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 2 

Abstract  41 

In the context of lime stabilization, this note shows how the development of soil-lime reactions can be linked 42 

to the variation of small shear stiffness with time. To determine the evolution of small-strain stiffness, the 43 

shear wave velocity was measured by means of bender elements (BE) on a compacted clayey soil treated 44 

with 3% quicklime, starting form 2 hours after compaction until 98 days of curing. Different methods of signal 45 

interpretation were applied with the purpose of highlighting how the peculiarity of lime treated soils affects BE 46 

testing results and to provide practical indications for optimizing similar testing on lime-treated soils. The 47 

results showed that lime treatment and compaction affect the waveform of the received signal and that 48 

measurements should span across a wide range of input frequencies in order to identify an optimal 49 

waveform. The small strain shear modulus was found to increase with curing time with a trend that can be 50 

related to that of soil-lime chemical reactions, thus representing a promising parameter to monitor the 51 

development of soil-lime reactions. 52 

Keywords 53 

Soil stabilization, lime, small-strain stiffness, shear wave velocity, bender elements 54 

Introduction 55 

Lime stabilization of clayey soils is a well-known and sustainable ground improvement technique for the 56 

construction of earthen structures (e.g. Boardman et al., 2001; Beetham et al., 2014; Gomes Correia et al., 57 

2016; Rosone et al., 2018). Despite its wide application in engineering works, the optimization of the mix 58 

design procedure and the search for methods and correlations to predict soil-lime performances are the 59 

objective of recent research studies (e.g. Consoli et al., 2014; Robin et al., 2015; Di Sante et al., 2015; 60 

Consoli et al., 2017; Di Sante et al., 2020; Fratalocchi et al., 2020). Moreover, delayed compaction (due to 61 

hitches or technical breaks during construction e.g. Osinubi et al., 2006; Di Sante et al., 2015), wetting-drying 62 

and freezing-thawing cycles (e.g. Stoltz et al., 2012; Shirmohammadi et al., 2021) and a lack of an extensive 63 

experimental laboratory investigation can potentially adversely affect the stabilization outcomes, therefore 64 

these occurrences should be taken into account during the design phase. In this perspective, understanding 65 

the sequence, mode and timing of reactions between lime and clayey soils plays an essential role. Table 1 66 

summarizes the reactions that develop in a soil-quicklime-water system and the related effects. 67 

Table 1 68 

Several studies have been carried out to identify the chemo-mineralogical evolution of lime treated soils with 69 

time (e.g. Vitale et al., 2017; Guidobaldi et al., 2018). Among the different methodologies proposed to identify 70 
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 3 

the reactions timing and evolution, those based on pH measurements of the soil-lime-water system are easy 71 

to be carried out and turned out to be very effective and reliable (Rao and Shivananda, 2005; Al Muckthar , 72 

2010; Di Sante et al., 2014, Di Sante, 2020).  73 

In the present note a preliminary study to monitor the development of chemical reactions based on stiffness 74 

variation of a clayey soil treated with quicklime is presented. The results are compared with those obtained 75 

by the pH method (Di Sante et al., 2014). A parameter which can reflect the structure of the porous medium 76 

is the small-strain shear modulus, G0, that is linked to the stiffness of the material that, in turn, is expected to 77 

change with the progress of chemical reactions, thus with curing time. Although G0 can increase in time even 78 

for untreated soils due to ageing phenomena (Schmertmann, 1991; Jovičić et al., 1997; Rammah et al., 79 

2004), laboratory data showed that the maximum rate of increase of G0 with the logarithm of time (in days) 80 

can be equal to 19% in case of secondary compression. 81 

G0 can be measured by bender elements (BE) test in a non-destructive way, which allows testing the same 82 

soil-lime sample for the entire curing period. The small-strain shear modulus is related to the shear waves 83 

velocity that can be calculated from the travel time measured generating a shear wave at one boundary of 84 

the specimen (transmitter BE) and receiving the wave at the opposite boundary (receiver BE). 85 

Piezoelectric transducers applications for soils were originally introduced by Lawrence in ‘60s (Lawrence, 86 

1963) and, from then on, the experimental setting has been improved as well as the methods of signal 87 

interpretation (e.g. Arulnathan et al., 1998; Wang et al., 2017). Some attempts to apply the BE technique to 88 

study the stiffness of lime treated soils with several different aims have been recently made. In particular, 89 

Puppala et al. (2005) studied the small strain shear moduli of lime-cement treated expansive clays for deep 90 

mixing applications; Puppala et al. (2006) monitored the stiffness variation of cement and lime treated 91 

sulphate bearing soils (with different sulphate levels and curing conditions) by BE tests, finding a significant 92 

increase in G0 with curing time due to binder addition. Wang et al. (2017) finalized a novel method for 93 

determining G0 based on the comparison of S-wave and P-wave received BE signals using a 2% quicklime 94 

treated compacted plastic silt at different curing times and saturation degrees. The effects of wetting-drying 95 

cycles and of the aggregate sizes on the stiffness of lime treated clayey soils have also been studied (Ying et 96 

al., 2021; Tang et al., 2011; Dong, 2013; Wang et al., 2020). The results showed that the treatment of clayey 97 

soils (CH and CL USCS class) with 2 to 4% quicklime amount causes a huge increase in G0 with curing time.  98 

While evaluating the use of G0 as a key parameter to monitor the reaction developments, the necessity of a 99 

proper interpretation of the transmitted signal arose. Therefore, different methods of interpretation were 100 
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 4 

applied with the additional purpose of highlighting how the peculiarity of lime treated soils can affect the BE 101 

testing and in order to provide practical indications to optimize similar testing on lime-treated soils. 102 

