Review

The Multifaceted Role of Endothelial Sirtl in Vascular Aging:

An Update

Roberto Campagna *(0, Laura Mazzanti 1>*, Veronica Pompei !, Sonila Alia 17, Arianna Vignini

and Monica Emanuelli 1t

check for
updates

Citation: Campagna, R.; Mazzanti, L.;
Pompei, V.; Alia, S.; Vignini, A.;
Emanuelli, M. The Multifaceted Role
of Endothelial Sirt1 in Vascular
Aging: An Update. Cells 2024, 13,
1469. https://doi.org/10.3390/
cells13171469

Academic Editor: Sabah Hussain

Received: 17 July 2024
Revised: 21 August 2024
Accepted: 28 August 2024
Published: 1 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1,3,+

Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy;
v.pompei@staff.univpm.it (V.P.); s.alia@pm.univpm.it (S.A.); a.vignini@univpm.it (A.V.);
m.emanuelli@univpm.it (M.E.)

Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy

Research Center of Health Education and Health Promotion, Universita Politecnica delle Marche,

60100 Ancona, Italy

*  Correspondence: r.campagna@univpm.it (R.C.); mazzantilaura@gmail.com (L.M.); Tel.: +39-071-2204674 (R.C.)
These authors equally contributed as senior coauthors.

Abstract: NAD*-dependent deacetylase sirtuin-1 (Sirtl) belongs to the sirtuins family, known to
be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the
expression levels of Sirtl decline with a severe impact on vascular function, such as the rise of
endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this
context, the impact of Sirt] activity in preventing endothelial senescence is particularly important.
Given the key role of Sirtl in counteracting endothelial senescence, great efforts have been made to
deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in
order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of
this review is to provide a proper background on the regulation and function of Sirtl in the vascular
endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1
to counteract vascular aging.
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1. Introduction

The term sirtuins stands for Silent Information Regulator-SIRT proteins and includes
proteins which are highly conserved class III NAD*-dependent histone deacetylases
(HDACs). HDACs deacetylate lysine residues use nicotinamide adenine dinucleotide
(NAD) as a co-enzyme [1]. Traditionally, their deacetylation activity was thought to be
directed to histone proteins, although it has been recently demonstrated that sirtuins ex-
ert a wide range of enzymatic activity, including deacetylation of non-histone proteins,
demalonylation, desuccinylation, demyristoylation, and mono-adenosine diphosphate
(ADP)-ribosylation [2]. The mammalian Sirtl family contains seven enzymes (Sirt1-7)
grouped into four classes: class I includes Sirt1-3, class II includes Sirt4, class III includes
Sirt5, and class IV includes Sirt6—7 [3]. The intracellular localization of sirtuins is strictly
related to their biological function. Indeed, while Sirtl, Sirt6, and Sirt7 are localized in the
nucleus, Sirt3, Sirt4, and Sirt5 are located in the mitochondria, and Sirt2 is mainly expressed
in the cytoplasm [4]. Due to their deacetylation activity occurring at the post-translational
level, sirtuins may modulate a number of cellular pathways, including mitochondrial
bioenergetic metabolism, cell cycle progression, homeostasis, DNA repair and antioxidant
responses, aging, regulation of transcription, apoptosis, inflammation, and survival [5-7].
In this review we focus on the biological functions of Sirtl and we also provide an insight
into its role in preventing endothelial dysfunction, as well as the therapeutic strategies of
targeting Sirt1 to counteract vascular aging.
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2. Sirtl

Sirtl was the first sirtuin to be discovered and characterized, and thus has been
extensively studied. The human SIRT1 gene is located on the long arm of chromosome
10 in position 21.3 which encodes for a protein composed of 747 amino acids [7]. The
structure of Sirtl is analogous to other mammal sirtuins. The structure of Sirt1 includes a
highly conserved NAD*-dependent sirtuins core domain and a nuclear localization signal
(KRKKRK) at amino acids 41-46. Moreover, the enzyme also includes a conserved catalytic
core of 275 amino acids and an N-terminal nuclear localization signal [8]. The catalytic
core is composed of a Rossmann-fold domain coupled with a minor zinc finger domain, in
which the zinc ion (Zn?*) coordinates tetrahedrally with the thiol groups belonging to four
cysteines. Although the zinc ion does not participate in the catalytic activity, its presence is
crucial for Sirtl activity [1].

