secondly, transient
EMG windows guarantee a reduced delays in the control loop, hence
improving the control of assistive technologies [6,12,16].

However, even if transient sEMG signal epochs showed important
information for the improvement of PRA-based myoelectric control
architectures [15], only recently it has been observed an increased
interest in the field [11,16–18]. Transient sEMG provided good ca-
pability in predicting the force developed by the forearm [17], but
also for generalizing and improving the algorithms for hand prosthesis
control [16,18]. In [11], sEMG transient epochs classification were
considered for the shoulder movements of healthy young population,
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Fig. 1. The electrodes position on an amputee subject. Panel A and B show respectively the frontal and back view of the electrodes location. Channel 1 (Ch1) acquired the
myoelectric activity of the upper fibers of the trapezius, whereas Ch3 the lower ones. Ch2 was placed on the Rhomboid major. Ch4 and Ch5 were placed respectively on the
Serratus Anterior and on the Pectoralis minor. All the muscle activity was differentially recorded with respect to the reference electrode. The accelerometer was placed on the
shoulder (panel A) to measure the acceleration of the joint, permitting a precise segmentation of the data.
in order to understand the role of time and frequency domain features
for the classification of the aforementioned signal epochs. Although
good classification performances were obtained, the investigation of
only healthy population limits the development of myoelectric-based
assistive technologies.

A further element of interest regards the role of the window length
(WL) for feature extraction and classification of sEMG transient
epochs [19]. This was partially investigated in the myoelectric control
literature, and deserves to be developed in order to improve PRA
for real time purposes. In fact, although the role of WL has been
investigated for hand gesture recognition using sparse or dense set-
up [20,21], only marginal contributions were given to the proper
selection of WL when one deals with transient sEMG epochs. It is im-
portant to emphasize that the myoelectric PRA here investigated dealt
with transient sEMG data, which are of crucial importance in decoding
human motion intent [6,12,19], but also in the estimation of muscle
force development in the upper limb [17], or in the generalization of
PRA for prosthetic control [15,18].

Hence, the aim of this study is twofold. At first, the early decoding
the principal shoulder movements in healthy and amputee subjects by
using transient sEMG data was investigated. Secondly, the role of WL
for feature extraction was analyzed for transient sEMG signals.

2. Materials and methods

2.1. Experimental protocol

The dataset collected in [22] was used in this study. Ten subjects,
i.e. four transhumeral amputees (AMP) and six intact-limb (IL) subjects
were recruited for the experiment. The subjects gave their consent for
the experiment which was conducted under the declaration of Helsinki
and its later amendments [22].

Each subject was instrumented with 5 sEMG differential channels
(Fig. 1) to record the myoelectric activity of the upper and lower
fibers of the Trapezious (UTR and LTR), the Rhomboid major (RM),
the Serratus anterior (SA) and the Pectoralis minor (PM), following the
instructions proposed in [23]. Moreover, a 3-axis accelerometer was
placed on the shoulder, providing the three acceleration components
of the joint in the local reference frame [10,22]. Both accelerometer
and sEMG signals were acquired synchronously at a rate of 1000 Hz,
with NI USB-6009 (National Instruments, USA).
2

Table 1
Table reports the labels of the shoulder movements
performed during the trials by both the AMP and IL
populations.

Shoulder movement Label

Elevation EL
Depression DE
Protraction PT
Retraction RT
Upward rotation UR
Downward rotation DR

For each acquisition trial, AMP and IL subjects performed 6 shoulder
movements as reported in Table 1. Subjects were asked to maintain
the final joint configuration for 5 s during each movement [22]. The
first four movements were performed sequentially, whereas a resting
phase of 5 s was required before the execution of the fifth and sixth
movements. The adoption of the aforementioned procedure was guided
by the need of limiting both the recording time and the rise of fatigue,
avoiding also possible stress effects that can be given by fully sequential
movements or prolonged acquisitions. Eventually, a total of 8 trials
data relative to the 6 shoulder movements described in Table 1 were
available for each subject belonging to the AMP and IL cohorts.

