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a b s t r a c t

Optimized controls are particularly promising for flexible and efficient management of space heating
and cooling systems in buildings. However, when controls are based on predictive models, their
effectiveness is affected by the reliability of the models used. In this paper we propose a quantification
analysis of some of the main uncertainty factors that can be observed in an optimal control really
implemented in a building. A day-ahead optimal scheduling was applied to the heating system
(composed of smart electric heaters with thermal storage) of a single room in an office building located
in Osimo (Italy). The control algorithm is formulated to determine the charging periods of the heaters
with the objective of minimizing the withdrawal of energy from the grid. The control takes into account
the electricity produced by a photovoltaic plant and must maintain the internal air temperature close
to an imposed setpoint.

Firstly, the actual application of the control is shown during two selected days. Secondly, the
analysis is extended to quantify the impact on the control performance of the prediction uncertainty of
the input variables. The variable that has the greatest impact is the weather forecast and, specifically,
the cloudiness index, which determines the solar gains. The different moment in time in which the
weather forecast is predicted has proved to have a significant impact on the charging periods of the
heaters (expected variation ranges from -50% to + 100%) and on the prediction of the indoor air
temperature (variations observed up to 40%).

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the application of advanced control techniques
o manage thermal demand in buildings is attracting more and
ore interest (Dounis and Caraiscos, 2009). The building sector,

ndeed, has a high impact on the global energy demand. Accord-
ng to the International Energy Agency (IEA), the whole building
ector is responsible for almost one-third of total global final
nergy consumption (International Energy Agency (IEA), 2022a),
2% of which due only to residential buildings (International
nergy Agency (IEA), 2022c). Of the latter, the European Union
as estimated that about 83.7% of the energy consumption is due
o space heating (62.7%), space cooling (0.4%) and domestic hot
ater (15.1%) (Eurostat, 2022).
Another important factor is that the thermal demand of build-

ngs has very favourable characteristics from the point of view of
ontrollability. As known, the heat demand in buildings is needed
o maintain an acceptable level of thermal comfort in the indoor

∗ Corresponding author.
E-mail address: a.mugnini@univpm.it (A. Mugnini).
ttps://doi.org/10.1016/j.egyr.2023.01.013
352-4847/© 2023 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
environment (i.e., energy demand for space heating/cooling and
domestic hot water) (Vakiloroaya et al., 2014). Given the possi-
bility of decoupling demand from heat generation in buildings,
this thermal demand has a great potential to be managed in a
flexible way, while respecting the comfort constraints (Jensen
et al., 2017). The decoupling capacity is made possible by different
levels of thermal inertia in buildings. Examples are devices added
to the emission system such as Thermal Energy Storage (TES)
systems (Stinner et al., 2016) or the exploitation of the thermal
mass of the building as a thermal storage (Ramos et al., 2019).

Another factor contributing to increasing interest in the ad-
vanced management of thermal demand in buildings can be
identified in the increasing electrification of this energy demand.
In recent years, indeed, the need to improve the penetration of
Renewable Energy Sources (RESs) for decarbonization objectives,
combined with the increasing availability of high-performance
technologies (e.g., heat pumps with high efficiency), have led
to a large diffusion of electrically powered heating and cooling
systems in buildings (Hoseinpoori et al., 2022). In this regard,
heat pumps are one of the most popular solutions. According to
the IEA, the global stock of heat pumps increased nearly 10% per
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ear over the past 5 years, reaching the number of approximately
80 million heat pumps in use worldwide in 2020 (International
nergy Agency (IEA), 2022b).
The electrification of the thermal demand of buildings gives

o the control logic an even more important role. In fact, due to
he non-programmability of the main RESs (such as photovoltaics
r wind), the combination of thermal inertia with advanced
ontrol techniques can allow the optimal exploitation of energy
ources while ensuring the comfort of the occupants. From a
ystem perspective, this can lead to significant improvements in
he security of the entire energy system by helping to balance the
emand with the supply of energy.
Advanced control techniques differ from more traditional con-

rol techniques, such as Schedule-Based Controllers (SBCs) and
ule Based-Controllers (RBCs) (Krarti, 2018). SBC controls de-
ermine how the heating/cooling system of a building operates
ased on a pre-determined schedule (Barber and Krarti, 2022),
hile RBC are usually based on the monitoring of a specific pa-
ameter (e.g., power from RES or the room temperature) on which
hresholds for the operation are set (i.e. the rule) (Péan et al.,
019). Although RBCs are more sophisticated than SBCs, they do
ot allow for a dynamic system management. Indeed, if real-time
ynamic variations of boundary conditions are considered, more
dvanced control techniques need to be introduced. Advanced
ontrol techniques refer to smart controllers that can include op-
imal scheduling (Lu et al., 2015), optimal controls (Sampaio et al.,
021), artificial neural networks, adaptive fuzzy controls (Mar-
uglia et al., 2014) and machine learning or deep learning con-
rols (Tien et al., 2022). Among these, one of the most popular
s the Model Predictive Control (MPC) (Lyons et al., 2020) due to
ts capability of combining the principles of feedback control and
umerical optimization (Serale et al., 2018).
In general, two key features can be distinguished in an optimal

ontrol based on the model of the system to be controlled: (i)
he availability of prediction models and (ii) the solution of an
ptimization problem. The prediction models (i) shall be able
o estimate the future behaviour of the system while its inputs
an vary both in a controlled (manipulated variables) and in an
ncontrolled (disturbances) way (Mugnini et al., 2020). These
atter, when considering buildings, generally refer to the weather
onditions and/or the behaviour of occupants (e.g., outdoor tem-
erature, solar irradiance, and occupancy rate, etc Mugnini et al.,
021). Once the predictions of the future dynamics of the system
re available, the optimal control solves an optimization problem
ii) to determine the control action: the optimizer minimizes
n objective function respecting specific equality or inequality
onstraints (Mayne et al., 2000).
Optimal controls based on prediction models are so interesting

or buildings because of the different advantages that can be ob-
ained from their application. The main strengths are that, com-
ared to other advanced controllers, they are relatively simple to
ormulate and do not have a fixed structure (i.e., modifications to
he structure of the problem can be easily achieved). They also
uarantee the achievement of an optimal solution and allow to
asily consider hard constraints (Mugnini et al., 2022). On the
ther hand, these optimal controls have an important criticality
hat cannot always be overlooked: the strong dependence on
he reliability of prediction models (Ceusters et al., 2021). In
ddition, real-world implementation can also be severely affected
y incorrect or corrupted measured data (Drgoňa et al., 2020). The
oncomitant combination of these factors generates uncertainties
n the reliability of the control. Indeed, according to Drgoňa
t al. (2020), when referring to buildings, the most common
ncertainties in MPCs arise from modelling errors (i.e., unknown
arameters, inaccurate equations, or components not working

ccording to specifications) and from the not reliable estimation
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of the uncontrolled inputs. This last case includes the prediction
or the measurement of the outdoor temperature and the solar ir-
radiation, as well as the inaccuracy of the sensors (e.g., inaccurate
measurements or the availability of a limited number of sen-
sors) or the presence of unmeasured disturbances (e.g., windows
opening) (Drgoňa et al., 2020).

The quantification of the impact of these uncertainties on
the effectiveness of an optimal control is a rather debated issue
that question the large-scale spread of this type of control in
buildings (Kontes et al., 2018). Several studies are available in
literature that address model-related uncertainties in advanced
controls. For instance, Hou et al. (2022) evaluated in a simu-
lated environment the impact of the uncertainties related to the
prediction of the weather data on the effectiveness of an MPC
applied to a university building located in Norway. In this study
the authors compared the performance of an RBC control with
three types of MPC: an ideal one using perfect weather data and
two configurations with different prediction models (a traditional
numerical weather prediction model and one introduced by the
authors). In particular, the authors highlighted a great depen-
dence of the performance, in terms of savings and comfort, on the
type of weather data used: weekly savings for heating costs of the
ideal MPC compared with the RBC is 4.1%. This saving is reduced
to zero (even with a worsening of comfort) in the case of MPC
with the traditional numerical prediction model, while it becomes
3.4% with the model introduced by the authors. Also, Petersen
and Bundgaard (2014) analysed the effect of the uncertainty of
weather predictions on a predictive control in buildings. In their
study the authors evaluated through energy simulations how
buildings with different characteristics (e.g., orientation, thermal
mass, solar shielding, and window area) are affected by changes
in weather data predictions. An interesting result of this study is
that buildings with high thermal mass seem to be less affected by
errors in weather forecasting. On the other hand, lighter buildings
were particularly sensitive to the accuracy of solar radiation
forecasts.