The main activity of Sirt1 is the deacetylation of both histones and non-histone proteins.
By deacetylating these proteins, the enzyme can influence the DNA-histone interaction,
thus controlling gene transcription. Indeed, Sirtl does not bind DNA directly, but interacts
with several factors associated with DNA which facilitate the correct placing of Sirtl, whose
activity results in the induction of facultative or constitutive heterochromatin [9]. Sirtl
deacetylates lysines at the N-terminal tails of H3 and H4. Its deacetylation activity is
mainly directed to H4K16, and at a lower rate to H3K9, H3K14, H4K8, H4K12. Moreover, it
can deacetylate also the linker histone H1 at Lys26 (H1K26) [10]. Among the non-histone
proteins, Sirtl can exert its deacetylation activity also on the well-known tumor suppressor
p53. Indeed, the deacetylation of p53 at K382 inhibits its nuclear translocation, thus affecting
p53 transcription-dependent and independent apoptosis. Upon deacetylation, p53 shifts
onto the outer membrane of mitochondria and triggers the release of the pro-apototic BCL
and BAX proteins, which in turn trigger the release of cytochrome ¢ by the mitochondria,
thus starting the p53 transcription-independent apoptosis [11].

It has been reported that Sirt1 can also exert its deacetylation activity towards forkhead
transcription factor O (FoxO), a key protein for modulating apoptosis, cell differentiation,
cell cycle arrest, DNA repair response, and oxidative stress-resistance. The deacetylation of
FoxO3 and FoxO4 is vital for aging since it results in a decrease in FOXO-induced apoptosis
and in an enhanced FoxO-induced cell cycle arrest [12-14]. Another non-histone substrate
of Sirt] activity is peroxisome proliferator-activated receptor-y coactivator-l1a (PGC-1a),
an important controller of transcription factors and also a key regulator of biogenesis
of mitochondria [15]. The deacetylation of PGC-1« results in an enhanced biogenesis of
mitochondria and is protective against neuronal damage and in ischemic heart disease [16].

Inflammation is an important process involved in body healing, but it also plays a
key role in different diseases, including diabetes, cardiovascular disease, cancer, disease
of the joints, chronic obstructive pulmonary disease, and allergies [17-24]. The nuclear
factor kB (NF-kB) pathway plays a key role in regulating this process [25]. It has been
reported that Sirtl can also deacetylate NF-kB complex which inhibits the NF-«B signaling
and increases oxidative metabolism resulting in suppression of inflammation. However,
due to an antagonistic crosstalk, NF-«B itself can downregulate Sirtl activity via miR-34a,
IFNYy, and reactive oxygen species (ROS), promoting inflammatory responses as observed
in several metabolic- or age-related disorders [26].

Sirtl intracellular localization may change depending on the age of the cell type; for
instance, in young mice, Sirt1 is expressed in the nucleus of cardiomyocytes, whereas in
adult mice its expression can be detected both in the nucleus and cytoplasm [27].

