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Max-Plus Systems: Structural Solvability Conditions
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Abstract—Switching linear systems over the max-plus algebra
can be used to model production plants where different choices
in resource allocation are possible. In such a case, internal and
external variables represent the time instants at which internal or
external events occur. In particular, output variables represent the
time instants at which lots of manufactured goods are released to
the market. Here, we consider the problems of system synchroniza-
tion and subsynchronization, which consist of forcing the output
of a system to equal or anticipate the output of a given model.
Their solution in the max-plus framework provides a viable strategy
to control a given production plant in such a way as to comply
with a desired production time schedule. Using structural methods
and introducing novel structural notions, necessary and sufficient
solvability conditions are given. Practical methods to construct
solutions are illustrated and discussed.

Index Terms—Manufacturing plant control, max-plus algebra,
model matching, switching systems, systems’ synchronization.

I. INTRODUCTION

Linear dynamical systems over the max-plus algebra Rmax, or
max-plus systems, were introduced in [1] to provide a convenient way
of modeling discrete event systems which exhibit synchronization of
operations without competition. Their class is the same as that of timed
event graphs, i.e., of Petri nets whose places have only one upstream
and only one downstream transition. A summary of basic results in the
theory of max-plus systems can be found in [2] and [3]. Specific control
problems and techniques were investigated in [4], [5], [6], and [7] and,
in particular, a structural geometric approach to systems of such class
was developed in [3], [8], [9], [10], [11], [12], and [13].

Versatility and applicability of max-plus models are extended by
letting their dynamics switch, according to a switching signal, from
an operational mode to another in a finite set of modes. Switching
linear max-plus systems of this kind were introduced in [14] while the
special case of constrained periodic switching was considered in [15]
and [16]. The possibility of modifying the dynamics by switching can
be exploited to break the synchronization of operations or to modify
the order of the events so as to allow competition.
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In this work, we consider the problem of forcing the output of a given
plant, represented by a switching linear max-plus system, to occur at
the same time as that of a given model or to anticipate it. In the max-plus
literature, the first objective is referred to as the system synchronization
while the second is called the system subsynchronization [17]. These
problems are the generalization to the class of switching max-plus
systems of the model matching problem first considered in [18] for
linear systems over a field and investigated by several authors for other
classes of dynamical systems, including, in particular, systems over
rings [19], switching systems over a field [20], [21], and linear max-plus
systems [13], [17], [22], [23], [24].

In general, the problem of controlling a given plant in such a way as
to comply with a desired production time schedule can be dealt with
by constructing a model that follows that schedule and by designing
open-loop or closed-loop control laws that force the output of the plant
to occur at the same time as that of the model or to anticipate it [25].
Thus, system synchronization or subsynchronization can be used in
practice to satisfy the time requirements of a given production policy
or of just-in-time strategies [26], [27].

In the max-plus framework, to be feasible, the control laws that
achieve system synchronization or subsynchronization are constrained
to be nondecreasing, so that the nth input in a sequence cannot occur in
time before the (n− 1)th input in the same sequence. This requirement
clearly limits the set of possible solutions and needs to be dealt with
by making a suitable nonanticipativeness assumption (introduced and
discussed later on) on the plant and on the model.

As mentioned earlier, synchronization problems for linear max-plus
systems have already been considered. In [22], solvability conditions
for a model matching problem involving time event graphs were given
in terms of formal power series, whereas in [23], the problem was dealt
with by extending to the max-plus framework the classical polynomial
(RST) control strategy. In [13] and [17], a structural geometric approach
was employed to provide solvability conditions. The case of switching
max-plus systems was first considered in [24], where a sufficient, but
not necessary, condition for the system synchronization problem (SSP)
to be solvable by a nondecreasing control law, both in open-loop and
closed-loop control schemes, was given in structural geometric terms.

The contribution of this technical note is to provide a complete
characterization of the solvability of the SSP (see Theorem 2) by
means of a necessary and sufficient structural condition, which is
weaker than that of [24, Th. 3] and which substantially differs
from that since it makes use of a newly defined geometric no-
tion. A necessary and sufficient structural solvability condition with
similar characteristics is also derived for the subsynchronization
problem (see Theorem 3).

More precisely, the key innovative feature of the necessary and
sufficient condition given here is that it involves a family of submodules
of the state module of the modes of a switching system, which enjoys
a specific invariance property with respect to the switching dynamics,
instead of a single controlled invariant (with respect to the switching
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dynamics) subsemimodule of the state semimodule as in [24]. This
formulation requires the definition of a new notion of controlled in-
variant family of subsemimodules that is akin to that previously used
only when the switching mechanism is somehow constrained: e.g., in
linear periodic systems [28] and in linear switching systems over a
digraph [29].

It is worth noting that, while max-plus dynamical systems can be
viewed as algebraic objects, this does not hold for the class of systems
we consider here due to their switching behavior. As a consequence,
the algebraic approach to model reference problems for nonswitching
max-plus systems in [22], which is based on formal power series, does
not appear to be applicable here. The same holds for the RST control
strategy in [23] since the concept of transfer function on which it relies
has no counterpart in the switching framework. On the other hand,
structural geometric methods that suitably extend those of [13] and
[17] prove to be applicable and efficient both from a theoretical and
practical point of view.

A notable feature of the structural geometric approach we adopt
is that of providing recursive procedures that, in case of convergence
in a finite number of steps, make it possible to check practically the
solvability conditions and to synthesize feasible solutions, if any exists.