These are just some examples extrapolated from the literature
about the role of the uncertainties due to the prediction of the
weather data on the performance of optimal control. Other works
have assessed the effect of different sources of uncertainties. For
instance, Sharma et al. (2022) evaluated the role of the estima-
tion of occupancy profiles in a predictive control implemented
in a commercial building. The authors concluded that with the
introduction of an occupancy sensing system, the control could
improve its performance by up to 5% (with also improvements
in comfort) compared to a basic MPC that does not use specific
occupancy information. An interesting aspect that also emerges
from this study is that the performance of the control seems
to depend significantly on the type of sensors used and on the
non-idealities of sensors, such as bias and latency errors. Another
important factor of uncertainty was assessed by Maasoumy et al.
(2014), that evaluated the role of the model uncertainty in an
MPC applied to buildings. In this case the uncertainty can derive
both from the architecture of the model and from the numerical
value of the parameters. Maasoumy et al. assessed a significant
impact of parameters uncertainty on the effectiveness of the MPC
and concluded that for models with high uncertainty (above 30%)
it would be advisable to use a Robust Model Predictive Control
(RMPC). On the basis of the conclusions of Maasoumy et al.
(2014), in real-world applications of optimal controls based on
prediction models, it would be better to use RMPCs or Stochas-
tic Model Predictive Controls (SMPCs) (Oldewurtel et al., 2010).
However, this significantly increases the complexity of the con-
trol, which in some cases may even not converge. For instance,
the exact solutions for SMPCs for non-linear systems subject to
non-gaussian disturbances are, in general, computationally not

feasible (Hou et al., 2022; Ma et al., 2015).



A. Mugnini, F. Ferracuti, M. Lorenzetti et al. Energy Reports 9 (2023) 2169–2184

o
s
a
i
(
b
v

t
s
c
p
a
o
c
w
c
p
f
e
b
t
a
f
q
t
t
(
a

t
c
d
t
i
c
a
O
u
c

t
c
(
m
h
w
F
t

2

o
o
a
i
e
o
s
f
B
t
B
i

◦

s
t
w

w
o
r
t

p
r
o

G

It is therefore clear that the issue of the real-world application
f optimal controls in buildings still attracts attention from the
cientific community. One of the points on which many authors
gree is that, when referring to the thermal demand of buildings,
t is not yet clear to what extent the performance of the control
and therefore of the prediction model) are actually influenced
y the uncertainty of individual contributions (i.e., the input
ariables and model architectures) (Lin et al., 2022).
The study presented in this paper fits into this context. Indeed,

he intention is to propose a quantification of the impact of
ome factors of uncertainty on the effectiveness of an optimized
ontrol applied to a real building. In particular, the paper pro-
oses the results obtained from the practical implementation of
day-ahead optimal scheduling to the electrical heating system
f a single room in an office building. The heating system is
omposed of Smart Electric Heating Devices (SEHDs) equipped
ith a sensible TES. The objective of the control is to select the
harging periods of the SEHDs to maintain the indoor air tem-
erature in a comfort band and minimize the energy withdrawal
rom the grid. The controller also considers the availability of
xcess generation from a Photovoltaic (PV) plant installed in the
uilding. The optimal control is based on data-driven models for
he prediction of the system behaviour (building plus SEHDs)
nd of some inputs (e.g., solar gains and electricity availability
rom PV). By testing the control in a few days of operation, a
uantification analysis of the impact of the uncertainties related
o the predictions of the inputs is proposed. The input variables
hat affect control performance can be distinguished in direct
e.g., outdoor air temperature forecasting) and derived (e.g., solar
nd internal gains or excess of electricity from PV).
The objective of this study is to assess the weaknesses related

o the implementation in the real world of a model-based optimal
ontrol. In fact, although the subject of uncertainty related to pre-
iction models in advanced controls has already been discussed,
here are not many examples of practical applications to quantify
ts impact. Therefore, this study wants to propose a practical
ase that can help to increase the knowledge on optimal controls
pplied to the management of space heating demand in buildings.
ur goal is to provide an estimation of the individual effects of
ncertainty factors, that can be useful for systems similar to the
ase study presented.
The rest of the paper is organized as follows. Section 2 con-

ains the methodology with the mathematical formulation of the
ontrol. This section also describes the ways in which the inputs
both direct and derived) are obtained. Section 3 describes the
ain characteristics of the case study. In Section 4, on the other
and, the practical implementation of the control is presented
hile Section 5 reports the results of the validation of the models.
inally, Section 6 contains the main results of the application of
he control together with the uncertainties quantification.

. Methodology

This section describes the mathematical formulation of the
ptimal control. As mentioned, a controller based on a day-ahead
ptimal scheduling is formulized and practically implemented to
real case study. The case study is composed of a single room

n an office building, whose demand for heating is met by two
lectric heaters with a thermal storage (i.e., SEHDs). The objective
f the control is to select the best control actions (i.e., charge
ignal of the SEHDs) to minimize the withdrawal of electricity
rom the grid and keep the air temperature close to the setpoint.
eing an optimal control, it requires a model that can predict
he behaviour of the system together with the input variables.
ased on the type of model required for their prediction, the
nput variables can be distinguished in (i) direct and (ii) derived.
2171
In the first two subsections the prediction models for the inputs
are described (Section 2.1 for the direct and Section 2.2 for the
derived input variables), while in Section 2.3 the mathematical
formulation of the model of the system (building and SEHD)
is provided. Finally, Section 2.4 contains the formulation of the
optimization problem solved in the controller. To schematize the
formulation of the control, Fig. 1 depicts the various parts of
which the control is composed.

2.1. Direct input variables

Direct input variables are defined as those variables obtained
without a physically based model, i.e. they refer to the predictions
of weather conditions.

Thanks to an online weather service, the forecasts of the main
weather data for the following 48 h (k) are available for each day.
The quantities are: (i) the outdoor air temperatures (ToutdoorFk in
C), (ii) the incident solar irradiance (IFk in W m−2), (iii) the wind
peed (vFk in m s−1) and (iv) the cloudiness index (ClFk in %). Only
he first three input variables are used for this optimal control,
hile the wind speed prediction is not used.
The weather forecasts are updated every hour, moving for-

ard of 1 h the 48 h time of forecast. Therefore, the value
f the input associated with k equal to 0 h in the subscript
epresents the present value of the input (actual weather condi-
ions: ToutdoorF0 , IF0 , vF0 and ClFo ). It is worth pointing out that the
weather data of the online service are not measured by a weather
station but derived from numerical prediction models. Moreover,
the trend of the variables appears strongly dependent on the time
k when they are observed, making the performance of the control
affected by the time of the forecast. k in fact represents the time
when the control actions are calculated through the optimizer in
the day ahead.

2.2. Derived input variables

Unlike direct input variables, derived inputs require a model
for their estimation. These are essentially: (i) total heat gains
(solar, internal gains) and (ii) the surplus of electricity generation
from PV. The models for (i) and (ii) will be described in the next
two subsections respectively.

2.2.1. Total heat gains
The model for the prediction of total heat gains is obtained

with a data-driven model trained with historical data. Measure-
ments are available every 15 min for the following quantities:
(i) the indoor air temperature (Tameas in ◦C), (ii) the illuminance
(Ligmeas in lx) and (iii) the indoor relative humidity (in %), this
latter is not used for the control.

Eq. (1) shows how total heat gains (Ġtotk in W) are calculated.
In general, Ġtotk is assumed to be proportional to the expected
illuminance index (LigFk in lx) by a factor Fg. This choice is sup-
ported by the fact that, from the observation of historical data, the
measured indoor air temperature (Tameas ) shows a rather high cor-
relation with the Ligmeas, on average around 65% and 75% on clear
days. LigFk is in turn obtained as the sum of two components:
the incident solar radiation (ṠsolF in W) and the internal gains
(ṠintF in W). To assess the solar radiation entering the room, the
rediction of the cloudiness (ClFk ) was also considered. For this
eason, Ġtotk also depends on the time k in which the prediction
f direct inputs is observed (see Section 2.1).

˙ totk = FgLigFk = Fg

[
ṠsolF (1 − ClFk/100)

100
+ ṠintF

]
(1)

The incident solar radiation (ṠsolF ) is obtained according to the ap-
proach reported in the Italian standard UNI/TS 11300-1:2014 (UNI
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Fig. 1. Schematic of the flow chart of the day-ahead optimal scheduling control.
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Italian Standard Organization), 2014), with which, starting from
he location, the inclination of the surface and the characteris-
ics of the windows, the solar inputs through the transparent
omponents can be calculated. The internal gains due to artificial
ighting (ṠintF ), instead, are modelled according to a parabolic
rofile (Eq. (2)).

˙ intF (h) = ah2
+ bh + c for h = 1, . . . , 24 (2)

here h indicates the hour of the day and the coefficients a, b
nd c, are obtained with a training process.

.2.2. Surplus of PV generation
Using the historical data of the electrical consumption of the

uilding and of the PV production, it has been estimated the
robability that in a specific hour of the day (h) there can be an
xcess of PV generation above a minimum threshold (ṖT in W). A
robability density function (pdf) for the PV surplus was there-
ore defined. To also consider the effect of the daily cloudiness,
he multiplicative factor FPVk , which is based on the predicted
loudiness index (ClFk ), is also introduced:

or h = 1, . . . , 24

FPVk (h) =

⎧⎨⎩
(
100 − ClFk (h) /100

)
100

if IFk (h) > 0
0 if IFk (h) ≤ 0

(3)

onsequently, the availability of excess of PV generation (ṖPVk in
) is estimated by:

or h = 1, . . . , 24 ṖPVk (h) = pPV · FPVk (h) · pdf (h) · IFk (h) (4)

here the parameter pPV has been added to calibrate the model
ith the measured data, whose numerical value is obtained with
raining.