2.2. Signal pre-processing and segmentation

The sEMG signals were filtered through a fourth-order, zero-phase,
band-pass filter in the range of 30–450 Hz [6,11], whereas the three-
component accelerometer data were band-pass filtered between 2 and
20 Hz. Then, such components were used to compute the time course
of the acceleration magnitude through the following equation:

𝐴(𝑡) =
√

𝐴𝑥(𝑡)2 + 𝐴𝑦(𝑡)2 + 𝐴𝑦(𝑡)2 (1)

where 𝐴 is the magnitude of the acceleration at a given time 𝑡, whereas
𝐴𝑥, 𝐴𝑦, and 𝐴𝑧 are respectively the three acceleration components at
the time 𝑡, each properly referred to the relative accelerometer axis. The
obtained 𝐴(𝑡) signal showed clear step-transitions when the shoulder
movements started and ended for both AMP and IL groups as reported
in Fig. 2. For the identification of each shoulder movement onset,
we applied a single-threshold detector, computing the average value
(TH) and the standard deviation (SD) of 𝐴(𝑡) on a 2 s window before
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Fig. 2. Example of the five sEMG signals (blue line) recorded for a given trial of one IL and one AMP subject (respectively panel 2(a) and 2(b)). The dashed black lines show the
acceleration magnitude used to identify the six movements onset. Red areas highlight the 300 ms transient windows representing the MID windows used for feature extraction.
any movement onset. Then, we identified the time instant where 𝐴(𝑡)
magnitude rise above or below a value equal to 𝑇𝐻 ± 3 ⋅ 𝑆𝐷. If 𝐴(𝑡)
remained above or below the latter value for at least 0.05 s, the time
instant identified at the beginning of the procedure was retained as
the actual movement onset. The goodness of the entire process was
finally checked by visual inspection, resulting suitable for motion intent
detection (MID) windows definition [11,19]. This procedure allowed to
avoid the use of cumbersome optometric or force measurement systems
previously used to identify movements onset [11,13]. Thus accordingly
with the literature [11,12], MID windows of 300 ms were centered at
each movement onset to segment the sEMG signal epochs (see Fig. 2).

For each subject, a total of 8 (trials) × 6 (movements) × 5 (channels)
of sEMG signal epochs of 300 ms were extracted as the MID windows,
and they underwent to feature extraction. Moreover, also the class
‘‘rest’’ was defined in order to properly train the myoelectric PRA
[9,10]. Thus, an additive MID window was considered by segmenting
the last 300 ms of sEMG activity of each trial. As shown in Fig. 2, no
3

motion was present in the final part of the recordings. This guaranteed
the definition of a well balanced dataset, where the amount of sEMG
data to extract the features representing the rest class (RE) was the same
employed for the actual shoulder motion classes (see Table 1).

2.3. Pattern recognition experiments

Features in the time domain that guaranteed the implementation
of reliable PRA models were aggregated to compute the feature set
[21,24,25]. In particular, the mean absolute value (MAV), zero crossing
(ZC), slope sign change (SSC), waveform length (WL), variance (VAR),
Willison amplitude (WAMP), and the four coefficients of a fourth-order
auto-regressive process were selected as data descriptors. Hereafter,
the aggregation of the aforementioned features is indicated as TDAR
feature set [21]. Furthermore, as indicated in Section 1, in order to
investigate the role of WL for transient sEMG epochs, in this study
four different sub-windowing for feature extraction were investigated.
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Fig. 3. WSA of SVM and SRKDA for the entire population are shown in panel 3(a) and 3(b), respectively. Box-plots of the two metrics obtained in the three different testing
conditions, i.e. 30%, 40% and 50% held out data, where reported with respect to the four WL employed.
Hence, sliding windows of 200 (WL1), 150 (WL2), 100 (WL3), and 50
(WL4) ms, with an overlap of 75%, were employed to extract the TDAR
feature set.

For each subject in the IL and AMP groups, all the labeled signal
epochs were employed to extract the TDAR at the three different
WL, which were used to generate within-subject PRA models. In the
literature, no indications regarding the use of a specific classifier was
found to boost the accuracy when one deals with transient sEMG
data [11,16]. However, multi-class support vector machine (SVM) with
linear kernel was efficiently employed in two studies related to hand
gesture and wrist movement classification for prosthetic control with
transient sEMG data [16,26]. Hence, such PRA was selected as a first
viable model for decoding the motion intent of the shoulder joint. In
addition to linear SVM model, a kernel discriminant analysis (KDA) was
also selected since it showed reliable performances as both classifier
and dimensionality reduction method [27,28]. A brief recall of the KDA
is reported in the following. Let consider a dataset made by 𝑚 samples
4