Post-translational modifications (PTM) such as phosphorylation, ubiquitination,
SUMOylation, and S-nitrosylation, play significant roles in modulating the expression
levels, enzymatic activity, and function of Sirtl [28-30]. Sirt]l can undergo phosphorylation
in multiple sites at C-terminus and N-terminus triggered by the serine/threonine kinases
cyclin-dependent kinase 5 (CDK5), and c-Jun N-terminal kinase (JNK) [31-33]. It has been
reported that CDK5 can phosphorylate Sirtl at Ser47 promoting endothelial senescence and
thus, inhibition of CDKS5 resulted in exerting a protective effect towards the development
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of cell senescence [34]. The homeodomain-interacting protein kinase 2 (HIPK2), a DNA
damage response enzyme, can phosphorylate Sirtl at Ser682 which suppresses its activity
without altering the protein expression level. Moreover, Sirtl can be phosphorylated
also by the Janus kinase 1 (JAK1) at Tyr280 and Tyr301, a PTM which does not modify
Sirtl deacetylase activity but is required for Sirtl interaction with the transcription factor
STAT3 [35,36]. The Sirtl protein level can be modulated by the activity of the E3 ubiquitin
ligase SMURF2. SMURF2 ubiquinates Sirtl, triggering its degradation. Analogously, the E2-
conjugating enzyme Ube2v1 triggers Ubc13-mediated Sirtl-ubiquitination and degradation,
whereas the ubiquitination-mediated degradation of Sirt1 is prevented when the enzyme
is bound to the ring finger protein 219 [37-40]. It has been reported that Sirtl can be
SUMOylated at Lys734, resulting in an increased catalytic activity and protein stability,
whereas mutation of Sirtl at Lys734 or desumoylation by the nuclear desumoylase Sentrin-
specific protease 1 (SENP1) resulted in a reduced deacetylase activity [41]. The deacetylase
activity of Sirtl can be diminished also following S-nitrosylation, at Cys387 and Cys390,
resulting in enhanced apoptosis and inflammation by increased acetylation of p53 and
p65 [42—-44]. It has been reported that following stress conditions, Sirtl is dynamically
modified by O-GlcNAcylation at Ser549 in its C-terminus, which boosts its deacetylase
activity, protecting cells from stress-induced apoptosis [45]. Among the possible PTMs,
the S-glutathionylation occurring at Cys67, Cys268, and Cys623 exerts a negative effect
on Sirtl activity, as well as carbonylation [46,47]. Finally, cystathionine (3-synthase and
cystathionine y-lyase may be responsible for the indirect S-sulfhydration of 2 CXXC motifs
located in the catalytic domain of SIRT1 via hydrogen sulfide generation, which results in
an increased protein stability and an enhanced deacetylase activity [48,49].

3. Biosynthesis of NAD* and Sirt]l Regulation

SIRT1 is known as a stress and energy sensor that can be activated by an increased
NAD"/NADH ratio [50]. NAD" is a vital molecule for a number of cellular reactions and
functions such as cellular bioenergetics, metabolism, and survival. Indeed, it is involved in
redox reactions, whereas NADH, which is the reduced form of NAD*, works as an electron
donor, and participates in a number of reactions as a cosubstrate [51,52]. Since many
enzymes utilize NAD™ as substrate, the levels of this molecule are crucial and influence
directly and indirectly a large number of metabolic pathways. NAD™ levels influence
the activity of the enzymes involved in cell metabolism, DNA repair, regulation of gene
expression, mitochondrial activity, redox reactions, inflammation, intracellular molecules
trafficking, aging, and apoptosis [53,54]. As a consequence, several pathological conditions
are characterized by altered intracellular NAD" levels, including cardiovascular diseases,
obesity, neurodegenerative diseases, cancer, and aging [55-57]. In particular, age-related
impairments in endothelial cells result in vascular dysfunction which promotes the rise of
pathological disorders associated with old age [58].

The biosynthesis of NAD* can start from amino acid tryptophan (Trp), nicotinic
acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR), which involve distinct
metabolic pathways to generate the same molecule (Figure 1) [59,60].

The Preiss—-Handler pathway generates NAD™" utilizing NA as a starting molecule.
In the Preiss-Handler pathway, the nicotinic acid phosphoribosyltransferase (NAPRTase)
transforms NA to nicotinic acid mononucleotide (NAMN), utilizing 5-phosphoribosyl-1-
pyrophosphate (PRPP) as a co-substrate and generating pyrophosphate (PPi) as a byprod-
uct. In the next steps, the enzymes nicotinamide mononucleotide adenylyltransferases
1-3 (NMNATs 1-3) catalyze the conversion of NAMN into NA adenine dinucleotide
(NAAD), a molecule that is finally converted into NAD* by the enzyme NAD synthase
(NADSYN). NAD* can also be generated starting from Trp, which is first converted into
N-formylkynurenine (NFK) by the enzyme indoleamine 2,3-dioxygenase (IDO) or tryp-
tophan 2,3-dioxygenase (TDO), and upon four subsequent reaction steps it is converted
into the unstable molecule x-amino-f-carboxymuconate-¢-semialdehyde (ACMS), that
spontaneously undergoes cycling, generating quinolinic acid (QUIN). Subsequently, QUIN
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Cyclization
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is converted into NAMN by the catalytic activity of quinolinate phosphoribosyltransferase
(QPRT) using 5-phosphoribosyl-1-pyrophosphate as a cosubstrate. Finally, NAMN can be
transformed into NAD* via the Preiss-Handler pathway. The so-called “NAD™" salvage
pathway” is a metabolic route that allows cells to synthesize NAD™ starting from NAM,
which is first converted into the intermediate nicotinamide mononucleotide (NMN) by
nicotinamide phosphoribosyltransferase (NAMPT), which utilizes ATP and PRPP as a
cosubstrate. In the last steps, NMNAT converts NMN to NAD*. The last main metabolic
route for the biosynthesis of NAD™ takes place utilizing NR, which undergoes phosphory-
lation catalyzed by NR kinases (NRK1/NRK2) generating NMN, a molecule that is finally
converted to NAD* by NMNATs in the last step.
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Figure 1. Key pathways in NAD* biosynthesis. The Preiss-Handler pathway (yellow); de novo
biosynthesis pathway (green); and NAD™ salvage pathway (light brown).