Materials and Test Methods 103 

The studied soil is an inorganic clay of high plasticity (CH), according to the Unified Soil Classification 104 

System (USCS – ASTM D2487-93). Its characteristics are summarized in Table 2. The soil fully matches the 105 

suitable grain size distribution requirements for lime treatment. The amounts of sulphate and organic matter 106 

are 0·39% and 2·70% by dry mass of soil, respectively. The lime used in this research is a fine calcic 107 

quicklime, classified as CL80-Q (UNI EN 459-01 – CaO>87%, MgO<5%), completely passing through the 108 

ASTM 200 sieve (75 μm sieve opening). The amount of lime added to the soil was 3% by dry mass of soil. 109 

This amount is higher than the initial consumption of lime (ICL, Table 2), that represents the minimum lime 110 

content to start pozzolanic reactions.  111 

Table 2 112 

The specimens were prepared by crumbling the air-dried soil, adding the amount of lime after soil wetting 113 

(wet mix - as usually done in the field, Fratalocchi et al., 2009) until a uniform distribution was achieved. The 114 

mixture was then compacted by the Standard Proctor procedure (ASTM D698-12).  115 

In order to investigate the development of soil-lime reactions by pH measurements (methodology proposed 116 

and validated by Di Sante et al., 2014), a sample was compacted close to the optimum water content 117 

(optimum water content= 23%, dry unit weight=15·6 kN/m3, details in Di Sante et al., 2016) and was 118 

submerged in distilled water, resting on its lateral surface to maximize the contact area with water. The 119 

development of soil-lime reactions was monitored by periodically measuring the pH values of the soaking 120 

water (pH Electrode Sentix 41, WTW). 121 

The sample for BE test was compacted in three layers (101 mm in diameter and 116·5 mm in height) slightly 122 

wet of optimum (w= 25%, corresponding to a saturation degree of 93%; dry unit weight= 15·4 kN/m3). It was 123 

immediately coated with paraffin, to prevent loss of water during the test. The sample weight was monitored 124 

throughout the entire curing period (98 days): its decrease resulted lower than 1%. The curing temperature 125 

was 23±1°C.  126 

The BE test was conducted following the recent ASTM Standard D8295-19. An undersized slot was 127 

excavated in the two opposite faces of the specimen to easily insert the BE, as suggested for stiff 128 

specimens, paying attention to ensure their alignment; the specimen was placed on a specially designed 129 

wooden sample holder. The test was carried out in unconfined conditions. Although some researchers 130 
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 5 

reported difficulties in data interpretation such as a less efficient grounding and the possibility of a weak 131 

coupling of the transducer to the soil (de Paula et al., 2020), conducting BE test in unconfined conditions is 132 

usual in the area of stabilized soils (e.g.Puppala et al., 2006; Tang et al., 2011; Chan, 2012; Consoli et al., 133 

2012; Wang et al., 2017; Wang et al., 2020). This test configuration originated from  the complementarity of 134 

BE test and unconfined compression tests and thereafter became a common practice so much so that it is a 135 

possibility contemplated by the relevant ASTM Standard.  Moreover, given the very low compressibility of the 136 

studied soil after the treatment (i.e. oedometric modulus =26 MPa for 0-50 kPa of vertical stress range, see 137 

Di Sante et al., 2016) the effect of the confining stress is expected to be low. 138 

The input signal, a sine pulse of 10 Vpp amplitude, was generated by a function generator (Aim TTI 139 

TG5011A), triggered with a period set to allow enough time for the attenuation of the BE response before the 140 

next pulse. Several frequencies were applied, ranging from 0·5 kHz to 50 kHz. The decision of using this 141 

wide span of input frequencies is due to two orders of reasons: (1) there are not consolidated indications in 142 

literature on the optimal frequency of BE application to soil-lime materials and (2) considering the 143 

development of chemical reactions and the consequent changes in the structure of the sample, optimal 144 

testing frequency can vary with curing time and this evolution is not known at the beginning of the test. is not  145 

Both the transmitted and the received signals were acquired by a digital oscilloscope (Picoscope 6, Pico 146 

Technology LTD) and then processed. The experimental set up is shown in Figure 1.  147 

Figure 1  148 

The first measurement was performed two hours after mixing and compaction of the soil-lime sample and the 149 

measurements were repeated at increasing curing time until 98 days. The shear wave travel times, t, were 150 

computed by time domain methods (Peak to peak and Start to start) as suggested in ASTM Standard 151 

D8295-19. The Cross correlation method (Viggiani &Atkinson, 1995) was tentatively applied, too. 152 

The small strain shear modulus, G0, was calculated through the shear wave speed, Vs, by the formula: 153 

𝑮𝟎 = 𝝆 ∙ 𝑽𝒔
𝟐 = 𝝆 ∙ (

𝑳𝒕𝒕

𝒕
)
𝟐

 eq.1 154 

where Ltt is the BE tip to tip distance and ρ is the density of the sample.  155 

An untreated sample was also prepared at the same compaction conditions and tested with BE in order to 156 

identify the contribution of lime to the stiffness of the treated soil. The results of the untreated sample were 157 

considered also representative of the initial conditions when analysing the effects of curing time. 158 
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 6 

Results and Discussion 159 

Travel time interpretation issues 160 

Both time domain and frequency domain methods were initially taken into account for signal interpretation. In 161 

particular, Peak to Peak (P-P) and Start to Start (S-S) methods are suggested in the ASTM 8295-19 162 