The rest of the article is organized as follows. In Section II, notations
and basic properties of the max-plus algebra Rmax and of switching
max-plus systems are briefly recalled. Then, the problems of system
synchronization and system subsynchronization are formally stated.
In Section III, structural geometric notions, notably the novel notion
of controlled invariance for a family of subsemimodules of the state
semimodules, are introduced and used to characterize the solvability
of the considered problems. In Section IV, two examples illustrate
the previous results, also in comparison with those in [24]. Finally,
Section V concludes this article.

II. BACKGROUND AND PROBLEM STATEMENT

By Rmax, we denote the max-plus algebra composed of the set R ∪
{−∞} equipped with the operations of sum ⊕ and product ⊗ defined
by a⊕ b = max{a, b} for a, b ∈ Rmax and by a⊗ b = a+ b if a, b
belong to R and by (−∞)⊗ a = a⊗ (−∞) = −∞ for anya ∈ Rmax.
The neutral elements for ⊕ and for ⊗ are given by ε = −∞ and by e =
0 ∈ R, respectively. Since⊗ distributes over⊕, Rmax is a semiring. By
Rn

max, we denote the (free) semimodule over Rmax whose elements are
n-dimensional vectors, that is,n-tuples, of elements of Rmax, equipped
with the componentwise sum and the scalar product that are defined by
the sum ⊕ and the product ⊗ of Rmax.

Given two semimodules V ⊆ Rn
max and W ⊆ Rn

max, their sum
is the semimodule (V +W) ⊆ Rn

max defined by V +W = {x ∈
Rn

max, such that x = v ⊕ w for some v ∈ V and for some w ∈ W}.
Sometimes, it will also be useful to consider the semimodule
V �W defined byV �W = {x ∈ Rn

max, for which there exists w ∈
W such that x⊕ w ∈ V}.

Given two vectors v and w of the same dimension with entries in
Rmax, the relation v ≥ w means that each component of v is greater
than or equal to the corresponding component ofw. Given two matrices
A and B of the same dimensions with entries in Rmax, the relation
A ≥ B has the same meaning.

The counter image of a semimodule V ⊆ Rq
max with respect to a

q × p matrix A is the semimodule A−1(V) ⊆ Rp
max. The evolution of a

phenomenon that is characterized by the occurrence over time of events
of n different types may be described by means of an n-dimensional
dater, that is a function d(.) : N → Rn

max, where the ith component
of the vector d(k), for k ∈ N, represents the time instant at which an
event of the ith type occurs for the kth time. Note that, in order to

have physical meaning, daters must be nondecreasing, meaning that
d(k + 1) ≥ d(k) for each k ∈ N.

In the aforementioned framework, a switching max-plus linear sys-
tem Σσ is the dynamical object defined by equations of the form

Σσ ≡
⎧⎨
⎩
x(k) = Aσ(k)x(k − 1)⊕Bσ(k)u(k)
y(k) = Cσ(k)x(k)
x(0) = ε

(1)

where k ∈ N is the index of the event instance; x(.) : N → X = Rn
max

is the dater of the internal events; u(.) : N → U = Rm
max is the dater

of the input events and y(.) : N → Y = Rp
max is the dater of the

output events; σ(.) : N → I = {1, . . ., I} is the function that defines
the switching behavior andAi,Bi,Ci, for i ∈ I, are matrices of suitable
dimensions with entries in Rmax. The semimodule X is called the state
semimodule of Σσ . The max-plus linear systems Σi defined by

Σi ≡
⎧⎨
⎩
x(k) = Aix(k − 1)⊕Biu(k)
y(k) = Cix(k)
x(0) = ε

(2)

for i ∈ I, are the modes of Σσ and, therefore, σ(k) defines the config-
uration assumed by the system at the kth iteration of its operations.

In the previous description, the n components of x(.) correspond
to n types of internal events for Σσ , so that the vector x(k) =
(x1(k), . . . , xn(k))

� ∈ Rn
max represents the fact that the kth instance

of the internal event of type � occurs at time x�(k). A similar interpre-
tation holds for the m components of the input dater u(.) and for the p
components of the output dater y(.).

If u(.) is nondecreasing, the sequence {u(k)}k∈N can be seen as a
feasible input to Σσ . In turn, in order to be feasible, Σσ must respond to
nondecreasing inputs by producing sequences {x(k)}k∈N of internal
events that are nondecreasing. This property is called nonanticipative-
ness. It can easily be shown that each mode Σi is nonanticipative if
Ai ≥ In, where In denotes the n× n matrix whose diagonal elements
are equal to e and the others are equal to ε. Moreover, it can be shown
that Σσ is nonanticipative if and only if all its modes are such. In the
rest of the work, we will assume that all the considered switching linear
systems are nonanticipative.