Based on Eqs. (3) and (4), it emerges the dependence of the PV
urplus prediction on the direct input irradiance IFk and cloudi-
ess ClFk . For this reason, similarly to what discussed about the
otal heat gains forecasting (Section 2.2.1), the uncertainty in the
rediction of PV surplus generation is strongly correlated with the
eliability of the direct inputs and with the time in which they are
valuated (k).

.3. System prediction model

The description of the dynamics of the system is entrusted
o the prediction of the state of charge of the SEHDs and of
he internal air temperature (Ta). For this reason, it has been
eveloped a model to represent both the dynamics of the SEHDs
nd the thermophysics of the room, i.e., Ta. In the next two
ubsections the model is described by dividing the equations for
he SEHDs (Section 2.3.1) by those for the indoor air temperature
Section 2.3.2). They constitute the model used in the optimal
ontrol.
2172
.3.1. Smart Electric Heating Device model
Each SEHD is modelled as a single heat node associated with
capacitance CEH (in Wh K−1) and a temperature TEHF (in ◦C).
hese refer to the bricks contained within the Electric Heater (EH)
hat act as TES. The thermal power with which the TES is charged
s expressed by the product between a charge signal (ctrlEH, 1/0
ignal) and the charging power (Q̇EH in W). On the other hand, the
ischarge power of the SEHD is represented by the polynomial
xpression reported in the square brackets in Eq. (5), including
oth environmental losses and the heating fan action (coefficients
0, l1, l2 whose numerical value are obtained with the training
rocess).

EH
dTEHF

dt
= Q̇EHctrlEH −

[
l0 + l1

(
TEHF

)
+ l2

(
TEHF

)2] (5)

2.3.2. Room model
The model of the controlled room consists of a lumped concen-

trated parameters model based on a network of resistances and
capacities (RC-networks). RC networks are in fact one of the most
common modelling architectures in the field of modelling the
energy demand of buildings (Li et al., 2021). The specific archi-
tecture of the network was built by the authors, inspired by the
model proposed by Boodi et al. (2020) who suggest modelling the
building envelope components facing outwards as RC networks
with 2 capacities and 3 thermal resistances. The room model is
composed of 3 thermal nodes (Fig. 2). The first (TaF, Ca) represents
the temperature of the internal air (variable to be provided to
the thermostat), while the nodes (TwaF, Cwa) and (TwoF, Cwo)
represent respectively the mass of the building envelope towards
the internal air (from the thermal insulation to the inside) and
towards the external temperature (ToutdoorFk ). The heat power flux
between nodes is regulated by thermal conductance: Kwa, Kwind,
Kwins, Kwo (in W K−1). The total heat gains are expressed by
Ġtotk (Eq. (1)). The heat losses of each SEHD are modelled with
a conductance (KlEH ), while the heating power provided by the
activation of the fan is modelled as a heat flux proportional (fFAN)
to the temperature of the storage in the SEHD and is regulated
by the control signal ctrlFAN (1/0 signal). In summary, Eqs. (6)–(8)
represent the model of the controlled room.

Ca
dTaF
dt

= Ġtotk + Kwa
(
TwaF − TaF

)
+ Kwind

(
ToutdoorFk − TaF

)
+ KlEH1

(
TEH1F − TaF

)
+ KlEH2

(
TEH2F − TaF

)
+ ctrlFAN1fFAN1

(
TEH1F

)
+ ctrlFAN2fFAN2

(
TEH2F

)
(6)

Cwa
dTwaF

dt
= Kwa

(
TaF − TwaF

)
+ Kwins

(
TwaF − TwaF

)
(7)

Cwo
dTwoF

= Kwo
(
ToF − Twa

)
+ Kwins

(
Twa − Twa

)
(8)
dt k F F F
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2.4. Optimization problem

As mentioned, the controller is based on the day-ahead solu-
tion of an optimization problem. The objective is to minimize the
electricity withdrawal from the grid and maintain the indoor air
temperature close to the imposed setpoint (Tath ):

minimize

(
24∑
t=1

[
w1 (t) Q̇EH1 (t) ctrlEH1 (t)

+w1 (t) Q̇EH2 (t) ctrlEH2 (t) + w2
⏐⏐Tath (t) − TaF (t)

⏐⏐] ) (9)

here: w1 and w2 are the weights assigned to the individual
bjectives (i.e., electricity withdrawal and maintaining the air
emperature setpoint). The decision variables of the optimization
roblem are the charging and the discharging signals for the
EHDs (ctrlEH1 (t), ctrlEH2 (t), ctrlFAN1 (t) and ctrlFAN2 (t)).
The availability of the electrical power from PV is included in

he optimization problem through the weight factor w1. The trend
f w1 has been calibrated to incentivize the charge in periods
here excess of generation from PV is predicted by the model
Eq. (4)). In particular, the weight w1 assumes the values given
n Eq. (10).

or t = 1, . . . , 24 w1(t) =

{
0.5 if ṖPVk (t) > ṖT kW
10 if ṖPVk (t) ≤ ṖT kW

(10)

To the weight w2 was assigned a numerical value of 0.5.
he values have been identified in an empirical way. However,
t should be noted that the operation of the control could be
trengthened in one direction (to maximize the self-consumption
f PV) or in the other (to maintain the setpoint) by varying the
umerical value of the weights w1 and w2.
The constraints applied to the problem are expressed by the

ollowing equations:

or t = 1 . . . 24 Tath (t) − ∆Tsp ≤ TaF (t) ≤ Tath (t) + ∆Tsp (11)

or t = 1 . . . 24 TEHmin ≤ TEH1F (t) ≤ TEHmax (12)

or t = 1 . . . 24 TEHmin ≤ TEH2F (t) ≤ TEHmax (13)

here ∆Tsp(in ◦C) is the thermostat deadband and TEHmin and
EHmax are respectively the minimum and the maximum temper-
tures that the storage materials in the SEHD can reach.
The objective function and the constraints of the optimization

roblem are related to the decision variables by the model of
he system to be controlled which, as described in the previous
ubsections, is represented by Eqs. (5)–(8).
As expressed in Eqs. (9)–(13), the problem has a nonlinear

ormulation. It is solved in Python as Mixed integer nonlinear
rogramming (MINLP) with the GEKKO Optimization Suite (Beal
t al., 2018).
2173
Fig. 3. Controlled room with SEHDs.

. Case study

The day-ahead optimal scheduling is applied to a single room
ithin the ASTEA headquarters, an office building located in Os-

mo (43◦29′09.89′′N 13◦28′55.56′′E), Central Italy. The floor plan
f the room is shown in Fig. 3.
The room is on the ground floor. It has a floor area of 48.16 m2

ith a single vertical wall facing outwards (south-east expo-
ure) in which are located two windows that occupy about
m2. The other perimeter walls are arranged either towards

eated rooms (south-west and north-east exposure) or towards
nheated rooms (north-west exposure). The external wall is a
assette masonry wall, with 4 cm of thermal insulation (i.e., rock-
ool panel). The value of the thermal transmittance is 0.48
m−2 K−1 for the external wall in accordance with UNI TS11300-
(UNI (Italian Standard Organization), 2014), UNI EN ISO 6946

UNI (Italian Standard Organization), 2018a) and UNI EN ISO
3370 (UNI (Italian Standard Organization), 2018b). The windows
ave a thermal transmittance equal to 1.81 W m−2 K−1 in accor-
ance with UNI EN 12831 (UNI (Italian Standard Organization),
018c), UNI EN ISO 6946 (UNI (Italian Standard Organization),
018a) and UNI EN ISO 10077 (UNI (Italian Standard Organiza-
ion), 2018d). The building is also equipped with PV plants with
nominal electric power of 78.14 kWp installed on site.
As for SEHDs, two devices from the company Glen Dimplex

eaters (GDHs) are installed in the room (Glen dimplex, 2022). A
DH is an electric space heater equipped with a thermal storage,
omposed of bricks. As detailed in the next section, this device
llows to apply advanced control on the charging of the storage
aterial. The technical specifications of the two GDHs installed

n the room are showed in Table 1.
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Fig. 4. Schematic of the day-ahead optimal scheduling implementation and communication mode.
Table 1
QM100 SEHD technical specifications (UNI (Italian Standard Organization), 2018c).
Input rating +5%/−10% (W) Output rating (W) Boost mode rating (W) Maximum storage capacity (Wh)

2220 1000 800 15540
4
o

The two devices are monitored in real time. In particular it
s possible to monitor the trends (with a timestep of 15 min)
f: (i) the indoor air temperature (Tairmeas ), (ii) the illuminance
Ligmeas), (iii) the charge signals of the SEHDs (ctrlEH1meas and
trlEH2meas ), (iv) the discharge signals of the SEHDs (ctrlFAN1meas
nd ctrlFAN2meas ), (v) the temperature of the core of each SEHDs
TEH1meas and TEH2meas ) and (vi) the electrical power exchanged
t the general meter (Ṗemeas in kWe). The latter variable (vi) can
ssume both positive and negative values (for withdrawals or
nputs into the grid). Taking only the negative values associated
ith Ṗemeas , the vector of generation excesses from PV can be
btained (ṖPVmeas in W).