Standard (S-S measured from the start of the transmitter signal to the horizontal intersection on the receiver 163 

signal). The Standard also allows the application of frequency domain other methods, provided that they 164 

have been shown to give reliable results. Therefore, the cross-correlation method, C-C, introduced in 165 

Viggiani and Atkinson (1995), was also tentatively applied, to avoid the more subjective visual picking 166 

methods. 167 

In the present study the recorded received signal showed a first peak that rarely had the highest amplitude, 168 

whereas, after the wave arrival, the amplitude increased with time and then gently decreased (Figure 2). This 169 

type of received waveform was observed also by other researchers dealing with cemented soil (e.g. Chan, 170 

2010; Consoli et al., 2012). Probably, due to this particular feature and to a difference between the frequency 171 

of the transmitted and received signals, the application of cross correlation method gave the maximum cross-172 

correlation with the maximum peak of the received signal, resulting in a travel time significantly higher than 173 

other methods and significantly scattering among the subsequent measurements (as also reported by Ogino 174 

et al., 2015). This suggested that, in the case of concern, lime treatment and compaction, by affecting the 175 

stiffness of the specimens (as discussed in the following), could play a key role in modifying the ability of the 176 

soil to transmit the signal, thus affecting the interpretation of the test by this frequency domain method. 177 

Moreover, in the standard procedure for compaction, as per ASTM D698-12, three layers of soil are 178 

subsequently placed in the mould, each compacted with 25 blows, resulting in a decreasing applied 179 

compaction energy from the base to the top of the sample, causing an inhomogeneity in density across the 180 

sample which may have contributed to affect the test results. 181 

In assessing the travel time by the S-S method, difficulties were encountered in following the Standard 182 

criterion because, in some of the transmissions, background noise, dispersion and near field effects made 183 

the picking of the start of the received signal rather difficult.  184 

Given the above reasons, the P-P method was selected to identify the travel time in order to monitor stiffness 185 

variations and thus the development of reactions in the soil-lime specimen. 186 

Figure 2 187 
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Effect of the input frequency on G0 188 

Input signal of several frequencies, f(Hz), ranging from 0·5 kHz to 50 kHz, were applied to the input signal; in 189 

Figure 3 G0 values (calculated through eq. 1) are plotted versus the frequency of the input signal for three 190 

curing times (8, 28 and 81 days). For all the curing times considered, the obtained shear modulus increased 191 

with increasing frequency, up to 20 kHz and stabilized thereafter. It is worth noticing that at low frequencies 192 

(i.e. 0.5 to 5 kHz) the ratio between Ltt and the wavelength, λ (computed as Vs/f) is lower than 2. As widely 193 

reported in the literature (e.g. Sanchez-Salinero et al., 1986; Arulnathan et al., 1998; Arroyo et al., 2003; 194 

Wang et al., 2007), values of Ltt/λ < 2 or greater than 9 are associated to a prevailing near field effect which 195 

masks the actual arrival of the received signal that is consequently difficult to be read. 196 

Figure 3  197 

 198 

By comparing the high frequency G0 values at the three curing times (Figure 3) it is also evident the increase 199 

in the small strain shear modulus with curing: from 690 MPa at 8 days of curing to 1150 MPa at 81 days. In 200 

the first 7 days of curing, only 0·5 to 10 kHz input signals were readable, whereas higher frequency signals 201 

(20-50 kHz) resulted undetectable by the receiver BE; on the contrary, after 60 days of curing, the output 202 

signal corresponding to 0·5 kHz input signal was not readable. This variation in the sample behaviour is an 203 

additional sign of the increase in stiffness with curing; in fact, as reported by Lee & Santamarina (2005), the 204 

readability of the signal is optimized when the frequency approaches the resonant frequency of the soil-BE 205 

system and the higher the soil stiffness, the higher the resonant frequency, fR.  206 

In order to verify this occurrence, fR was measured, by means of Lissajous forms, at different curing times 207 

obtaining the values shown in Figure 4 plotted as a function of the shear wave speed, Vs, calculated by eq.1.  208 

An estimate of fR on varying of the soil stiffness in terms of Vs was proposed by Lee & Santamarina (2005) 209 

by combining the mass and the stiffness of the BE and those of the affected soil, assuming for the BE a 210 

cantilever beam behaviour and considering that the BE is buried in a soil mass. The involved parameters 211 

(defined in Lee and Santamarina, 2005) were determined according to the case of concern (type of BE used 212 

and lime treated soil) and the effective length factor, α, (=1 for a perfectly rigid anchor, >1 for a soft anchor of 213 

the BE) is considered equal to 1·5, as in the reference study. The effective soil mass factor, β, that, in this 214 

particular case, represents the soil-lime mass factor, was determined by fitting the experimental data. The 215 

best fitting was obtained for β=1·8 (see the trend of “fR, calculated” in Figure 4).  216 

Figure 4 217 
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The effect of the increase in stiffness is well described by the espression proposed by Lee and Santamarina 218 

(2005) even if, in this case, the increase is mainly due to the chemical reactions that develop with curing 219 

time, instead of an increase in the effective stress state.  220 

Effect of the curing time on G0 221 

The input signal at f=10kHz is the only readable through the entire period of curing, while giving, in the 222 

majority of the performed transmissions, acceptable values of the ratio Ltt/λ. Therefore, the reactions 223 

progress in the tested sample can be monitored during the whole curing period, referring to the trend of G0 224 

values calculated at f=10 kHz. 225 

By plotting G0 values as a function of the curing time (Figure 5) it is possible to observe its increasing trend, 226 

obtaining indirect information on the development of soil-lime reactions.  227 

The G0 computed for the compacted untreated soil (20.9 MPa) is considered as the initial value for the soil-228 

lime trend. As observable by Figure 5 (curing days in log-scale zoom), G0 slowly increased during the first 229 

day of curing and was subjected to a sharp increase at 2 days of curing, almost tripling its value between 24 230 

and 48 hours. This trend is clearly observable also for 1 and 2 kHz of frequency of the transmitting signal. 231 