A recurrent concept in this work is that of family of semimodules
indexed by the active mode σ(k) of the system Σσ . We will use
the notation Vσ to denote a family of semimodules {Vi}i∈I , where
I = {1, . . . , I} is the codomain of σ. We say that a family of semi-
modules Vσ is contained in a semimodule K ⊆ Rn

max, and we denote
such relation by abuse of notation as Vσ ⊆ K, if Vi ⊆ K for each i ∈ I.
Given a vector z ∈ Rn

max and a family of semimodules Vσ ⊆ Rn
max,

we say that z belongs to Vσ , and we denote such relation as z ∈ Vσ , if
z ∈ Vi for some i ∈ I. Moreover, given two families of semimodules
Vσ and Wσ we say the following.
1) Vσ is finitely generated if, for all i ∈ I, Vi is finitely generated.
2) Vσ is equal to Wσ , or Vσ = Wσ , if Vi = Wi for all i ∈ I.
3) Vσ is contained in Wσ , or Vσ ⊆ Wσ , if Vi ⊆ Wi for all i ∈ I.
4) Given two families of semimodules Vσ ⊆ Rn

max and Wσ ⊆ Rn
max,

their sum is the family of semimodules Mσ = Vσ +Wσ with
Mi = Vi +Wi for all i ∈ I.

5) Given two families of semimodules Vσ ⊆ Rn
max and Wσ ⊆ Rn

max,
their intersection is the family of semimodules Nσ = Vσ ∩Wσ

with Ni = Vi ∩Wi for all i ∈ I.
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We can now formalize the problems we tackle in this work.
Problem 1 (System Synchronization Problem): Given a switching

linear max-plus system

ΣPσ ≡
⎧⎨
⎩
xP (k) = APσ(k)xP (k − 1)⊕BPσ(k)uP (k)
yP (k) = CPσ(k)xP (k)
xP (0) = ε

(3)

called the plant and a switching linear max-plus system

ΣMσ ≡
⎧⎨
⎩
xM (k) = AMσ(k)xM (k − 1)⊕BMσ(k)uM (k)
yM (k) = CMσ(k)xM (k)
xM (0) = ε

(4)

called the model, with xP : N → RnP
max, xM : N → RnM

max, uP : N →
RmP

max, uM : N → RmM
max , and yP , yM : N → Rp

max, the system syn-
chronization problem (SSP) consists in finding, for all possible non-
decreasing input sequences {uM (k)}k∈N of the model and all pos-
sible switching signals σ(.), a nondecreasing control input sequence
{uP (k)}k∈N for the plant, such that the output {yP (k)}k∈N of this lat-
ter equals the output {yM (k)}k∈N of the model, i.e., yP (k) = yM (k)
for all k ∈ N.

Problem 2 (System Subsynchronization Problem): Given a plant
ΣPσ of the form (3) and a model ΣMσ of the form (4), the system
subsynchronization problem (SSSP) consists in finding, for all possible
nondecreasing input sequences {uM (k)}k∈N of the model and all
possible switching signalsσ(.), a nondecreasing control input sequence
{uP (k)}k∈N for the plant, such that the output {yP (k)}k∈N of this
latter is smaller than or equal to the output {yM (k)}k∈N of the model,
i.e., yP (k) ≤ yM (k) for all k ∈ N.

As mentioned in Section I, the aforementioned problems can be
seen as a generalization to the max-plus framework of the classical
model matching problem originally considered for time-invariant linear
systems in [18]. More precisely, the SSP coincides with an exact model
matching, whose requirement for production systems may be unnec-
essarily stringent. The SSSP provides a more realistic and widespread
approach in matching a production schedule, letting the output of the
model be interpreted as a deadline for obtaining the output of the plant.

A more restrictive formulation of the aforementioned problems is
obtained by requiring the control input uP (k) to be, for each value
σ(k) of the switching signal, a linear function of the state of both the
plant and the model (i.e., xP (k − 1) and xM (k − 1)) as well as of
the input of the model uM (k). We refer to such formulations as the
feedback SSP (FSSP) and the feedback SSSP (FSSSP).

Problem 3 (Feedback SSP): Given a plant ΣPσ of the form (3) and a
modelΣMσ of the form (4), the FSSP consists in finding, for all possible
nondecreasing input sequences {uM (k)}k∈N of the model and all
possible switching signals σ(.), two families of matrices {Fi}i∈I , with
Fi ∈ RmP×(nP+nM )

max for all i ∈ I, and {Gi}i∈I , withGi ∈ RmP ×mM
max

for all i ∈ I, such that the control input sequence {uP (k)}k∈N defined
by

uP (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fσ(1)

(
xP (0)
xM (0)

)
⊕Gσ(1)uM (1), for k = 1

Fσ(k)

(
xP (k − 1)
xM (k − 1)

)
⊕Gσ(k)uM (k)

⊕ uP (k − 1), for k > 1

(5)

is a solution for the corresponding SSP.
Problem 4 (Feedback SSSP): Given a plant ΣPσ of the form (3)

and a model ΣMσ of the form (4), the FSSSP consists in finding,
for all possible nondecreasing input sequences {uM (k)}k∈N of the
model and all possible switching signals σ(.), two families of matrices
{Fi}i∈I , with Fi ∈ RmP×(nP+nM )

max for all i ∈ I, and {Gi}i∈I , with

Gi ∈ RmP ×mM
max , for all i ∈ I, such that the control input sequence

{uP (k)}k∈N defined by (5) is a solution of the corresponding SSSP.
Remark 1: The term uP (k − 1) in (5) for k > 1 is a dynamic

component, which assures that uP (k) is nondecreasing.
Remark 2: In the given formulation of the FSSP, it is not required

that the matrices of the families {Fi}i∈I and {Gi}i∈I contain only
nonnegative real numbers or ε, so the solution can be an anticipative
feedback. In this case, the practical implementation requires the knowl-
edge of the values of the model input dater with some advance, but not
necessarily the entire sequence has to be known from the beginning.