. Practical implementation of the optimal scheduling control

Fig. 4 represents a schematic of the implementation of the
ay-ahead optimal scheduling. As described in the previous sec-
ions, each day, both direct and derived inputs must be predicted
ccording to the methodology discussed in Section 2. Then, the
ptimization problem for the next day is solved. In this way the
alues of the charge and discharge signals for the SEHDs are
btained (ctrlEH1, ctrlEH2, ctrlFAN1 and ctrlFAN2).
Each SEHDs can communicate with a Control IoT (Internet of

hings) platform, developed and made available by the manufac-
urer, that allows the connection with the cloud, which enables
he transmission, storage, and retrieval of telemetry information.
he control developed in Python can communicate the schedule
or the device and by-pass the on-board controller. Every day,
herefore, the control signals obtained from the optimization are
ent to each SEHD that are forced to charge in the indicated time
ands. On the other hand, it is not possible to have a direct control
n the discharge, that is regulated by the thermostat setpoint.

. Validation of the model

This section shows the results of the training and the testing
f the various components of the model implemented in the
ontrol. In the first two Sections (5.1 and 5.2), the models for
he prediction of derived input variables are addressed while in

ection 5.3 models of SEHD and controlled room are discussed. (
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Table 2
Result of the training and test process for Light prediction.
Period RMSE (lx) Error (%)

2–20 March 2022 (training) 117.8 3.7
24–31 March 2022 (test) 82 5.7
15–22 April 2022 (test) 105 9.0

5.1. Total heat gains

Since, as already described in Section 2.2.1, the correlation
between daily trends in indoor air temperature and illuminance
index is on average between 65% and 75% on clear days, the total
heat gains input is assessed in relation to the variable Ligmeas
(i.e., measured values). The comparison between the measured
illuminance index and the one predicted by the model is shown
in Fig. 5. Fig. 5 refers to the training period: from the 2nd to
the 20th of March 2022. A Root Mean Square Error (RMSE) of
117.8 lx is obtained, that compared with the maximum variation
of the measured magnitude (about 3000 lx) represents an error of
3.7%. Table 2 compares the performance of the model in terms of
RMSE and percentage error between the training period and two
different test periods. By observing the values shown in Table 2, it
is possible to conclude that the prediction capacity of the model
for the Lig quantity is good as the error remains below 10% both
in training and in test.

5.2. Surplus of PV generation

A Gaussian probability distribution was chosen for the prob-
ability density function (pdf) in Eq. (4). The mean value (11.8 h)
and the standard deviation (1.8 h) of pdf were obtained from the
observation of the measured data. For each hour in each day,
it has been assessed the number of occurrences in which the
surplus generation from PV exceeded the threshold (ṖT set to

kWe) for each hour in each day. Fig. 6 represents the results
f the training process for the PV model. The RMSE in training
2–20 March 2022) is 1.72 kW , with a percentage error of 4.2%,
e
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Fig. 5. Comparison between measurements and model prediction for illuminance (training, 2–20 March 2022).
Fig. 6. Comparison between measurements and model prediction for PV surplus production (training, 2–20 March 2022).
Fig. 7. Comparison between measurements and model prediction for SEHDs temperatures (training, 24–31 March 2022): (a) Heater 1 and (b) Heater 2.
Table 3
Result of the training and test for PV excess availability model.
Period RMSE (kWe) Error (%)

2–20 March 2022 (training) 1.76 4.3
24–31 March 2022 (test) 2.1 5.7
15–22 April 2022 (test) 3.5 7.0

that is similar to the error obtained in the test. Table 3 reports
the RMSE and the relative error in training and in two test
periods. Also in this case, errors of less than 10% are obtained both
in the validation and in the test, confirming a good prediction
performance of the model.

5.3. System model: SEHDs and room

Fig. 7 represents the comparison between the temperature of
he storage material in the SEHD measured and predicted by the
odel. The training is for one week, from 24 to 31 March 2022.
uring training, the model has a RMSE of 4.1 ◦C for Heater 1 and
RMSE of 4.4 ◦C for Heater 2. The measurement errors, assessed
gainst the maximum measurement variations, are respectively
.5% and 4.9%.
2175
Table 4
Result of the training and test for the model of SEHDs.
Period RMSE (◦C) Error (%)

Heater 1 Heater 2 Heater 1 Heater 2

24–31 March 2022 (training) 4.1 4.4 5.5 4.9
12–19 March 2022 (test) 5.7 7.2 8.3 9.9
2–7 April 2022 (test) 8.3 6.6 13.1 9.1

Considering the model of the controlled room, the training
results are shown in Fig. 8 and Table 5 respectively. In this case
the model has been trained with the measured input variables
(Ligmeas is used for the total heat gains radiation and ToutdoorF0 for
the outdoor air temperature).

The model has an RMSE of 0.65 ◦C during training with a
relative error related to the maximum variance of the measured
air temperature of about 9.5% (Table 5). If the model for predicting
the thermal dynamics of the temperatures of the storage mate-
rials has shown good performance (error less than 10% both in
testing and in training, Table 4), significantly worse performance
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Fig. 8. Comparison between measurements and model prediction for the air temperature of the controlled room model (training, 24–31 March 2022).
Fig. 9. Comparison between measurements and model prediction for air temperature (Ta): (a) 2nd of May 2022 and (b) 4th of May 2022.
Table 5
Result of the training and test for air temperature: controlled room model.
Period RMSE (◦C) Error (%)

24–31 March 2022 (training) 0.65 9.5
12–19 March 2022 (test) 0.84 15.9
2–7 April 2022 (test) 0.94 16.2

Table 6
Indoor air temperature model: results of test in single days (12–19
March 2022).
Day RMSE (◦C)

12/03/2022 0.41
13/03/2022 0.35
14/03/2022 2.23
15/03/2022 0.55
16/03/2022 1.26
17/03/2022 0.33
18/03/2022 0.48
19/03/2022 0.43

was assessed during the test periods in the indoor air tempera-
ture prediction model. This behaviour is due to the presence of
abnormal days in which the measured air temperature shows a
trend not easily predictable in relation to the trend of the inputs.
This fact does not exclude the occurrence of random events, such
as the opening of a window that can affect the goodness of the
model. For example, by testing the model on individual days
in 12–19 March 2022, the value of the RMSE value has been
evaluated for each day (Table 6). It is clear the presence of two
abnormal days (14/03 and 16/03) in which the RMSE exceeds
1 ◦C.

6. Results

This section presents the results of the implementation of the
ay-ahead optimal scheduling control together with an analysis
f the factors that determine the uncertainties of its application.
n particular, the section is divided into two subsections: Sec-
ion 6.1 in which two days when the control has been applied
2176
to the building are described and Section 6.2 where a sensitivity
analysis to quantify the impact of uncertainty factors is presented.

6.1. Real implementation of the control

The control has been effectively applied to the room in two
days: the 2nd and the 4th of May 2022. In Fig. 9, a comparison can
be made between the temperature of the internal air predicted by
the model in the control and the actual measured. The model has
proven effective in predicting air temperature, in fact an RMSE of
0.52 ◦C is obtained for the 2nd of May, while 0.36 ◦C for the 4th.
In these two days the weather forecasts were observed in two
different hours: at 3.00 pm (k equal to 15) for May 2nd and at
6.00 pm (k equal to 18) for May 4th.

Figs. 10 and 11 show, instead, the comparison between ex-
pected and measured input variables: Light (Lig) and surplus of
electricity from PV, respectively. On the 4th of May (Fig. 10b), the
Lig quantity predicted has an RMSE of 75 lx (with a maximum
difference between prediction and measurement of 269 lx), while
the value become 148 lx (maximum difference of 624 lx between
prediction and measurement) on the 2nd of May (Fig. 10a). The
prediction of PV surplus generation is shown in Fig. 11 according
to a 1/0 signal representing availability (1) or non-availability (0)
of electrical power form PV greater than 4 kWe. This choice was
made to show a quantity in line with the weight factor used in the
optimization problem (Eq. (10)). It should be noted that, while on
May 2nd the expected (prediction in Fig. 11) availability interval
is the line with the measured one, although more conservative, on
May 4th the prediction was not accurate. This is due to the fact
that the prediction of the derived inputs is strongly linked to the
forecast of the direct input variables (in particular the cloudiness
index). If these do not reflect what is happening in the reality, the
prediction is not reliable. This in general is an issue that cannot be
neglected when reliable measurements of the external conditions
(e.g., access to nearby weather stations) are not available. Indeed,
in the days shown in Fig. 12, the direct inputs greatly influence
the derived inputs predictions. Their influence on the control will
be described in the next Section 6.2.