The timing of reactions obtained by monitoring the pH of the soil-lime system are reported in Figure 6 (details 232 

of pH trend and related comments in Di Sante et al., 2016).  233 

The trend of pH and ion concentration, consistently with that of G0, suggests that cation exchange reaction is 234 

completed within 2 days of curing (see Figure 5) because during these first 2 days the pH holds steady at 235 

high values (>12), suggesting that oxydril ions are not involved in this reaction phase, as in the cation 236 

exchange reaction (see the description of reactions in Table 1). Therefore, the sharp increase in stiffness at 237 

2 days of curing marks the prevailing effect of pozzolanic reactions over the cation exchange reaction. Also 238 

this increase in G0 reflects the timing identified with the pH trend: in pozzolanic reactions 2 hydroxyl ions for 239 

each calcium ion reacting with silica or alumina are consumed (see Table 1) causing the pH to decrease. 240 

From then on, measurements at different frequencies consistently give a progressive increase in stiffness, 241 

from 265 MPa at 2 days (value calculated for a transmitted wave of 10kHz) and reaching 1535 MPa at 98 242 

days of curing (mean value calculated for f=10, 20, 30 kHz).  243 

The obtained experimental results are in agreement with those of other researchers (Tang et al., 2011; 244 

Dong, 2013; Wang et al., 2020; Ying et al., 2021) dealing with BE applications for silty and clayey soils 245 

treated with 2-4% quicklime and compacted. They also identified a two-phase change pattern of the G0 246 

modulus. A first, very slight increasing trend in the first 40-100 hours was attributed to cation 247 
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exchange/flocculation and then a sharp increase was registered and related to pozzolanic reactions; the 248 

stabilization of G0 required long curing times (i.e. more than 80 days of curing).  249 

The observed development of stiffness in time is consistent with the pH measurements for which pozzolanic 250 

reactions are still in progress at 70 days of curing (Figure 6) although at a lower rate if compared with the first 251 

28 days of curing.  252 

The effect of short term reactions is mainly a re-arrangement of soil particles that causes a modification in 253 

the soil structure (see Table 1) but not a significant increase in stiffness; whereas the stiffness is highly 254 

incremented by the cementing and bonding effect resulting from pozzolanic reactions. This occurrence can 255 

also be justified by investigation of the cementation products at a micro-scale level (Russo et al., 2019; Di 256 

Sante, 2016; Kasyap et al., 2021), in fact, the calcium silicate hydrates formed with pozzolanic reactions, 257 

coating and bonding the soil grains together, are capable to strengthen and stiffen the treated soil. 258 

Figure 5 259 

 260 

Figure 6 261 

 262 

Conclusions 263 

With reference to the studied soil-lime mixture (CH soil treated with 3% of quicklime), the following 264 

conclusions can be drawn. 265 

- Lime treatment and compaction affect the waveform of the received signal, thus influencing the 266 

applicability of some of the possible methods to determine the travel time. 267 

- The stiffness of the studied soil-lime mixture increases with curing time as a result of chemical 268 

reactions taking place after the addition of the binder. By observing the trend of the small strain 269 

shear modulus with curing time, the two typical stages of reaction can be identified, regardless of the 270 

frequency of the transmitted signal; therefore, G0 is a promising parameter to monitor the soil-lime 271 

reaction development. 272 

- Although pH measurements are surely an easier method to be performed in order to have 273 

information about the reactions timing, BE measurements offer additional information about the 274 

obtainable stiffness of the mixture. 275 

- In order to obtain a representative value of the small strain shear modulus for a soil-lime mixture, BE 276 

measurements should be done using a wide range of frequencies of the input signal. In the present 277 
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case, the received signal, at low input frequencies (i.e. <10 kHz), was affected by the near field 278 

effect and its interpretation gave lower G0 values than those obtained with high frequencies.  279 

- In light of the obtained results, a suitable method to estimate the resonant frequency of the system 280 

as a function of the stiffness is the analytical solution by Lee and Santamarina (2005), adjusting the 281 

parameters for the lime treated soil.  282 

  283 
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Abstract  41 

In the context of lime stabilization, this note shows how the development of soil-lime reactions can be linked 42 

to the variation of small shear stiffness with time. To determine the evolution of small-strain stiffness, the 43 

shear wave velocity was measured by means of bender elements (BE) on a compacted clayey soil treated 44 

with 3% quicklime, starting form 2 hours after compaction until 98 days of curing. Different methods of signal 45 

interpretation were applied with the purpose of highlighting how the peculiarity of lime treated soils affects BE 46 

testing results and to provide practical indications for optimizing similar testing on lime-treated soils. The 47 

results showed that lime treatment and compaction affect the waveform of the received signal and that 48 

measurements should span across a wide range of input frequencies in order to identify an optimal 49 

waveform. The small strain shear modulus was found to increase with curing time with a trend that can be 50 

related to that of soil-lime chemical reactions, thus representing a promising parameter to monitor the 51 

development of soil-lime reactions. 52 

Keywords 53 

Soil stabilization, lime, small-strain stiffness, shear wave velocity, bender elements 54 

Introduction 55 

Lime stabilization of clayey soils is a well-known and sustainable ground improvement technique for the 56 

construction of earthen structures (e.g. Boardman et al., 2001; Beetham et al., 2014; Gomes Correia et al., 57 