III. SOLUTION OF THE PROBLEMS

Given a plant ΣPσ described by (3) and a model ΣMσ described by
(4), let us take the extended system ΣEσ , whose dynamics is described
by the equations

ΣEσ ≡
⎧⎨
⎩
xE(k) = AEσ(k)xE(k − 1)⊕B1σ(k)uP (k)

⊕B2σ(k)uM (k)
xE(0) = ε

(6)

where

xE(.) =

(
xP (.)
xM (.)

)
: N → XE = R(nP +nM )

max

is the internal event dater and where

AEσ(k) =

(
APσ(k) ε

ε AMσ(k)

)
, B1σ(k) =

(
BPσ(k)

ε

)

B2σ(k) =

(
ε

BMσ(k)

)
.

Let the output equalizer family of semimodulesKσ ⊆ XE be defined
as Kσ = {Ki}i∈I , with

Ki =

{(
xP

xM

)
∈ XE , such that CPixP = CMixM

}
. (7)

Then, the SSP can be formulated as the problem of finding a control
sequence {uP (k)}k∈N that, for any input {uM (k)}k∈N , forces xE(k)
to evolve inside Kσ for each possible switching signal σ(.), where this
means that xE(k) belongs to Ki with σ(k) = i for all k ∈ N. In fact,
this condition guarantees that the control objective yP (k) = yM (k) for
all k ∈ N is achieved.

Similarly, let the output subequalizer family of semimodules Ks
σ ⊆

XE be defined as Ks
σ = {Ks

i }i∈I , with

Ks
i =

{(
xP

xM

)
∈ XE , such that CPixP ≤ CMixM

}
. (8)

Then, the SSSP can be formulated as the problem of finding a control
sequence {uP (k)}k∈N that, for any input {uM (k)}k∈N , forces xE(k)
to evolve inside Ks

σ , for each possible switching signal σ(.), where this
means that xE(k) belongs to Ks

i with σ(k) = i for all k ∈ N. In fact,
this condition guarantees that the control objective yP (k) ≤ yM (k) for
all k ∈ N is achieved.

Moreover, the FSSP and the FSSSP can be formulated as the prob-
lems of finding a control sequence {uP (k)}k∈N of the form (5), for
suitable families {Fi}i∈I and {Gi}i∈I of matrices, that, for any input
{uM (k)}k∈N , forcesxE(k) to evolve inside the output equalizer family
Kσ or, respectively, inside the output subequalizer family Ks

σ , for each
possible switching signal σ(.).

Remark 3: Note that, since condition CPixP ≤ CMixM

can be equivalently written as CPixP ⊕ CMixM = CMixM ,
each semimodule Ks

i can also be defined as Ks
i = {xE ∈

XE , such that (CPi CMi)xE = (εmp×np CMi)xE}.
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The existence of control sequences with the previous characteristics
can be investigated by adopting a structural geometric point
of view, conceptually derived from the geometric approach to
linear systems with coefficients in a field [30], [31], subsequently
extended to stationary systems over rings [32], [33], [34], and over
semirings [3], [8], [9], [10], [11]. To this aim, we introduce the notion
of (Aσ, Bσ)-invariant family of semimodules for switching linear
max-plus systems as follows.

Definition 1: Given a switching linear max-plus system Σσ of the
form (1), a family of semimodules Vσ = {Vi}i∈I ⊆ X is said to be
(Aσ, Bσ)-invariant if, for all i, j ∈ I and for all v ∈ Vj , there exists
u ∈ Rm

max such that (Aiv ⊕Biu) belongs to Vi.
The previous notion is novel and it extends that of (Aσ, Bσ)-

invariant semimodule given in [24, Definition 1]. In particular, note
that each semimodule Vi in Vσ is (Ai, Bi)-invariant and, if Vi = Vj

for all i, j ∈ I, the semimodule Vi is (Aσ, Bσ)-invariant in the sense
of [24].

Given a switching max-plus system Σσ of the form (1) and a family
of semimodules Kσ = {Ki}i∈I ⊆ X of its state semimodule, the set
of all the (Aσ, Bσ)-invariant families of semimodules contained in
Kσ is a semilattice with respect to inclusion and sum of families
of semimodules. Hence, a maximum element of that set, denoted
by V∗

σ(Kσ), exists. As for the computation of V∗
σ(Kσ), we have the

following result.
Theorem 1: Given a switching max-plus system Σσ of the form (1)

and a family of semimodules Kσ = {Ki}i∈I ⊆ X , the sequence of
families of semimodules Vr

σ = {Vr
i }i∈I ⊆ Kσ recursively defined, for

i ∈ I = {1, . . . , I} and r ∈ N, by

V0
i = Ki

Vr
i = Vr−1

i ∩ (
⋂
j∈I

A−1
j (Vr−1

j � ImBj)) (9)

has the following properties.
1) Vr

σ ⊆ Vr−1
σ for all r ∈ N.

2) Letting V∞
σ = limr→∞Vr

σ =
⋂

r∈N Vr
σ , then every (Aσ, Bσ)-

invariant family of semimodules contained in Kσ is also contained
in V∞

σ .
3) Vr

σ = Vr−1
σ for some r ∈ N if and only if Vr

σ is an (Aσ, Bσ)-
invariant family of semimodules and, in such case, V∞

σ = Vr
σ =

V∗
σ(Kσ).