𝒙1,𝒙2,… ,𝒙𝑚 ∈ R𝑛 belonging to 𝑐 classes. Considering the classification
problem in a feature space  induced by an opportune nonlinear map
𝜙(⋅) ∶ R𝑛 ↦  such that an inner product ⟨ ; ⟩ on this space can be
defined. In particular, the map can be selected to make  a reproducing
kernel Hilbert space for which ⟨𝜙(𝒙𝑖);𝜙(𝒙𝑗 )⟩ = (𝒙𝑖,𝒙𝑗 ), where ( ; )
is a positive semi-definite kernel function. As shown in [29], the KDA
training can be formally considered as an optimization problem of the
form:

arg max
𝜶

𝜶𝑇𝐾𝑊𝐾𝜶
𝜶𝑇𝐾𝐾𝜶

(2)

where 𝐾 is the kernel matrix while W is a weighting matrix defined
as follow:
{ 1

𝑚𝑘
; if𝒙𝑖 and𝒙𝑗 both belong to the 𝑘th class

0; otherwise
(3)

with 𝑚𝑘 equals to the number of points present in the 𝑘th class [29]. It
is possible to see that the optimal vector 𝜶 can be obtained by solving
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the following eigen-problem:

𝐾𝑊𝐾𝜶 = 𝐾𝐾𝜶 (4)

owever, as highlighted in [29,30], rather than solve the eigen-
roblem shown in (4) through an eigen decomposition of the matrix

[31], which may require a high computational burden, a spectral
egression formulation (SRKDA) was employed to obtain a solution
f the aforementioned eigen-problem. All the details regarding the
mplementation of SRKDA can be found in [29,30], here it is important
o highlight that the spectral regression approach avoids the direct
igen-decomposition of the 𝐾 matrix by solving a trivial eigen-problem
ecomposition that involves W and a linear systems that involves K.

To compute the elements of the K matrix, a Gaussian kernel function
as employed resulting as follows:

𝑖𝑗 (𝒙𝑖;𝒙𝑗 ) = exp

(

‖𝒙𝑖 − 𝒙𝑗‖2

𝜎

)

(5)

here 𝒙𝑖 and 𝒙𝑗 represent two given data points in the TDAR feature
paces. The scaling value 𝜎 was estimated from the data as the average
f the mean values computed from the Euclidean distance matrix,
btained from each couple of feature vectors.

The SVM and SRKDA models were trained using the TDAR feature
et computed from WL1 to WL4. Moreover, to test the robustness of
he trained PRA, multiple classifiers were trained by randomly splitting
he feature sets varying the hold-out percentage of data for testing.
ence, the 70%–30%, 60%–40% and 50%–50% data split conditions

or training-testing were investigated respectively. It deserves to be
ighlighted that the random split implemented in this study keeps the
eature sets for training and testing balanced in order to avoid possible
iases in the results due to unbalanced classes conditions. Within-
ubject accuracy (WSA) and F1 Score computed over test sets were
mployed as metrics to judge the goodness of the PRA models.

.4. Statistical analysis

A first group of comparisons was performed to assess the quality of
ach PRA, by taking into account both the hold-out percentage of data
nd the window length for feature computing. In the first case Wilcoxon
ank sum test (WRS) was employed for pairwise comparison of the WSA
nd F1 scores among each pair of window length conditions by fixing
he hold-out percentage of data for testing. These comparisons were set
o test whether WL1, WL2, WL3 and WL4 affected or not the perfor-
ances of both SVM and SRKDA models. Then, WRS was employed to

ompare WSA and F1 among each pair of hold-out percentage, by fixing
he WL condition for both models. This allows to evaluate whether
RA architectures were characterized by over-fitting behavior or they
howed good responses even when training was performed with a low
mount of data.

In a second group of comparisons, the WRS was used to compare
VM and SRKDA models by fixing the WL and the hold-out percentage.
his was done to test which model between the two aforementioned
odels provided the best classification results in decoding shoulder

ntent of motion.