A. Mugnini, F. Ferracuti, M. Lorenzetti et al. Energy Reports 9 (2023) 2169–2184

b
h
o
c
v
F
a
m
4
h
f
o
t
r
s

Fig. 10. Comparison between measurements and model prediction for Lig: (a) 2nd of May 2022 and (b) 4th of May 2022.
Fig. 11. Comparison between measurements and model prediction for PV surplus production (1 signal if there is excess electricity greater than 4 kW, 0 otherwise):
(a) 2nd of May 2022 and (b) 4th of May 2022.
Fig. 12. Weather forecast obtained the day before: (a) Outdoor air temperature (T outdoor ) and (b) Cloudiness index (Cl).
Figs. 13 and 14 show the comparison (measured/prediction)
etween the temperatures of the storage material in electric
eaters (i.e., the temperature of the cores). Considering the results
n the 2nd of May (Fig. 13), an RMSE of 1.44 ◦C is observed, which
orresponds to an error of 4.7% with respect to the maximum
ariation of the measured temperature in the first SEHD (Fig. 13a).
or the second SEHD (Fig. 13b) the RMSE become 2.03 ◦C with
n error of 8.4%. The correspondence between prediction and
easured temperature of the SEHDs storage worsens on May
th (Fig. 14). On this day the RMSE becomes 3.8 ◦C for the first
eater (Fig. 14a), with an error of 11.4%, while it is 3.54 ◦C
or the second device (Fig. 14b), which corresponds to an error
f 13.2%. This depends on the fact that at the end of May 4th
here were probably some connection malfunctions between the
emote control and the devices. In fact, observing Fig. 14 it can be
een that after 8.00 pm the temperatures of the storage materials
2177
started to rise, even if a charge signal other than 0 was never sent
by the control logic.

To conclude, the charge signals obtained from the optimal
control, that have been sent to the devices, activate the charge
in the time slots between 10.00 am and 11.00 am on the 2nd
of May and between 12.00 pm and 1.00 pm on the 4th of May.
Looking at Fig. 11 it can therefore be inferred that in the case of
the 2nd of May (Fig. 11a), the control was effective in charging at
the same time as surplus PV generation was available, whereas in
the 4th of May the control was not at all effective in predicting the
availability of the free source (Fig. 11b). In the first case, therefore,
the withdrawal of electricity from the grid is zero while in the
second case there is a withdrawal of about 4.4 kWhe.

6.2. Quantification of uncertainty factors

To deepen the analysis of the role of uncertainty factors, the
first day was selected (the 2nd of May 2022). This section is
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Fig. 13. Comparison between measurements and model prediction for SEHDs (temperature of the storage material) on 2nd of May 2022: (a) Heater 1 and (b) Heater
2.
Fig. 14. Comparison between measurements and model prediction for SEHDs (temperature of the storage material) on 4th of May 2022: (a) Heater 1 and (b) Heater
.
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ivided into two subsections, in the first one (Section 6.2.1), the
mpact of the direct input forecast on derived inputs estimation
s analysed, while in the second (Section 6.2.2) a quantification
f how the uncertainty factors affect the performance and the
ffectiveness of the control is presented.

.2.1. Uncertainty factors on the derived input
Starting the analysis from direct input variables, Fig. 15 shows

ow the trend of the outdoor air temperature and the index of
loudiness vary depending on the time k at which the forecast is
ade. This behaviour has not been analysed for the irradiance as

t does not show any change with the forecast time (estimated
s a function of the geographical location only). Observing the
ourly standard deviation of the input variables (Fig. 16), the vari-
bility of the forecast appears rather contained for the outdoor
ir temperature (the standard deviation remains below 0.6 ◦C,
ig. 16a). On the other hand, the cloudiness index (Fig. 16b) is
uch more variable with k (standard deviation is above 20% most
f the time). As can be expected, this variability has a strong
mpact on both the derived inputs and, consequently, on the
rediction capability of the controlled room model.
Analysing the derived inputs, the total heat gains are strongly

inked to the measurable quantity Lig. Referring to the model
xpressed by Eq. (1), it can be noted that the prediction of the
otal heat gains is affected by the time k at which the direct inputs
re observed the day before, as the cloudiness index intervenes
ClFk ) in the formulation. Fig. 17 shows the link between the
ariation of LigFk (illuminance forecasted at time k) respect to
he measured value (Ligmeas) and the average cloudiness index in
the hours when incident solar radiation is expected by varying
k (time of observation). In Fig. 17 both the percentage variation
of the daily integral of LigFk compared to the measured one
(black curve) together with the estimated percentage error (red
 P
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curve) are reported. The integral variation has been calculated to
quantify the error on the estimation of total heat gains.

What can be noted by looking at Fig. 17 is that the deviation
between the measured and the predicted values tends to increase
as the average cloudiness index decreases. The lowest percent-
age error (about 8.2%) is obtained with the maximum average
cloudiness index (about 39.3%). Looking further at the percentage
variation in the integral of Lig, it is observed that for all the hours
of prediction k, LigFk is overestimated with respect to Ligmeas. This
s probably due to the fact that for every time k, ClFk may actually
be underestimated compared to what is currently happening. In
fact, if Eq. (1) is reversed to derive the trend of the Cl that would
allow to predict the measured value of Ligmeas, the dashed curve
in black in Fig. 18 is obtained. Comparing this with the trends of
the ClFk , a general underestimation of Cl can be confirmed.

As for the prediction of surplus PV generation (ṖPVk ), according
to Eq. (3), this depends both on the prediction of Irradiance
(IFk ) and once again on CFk . As already mentioned, IFk that is
xtrapolated from the weather service does not seem to depend
n the hour k, also in this case, the impact of the variability of the
Fk on the ṖPVk prediction is evaluated. For the purpose of solving
he optimization problem in the control, the percentage of time
n which an excess of more than 4 kWe is expected (estimated
ower to load the SEHD) is taken into account. Fig. 19 shows
he percentage of daily hours in which the predicted excess of
ore than 4 kW coincides with the measured (black line) and

he average Cl in the hours of measured PV surplus as function
f the time k. When compared with the average CFk (red line), a
lear dependency such as that observed in Fig. 17 is less evident.
owever, the percentage of time in which the PV prediction is
imultaneous with the measured values varies between 21% and
7% by varying the cloudiness index. Measured and predicted

V surplus tend to be closer when the average cloudiness factor
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Fig. 15. Direct input variables depending on the time of the forecast (2nd of May 2022): (a) outdoor air temperature (T outdoor ) and (b) cloudiness index (Cl).

Fig. 16. Direct input variables hourly standard deviation (2nd of May 2022): (a) outdoor air temperature (T outdoor ) and (b) cloudiness index (Cl).

Fig. 17. Percentage variation of the daily integral of Lig (prediction vs. measured), relative error for Lig (prediction vs. measured) and average Cl in the hours of
incident solar radiation as function of the time k in which the direct inputs are observed the day before (2nd of May 2022).
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Fig. 18. Cl in the hours of incident solar radiation as function of the time k in which the direct inputs are observed the day before compared to Cl obtained by Eq. (1)
ith the illuminance equal to Ligmeas (2nd of May 2022).
Fig. 19. Percentage of daily hours in which the predicted PV surplus of more than 4 kW coincides with the measured and average Cl in the hours of measured PV
xcess as function of the time k in which the direct inputs are observed the day before (2nd of May 2022).
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ecreases, however this is not observed on a regular basis (for
xample, for k greater than 16 there is a lower average Cl than
etween 4 and 7, however the percentage of coincidence between
V prediction and measure is lower in the first case than in the
econd).

.2.2. Uncertainty factors on the performance of day-ahead optimal
cheduling

As already widely mentioned, the uncertainty in the per-
ormance of the day-ahead optimal scheduling is due to the
ariability of the input variables (direct and derived). In particu-
ar, this subsection aims to quantify, for the proposed case study,
he impact of these uncertainty factors on the effectiveness of
he control in term of: (i) prediction capacity of the models for
EHDs and for the indoor air temperature and (ii) variation in
he control actions signals. The prediction capacity of the model
s represented only by the RMSE evaluated on the indoor air
emperature, since the temperatures of the storage materials in
he SEHDs are not comparable with those measured. This is due
o the fact that, variations in the direct and derived inputs can
hange the solution of the optimization problem (i.e., different
ontrol actions for the charging of the SEHDs).
As discussed in Section 6.2.1, the analysis can be reduced to

he estimation of how the variability of direct inputs (ToutdoorFk
nd ClFk ) affects the results that can be obtained from the op-
imization problem. By isolating the contribution of each direct
nput, no significant changes are observed in the indoor air tem-
erature trend predicted and in the charge control profile of the
EHDs when ToutdoorFk varies. Imposing as input Ligmeas and using
he measure of the surplus PV generation to derive the weight
1, the solution of the optimization problem by varying ToutddorFk
oes not allow to observe variation in the signals of charge of the
evices and the RMSE of the internal air is always 0.44 ◦C. This
ay depend on two factors: the first is that the controlled room

s not too much affected by the outdoor temperature because the
 e
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oom has only one (thermally insulated) wall facing outwards;
he second is that ToutddorFk does not change significantly with
he variation of k (Figs. 15a and 16a). In fact, the average daily
utdoor temperature fluctuates between 13.9 ◦C and 14.2 ◦C with
he variation of k, while its maximum variation varies between
.7 ◦C and 9.7 ◦C.
On the other hand, a variation in performance is observed

hen the Cl prediction changes. In Fig. 20a, it can be observed
hat also in this case, as the average Cl changes, the prediction
apacity of the model varies. In particular, with the increase of
he average of Cl, the performance improves (RMSE passes from
.52 ◦C to 0.31 ◦C, reduction of 40%). This can be seen more
xplicitly in Fig. 20b where the trends of TaFk in the two cases
f extreme values of average Cl are reported: average Cl of 44%
t k equal to 7 (TaF7 ) and 1% for k equal to 15 (TaF15 ).
As for the charge signals, these are highly dependent on the