It has been reported that specific concentrations of NAM and NAD* exert a critical
impact on cell survival, although excessively elevated concentrations of NAM have been
proven to be detrimental [61]. For instance, it has been demonstrated that niacin administra-
tion in primary human aortic endothelial cells enhances intracellular NAD" levels, which
in turn activate Sirt1 activity, resulting in improved nitric oxide (NO) bioavailability [62].
There is a strict interplay between NAM and Sirt1 activity. NAM is known to be a potent
inhibitor of Sirtl activity, since it is a product reaction of Sirtl when the enzyme transfers
the acetyl residue from the acetyllysine residue of histones to the ADP-ribose component
of NAD™ [63,64]. In this context, the enzyme nicotinamide N-methyltransferase (NNMT)
plays a key role. NNMT catalyzes the methylation of NAM, yielding 1-methylnicotinamide
(MNA) [65]. By methylating NAM, it reduces the intracellular concentration of NAM,
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which at high levels would inhibit Sirt1 activity. Indeed, the use of NAM as an inhibitor of
both Sirtl and poly-ADP-ribose polymerases has been proposed for cancer chemopreven-
tion and therapy, especially in those malignancies where NNMT has been reported to be
upregulated [66-68]. Accordingly, it has been reported that in endothelial cells, the NNMT
inhibition resulted in nuclear Sirtl downregulation and upregulation of the phosphorylated
Sirtl on Ser47, suggesting that the endothelial NNMT/Sirt1 pathway exerts a cytoprotective
role protecting endothelial cell viability [69]. In addition, several studies demonstrated a
positive effect of both NNMT and MNA, exerting vasoprotective, anti-inflammatory and
anti-thrombotic activities [70-72]. However, some studies showed that although NAM can
act initially as an inhibitor of Sirtl, it might subsequently boost Sirtl activity due to its
conversion to NAD* through the NAD" salvage pathway; thus, further studies are required
to elucidate these aspects [73-75].

4. Endothelial Dysfunction

The endothelium is constituted by a monocellular layer that covers the inner surface of
blood vessels. It crucially contributes to maintaining vascular homeostasis through differ-
ent protective mechanisms, including regulating permeability and vascular tone, and exerts
anti-inflammatory, antioxidant, anti-proliferative, and anti-thrombotic functions [76-79].
Indeed, the endothelium can induce the release of molecules with auto-, para- or endocrine
activity, such as NO, prostacyclin, C-type natriuretic peptide (CNP), and endothelium-
derived hyperpolarizing factor. By secreting these molecules, the endothelium contributes
to inhibiting smooth muscle cell proliferation and migration, platelet adhesion and aggrega-
tion, and the fine regulation of biological pathways associated with thrombogenesis [80,81].
Endothelial dysfunction is characterized by a reduced synthesis and/or bioavailability
of the vasodilator NO coupled with impairments due to inflammation, senescence, and
oxidative stress, thus being a key factor for the development of most cardiovascular dis-
eases (CVDs), including atherosclerosis [82]. Due to aging, several changes occur in the
vasculature triggered by systemic endothelial dysfunction and amplified rigidity of large
arteries [83,84]. It has been reported that endothelial dysfunction is an initial occurrence of
early vascular aging that progresses in aging vessels and that can arise also in the absence
of apparent CVDs or established risk factors [85,86]. Thus, the deteriorated endothelial
function due to aging is important, not only from a diagnostic and pathophysiological
perspective, but is also displays significant therapeutic potential.