2016; Rosone et al., 2018). Despite its wide application in engineering works, the optimization of the mix 58 

design procedure and the search for methods and correlations to predict soil-lime performances are the 59 

objective of recent research studies (e.g. Consoli et al., 2014; Robin et al., 2015; Di Sante et al., 2015; 60 

Consoli et al., 2017; Di Sante et al., 2020; Fratalocchi et al., 2020). Moreover, delayed compaction (due to 61 

hitches or technical breaks during construction e.g. Osinubi et al., 2006; Di Sante et al., 2015), wetting-drying 62 

and freezing-thawing cycles (e.g. Stoltz et al., 2012; Shirmohammadi et al., 2021) and a lack of an extensive 63 

experimental laboratory investigation can potentially adversely affect the stabilization outcomes, therefore 64 

these occurrences should be taken into account during the design phase. In this perspective, understanding 65 

the sequence, mode and timing of reactions between lime and clayey soils plays an essential role. Table 1 66 

summarizes the reactions that develop in a soil-quicklime-water system and the related effects. 67 

Table 1 68 

Several studies have been carried out to identify the chemo-mineralogical evolution of lime treated soils with 69 

time (e.g. Vitale et al., 2017; Guidobaldi et al., 2018). Among the different methodologies proposed to identify 70 
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the reactions timing and evolution, those based on pH measurements of the soil-lime-water system are easy 71 

to be carried out and turned out to be very effective and reliable (Rao and Shivananda, 2005; Al Muckthar , 72 

2010; Di Sante et al., 2014, Di Sante, 2020).  73 

In the present note a preliminary study to monitor the development of chemical reactions based on stiffness 74 

variation of a clayey soil treated with quicklime is presented. The results are compared with those obtained 75 

by the pH method (Di Sante et al., 2014). A parameter which can reflect the structure of the porous medium 76 

is the small-strain shear modulus, G0, that is linked to the stiffness of the material that, in turn, is expected to 77 

change with the progress of chemical reactions, thus with curing time. Although G0 can increase in time even 78 

for untreated soils due to ageing phenomena (Schmertmann, 1991; Jovičić et al., 1997; Rammah et al., 79 

2004), laboratory data showed that the maximum rate of increase of G0 with the logarithm of time (in days) 80 

can be equal to 19% in case of secondary compression. 81 

G0 can be measured by bender elements (BE) test in a non-destructive way, which allows testing the same 82 

soil-lime sample for the entire curing period. The small-strain shear modulus is related to the shear waves 83 

velocity that can be calculated from the travel time measured generating a shear wave at one boundary of 84 

the specimen (transmitter BE) and receiving the wave at the opposite boundary (receiver BE). 85 

Piezoelectric transducers applications for soils were originally introduced by Lawrence in ‘60s (Lawrence, 86 

1963) and, from then on, the experimental setting has been improved as well as the methods of signal 87 

interpretation (e.g. Arulnathan et al., 1998; Wang et al., 2017). Some attempts to apply the BE technique to 88 

study the stiffness of lime treated soils with several different aims have been recently made. In particular, 89 

Puppala et al. (2005) studied the small strain shear moduli of lime-cement treated expansive clays for deep 90 

mixing applications; Puppala et al. (2006) monitored the stiffness variation of cement and lime treated 91 

sulphate bearing soils (with different sulphate levels and curing conditions) by BE tests, finding a significant 92 

increase in G0 with curing time due to binder addition. Wang et al. (2017) finalized a novel method for 93 

determining G0 based on the comparison of S-wave and P-wave received BE signals using a 2% quicklime 94 

treated compacted plastic silt at different curing times and saturation degrees. The effects of wetting-drying 95 

cycles and of the aggregate sizes on the stiffness of lime treated clayey soils have also been studied (Ying et 96 

al., 2021; Tang et al., 2011; Dong, 2013; Wang et al., 2020). The results showed that the treatment of clayey 97 

soils (CH and CL USCS class) with 2 to 4% quicklime amount causes a huge increase in G0 with curing time.  98 

While evaluating the use of G0 as a key parameter to monitor the reaction developments, the necessity of a 99 

proper interpretation of the transmitted signal arose. Therefore, different methods of interpretation were 100 
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applied with the additional purpose of highlighting how the peculiarity of lime treated soils can affect the BE 101 

testing and in order to provide practical indications to optimize similar testing on lime-treated soils. 102 

Materials and Test Methods 103 

The studied soil is an inorganic clay of high plasticity (CH), according to the Unified Soil Classification 104 

System (USCS – ASTM D2487-93). Its characteristics are summarized in Table 2. The soil fully matches the 105 

suitable grain size distribution requirements for lime treatment. The amounts of sulphate and organic matter 106 

are 0·39% and 2·70% by dry mass of soil, respectively. The lime used in this research is a fine calcic 107 

quicklime, classified as CL80-Q (UNI EN 459-01 – CaO>87%, MgO<5%), completely passing through the 108 

ASTM 200 sieve (75 μm sieve opening). The amount of lime added to the soil was 3% by dry mass of soil. 109 

This amount is higher than the initial consumption of lime (ICL, Table 2), that represents the minimum lime 110 

content to start pozzolanic reactions.  111 

Table 2 112 

The specimens were prepared by crumbling the air-dried soil, adding the amount of lime after soil wetting 113 

(wet mix - as usually done in the field, Fratalocchi et al., 2009) until a uniform distribution was achieved. The 114 

mixture was then compacted by the Standard Proctor procedure (ASTM D698-12).  115 