Proof: (1) It follows easily from the definition of Vr
σ .

(1) Let Pσ ⊆ Kσ = V0
σ be an (Aσ, Bσ)-invariant family of semi-

modules and assume that, for some r ∈ N, we have Pσ ⊆ Vr−1
σ . Then,

since Pi ⊆ A−1
i (Pi � ImBi) ⊆ A−1

i (Vr−1
i � ImBi) for all i ∈ I, we

also have Pσ ⊆ Vr
σ and the conclusion follows by induction.

(1) The relation Vr
σ = Vr−1

σ holds if and only if Vr−1
σ ⊆⋂

i∈I A
−1
i (Vr−1

i � ImBi), which, in turn, holds if and only if Vr−1
j ⊆

A−1
i (Vr−1

i � ImBi) for all i, j ∈ I. This is equivalent to the fact that
Vr−1
σ is an (Aσ, Bσ)-invariant family of semimodules. In the consid-

ered case, the equalityV∞
σ = Vr−1

σ = Vr
σ is obvious andV∞

σ = V∗
σ(Kσ)

follows from (1). �
Theorem 1 says that V∗

σ(Kσ) can be computed by means of (9) if
Vr
σ = Vr−1

σ for some r ∈ N, i.e., if the sequence (9) converges in a
finite number of steps. However, (9) does not necessarily converge in
a finite number of steps, and therefore, it does not provide a general
algorithm to compute V∗

σ(Kσ). In this regard, the situation is the same
as that concerning with (A,B)-invariant semimodules for stationary
max-plus systems (see [9]), for which a general algorithm is not known.

Remark 4: In force of [35, Corollary 86], if the submodules in Kσ

are finitely generated, so are those in Vr
σ . The generators of such semi-

modules can be computed by solving appropriate systems of equations
of the form Dx = Cx [9, Remark 1] by means of a general elimination

algorithm [36]. The complexity of that algorithm is exponential, but its
convergence rate can be ameliorated as discussed in [9] and [35].

Lemma 1: The elements of the maximal (Aσ, Bσ)-invariant family
of semimodules V∗

σ(Kσ) contained in a family of semimodules Kσ

fulfill the property

(V∗
j \V∗

i ) ∩ Ki = ∅ for all i, j ∈ I. (10)

Proof: Given some i, j ∈ I, we have that a vector vi belongs to V∗
i

if and only if vi ∈ Ki and, for each k ∈ I, there exists uk ∈ Rm
max such

that Akvi ⊕Bkuk belongs to V∗
k. Similarly, vj belongs to V∗

j if and
only if it belongs to Kj and, for each k ∈ I, there exists uk ∈ Rm

max

such that Akvj ⊕Bkuk belongs to V∗
k. The aforementioned conditions

differ only in their first part since vi is required to belong to Ki while vj
is required to belong to Kj , but their second parts, about the existence
of a suitable uk, are identical. We can state that if a vector w ∈ Rn

max

belongs to Ki and to V∗
j , then it must also belong to V∗

i , and the
conclusion follows. �

Definition 2: Given a switching linear max-plus system Σσ of
the form (1), a family of semimodules Vσ ⊆ Rn

max is said to be an
(Aσ, Bσ)-invariant family of semimodules of feedback type for Σσ if
there exists a family of matrices {Fi}i∈I , withFi ∈ Rm×n

max for all i∈I,
such that for all i, j ∈ I and for all v ∈ Vj , (Ai ⊕BiFi)v belongs to
Vi.

It is well known that, in the framework of systems with coefficients
in a field, controlled invariance and controlled invariance of feedback
type are equivalent [30], [31]. However, in the case of systems with
coefficients in a ring, or in a semiring, the feedback property implies
the former but not vice versa [9], [32], [33].

In order to state the main results of this work, we need to review the
definition of strong nonanticipativeness and a related technical lemma
first presented in [24].

Definition 3 ([24, Definition 3]): A switching linear max-plus
system Σσ of the form (1) is said to be strongly nonanticipative
if it is nonanticipative (i.e., Ai ≥ In for all i ∈ I) and AiBj ≥
Bi for all i, j ∈ I.

Lemma 2 ([24, Lemma 2]): If a switching linear max-plus system
Σσ of the form (1) is strongly nonanticipative and u(k+1)=u(k) for
some k∈N, then the term Bσ(k+1)u(k+1) does not influence the
state evolution of the system.

Intuitively, strong nonanticipativeness means that, if the input is
constant, the system dynamics is slow enough to filter the effect of
the switching in the input matrix. If Σσ is nonanticipative and its input
matrix is constant (i.e., Bi = B ∈ Rn×m

max for all i ∈ I), then Σσ is
strongly nonanticipative.

We can now state a necessary and sufficient condition for the solv-
ability of the SSP and the SSSP.

Theorem 2: Given a strongly nonanticipative plant ΣPσ of the
form (3) and a strongly nonanticipative model ΣMσ of the form (4),
consider the extended system ΣEσ given by (6). Then, the related SSP
is solvable if and only if, for each i ∈ I and for each x ∈ ImB2i =

Im

(
ε

BMi

)
⊆ XE , there exists z ∈ ImB1i = Im

(
BPi

ε

)
⊆ XE such

that x⊕ z belongs toV∗
i ⊆ XE , whereV∗

σ(Kσ) = {V∗
i }i∈I is the maxi-

mum (AEσ, B1σ)-invariant family of semimodules for ΣEσ contained
in the output equalizer family of semimodules Kσ ⊆ XE defined by
(7).