5. Sirtl and Endothelial Aging

Vascular aging involves arteriosclerosis, atherosclerosis, and vascular calcifications
and is accelerated by several chronic disorders, and environmental and lifestyle factors [87].
There is established evidence that an early decline in Sirt1 levels is associated with early
microvascular dysfunction in adulthood with a consequently increased risk of developing
CVD (Figure 2) [88]. A study performed by Guo et al. utilizing endothelial Sirt1-deficient
mice demonstrated that downregulation of soluble guanylyl cyclase due to aging and
upregulation of cyclooxygenase (COX)-2 in arteries is in part a consequence of the loss
of endothelial Sirtl function. Moreover, it was reported that the overexpression of the
enzyme in the endothelium counteracts the impairment of vasodilator responses due to
aging and suppresses vasoconstrictor reactions to acetylcholine, enhancing Notch signaling
to upregulate soluble guanylyl cyclase-1 in smooth muscle cells [89].

It has been reported that Sirt1 directly impacts the endothelial function of arteries by
deacetylating endothelial NO synthase (eNOS), which in turn is activated and preserves
vascular homeostasis through NO production. Consistently, the inhibition of Sirt1 in the en-
dothelium of arteries inhibits endothelium-dependent vasodilation and decreases bioavail-
able NO [90]. Nonetheless, it has not been elucidated yet whether the Sirtl-mediated
deacetylation of eNOS has an impact on its phosphorylation status and on the consequent
NO release [91]. An elegant study performed by Bai et al. demonstrated that the overex-
pression of human Sirt1 in the endothelium in eNOS-deficient mice is protective against
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hypertension and counteracts adverse arterial remodeling occurring in aging vessels [92].
In mice undergoing calorie restriction, an increase was reported in mitochondrial biogene-
sis, oxygen consumption, and adenosine triphosphate production, and notably a higher
expression of Sirtl was detected. However, in eNOS-knockout mice, calorie restriction-
induced expression of Sirtl was diminished, suggesting a mutual regulatory loop involving
the two enzymes in the endothelium [93].

J» age-induced impairment of vasodilator responses \ &
1 eNOS

4 mitochondrial biogenesis

Prevents age-induced COX-2 expression

/ Antioxidant capacity

Regulates the expression of transcription factors FoxO, NRF2, PPARa, KLF2
Regulates NADPH oxidase and mTOR to suppress oxidative stress
Maintains endothelial glycocalyx

J NFkB

J SASP

J LKB1/AMPK
J» Notch signaling /

Vascular oxidative stress

‘MVascular Health

Figure 2. Effects of Sirtl as anti-aging and anti-senescence factors in endothelium.

The aging of the vasculature is a progressive event in which an impairment in the
relative involvement of NO and other mediators, such as hydrogen peroxide to endothelial-
dependent vasodilation and vasoconstriction, occurs. Indeed, while in healthy subjects
NO is the main actor for flow-mediated dilation, patients affected by CVDs display a
reduced NO-mediated dilation and an augmented hydrogen peroxide contribution [94].
It has been reported that mitochondrial dysfunction occurring in the endothelium results
in a weakened /weaker endothelium-dependent vasodilatation as a consequence of di-
minished NO availability but enhanced generation of hydrogen peroxide [95]. Notably,
Sirtl contributes to modulating mitochondrial biogenesis by enhancing the expression of
PGC-1cc as well as other genes. Indeed, overexpression of Sirtl partly reverts the impaired
endothelium-dependent vasodilatation in mice characterized by flawed mitochondrial
function [96]. During aging, a progressive decline has been observed in Sirtl expression
coupled with an increase of COX-2 which generates vasoconstrictor molecules to boost
endothelium-dependent contractions. Interestingly, the upregulation of Sirtl does not
impact eNOS function but it counteracts age-induced COX-2 expression and increases
soluble guanylyl cyclase-mediated vasodilatation [89].