In order to investigate the development of soil-lime reactions by pH measurements (methodology proposed 116 

and validated by Di Sante et al., 2014), a sample was compacted close to the optimum water content 117 

(optimum water content= 23%, dry unit weight=15·6 kN/m3, details in Di Sante et al., 2016) and was 118 

submerged in distilled water, resting on its lateral surface to maximize the contact area with water. The 119 

development of soil-lime reactions was monitored by periodically measuring the pH values of the soaking 120 

water (pH Electrode Sentix 41, WTW). 121 

The sample for BE test was compacted in three layers (101 mm in diameter and 116·5 mm in height) slightly 122 

wet of optimum (w= 25%, corresponding to a saturation degree of 93%; dry unit weight= 15·4 kN/m3). It was 123 

immediately coated with paraffin, to prevent loss of water during the test. The sample weight was monitored 124 

throughout the entire curing period (98 days): its decrease resulted lower than 1%. The curing temperature 125 

was 23±1°C.  126 

The BE test was conducted following the recent ASTM Standard D8295-19. An undersized slot was 127 

excavated in the two opposite faces of the specimen to easily insert the BE, as suggested for stiff 128 

specimens, paying attention to ensure their alignment; the specimen was placed on a specially designed 129 

wooden sample holder. The test was carried out in unconfined conditions. Although some researchers 130 
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reported difficulties in data interpretation such as a less efficient grounding and the possibility of a weak 131 

coupling of the transducer to the soil (de Paula et al., 2020), conducting BE test in unconfined conditions is 132 

usual in the area of stabilized soils (e.g.Puppala et al., 2006; Tang et al., 2011; Chan, 2012; Consoli et al., 133 

2012; Wang et al., 2017; Wang et al., 2020). This test configuration originated from  the complementarity of 134 

BE test and unconfined compression tests and thereafter became a common practice so much so that it is a 135 

possibility contemplated by the relevant ASTM Standard.  Moreover, given the very low compressibility of the 136 

studied soil after the treatment (i.e. oedometric modulus =26 MPa for 0-50 kPa of vertical stress range, see 137 

Di Sante et al., 2016) the effect of the confining stress is expected to be low. 138 

The input signal, a sine pulse of 10 Vpp amplitude, was generated by a function generator (Aim TTI 139 

TG5011A), triggered with a period set to allow enough time for the attenuation of the BE response before the 140 

next pulse. Several frequencies were applied, ranging from 0·5 kHz to 50 kHz. The decision of using this 141 

wide span of input frequencies is due to two orders of reasons: (1) there are not consolidated indications in 142 

literature on the optimal frequency of BE application to soil-lime materials and (2) considering the 143 

development of chemical reactions and the consequent changes in the structure of the sample, optimal 144 

testing frequency can vary with curing time and this evolution is not known at the beginning of the test. is not  145 

Both the transmitted and the received signals were acquired by a digital oscilloscope (Picoscope 6, Pico 146 

Technology LTD) and then processed. The experimental set up is shown in Figure 1.  147 

Figure 1  148 

The first measurement was performed two hours after mixing and compaction of the soil-lime sample and the 149 

measurements were repeated at increasing curing time until 98 days. The shear wave travel times, t, were 150 

computed by time domain methods (Peak to peak and Start to start) as suggested in ASTM Standard 151 

D8295-19. The Cross correlation method (Viggiani &Atkinson, 1995) was tentatively applied, too. 152 

The small strain shear modulus, G0, was calculated through the shear wave speed, Vs, by the formula: 153 

𝑮𝟎 = 𝝆 ∙ 𝑽𝒔
𝟐 = 𝝆 ∙ (

𝑳𝒕𝒕

𝒕
)
𝟐

 eq.1 154 

where Ltt is the BE tip to tip distance and ρ is the density of the sample.  155 

An untreated sample was also prepared at the same compaction conditions and tested with BE in order to 156 

identify the contribution of lime to the stiffness of the treated soil. The results of the untreated sample were 157 

considered also representative of the initial conditions when analysing the effects of curing time. 158 
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Results and Discussion 159 

Travel time interpretation issues 160 

Both time domain and frequency domain methods were initially taken into account for signal interpretation. In 161 

particular, Peak to Peak (P-P) and Start to Start (S-S) methods are suggested in the ASTM 8295-19 162 

Standard (S-S measured from the start of the transmitter signal to the horizontal intersection on the receiver 163 

signal). The Standard also allows the application of other methods, provided that they have been shown to 164 

give reliable results. Therefore, the cross-correlation method, C-C, introduced in Viggiani and Atkinson 165 

(1995), was also tentatively applied, to avoid the more subjective visual picking methods. 166 

In the present study the recorded received signal showed a first peak that rarely had the highest amplitude, 167 

whereas, after the wave arrival, the amplitude increased with time and then gently decreased (Figure 2). This 168 

type of received waveform was observed also by other researchers dealing with cemented soil (e.g. Chan, 169 

2010; Consoli et al., 2012). Probably, due to this particular feature and to a difference between the frequency 170 

of the transmitted and received signals, the application of cross correlation method gave the maximum cross-171 

correlation with the maximum peak of the received signal, resulting in a travel time significantly higher than 172 

other methods and significantly scattering among the subsequent measurements (as also reported by Ogino 173 

et al., 2015). This suggested that, in the case of concern, lime treatment and compaction, by affecting the 174 

stiffness of the specimens (as discussed in the following), could play a key role in modifying the ability of the 175 

soil to transmit the signal, thus affecting the interpretation of the test by this frequency domain method. 176 