Proof: If. Since V∗
σ(Kσ) is (AEσ, B1σ)-invariant, for each i ∈ I

and eachxE ∈ V∗
j , there exists a vectoru1i ∈ RmP

max such thatAEixE ⊕
B1iu1i belongs to V∗

i . Moreover, the hypothesis implies that, for each
i ∈ I and each uM ∈ RmM

max , there exists u2i ∈ RmP
max such that(

ε
BMi

)
uM ⊕

(
BPi

ε

)
u2i ∈ V∗

i . (11)
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Then, for each input sequence {uM (k)}k∈N , by using the dynam-
ics of ΣEσ , we can recursively construct a control input sequence
{uP (k)}k∈N for ΣE as follows:

uP (k) =

{
u2σ(k)(1), for k = 1
u1σ(k)(k)⊕ u2σ(k)(k)⊕ uP (k − 1), for k > 1.

The corresponding state evolution {xE(k)}k∈N turns out to be

xE(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1σ(k)u2σ(k)(k)⊕B2σ(k)uM (k), for k = 1

(AEσ(k)xE(k − 1)⊕B1σ(k)u1σ(k)(k))⊕
(B1σ(k)u2σ(k)(k)⊕B2σ(k)uM (k))⊕
B1σ(k)uP (k − 1), for k > 1

and we can show by induction that xE(k) belongs toV∗
σ(k) ⊆ Kσ(k) for

all k ∈ N, which implies yP (k) = yM (k) for all k ∈ N. In fact, xE(1)
belongs toV∗

σ(1) by the definition of u2σ(k)(1). For k > 1, assuming by
induction thatxE(k − 1) belongs toV∗

σ(k−1), we have, by the definition
of u1σ(k)(k), that (AEσ(k)xE(k − 1)⊕B1σ(k)u1σ(k)(k)) belongs to
V∗
σ(k) and, by the definition of u2σ(k)(k), that (B1σ(k)u2σ(k)(k)⊕

B2σ(k)uM (k)) also belongs to V∗
σ(k). Moreover, since AEσ(k)xE(k −

1) ≥ AEσ(k)B1σ(k−1)uP (k − 1) ≥ B1σ(k)uP (k − 1) due to strong
nonanticipativeness of the plant, the term B1σ(k)uP (k − 1) in xE(k)
can be disregarded, and therefore, xE(k) belongs to V∗

σ(k).
Only if. If the condition of the theorem does not hold, there exist

ūM and i ∈ I such that B2iūM ⊕B1iuP /∈ V∗
i for any uP ∈ RmP

max.
Then, taking the constant input {uM (k)}k∈N with uM (k) = ūM

for all k ∈ N and a switching signal σ(.) with σ(1) = i, we
have that xE(1) = B1iuP (1)⊕B2iūM does not belong to V∗

i for
any value uP (1) ∈ RmP

max. We can write, recursively, for k ≥ 2,
xE(k) = AEσ(k)xE(k − 1)⊕B1σ(k)uP (k)⊕B2σ(k)uM (k) =
AEσ(k)xE(k−1)⊕B1σ(k)uP (k)⊕B2σ(k)ūM and,
thanks to the strong nonanticipativeness of the model, xE(k) =
AEσ(k)xE(k − 1)⊕B1σ(k)uP (k). By Lemma 1, the fact that xE(1)
does not belong to V∗

σ(1) implies that either xE(1) does not belong to
Kσ(1) or that it does not belong to V∗

σ(Kσ). If xE(1) /∈ Kσ(1), then
yM (1) �= yP (1) and the SSP cannot be solved. If xE(1) /∈ V∗

σ(Kσ),
then for any input {uP (k)}k∈N , there exist a switching signal σ(.) and
some k̄ ∈ N such that xE(k̄) /∈ Kσ . In other words, xE(k) cannot be
forced to evolve inside Kσ , and therefore, the SSP cannot be solved.�

Remark 5: The condition of Theorem 2 is weaker than that of [24,
Th. 3], which requires that, for each i ∈ I and for each x ∈ ImB2i ⊆
XE , there exists z ∈ ImB1i ⊆ XE such that x⊕ z belongs to V∗ ⊆
XE , where V∗ is the maximum (AEσ, B1σ)-invariant semimodule for
ΣEσ contained in the output equalizer family of semimodules Kσ ⊆
XE defined by (7). Example 1 in Section IV serves to show this.

Theorem 3: In the same hypotheses and with the same notations of
Theorem 2, the SSSP involving ΣPσ and ΣMσ is solvable if and only

if, for each i ∈ I and for each x ∈ ImB2i = Im(
ε

BMi
) ⊆ XE , there

exists z ∈ ImB1i = Im(
BPi

ε
) ⊆ XE such that x⊕ z belongs to V∗

i ⊆
XE , where V∗

σ(Ks
σ) = {V∗

i }i∈I is the maximum (AEσ, B1σ)-invariant
family of semimodules for ΣEσ contained in the output subequalizer
family of semimodules Ks

σ ⊆ XE defined by (8).
Proof: The proof is the same as that of Theorem 2, withKs

σ replacing
Kσ . �

Note that since Kσ ⊆ Ks
σ , the condition of Theorem 3 is milder than

that of Theorem 2. Example 2 in Section IV serves to show this.
Concerning the feedback version of the SSP and of the SSSP, we

have the following results.