ROS play a key role in the onset and progression of several diseases including car-
diovascular diseases, diabetes, neurodegenerative diseases, and cancer [97-103]. In fact,
several risk factors for developing a CVD are linked to the rise of oxidative stress, due
to an increase in ROS, which promotes vascular aging and endothelial dysfunction and
suppresses Sirtl expression [104,105]. It has been demonstrated that oxidant stimuli in-
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cluding ROS, low-density lipoprotein cholesterol, and high glycaemia can modify the
Sirtl expression level, setting the basis for sustained endothelial dysfunction, since the
diminished Sirtl level is itself a cause of enhanced ROS generation, and contributes to
vascular inflammation [31,106,107]. Indeed, Yang et al. recently demonstrated that chronic
Sirtl supplementation ameliorates endothelial function and vascular compliance by boost-
ing eNOS activity and repressing NADPH oxidase (NOX)-related oxidative stress [108].
Consistently, it has been reported that, in animal models, calorie restriction inhibits the
decline of Sirtl levels in arteries and consequent endothelial dysfunction by counteracting
oxidative stress [109-113]. Moreover, the strict link between Sirtl and oxidative stress was
confirmed by a study in which the Sirt1 activator SRT1720 was utilized. The activation of
Sirt]l was able to revert the endothelial dysfunction by diminishing oxidative stress and
inflammation, potentiating also eNOS expression [114-116]. Interestingly, Sirtl activation
improves angiogenesis in wounds and facilitates wound healing by promoting angiogene-
sis, and by protecting vascular endothelial cells from oxidative stress injury [117]. There is
strong evidence that Sirtl regulates glucose and lipid metabolism through its deacetylation
activity, and exerts a positive role in ameliorating insulin resistance, which together with
obesity is a major cause of endothelial oxidative stress and early vascular aging [118].
Accordingly, it has been reported that the therapeutic modulation of Sirtl ameliorates
obesity- and age-related endothelial dysfunction and protects against high-fat diet-induced
metabolic abnormalities [119,120]. Zhou et al. reported that dapagliflozin improves en-
dothelial dysfunction by restoring eNOS activity and NO bioavailability, and decreasing
ROS levels via Sirtl activation in oxidative stress-stimulated endothelial cells [121]. More-
over, it has been reported that Sirtl can exert a protective effect against oxidative stress by
influencing the expression of several nuclear transcription factors such as NF-kB, FoxO,
nuclear factor-erythroid-2-related factor 2 (NRF2), peroxisome proliferator-activated recep-
tor alpha (PPAR-«), and Kriippel-like factor 2 (KLF2) [122-125]. It has been demonstrated
that Sirt1 can induce the upregulation of manganese superoxide dismutase thus reducing
oxidative stress [126,127]. The ability of Sirtl to counteract oxidative stress arises also from
its capacity of interaction with hydrogen sulfide, due to the inhibition of p66Shc adaptor
protein expression levels, through the regulation of NOX, eNOS, and the mechanistic target
of rapamycin (mTOR) [126,128-131]. Finally, Sirtl contributes to the homeostasis of glyco-
calyx, which is crucial for flow-induced NO release and inhibits oxidative stress [132,133].
Despite the recent advances achieved in understanding the intricate interactions by which
Sirtl contributes to preventing vascular aging, many mechanisms related to Sirt1 protection
against endothelial dysfunction are still far from being fully elucidated, thus requiring
deeper insights.

6. Sirtl and Endothelial Senescence

Endothelial senescence is a pathophysiological process in which the endothelium
undergoes structural and functional changes and is crucial for vascular dysfunction, which
leads to age-related disease [134-136]. Senescent endothelial cells are characterized by
changes in cell size and morphology, enhanced lysosomal activity, resistance to apoptosis,
decreased NO bioavailability, cell cycle arrest, and reduced proliferation. Moreover, they
display augmented senescence-associated-3-galactosidase (SA-{3-gal) activity, senescence-
associated secretory phenotype (SASP), and increased expression of senescence-associated
proteins such as P16 and Sirtl [134,137]. While aging is characterized by a gradual func-
tional decline, senescence is a cellular response featuring irreversible growth arrest and
other phenotypic alterations that include a pro-inflammatory secretome [138,139].