Moreover, in the standard procedure for compaction, as per ASTM D698-12, three layers of soil are 177 

subsequently placed in the mould, each compacted with 25 blows, resulting in a decreasing applied 178 

compaction energy from the base to the top of the sample, causing an inhomogeneity in density across the 179 

sample which may have contributed to affect the test results. 180 

In assessing the travel time by the S-S method, difficulties were encountered in following the Standard 181 

criterion because, in some of the transmissions, background noise, dispersion and near field effects made 182 

the picking of the start of the received signal rather difficult.  183 

Given the above reasons, the P-P method was selected to identify the travel time in order to monitor stiffness 184 

variations and thus the development of reactions in the soil-lime specimen. 185 

Figure 2 186 
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Effect of the input frequency on G0 187 

Input signal of several frequencies, f(Hz), ranging from 0·5 kHz to 50 kHz, were applied to the input signal; in 188 

Figure 3 G0 values (calculated through eq. 1) are plotted versus the frequency of the input signal for three 189 

curing times (8, 28 and 81 days). For all the curing times considered, the obtained shear modulus increased 190 

with increasing frequency, up to 20 kHz and stabilized thereafter. It is worth noticing that at low frequencies 191 

(i.e. 0.5 to 5 kHz) the ratio between Ltt and the wavelength, λ (computed as Vs/f) is lower than 2. As widely 192 

reported in the literature (e.g. Sanchez-Salinero et al., 1986; Arulnathan et al., 1998; Arroyo et al., 2003; 193 

Wang et al., 2007), values of Ltt/λ < 2 or greater than 9 are associated to a prevailing near field effect which 194 

masks the actual arrival of the received signal that is consequently difficult to be read. 195 

Figure 3  196 

 197 

By comparing the high frequency G0 values at the three curing times (Figure 3) it is also evident the increase 198 

in the small strain shear modulus with curing: from 690 MPa at 8 days of curing to 1150 MPa at 81 days. In 199 

the first 7 days of curing, only 0·5 to 10 kHz input signals were readable, whereas higher frequency signals 200 

(20-50 kHz) resulted undetectable by the receiver BE; on the contrary, after 60 days of curing, the output 201 

signal corresponding to 0·5 kHz input signal was not readable. This variation in the sample behaviour is an 202 

additional sign of the increase in stiffness with curing; in fact, as reported by Lee & Santamarina (2005), the 203 

readability of the signal is optimized when the frequency approaches the resonant frequency of the soil-BE 204 

system and the higher the soil stiffness, the higher the resonant frequency, fR.  205 

In order to verify this occurrence, fR was measured, by means of Lissajous forms, at different curing times 206 

obtaining the values shown in Figure 4 plotted as a function of the shear wave speed, Vs, calculated by eq.1.  207 

An estimate of fR on varying of the soil stiffness in terms of Vs was proposed by Lee & Santamarina (2005) 208 

by combining the mass and the stiffness of the BE and those of the affected soil, assuming for the BE a 209 

cantilever beam behaviour and considering that the BE is buried in a soil mass. The involved parameters 210 

(defined in Lee and Santamarina, 2005) were determined according to the case of concern (type of BE used 211 

and lime treated soil) and the effective length factor, α, (=1 for a perfectly rigid anchor, >1 for a soft anchor of 212 

the BE) is considered equal to 1·5, as in the reference study. The effective soil mass factor, β, that, in this 213 

particular case, represents the soil-lime mass factor, was determined by fitting the experimental data. The 214 

best fitting was obtained for β=1·8 (see the trend of “fR, calculated” in Figure 4).  215 

Figure 4 216 
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The effect of the increase in stiffness is well described by the espression proposed by Lee and Santamarina 217 

(2005) even if, in this case, the increase is mainly due to the chemical reactions that develop with curing 218 

time, instead of an increase in the effective stress state.  219 

Effect of the curing time on G0 220 

The input signal at f=10kHz is the only readable through the entire period of curing, while giving, in the 221 

majority of the performed transmissions, acceptable values of the ratio Ltt/λ. Therefore, the reactions 222 

progress in the tested sample can be monitored during the whole curing period, referring to the trend of G0 223 

values calculated at f=10 kHz. 224 

By plotting G0 values as a function of the curing time (Figure 5) it is possible to observe its increasing trend, 225 

obtaining indirect information on the development of soil-lime reactions.  226 

The G0 computed for the compacted untreated soil (20.9 MPa) is considered as the initial value for the soil-227 

lime trend. As observable by Figure 5 (curing days in log-scale zoom), G0 slowly increased during the first 228 

day of curing and was subjected to a sharp increase at 2 days of curing, almost tripling its value between 24 229 

and 48 hours. This trend is clearly observable also for 1 and 2 kHz of frequency of the transmitting signal. 230 

The timing of reactions obtained by monitoring the pH of the soil-lime system are reported in Figure 6 (details 231 

of pH trend and related comments in Di Sante et al., 2016).  232 

The trend of pH and ion concentration, consistently with that of G0, suggests that cation exchange reaction is 233 

completed within 2 days of curing (see Figure 5) because during these first 2 days the pH holds steady at 234 

high values (>12), suggesting that oxydril ions are not involved in this reaction phase, as in the cation 235 

exchange reaction (see the description of reactions in Table 1). Therefore, the sharp increase in stiffness at 236 

2 days of curing marks the prevailing effect of pozzolanic reactions over the cation exchange reaction. Also 237 

this increase in G0 reflects the timing identified with the pH trend: in pozzolanic reactions 2 hydroxyl ions for 238 

each calcium ion reacting with silica or alumina are consumed (see Table 1) causing the pH to decrease. 239 