rediction of excess generation from PV and on how much the
rediction of the internal air temperature deviates from the set-
oint. Both the weight function w1 and the TaFk depend on the
irect and derived input forecast and therefore, on the time k. If
or the Heater 1, the same charging time is evaluated regardless
f k, this does not happen for the second device (Heater 2). In
ig. 21 the number of hours in which the optimization problem
ssesses the need of charging the two SEHDs (ctrlEH equal to 1)
s reported. Referring to the trend for the Heater 2 (blue curve
n Fig. 21), the number of charging hours is 2 h in some cases,
hile in others it is 1 h. The difference between the solutions
an be correlated to the variability of the inputs which, as we
ave seen, influence the expected internal air temperature and
he prediction of PV surplus generation. In fact, it is noted that, as
he maximum temperature reached by TaFk increases (green curve
n Fig. 21), the number of hours in which ctrlH2 is 1 decreases.
owever, this behaviour tends to be mitigated by the behaviour
stimated for PV surplus. For k greater than 16, in which the
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Fig. 20. Effect of input variability on the prediction capability of the model in the control: (a) RMSE of internal air temperature as function of average Cl in the hours
of incident solar radiation and (b) comparison between the results of the model with two different input observation times (k = 7 and k = 15) and the measured
ndoor air temperature (2nd of May 2022).
Fig. 21. Number of hours in which ctrlEH1 and ctrlEH2 are equals 1, maximum of the temperature predicted and number of hours in which the predicted PV surplus of
more than 4 kW coincides with the measured as function of the time k in which the direct inputs are observed the day before (2nd of May 2022). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
availability of PV is underestimated compared to the measure-
ment (black line in Fig. 21), despite the maximum air temperature
decreasing, there is no increase in charging hours of the heater.
It can therefore be concluded that regarding Heater 2, due to the
variability of inputs, the charging time of the device may vary
from +100% to −50%. It is also worth specifying that the two
SEHDs, as happens for k between 0 and 11, can have different
control signals. However, with reference to this particular day,
there is not any withdrawal of electricity from the grid. This is
due to the effectiveness of the PV surplus generation model in
correctly predicting the availability of electricity to charge the
devices.

To conclude, the analysis showed how the uncertainty linked
to some inputs has a considerable impact on the strategies de-
cided by the control and on its prediction capability. In particular,
Fig. 22 represents all the dependencies that have emerged, also
highlighting the degree of uncertainty produced by the individual
contributions.

As shown in Fig. 22, the most influential factors on the ef-
fectiveness of the predictive control are the presence of external
disturbing factors and the unreliable prediction of some direct in-
puts (such as the cloudiness index). These uncertainties diminish
the reliability of derived inputs (such as the total heat gains and
the PV surplus).

Generalizing the results to wider applications (for example,
larger multi-zones buildings) could result in even more noticeable
performance variations, mainly due to the multiple disturbing
factors and interference between the different contributions. Fur-
thermore, in this work we implemented a day-ahead optimal
scheduling. This aspect is very relevant because the uncertainty
in inputs prediction decreases when the time horizon of the
prediction is reduced. This could be improved with the imple-

mentation of a real-time optimal control with short prediction

2181
horizon (e.g., 1 h). However, it is also worth pointing out that,
from the point of view of time effectiveness, the day-ahead op-
timal control is simpler and faster to implement. In fact, the
computational time is very low, even if it can increase with
the size of the problem considered. As future further develop-
ment, a comparison between the performance of a day-ahead
and a real time optimal control could be analysed to extend the
considerations of this work.

Conclusions

The aim of this work is to provide a quantification of some
of the main uncertainty factors in an optimal control really im-
plemented in a building. A day-ahead optimal scheduling was
applied to control the heating system of a single room in an
office building. The heating system is composed of two smart
electric heaters equipped with a thermal storage material. The
controller is formulated to determine the charging periods of the
storage materials in the heaters with the aim of minimizing the
withdrawal of energy from the grid by being able to exploit a
certain availability of energy from renewable sources and keeping
the internal air temperature close to a setpoint imposed on the
thermostat. The model contained in the optimal control is formu-
lated to describe the thermal dynamics of the storage materials
of the heaters and the indoor air temperature in the room. To be
effective, the model requires some inputs on weather conditions
and internal gains. These, in turn, are predicted through forecast
models.

Firstly, the results of applying the control are shown: the
effectiveness of the control is assessed independently of the as-
sessment of the uncertainties on the predicted inputs. The control
demonstrated good performance in terms of predicting the ther-

mal dynamic of the system. Considering the two days in which
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t

Fig. 22. Graphical representation of the impact of the individual factors of uncertainty.
he controller was actually applied, RMSEs of 0.36 ◦C and 0.52 ◦C
were obtained by comparing the indoor air temperature predic-
tion with that actually measured by applying the control. Good
performances were also obtained for the thermal dynamics of
the storage materials: relative error of the temperature of the
storage materials in the electric heaters lower than 13.2%. On
the other hand, the performance of the control was not so good
when considering the exploitation of energy from the renewable
source (i.e., PV panels), especially on the second test day (May
4, 2022). This is attributable to the inaccuracy of the models
for the prediction of the inputs, including that for surplus PV
generation. Analysing this last aspect, in the second part of the
discussion, it was evaluated how the inaccuracy on direct and
derived inputs affects the performance of the control causing
uncertainties. In this regard, the main conclusions that emerged
can be summarized as follows:

• In general, the effectiveness of the control is very depen-
dent on forecasting models of weather conditions. These
were obtained from traditional numerical prediction models
downloadable from an online database (identified in the
text of the paper with the term direct inputs). This creates
underlying control uncertainty.
This is an issue that cannot be overlooked when it comes to
applying optimal control in the absence of measured on-site
weather data.

• The estimate of the total heat gains (inputs derived from
models developed by the authors) proved to be very affected
by the uncertainty related to weather conditions (especially
the cloudiness index which has shown to be very dependent
on the moment in which the forecasts are observed)

• The prediction of the availability of surplus PV generation
(second input derived from the forecast model) shown to
be significantly dependent on the uncertainty linked to the
observation of the cloudiness index (percentage of time in
which the prediction is similar to the measurements varies
between 21% and 47%).

• The uncertainty of the prediction of direct and derived in-
puts influences the control actions. In relation to the charac-
teristics of the case study analysed (i.e., building with only
one external wall with a large-windowed surface), the pre-
diction capacity of the system model did not show evident
dependencies on the uncertainty related to the forecast of
the external temperature. On the other hand, once again, the
cloudiness index has the greatest influence on the accuracy
of the control. This greatly affects the control actions defined
by the controller. It has been observed that for one of the
two electric heaters, the estimated charging time can vary

from −50% to +100% depending on when the forecast is
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observed. This has an effect, albeit limited, also on the
prediction of the internal air temperature: considering the
extreme values, a 40% change in RMSE (calculated compar-
ing predicted and measured indoor air temperature) was
assessed.

It is important to underline that these considerations are obvi-
ously related to the characteristics of the case study and to the
architecture of the models used. It is also not possible to exclude
a non-negligible effect of some disturbing factors not included in
the modelling (e.g., opening windows or consumption behaviour
of the occupants). As a future development it would be interesting
to extend the uncertainty analysis considering different model
architectures. In general, however, we can conclude that our
analysis showed a non-negligible influence of the uncertainties
due to the prediction of the inputs on the actual performance
of the control. This confirms the need for further studies on the
effective application of advanced control techniques in buildings
and on methods to decrease the impact of such uncertainty in a
way easy to be implemented in practice.

Nomenclature
a Parameter obtained from the training
b Parameter obtained from the training
c Parameter obtained from the training
C Thermal capacity (Wh K−1)
Cl Cloudiness index (%)
ctrl Charge signal
EH Electric heater
F Scale factor
f Parameter obtained from the training
Ġ Total heat gains (W)
GDH Glen Dimplex Heaters
h Hour of the day
I Irradiance (W m−2)
IEA International Energy Agency
IoT Internet of Things
K Conductances (W K−1)
l Parameter obtained from the training
Lig Illuminance (lx)
MPC Model Predictive Control
p parameter obtained from the training
Ṗ Electric power (W)
pdf Probability density function
PV Photovoltaic plant
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Q̇ Thermal power (W)
RBC Rule Based-Controller
RC Resistance and Capacity network
RES Renewable Energy Source
RMPC Robust Model Predictive Controls
RMSE Root Mean Square Error
Ṡ Gain (W)
SBC Schedule-Based Controller
SEHD Smart Electric Heating Devices
SMPC Stochastic Model Predictive Controls
T Temperature (◦C)
t Time (h)
TES Thermal Energy Storage
v Speed (m s−2)
w Weights assigned to the individual objective in the

optimization problem
∆T Tolerance in temperature (◦C)
Subscripts
outdoor Outdoor
F Forecast
a Indoor air
e Relating to the power exchanged at the general

meter
EH Electric Heater
FAN Relating to the fan of the electric heater
g Relating to total heat gains
int Relating to internal gains
k Time in which the forecast is observed
l Relating to thermal losses
max Relating to the maximum value
meas Measured
min Relating to the minimum value
PV Relating to photovoltaic
sol Relating to solar gains
sp Relating to the setpoint
T Threshold
th Relating to the thermostat
tot Total
wa Relating to the mass of the building envelope

towards the internal air
wind Relating to the thermal insulation layer

wins Relating to the windows
wo Relating to the mass of the building envelope

towards the external

CRediT authorship contribution statement

A. Mugnini: Conceptualization, Methodology, Software, Val-
dation, Writing – original draft, Formal analysis. F. Ferracuti:
onceptualization, Methodology, Software, Validation, Writing –
eview & editing. M. Lorenzetti: Visualization, Supervision. G. Co-
odi: Methodology, Supervision, Project administration, Funding
cquisition. A. Arteconi: Conceptualization, Methodology, Writ-
ng – review & editing, Visualization, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The data that has been used is confidential.
2183
cknowledgement