Although endothelial senescence and endothelial dysfunction are mainly initiated by
oxidative stress and inflammation, the exact molecular regulatory mechanisms underlying
this process remain largely undisclosed [95]. It has been reported that endothelial cell
senescence occurs following a number of replication cycles or as a consequence of excessive
stress stimulation. Indeed, an accumulation of senescent endothelial cells in arteries during
aging has been demonstrated, and in pathological conditions including atherosclerotic
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plaques and abdominal aortic aneurysm [137,140-143]. Following senescence, endothelial
senescent cells contribute to sustaining a pro-inflammatory and pro-oxidative status and
gradually express a SASP that boosts the establishment of a senescent microenvironment
that promotes vascular aging [144-147]. It has been reported that Sirt1 is able to repress
the transcriptional activity of NFkB, the main transcription factor for SASP, through the
interaction with NFkB and the consequent deacetylation of RelA/p65 at lysine [95,148,149].
Hayakawa et al. reported that Sirtl can inhibit the expression of SASP factors such as IL-6
and IL-8 through the deacetylation of histones in their promoter regions [150]. Cellular
senescence is causally involved in inducing age-related phenotype and thus it should
not surprise that removing senescent cells counteracts or delays tissue dysfunction and
prolongs lifespan [151]. Endothelial senescence promotes the establishment of endothelial
dysfunction, a pro-inflammatory, pro-oxidant and pro-thrombotic condition, and reduces
the regeneration capacity of the endothelium, thus playing a crucial role in promoting
atherogenesis and age-related vascular disorders [136,152-154]. Indeed, human artery en-
dothelial cells that have become senescent arrest the cell cycle preventing further divisions
and acquire typical phenotypic traits causing impairment of the angiogenic process, vascu-
lar inflammation, and remodeling, and display increased levels of ROS and a decreased
NO bioavailability [144,155,156]. In this regard, the accumulation of endothelial senescent
cells in the vasculature is a serious clinical problem and several senolytic molecules have
been designed in order to mitigate the SASP effects [157-159].

It has been reported that Sirtl displays anti-senescence properties in a wide range of
mammalian cells, and that Sirt1 inhibition triggers premature senescence-like replication
arrest in human cancer cell lines, characterized by senescence-associated beta-galactosidase
activity and increased expression of plasminogen activator inhibitor 1. Moreover, the
senescence status was accompanied by an altered activation of some mitogen-activated
protein kinase (MAPK) pathways, such as extracellular-regulated protein kinase, c-jun
N-terminal kinase and p38 MAPK, in response to epidermal growth factor (EGF) and
insulin-like growth factor-I (IGF-I) [160]. Moreover, a study performed by Zheng et al.
demonstrated that Sirtl inhibition by nicotinamide induced a premature senescence of
human umbilical vascular endothelial cells (HUVECs), whereas a Sirtl overexpression
triggered by sodium hydrosulfide was able to delay senescence of HUVECs induced by
NAM [161]. A recent study performed by Tai et al. showed that the administration of
dapagliflozin protects endothelial cells against the rise of senescence by regulating Sirtl
signaling in diabetic mice [162]. In primary porcine aortic endothelial cells (PAECs), which
underwent senescence after several passages, an increased phosphorylation of Sirtl at
serine 47 was detected, a post-translational modification that exerts an inhibitory effect
on biological functions of Sirtl in endothelial cells [31]. In line with these findings, the
endothelial cells of transgenic mice with endothelial-specific overexpression of Sirtl were
found to be more resistant to paraquat-induced vascular senescence [163]. Senescent PAECs
showed enhanced levels of both liver kinase B1 (LKB1), a serine/threonine kinase that also
acts as a tumor suppressor, and phosphorylated AMP-activated protein kinase (AMPK),
a downstream target of LKB1. This evidence suggests that Sirt] represses LKB1/AMPK
signaling resulting in the promotion of survival and proliferation, and thus inhibiting
senescence in endothelial cells [163]. In the nucleus, Sirtl binds to the DOC domain of
HECT and RLD domain containing E3 ubiquitin protein ligase 2 (HERC2) through its
amino-terminus, which in turn is responsible for the ubiquitination LKB1 in the nucleus
of endothelial cells. Through this mechanism, Sirt1 finely regulates the crosstalk between
endothelial and vascular smooth muscle cells counteracting harmful arterial remodeling
and maintaining vascular homeostasis [92].