. Results and discussion

Figs. 3 and 4 show respectively the WSA and F1 scores obtained
t the different hold-out percentage of testing data for both SVM
nd SRKDA models. In particular, for SVM models, median accuracy
anges between 0.65 and 0.75 for each hold-out percentage and WL
onsidered, showing also large interquartile ranges (see Fig. 3(a)). The
1 score mirrors the trend showed in the accuracy (see Fig. 4(a)), indi-
ating a high variability of the SVM models in recognizing the shoulder
ntent of motion. Moreover, the statistical analysis did not show any
ignificant change either with respect to the hold-out percentage or
5

ith respect to WL condition. Regarding the SRKDA models, both WSA z
Fig. 3(b)) and F1 (Fig. 4(b)) show median values greater than 80%
mong all the three hold-out conditions and for all the four WLs.
he statistical analysis highlighted no significant drop (p>0.05) neither
hen the window length was reduced nor when the testing data were

ncreased (see Section 2.4). Moreover, the F1 score shows comparable
ehavior with respect to WSA, showing a narrow interquartile range,
ence supporting the goodness of the SRKDA models.

Superior performances of SRKDA with respect to SVM was statis-
ically verified for each WL and hold-out percentage for both metrics
mployed (p < 0.05) This further indicates that the SRKDA here de-
igned through transient sEMG epochs showed reliable performances in
etecting the intent of shoulder motion for both AMP and IL subjects.
his is paramount in the practical context of full upper-limb prosthesis
ontrol or in the design of assistive technologies for the upper limb
6,9,12]. On the other hand, the lower performances obtained for
he SVM models, if compared also with other studies that dealt with
mputee patients [16,26], may be imputed to the use of a sparse and
educed sEMG setup, i.e., 5 probes, that naturally leads to feature
pace with smaller dimension with respect to other studies [11,16].
ndeed, by construction, SVM performs better with higher dimensional
ata [32], supporting the line that large feature spaces could be ex-
racted when dealing with reduced set-up and SVM architectures [33,
4]. On the other hand, confirmation regarding the goodness of the
RKDA in classifying transient data of both groups can be observed
n Fig. 5. Hence, SRKDA was retained as classification model for the
ollowing analyses.

Indeed, the performances obtained for the six healthy subjects
hared the same range of accuracy with that of the AMP group, showing
ean WSA values ranges between 0.85 and 0.90, with slightly superior

esults obtained for the IL group, aligning with what observed in [26]
n transradial amputee patients. Present outcomes agree also with
hose reported in [8], where the MID problem was faced for patients
ffected by chronic stroke, showing a median error rate of about 20%
or the paretic limb using EMG data only and slightly better results were
btained when other sources of information was used, e.g. load cell
ecordings. The same level of accuracy (about 80%) was also reported
or partially hand amputees [35] but without using transient data and
lso with a greater number of electrodes, i.e. up to 13. A myoelectric-
ased human-machine interface was also developed in [13] for patients
ho suffered from spinal cord injury. Although average accuracy on
athological individuals was comparable with that obtained in this
tudy for transhumeral amputees, it is important to note that, in [13],
he WSA showed large variations among patients, falling in some cases
nder 50%. Conversely, in the present study the WSA presented quite
epeatable values for each patients and for each WL (Fig. 5). This aspect
s particularly important for a real-usage scenario, since it highlights
hat also classification architectures trained only with transient data
an be reliable for developing myoelectric control interfaces.

Although the statistical analysis did not show differences among the
esting or WL conditions, it deserved to be noticed that WL3 guaranteed
he best performances in both AMP and IL, whereas lower values were
bserved in the case of WL4. This is in line with [19], confirming that
L in the range of 200–50 ms can be a good choice for MID problems

sing sparse sEMG setup. Indeed, to obtain comparable performances
n terms of myoelectric control accuracy, with a reduction of the

L, literature suggested the use of high density set-up [21,36]. This
owever could be a limitation when more classical sparse sEMG probes
re the only available option.

A further confirmation regarding the possibility to obtain reliable
erformances in identifying intent of motion by transient data for
ranshumeral amputee patients, through sparse probe setup, can be
ound observing the average confusion matrices for both groups (see
igs. 6 and 7, respectively). The behavior of IL and AMP groups follows
repeatable pattern among the WL conditions, showing fully clean
ones outside the first diagonal for WL1 (Figs. 6(b) and 7(b)) and WL2
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Fig. 4. F1 score of SVM and SRKDA for the entire population are shown in panel 4(a) and 4(b), respectively. Box-plots of the two metrics obtained in the three different testing
conditions, i.e. 30%, 40% and 50% held out data, where reported with respect to the four WL employed.
(Figs. 6(b) and 7(b)). However, for the above mentioned conditions, er-
rors greater than 10% are present, supporting the lower mean accuracy
values obtained if compared with respect to WL3 condition (Fig. 5).
Indeed, the latter showed the optimal trade off between high principal
diagonal classification rate and false rates in the other components
of the confusion-charts (Figs. 6(c) and 7(c)) also if compared with
WL4, which showed reduced accuracy values in the principal diagonal
(Figs. 6(d) and 7(d)). Furthermore, it deserves to be noticed that
among the WL conditions, false detection shows no bias due to specific
shoulder movements misclassification. Indeed, no clustered false rate
zones were identified for AMP and IL groups (see Figs. 6 and 7).