This study has received funding from European Union’s Hori-
on 2020 Research and Innovation programme under grant agree-
ent No 824441 (MUSE GRIDS).

eferences

arber, Kyle A., Krarti, Moncef, 2022. A review of optimization based tools for
design and control of building energy systems. Renew. Sustain. Energy Rev.
160, 112359. http://dx.doi.org/10.1016/j.rser.2022.112359.

eal, L.D.R., Hill, D., Martin, R.A., Hedengren, J.D., 2018. GEKKO optimization
suite. Processes 6 (8), http://dx.doi.org/10.3390/pr6080106.

oodi, A., Beddiar, K., Amirat, Y., Benbouzid, M., 2020. Simplified building
thermal model development and parameters evaluation using a stochastic
approach. Energies 13 (11), 2899. http://dx.doi.org/10.3390/en13112899.

eusters, Glenn, Rodríguez, Román Cantú, García, Alberte Bouso, Franke, Rüdi-
ger, Deconinck, Geert, Helsen, Lieve, Nowé, Ann, Messagie, Maarten,
Camargo, Luis Ramirez, 2021. Model-predictive control and reinforcement
learning in multi-energy system case studies. Appl. Energy 303, 117634.
http://dx.doi.org/10.1016/j.apenergy.2021.11763.

ounis, A.I., Caraiscos, C., 2009. Advanced control systems engineering for energy
and comfort management in a building environment—A review. Renew.
Sustain. Energy Rev. 13 (6–7), 1246–1261. http://dx.doi.org/10.1016/j.rser.
2008.09.01.

rgoňa, Ján, Arroyo, Javier, Figueroa, Iago Cupeiro, Blum, David,
Arendt, Krzysztof, Kim, Donghun, Ollé, Enric Perarnau, Oravec, Juraj,
Wetter, Michael, Vrabie, Draguna L., Helsen, Lieve, 2020. All you need to
know about model predictive control for buildings. Annu. Rev. Control 50,
190–232. http://dx.doi.org/10.1016/j.arcontrol.2020.09.001.

urostat, 2022. European Union, Energy consumption in households.
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_
consumption_in_households (access verified on 2/08/2022).

len dimplex, 2022. Thecnical specifications electric heater (Quantum
Heater QM). Catalog available at www.dimplex.co.uk/sites/default/files/
assets//Dimplex%20Quantum%20Spec%20Sheet%20Issue%207.pdf (access ver-
ified on 25/08/2022).

oseinpoori, Pooya, Olympios, Andreas V., Markides, Christos N., Woods, Jeremy,
Shah, Nilay, 2022. A whole-system approach for quantifying the value of
smart electrification for decarbonising heating in buildings. Energy Convers.
Manage. 268, 115952. http://dx.doi.org/10.1016/j.enconman.2022.115952.

ou, Juan, Li, Haoran, Nord, Natasa, Huang, Gongsheng, 2022. Model predictive
control under weather forecast uncertainty for HVAC systems in univer-
sity buildings. Energy Build. 257, 111793. http://dx.doi.org/10.1016/j.enbuild.
2021.111793.

nternational Energy Agency (IEA), 2022a. Buildings. A source of enormous
untapped efficiency potential. https://prod.iea.org/topics/buildings (access
verified on 2/08/2022).

nternational Energy Agency (IEA), 2022b. Heat Pumps. https://www.iea.org/
reports/heat-pumps (access verified on 2/08/2022).

nternational Energy Agency (IEA), 2022c. Tracking Buildings 2021. https://www.
iea.org/reports/tracking-buildings-2021 (access verified on 2/08/2022).

ensen, Søren Østergaard, Marszal-Pomianowska, Anna, Lollini, Roberto, Pa-
sut, Wilmer, Knotzer, Armin, Engelmann, Peter, Stafford, Anne, Reyn-
ders, Glenn, 2017. IEA EBC annex 67 energy flexible buildings. Energy Build.
155, 25–34. http://dx.doi.org/10.1016/j.enbuild.2017.08.044.

ontes, Georgios D., Giannakis, Georgios I., Sánchez, Víctor, Agustin-
Camacho, Pablo De, Romero-Amorrortu, Ander, Panagiotidou, Natalia,
Rovas, Dimitrios V., Steiger, Simone, Mutschler, Christopher, Gruen, Gunnar,
2018. Simulation-based evaluation and optimization of control strategies in
buildings. Energies 11 (12), 3376. http://dx.doi.org/10.3390/en11123376.

rarti, Moncef, 2018. Chapter 3 - Control strategies for building energy systems.
In: Krarti, Moncef (Ed.), Optimal Design and Retrofit of Energy Efficient
Buildings, Communities, and Urban Centers. Butterworth-Heinemann, pp.
117–187. http://dx.doi.org/10.1016/B978-0-12-849869-9.00003-X.

i, Yanfei, O’Neill, Zheng, Zhang, Liang, Chen, Jianli, Im, Piljae, DeGraw, Jason,
2021. Grey-box modeling and application for building energy simulations -
A critical review. Renew. Sustain. Energy Rev. 146, 111174. http://dx.doi.org/
10.1016/j.rser.2021.111174.

in, Jing, Fernández, Julián A., Rayhana, Rakiba, Zaji, Amirhossein, Zhang, Ran,
Herrera, Omar E., Liu, Zheng, Mérida, Walter, 2022. Predictive analytics

http://dx.doi.org/10.1016/j.rser.2022.112359
http://dx.doi.org/10.3390/pr6080106
http://dx.doi.org/10.3390/en13112899
http://dx.doi.org/10.1016/j.apenergy.2021.11763
http://dx.doi.org/10.1016/j.rser.2008.09.01
http://dx.doi.org/10.1016/j.rser.2008.09.01
http://dx.doi.org/10.1016/j.rser.2008.09.01
http://dx.doi.org/10.1016/j.arcontrol.2020.09.001
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
http://www.dimplex.co.uk/sites/default/files/assets//Dimplex%20Quantum%20Spec%20Sheet%20Issue%207.pdf
http://www.dimplex.co.uk/sites/default/files/assets//Dimplex%20Quantum%20Spec%20Sheet%20Issue%207.pdf
http://www.dimplex.co.uk/sites/default/files/assets//Dimplex%20Quantum%20Spec%20Sheet%20Issue%207.pdf
http://dx.doi.org/10.1016/j.enconman.2022.115952
http://dx.doi.org/10.1016/j.enbuild.2021.111793
http://dx.doi.org/10.1016/j.enbuild.2021.111793
http://dx.doi.org/10.1016/j.enbuild.2021.111793
https://prod.iea.org/topics/buildings
https://www.iea.org/reports/heat-pumps
https://www.iea.org/reports/heat-pumps
https://www.iea.org/reports/heat-pumps
https://www.iea.org/reports/tracking-buildings-2021
https://www.iea.org/reports/tracking-buildings-2021
https://www.iea.org/reports/tracking-buildings-2021
http://dx.doi.org/10.1016/j.enbuild.2017.08.044
http://dx.doi.org/10.3390/en11123376
http://dx.doi.org/10.1016/B978-0-12-849869-9.00003-X
http://dx.doi.org/10.1016/j.rser.2021.111174
http://dx.doi.org/10.1016/j.rser.2021.111174
http://dx.doi.org/10.1016/j.rser.2021.111174


A. Mugnini, F. Ferracuti, M. Lorenzetti et al. Energy Reports 9 (2023) 2169–2184

L

L

M

M

M

M

M

M

M

O

P

P

R

S

S

S

S

T

U

U

U

U

U

V

for building power demand: Day-ahead forecasting and anomaly prediction.
Energy Build. 255, 111670. http://dx.doi.org/10.1016/j.enbuild.2021.111670.

u, Yuehong, Wang, Shengwei, Sun, Yongjun, Yan, Chengchu, 2015. Optimal
scheduling of buildings with energy generation and thermal energy storage
under dynamic electricity pricing using mixed-integer nonlinear program-
ming. Appl. Energy 147, 49–58. http://dx.doi.org/10.1016/j.apenergy.2015.02.
060.

yons, Ben, O’Dwyer, Edward, Shah, Nilay, 2020. Model reduction for Model
Predictive Control of district and communal heating systems within co-
operative energy systems. Energy (ISSN: 0360-5442) 197, 117178. http:
//dx.doi.org/10.1016/j.energy.2020.117178.