From then on, measurements at different frequencies consistently give a progressive increase in stiffness, 240 

from 265 MPa at 2 days (value calculated for a transmitted wave of 10kHz) and reaching 1535 MPa at 98 241 

days of curing (mean value calculated for f=10, 20, 30 kHz).  242 

The obtained experimental results are in agreement with those of other researchers (Tang et al., 2011; 243 

Dong, 2013; Wang et al., 2020; Ying et al., 2021) dealing with BE applications for silty and clayey soils 244 

treated with 2-4% quicklime and compacted. They also identified a two-phase change pattern of the G0 245 

modulus. A first, very slight increasing trend in the first 40-100 hours was attributed to cation 246 
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exchange/flocculation and then a sharp increase was registered and related to pozzolanic reactions; the 247 

stabilization of G0 required long curing times (i.e. more than 80 days of curing).  248 

The observed development of stiffness in time is consistent with the pH measurements for which pozzolanic 249 

reactions are still in progress at 70 days of curing (Figure 6) although at a lower rate if compared with the first 250 

28 days of curing.  251 

The effect of short term reactions is mainly a re-arrangement of soil particles that causes a modification in 252 

the soil structure (see Table 1) but not a significant increase in stiffness; whereas the stiffness is highly 253 

incremented by the cementing and bonding effect resulting from pozzolanic reactions. This occurrence can 254 

also be justified by investigation of the cementation products at a micro-scale level (Russo et al., 2019; Di 255 

Sante, 2016; Kasyap et al., 2021), in fact, the calcium silicate hydrates formed with pozzolanic reactions, 256 

coating and bonding the soil grains together, are capable to strengthen and stiffen the treated soil. 257 

Figure 5 258 

 259 

Figure 6 260 

 261 

Conclusions 262 

With reference to the studied soil-lime mixture (CH soil treated with 3% of quicklime), the following 263 

conclusions can be drawn. 264 

- Lime treatment and compaction affect the waveform of the received signal, thus influencing the 265 

applicability of some of the possible methods to determine the travel time. 266 

- The stiffness of the studied soil-lime mixture increases with curing time as a result of chemical 267 

reactions taking place after the addition of the binder. By observing the trend of the small strain 268 

shear modulus with curing time, the two typical stages of reaction can be identified, regardless of the 269 

frequency of the transmitted signal; therefore, G0 is a promising parameter to monitor the soil-lime 270 

reaction development. 271 

- Although pH measurements are surely an easier method to be performed in order to have 272 

information about the reactions timing, BE measurements offer additional information about the 273 

obtainable stiffness of the mixture. 274 

- In order to obtain a representative value of the small strain shear modulus for a soil-lime mixture, BE 275 

measurements should be done using a wide range of frequencies of the input signal. In the present 276 
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case, the received signal, at low input frequencies (i.e. <10 kHz), was affected by the near field 277 

effect and its interpretation gave lower G0 values than those obtained with high frequencies.  278 

- In light of the obtained results, a suitable method to estimate the resonant frequency of the system 279 

as a function of the stiffness is the analytical solution by Lee and Santamarina (2005), adjusting the 280 

parameters for the lime treated soil.  281 

  282 
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Table 1. Reactions in soil-lime water system and main effects in the short and long term - 
*C-S-H and C-A-H are Calcium Silicate and Aluminum Hydrates, respectively. (e.g. TRB, 
1987; Beetham et al., 2014) 

Table 2 – Soil characteristics (ICL = Initial Consumption of Lime – ASTM C977-00(18)). 

Figure 1 – Experimental set up for BE test 

Figure 2 – Comparison between Peak to Peak and Cross-Correlation methods - 
Transmitted and received signals at 2 hours of curing – frequency of 2 kHz. 

Figure 3 – G0 values determined at different frequencies and related signals at (a) 8 days, 
(b) 28days, (c) 81 days of curing. For each received signal the travel time, t, is reported. 

Figure 4 – Soil-lime stiffness effect on resonant frequency– diamond points are the 
experimental results, the dashed line corresponds to the analytical solution by Lee and 
Santamarina (2005) for α=1·5 and β=1·8 

Figure 5 – G0 values of the soil-lime sample with curing time (log scale in the zoomed plot 
for better visualization of short curing times) 

Figure 6 – Timing of reactions as inferred by pH method (CER=cation exchange reaction, 
PR=pozzolanic reactions)  
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● In BE testing lime treatment affects the waveform of the received signal  

● measurements should cover a wide range of input frequencies in order to identify an optimal waveform 

● low input frequencies give lower G0 values than those obtained with high frequencies 

● G0 was found to increase with curing time following a two-phase trend 

● G0 is a promising parameter to monitor the development of soil-lime reactions 

 

highlights



MAIN EFFECTS

quicklime hydration CaO + H2O → Ca(OH)2 soil drying

hydroxide dissociation Ca(OH)2 → Ca
++

 + 2OH
-

rising of pH and of electrolyte concentration in pore water 

Ca
++

 + 2 OH
-
 + SiO2 → C-S-H *

Ca
++

 + 2 OH
-
 + Al2O3 →C-A-H *

pozzolanic reactions (PR)
Cementation: higher strength, reduced deformability, higher 

durability

REACTIONS

"short term"

cation exchange reaction (CER) Ca
++ 

replace K
+
, Na

+
, H

+
 on clayey particles Flocculation/aggregation of clay particles: reduction in plasticity 

and soil-water affinity, increase in hydraulic conductivity

"long term"
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Sand (<2mm%) 3

Fine (<0.075mm,%) 97

Clay (<0.002mm,%) 52

Specific Gravity (-) 2.65

Liquid limit (%) 57

Plasticity Index (%) 33

ICL - %CaO 1.5
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