Theorem 4: In the same hypotheses and with the same notations of
Theorem 2, the FSSP involving ΣPσ and ΣMσ is solvable if and only
if there exists an (AEσ, B1σ)-invariant family of semimodules Vσ of
feedback type contained in the output equalizer family of semimodules
Kσ defined by (7) such that, for each i ∈ I and for each x ∈ ImB2i =

Im

(
ε

BMi

)
⊆ XE , there exists z ∈ ImB1i = Im

(
BPi

ε

)
⊆ XE such

that x⊕ z ∈ Vi.
Proof: If. Let Vσ ⊆ Kσ be an (AEσ, B1σ)-invariant family of

semimodules of feedback type for which the condition of the theorem
holds. Then, there exists a family of matrices {Fi}i∈I such that, for each
xE(k − 1) ∈ Vσ and i ∈ I, (AEi ⊕B1iFi)xE(k − 1) belongs to Vi

and a family of matrices {Gi}i∈I such that, for each i ∈ I, the columns

of the matrix

(
ε

BMi

)
ImM

⊕
(
BPi

ε

)
Gi =

(
BPiGi

BMi

)
belong to Vi.

Then, by applying a control law recursively defined as in (5), with
the matrix families {Fi}i∈I and {Gi}i∈I defined as before, we get the
compensated dynamics

xE(k) = (AEσ(k) ⊕B1σ(k)Fσ(k))xE(k − 1)

⊕
(
BPσ(k)Gσ(k)

BMσ(k)

)
uM (k)⊕B1σ(k)uP (k − 1) (12)

where uP (0)= ε. Since the plant is strongly nonanticipative,
AEσ(k)xE(k − 1) ≥ AEσ(k)B1σ(k−1)uP (k−1) ≥ B1σ(k)uP (k−1)
holds and the last summand of the right-hand term of (12) does not
interfere with the state of the system, that evolves, for all k ∈ N, inside
Vσ(k) ⊆ Kσ(k). Therefore, yP (k) = yM (k) for all k ∈ N.

Only if. Assume that the FSSP is solved by a control law of the
form (5). Then, the family of sets of reachable states for the dynamics
(12) indexed by the last active mode σ(k) is an (AEσ, B1σ)-invariant
family of semimodules of feedback type contained in Kσ , whose
elements contain all the columns of the matrix(

BPσ(k)Gσ(k)

BMσ(k)

)
=

(
ε

BMσ(k)

)
ImM

⊕
(
BPσ(k)

ε

)
Gσ(k).

This clearly implies the condition of the theorem.
Theorem 5: In the same hypotheses and with the same notations of

Theorem 2, the FSSSP involving ΣPσ and ΣMσ is solvable if and only
if there exists an (AEσ, B1σ)-invariant family of semimodules Vσ of
feedback type contained in the output equalizer family of semimodules
Ks

σ defined by (8) such that, for each i ∈ I and for each x ∈ ImB2i =

Im

(
ε

BMi

)
⊆ XE , there exists z ∈ ImB1i = Im

(
BPi

ε

)
⊆ XE such

that x⊕ z ∈ Vi.
Proof: The proof is the same as that of Theorem 4, withKs

σ replacing
Kσ . �

Remark 6: The necessary and sufficient condition given by Theo-
rem 2 can also be written as ImB2i ⊆ V∗ � ImB1i for all i ∈ I and
similar formulations hold for the conditions of Theorems 3–5. Those
conditions can be checked by means of the numeric methods mentioned
in Remark 4 and in [9, Remark 1]. Moreover, solutions to the SSP and
to the SSSP, if any exists, can be constructed by solving the linear
equations considered in the proofs of Theorems 2 and 3 by means
of general elimination methods (see [9], [36]). A Scilab toolbox that
implements such methods is illustrated in [37].

IV. ILLUSTRATIVE EXAMPLES

Example 1: The following example, whose data are the same as
those of [24, Example 2], shows that the results given here are less
conservative than those given in that work. In fact, the sufficient
solvability condition of [24, Theorem 3], being not satisfied in this
case, is shown to be not necessary.
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Consider the linear max-plus plant defined by

ΣPσ ≡
⎧⎨
⎩
xP (k) = xP (k − 1)⊕ uP (k)
yP (k) = xP (k)
xP (0) = ε

and the switching linear max-plus model defined by

ΣMσ ≡
⎧⎨
⎩
xM (k) = 2xM (k − 1)⊕ uM (k)
yM (k) = CMσ(k)xM (k)
xM (0) = ε

where

CMσ(k) =

{
1, for σ(k) = 1
2, for σ(k) = 2.

Note that the first equation of ΣPσ simplifies to xP (k) = uP (k)
for any nondecreasing input sequence {uP (k)}k∈N . Computing the
output equalizer family of semimodules for the related SSP, we
haveKσ = {K1,K2} andK1 = {(xP xM )� such that xP = 1xM}
and K2 = {(xP xM )�such that xP = 2xM}. Then, the sequence of
families of semimodules defined by (9) converges at the first iteration
(i.e., V1

σ = V0
σ = Kσ). Thus, Kσ is an (AEσ, B1σ)-invariant family of

semimodules. Moreover,Kσ is of feedback type with, e.g.,F1 = (ε 3)
and F2 = (ε 4). Since the set of linear equations B2i ⊕B1iGi ∈ Ki

for i = 1, 2 admits as the unique solution G1 = 1 and G2 = 2, the
FSSP (hence, the SSP) has the solution

uP (k) = Fσ(k)xE(k − 1)⊕Gσ(k)uM (k)⊕ uP (k − 1)

with uP (0) = ε. In fact, the input uP (k) forces the state xE(k) to
stay in K1 or in K2 if, respectively, σ(1) = 1 or σ(1) = 2 and σ(.) is
constant while the same input makes the state jump from K1 to K2 and
vice versa each time σ(.) changes its value. Then, yP (k) is equal to
yM (k) for all k ∈ N.