It has been reported that Sirt1 deficiency in endothelial cells promotes the development
of fibrosis and induces aberrant secretome, mainly related to activated Notch signaling,
which is known to promote senescence, increased permeability and pro-inflammatory
responses [89,164-167]. Indeed, it has been demonstrated that Notch pathway components
are upregulated in luminal endothelial cells of atherosclerotic lesions in both mouse and
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human aortas, as well as in aged but not in young endothelial cells. The upregulation
of Notch pathways results in significantly upregulated expression of several molecules
implicated in the inflammatory response such as IL-6, IL-8, IL-1a, RANTES and ICAM-
1[168]. In this context, it is noteworthy that Sirt1-deficient endothelial cells are characterized
by a marked activation of Notch signaling, proven by the overexpression of delta-like
ligand 4 (DLL4), Notch intracellular Domain (NICD) and Notch target genes such as Hey1
and Hes1 [167]. However, although it has been reported that an overexpression of Sirtl
in smooth muscle cells upregulates the Notch signaling to upregulate soluble guanylyl
cyclase, which contrasts COX-2, thus preventing vascular aging, it is still unclear whether
Sirtl counteracts the rise of senescence by inhibiting Notch signaling [89].

It is well known that Sirtl plays a key role in maintaining genome stability which is
one of the major mechanisms by which accumulating DNA damage during cell replications
leads to accumulation of senescent endothelial cells in arteries [169-171]. Indeed, upon
DNA damage, the activation of Sirtl exerts a protective effect against p53-induced senes-
cence or apoptosis by interacting with poly-ADP ribose and forms molecular complexes
with key factors such as checkpoint kinase 2 (CHEK2), BRCA1/BRCA2-associated helicase
1, tumor suppressor p53-binding protein 1, Werner helicase, BRG1, and H2AX [172-175].

Finally, another mechanism by which endothelial cells undergo senescence is the
telomere shortening or capping [140,176,177]. It has been reported that Sirt1 is able to
interact with telomeric repeat-binding factor 2-interacting protein 1 (TERF2IP), a regulator
of both telomere function and NFkB signaling, preventing the nuclear-cytoplasmic shuttle
of TERF2IP which results in a suppressed activation of NFkB and an upregulation of COX-
2 [31,178]. It has been demonstrated that cyclin-dependent kinase 5 hyperphosphorylation
of Sirt] at the serine 47 residue blocks the antisenescence activity of Sirtl, and plays a pivotal
role in the loss-of-Sirtl function occurring in vascular aging. Indeed, the use of roscovitine,
a cyclin-dependent kinase 5 inhibitor, prevents the development of cellular senescence
and atherosclerosis in mice [33]. The anti-aging effects of Sirtl have also been linked to
the aging-suppressor protein Klotho. Indeed, it was demonstrated that Klotho deficiency
downregulates Sirtl activity in endothelial cells [179]. Taken together, these pieces of
evidence confirm that vascular aging occurs in part also due to endothelial senescence
and thus, current efforts are directed to the development of senotherapeutics which can be
senolytics, drugs that can remove senescent cells, or senomorphics, which are molecules
able to repress their SASP secretome [180-184]. Given the above-mentioned roles of Sirt1,
this enzyme is an excellent candidate for preventing cellular senescence, in order to develop
Sirtl-based therapies to reverse endothelial cell senescence and vascular aging.

7. Conclusions

Due to its crucial role in vascular aging, Sirtl represents a promising therapeutic
target. Indeed, through its antioxidant and anti-inflammatory effects, and by improving
endothelium-dependent vasodilatation, Sirtl prevents arterial aging. Discovering natural
compounds or designing and developing synthetic drugs that could be effective and safe
molecules for achieving Sirt] activation could be an essential strategy for preventing and
treating vascular aging. In this context, identifying nutraceutical regimens providing
Sirtl-activating agents may also have significant importance for health promotion.
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