In this study, the effectiveness of pattern classification of transient
sEMG epochs was provided for transhumeral amputees, with overall
performances not lower with respect to healthy subjects (Fig. 5). This
means that also in the case of damaged muscles, transient sEMG epochs
can carry information for a proper control of full-limb prosthesis. This
can also be confirmed by the example reported in Fig. 8, where an
6

example of testing classifier output signal was reported. Even if a
spurious misclassification spike is present, the majority of the transient
epoch samples were correctly classified. As highlighted in [3,33], my-
oelectric PRA performances can be boosted by smoothing classifiers
output, either adaptively or under a probabilistic framework [33,37],
by applying a post processors to the output of the classifier. Such post
processors work in real-time and they are used to clean the decision
signal given by PRA from spurious spikes (Fig. 8), eventually making
the PRA prototype suitable to be embedded in real-time myoelectric
control schemes. Although the implementation of the SRKDA model in
a PRA-based controller is beyond the aim of the study, it deserves to
be investigated in future works, together with the implementation of
majority voting or Bayesian fusion post processing schemes [33,37].
This can allow a boosting of PRA architectures that work with transient
data as those presented here and in other studies [11,19,26], in order
to improve real-time control performances of assistive technologies.
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Fig. 5. WSA obtained in case of 50% hold-out test condition for the AMP (panel 5(a)) and IL (panel 5(b)) groups. Both panels report a final bars group indicating the mean and
standard deviation range with respect to the subjects. Right-slanted lines denote WL1, dot hatch indicates WL2, left-slanted lines stand for WL3, and criss-crossing lines denote
WL4.
A further point for future studies is suggested by the acquisition
protocol since sequence of EL, DE, PT, and RT movements had no
rest between the movements, whereas the remaining two (UR and DR)
were performed after a resting period (Fig. 2). Despite this acquisition
protocol aimed at minimizing the discomfort for the amputee pa-
tients, further studies should be devoted to assess whether performing
movements sequentially or switching an action after entering a resting
state could affect MID classification performances. Eventually, in the
conditions of transient sEMG epoch classification, the PRA designed
were able to provide good performances using WL for feature extraction
up to 50 ms, even with a sparse set-up. This suggests that myoelectric
control architectures for motion intent can be fed at a faster rate
with respect to about 250 ms, typically employed when dealing with
myoelectric pattern recognition.
7

4. Conclusion

In this study the problem of shoulder motion intent detection was
treated employing transient sEMG epochs for IL and AMP groups.
The latter showed WSA comparable with the one obtained for IL
subjects, highlighting the possibility to develop PRA for MID also in
transhumeral amputees. This result is strengthened also by considering
that no significant performances drops were observed reducing training
data. In addition, also small signal window length resulted suitable for
a robust detection of intent of motion in healthy as well as amputee
patients. Future studies should involve the investigation of hierarchical
PR models, which deal with static and transient sEMG signal epochs.
A further point regards the assessment of transient models with static
signal epochs and vice versa.
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Fig. 6. Average confusion chart obtained in testing of the AMP group for the 50% hold-out condition with SRKDA. Panels 7(a), 7(b), 7(d), and 7(d) refer to WL1, WL2, WL3,
and WL4 respectively.

Fig. 7. Average confusion chart obtained in testing of the IL group for the 50% hold-out condition with SRKDA. Panels 7(a), 7(b), 7(d), and 7(d) refer to WL1, WL2, WL3, and
WL4 respectively.
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Fig. 8. Testing classification output of an amputee subject performing the first
movement (EL). In this case a spurious misclassification between EL and UR and
between EL and RE occurred (black dotted line). The majority of the transient epoch
samples were correctly identified.
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