Example 2: This example illustrates an application of the previous
results and it also shows that subsynchronization, being a milder re-
quirement, may be achievable also if synchronization is not.

Let us consider an olive mill that receives olives in standardized
quantities (stocks) from clients and performs both oil extraction by
cold-pressing and bottling. The oil extraction is performed in 10 h by
a single machine, M1. The oil is stored in special tanks, whose total
capacity is very large and can be considered infinite. The following
phase of bottling is performed by another machine, M2, and it takes 18
or 20 h to complete depending on the size of the bottles provided by
the customer. The final containers for the oil are provided by the clients
and their availability anytime can be taken for granted. The overlapping
of requests from different clients is avoided since they are accepted by
appointment. If we consider as both internal and output events for the
system the ones of type a stock of olives has been processed and oil
from a stock of olives has been bottled, we can model the plant as a
switching system whose modes are

ΣP1 ≡

⎧⎪⎪⎨
⎪⎪⎩
xP (k) =

(
10 ε
28 18

)
xP (k − 1)⊕

(
10
28

)
uP (k)

yP (k) = xP (k)
xP (0) = ε

and

ΣP2 ≡

⎧⎪⎪⎨
⎪⎪⎩
xP (k) =

(
10 ε
30 20

)
xP (k − 1)⊕

(
10
30

)
uP (k)

yP (k) = xP (k)
xP (0) = ε.

The switching sequence σ is such that σ(k) = 1 if the current customer
provides large bottles and σ(k) = 2 if the customer provides small

TABLE I
EXAMPLE 2: SIMULATION RESULTS

bottles that, due to a more complex handling, require more time to
complete the filling operation for the same total amount of oil. The
production policy requires that the oil extraction is completed within
12 h of the arrival of the olives, and bottling is guaranteed within the
following 48 h. Considering the model

ΣM ≡

⎧⎪⎪⎨
⎪⎪⎩
xM (k) =

(
12 ε
60 48

)
xM (k − 1)⊕

(
12
60

)
uM (k)

yM (k) = xM (k)
xM (0) = ε

the previous requirement can be satisfied if the output of the plant is
forced to (equal or) anticipate that of the model, that is if the plant and
the model can be (synchronized or) subsynchronized. Both the plant
and the model are strongly nonanticipative.

We can compute the output equalizer family of semimodules Kσ ,
the output limiter family of semimodules Ks

σ , and the maximal
(AEσ, B1σ)-invariant families of semimodules V∗

σ(K) and V∗
σ(Ks)

contained in them. Specifically, the sequence defined by (9) with
V0
σ = Kσ converges after two iterations (i.e.,V2

σ = V1
σ = V∗

σ(Kσ)) and
we have

K1 = K2 = Im

⎛
⎜⎜⎝
e ε
ε e
e ε
ε e

⎞
⎟⎟⎠ , V∗

1(K) = V∗
2(K) = Im

⎛
⎜⎜⎝
ε
ε
ε
ε

⎞
⎟⎟⎠ .

Therefore, the SSP is not solvable and synchronization is not possible.
On the other hand, the sequence of semimodules defined by (9) with

V0
σ = Ks

σ converges after one iteration (i.e., V1
σ = V0

σ = V∗
σ(Ks

σ)) and
we have

Ks
1 = Ks

2 = Im

⎛
⎜⎜⎝
e ε ε ε
ε e ε ε
e ε e ε
ε e ε e

⎞
⎟⎟⎠ = V∗

1(Ks
σ) = V∗

2(Ks
σ).

The condition of Theorem 3 is satisfied. Therefore, the SSSP is solvable
and subsynchronization is possible. Moreover, V∗

σ(Ks
σ) is of feedback

type. Therefore, also the FSSSP is solvable by Theorem 5. A control
signal uP (k) of the form (5) that solves the problem is obtained by
taking, for instance

F1 = F2 =
(
ε ε ε ε

)
, G1 = G2 = 2.

Carrying out a simulation for a specific input and switching sequence,
we get the results shown in Table I and we can see that yP (k) ≤ yM (k)
for all k ∈ {1, . . . , 4}, as expected.

V. CONCLUSION

By introducing a novel, suitable notion of a family of (Aσ, Bσ)-
invariant semimodules, it has been possible to find a structural geomet-
ric characterization of the solvability of the system synchronization and
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subsynchronization problems in the max-plus framework. The difficul-
ties in computing V∗

σ(Kσ) due to the absence of a general algorithm
and the complexity in solving systems of linear equations over Rmax

currently limit the efficacy of this approach. However, the development
of efficient algorithms for performing computations over semirings
is an active research field. Results in that direction are expected to
make structural geometric methods and strategies, in combination with
max-plus modeling techniques, widely and effectively applicable to
many practical production control and scheduling problems, also in the
presence of uncertainties.
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