a, Y., Matuško, J., Borrelli, F., 2015. Stochastic model predictive control for
building HVAC systems: Complexity and conservatism. IEEE Trans. Control
Syst. Technol. 23 (1), 101–116. http://dx.doi.org/10.1109/TCST.2014.2313736.

aasoumy, M., Razmara, M., Shahbakhti, M., Sangiovanni Vincentelli, A., 2014.
Handling model uncertainty in model predictive control for energy efficient
buildings. Energy Build. 77, 377–392. http://dx.doi.org/10.1016/j.enbuild.
2014.03.057.

arvuglia, Antonino, Messineo, Antonio, Nicolosi, Giuseppina, 2014. Coupling a
neural network temperature predictor and a fuzzy logic controller to perform
thermal comfort regulation in an office building. Build. Environ. 72, 287–299.
http://dx.doi.org/10.1016/j.buildenv.2013.10.020.

ayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M., 2000. Constrained model
predictive control: Stability and optimality. Automatica 36 (6), 789–814.
http://dx.doi.org/10.1016/S0005-1098(99)00214-9.

ugnini, Alice, Coccia, Gianluca, Polonara, Fabio, Arteconi, Alessia, 2020. Per-
formance assessment of data-driven and physical-based models to predict
building energy demand in model predictive controls. Energies 13 (12), 3125.
http://dx.doi.org/10.3390/en13123125.

ugnini, A., Coccia, G., Polonara, F., Arteconi, A., 2021. Energy flexibility as
additional energy source in multi-energy systems with district cooling.
Energies 14 (2), 519. http://dx.doi.org/10.3390/en14020519.

ugnini, A., Ferracuti, F., Lorenzetti, M., Comodi, G., Arteconi, A., 2022. Advanced
control techniques for CHP-DH systems: A critical comparison of model
predictive control and reinforcement learning. Energy Convers. Manage. X
15, 100264. http://dx.doi.org/10.1016/j.ecmx.2022.100264.

ldewurtel, F., Parisio, A., Jones, C., Morari, M., Gyalistras, D., Gwerder, M.,
Stauch, V., Lehmann, B., Wirth, K., 2010. Energy efficient building climate
control using stochastic model predictive control and weather predictions.
In: Proc. of American Control Conference.

éan, Thibault Q., Salom, Jaume, Costa-Castelló, Ramon, 2019. Review of control
strategies for improving the energy flexibility provided by heat pump
systems in buildings. J. Process Control 74, 35–49. http://dx.doi.org/10.1016/
j.jprocont.2018.03.006.
2184
etersen, Steffen, Bundgaard, Katrine Wieck, 2014. The effect of weather forecast
uncertainty on a predictive control concept for building systems operation.
Appl. Energy (ISSN: 0306-2619) 116, 311–321. http://dx.doi.org/10.1016/j.
apenergy.2013.11.060.

amos, José Sánchez, Moreno, Mcarmen Pavón, Delgado, Mcarmen Guerrero,
Domínguez, Servando Álvarez, Cabeza, Luisa F., 2019. Potential of energy
flexible buildings: Evaluation of DSM strategies using building thermal mass.
Energy Build. 203, 109442. http://dx.doi.org/10.1016/j.enbuild.2019.109442.

ampaio, Phillipe R., Salvazet, Raphael, Mandel, Pierre, Becker, Gwénaëlle,
Chenu, Damien, 2021. Simulation and optimal control of heating and cooling
systems: A case study of a commercial building. Energy Build. (ISSN:
0378-7788) 246, 111102. http://dx.doi.org/10.1016/j.enbuild.2021.111102.

erale, G., Fiorentini, M., Capozzoli, A., Bernardini, D., Bemporad, A., 2018. Model
predictive control (MPC) for enhancing building and HVAC system energy
efficiency: Problem formulation, applications and opportunities. Energies 11,
631.

harma, Himanshu, Bhattacharya, Saptarshi, Kundu, Soumya, Adetola, Veron-
ica A., 2022. On the impacts of occupancy sensing on advanced model
predictive controls in commercial buildings. Build. Environ. 109372. http:
//dx.doi.org/10.1016/j.buildenv.2022.109372.

tinner, Sebastian, Huchtemann, Kristian, Müller, Dirk, 2016. Quantifying the op-
erational flexibility of building energy systems with thermal energy storages.
Appl. Energy 181, 140–154. http://dx.doi.org/10.1016/j.apenergy.2016.08.055.

ien, Paig Wenbin, Wei, Shuangyu, Darkwa, Jo, Wood, Christopher, Calau-
tit, John Kaiser, 2022. Machine learning and deep learning methods for
enhancing building energy efficiency and indoor environmental quality – A
review. Energy AI 10, 100198. http://dx.doi.org/10.1016/j.egyai.2022.100198.

NI (Italian Standard Organization), 2014. Energy Performance of Buildings -
Part 1: Evaluation of Energy Need for Space Heating and Cooling (Italian
Standard). UNI/TS 11300-1, Date of entry into force: 02 October 2014.

NI (Italian Standard Organization), 2018a. Building Components and Building
Elements - Thermal Resistance and Thermal Transmittance - Calculation
Methods (Italian Standard). UNI EN ISO 6946, Date of entry into force: 01
March 2018.

NI (Italian Standard Organization), 2018b. Thermal Performance of Buildings -
Heat Transfer Via the Ground - Calculation Methods (Italian Standard). UNI
EN ISO 13370, Date of entry into force: 01 March 2018.

NI (Italian Standard Organization), 2018c. Energy Performance of Buildings -
Method for Calculation of the Design Heat Load. UNI EN 12831, Date of entry
into force: 22 February 2018.

NI (Italian Standard Organization), 2018d. Thermal Performance of Windows,
Doors and Shutters - Calculation of Thermal Transmittance. UNI EN ISO
10077, Date of entry into force: 01 March 2018.

akiloroaya, Vahid, Samali, Bijan, Fakhar, Ahmad, Pishghadam, Kambiz, 2014.
A review of different strategies for HVAC energy saving. Energy Convers.
Manage. 77, 738–754. http://dx.doi.org/10.1016/j.enconman.2013.10.023.

http://dx.doi.org/10.1016/j.enbuild.2021.111670
http://dx.doi.org/10.1016/j.apenergy.2015.02.060
http://dx.doi.org/10.1016/j.apenergy.2015.02.060
http://dx.doi.org/10.1016/j.apenergy.2015.02.060
http://dx.doi.org/10.1016/j.energy.2020.117178
http://dx.doi.org/10.1016/j.energy.2020.117178
http://dx.doi.org/10.1016/j.energy.2020.117178
http://dx.doi.org/10.1109/TCST.2014.2313736
http://dx.doi.org/10.1016/j.enbuild.2014.03.057
http://dx.doi.org/10.1016/j.enbuild.2014.03.057
http://dx.doi.org/10.1016/j.enbuild.2014.03.057
http://dx.doi.org/10.1016/j.buildenv.2013.10.020
http://dx.doi.org/10.1016/S0005-1098(99)00214-9
http://dx.doi.org/10.3390/en13123125
http://dx.doi.org/10.3390/en14020519
http://dx.doi.org/10.1016/j.ecmx.2022.100264
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb28
http://dx.doi.org/10.1016/j.jprocont.2018.03.006
http://dx.doi.org/10.1016/j.jprocont.2018.03.006
http://dx.doi.org/10.1016/j.jprocont.2018.03.006
http://dx.doi.org/10.1016/j.apenergy.2013.11.060
http://dx.doi.org/10.1016/j.apenergy.2013.11.060
http://dx.doi.org/10.1016/j.apenergy.2013.11.060
http://dx.doi.org/10.1016/j.enbuild.2019.109442
http://dx.doi.org/10.1016/j.enbuild.2021.111102
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb33
http://dx.doi.org/10.1016/j.buildenv.2022.109372
http://dx.doi.org/10.1016/j.buildenv.2022.109372
http://dx.doi.org/10.1016/j.buildenv.2022.109372
http://dx.doi.org/10.1016/j.apenergy.2016.08.055
http://dx.doi.org/10.1016/j.egyai.2022.100198
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb37
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb37
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb37
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb37
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb37
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb38
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb39
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb39
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb39
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb39
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb39
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb40
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb40
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb40
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb40
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb40
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb41
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb41
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb41
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb41
http://refhub.elsevier.com/S2352-4847(23)00013-6/sb41
http://dx.doi.org/10.1016/j.enconman.2013.10.023

	Day-ahead optimal scheduling of smart electric storage heaters: A real quantification of uncertainty factors
	INTRODUCTION
	METHODOLOGY
	Direct input variables
	Derived input variables
	Total heat gains
	Surplus of PV generation

	System prediction model
	Smart Electric Heating Device model
	Room model

	Optimization problem

	CASE STUDY
	PRACTICAL IMPLEMENTATION OF THE OPTIMAL SCHEDULING CONTROL
	VALIDATION OF THE MODEL
	Total heat gains
	Surplus of PV generation
	System model: SEHDs and room

	RESULTS
	Real implementation of the control
	Quantification of uncertainty factors
	Uncertainty factors on the derived input
	Uncertainty factors on the performance of day-ahead optimal scheduling


	ConclusionS
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


