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A B S T R A C T

The hydraulic bulge test (HBT) is an important experimental technique to identify the properties of materials
and, in particular, metals. One of the main advantages of such technique, in testing metals, is the possibility of
reaching high levels of deformation before fracture. Moreover it allows the investigation of a biaxial loading
condition. A hemispherical test can be performed using mechanical punches or the hydraulic pressure of a
fluid. When hydraulic pressure is used, the test is not affected by friction. The hydraulic bulge test (HBT) is
therefore a very efficient method to evaluate the properties of metals at large strains. Usually, the outcome
of the HBT is the hardening curve in the equi-biaxial stress state that occurs at the top of the dome, during
the expansion. In this paper a different approach is proposed, where the full-field displacement field obtained
with stereo-DIC is used in an inverse identification scheme. The finite strain theory is used to map the stress
and strain in the reference configuration so that the problem can be reduced to a 2D plane stress case. The
method was first validated using a numerical model of the HBT and then applied on a real test performed on
a BH340 steel.
1. Introduction

The hydraulic bulge test (HBT) represents an effective and well
established experimental procedure to identify the properties of ma-
terials (Bunge et al., 2000). The test is performed placing a blank
sheet under a die with a circular aperture, the sheet is clamped at
the borders and deformed by the action of a fluid applied to one side.
When the bulge is formed, the stress state in proximity of the dome
apex can be approximated to the membrane stress of a thin-walled
spherical vessel, enabling the calculation of the true stress–true strain
curve from the local curvature. With respect to the standard uniaxial
tensile tests, the HBT allows to achieve a much larger deformation,
because the plastic instability and the localized necking is postponed.
Many examples can be found in the literature where the HBT is used
to characterize the large strain behavior of ductile metals, for instance,
applications were presented by Gutscher et al. (2004) and Chen et al.
(2018). Moreover, during the HBT, the material is deformed according
to a nearly equi-biaxial state of stress, therefore it is an important
experimental method to identify the material behavior in multiaxial
loading conditions; for instance, Barlat et al. (2005) and Chen et al.
(2016) used the bulge test to calibrate the yield function of advanced
anisotropic models. In practice, the HBT is often used in combination
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with other tests (e.g. tensile tests, shear tests, etc.) to improve the
material characterization (Zang et al., 2011; Pradeau et al., 2016;
Hérault et al., 2021). The HBT was applied to many different problems
related to material testing, for instance, Barnwal et al. (2021) used
it to study fracture in metals and Lee et al. (2013) to evaluate the
performance of materials in warm conditions by heating the fluid under
pressure. Modified versions of the HBT, which exploit a similar working
principle, were also proposed by Kuwabara and Sugawara (2013), for
instance, in order to analyze mixed loading conditions, the hydraulic
pressure was combined with axial tension through a multiaxial tube
expansion test. Another variation, proposed by Williams and Boyle
(2016), consists in performing a HBT with an elliptical hole to study
the anisotropic behavior of metals.

From an experimental point of view, one of the key points of the
HBT is the determination of the radii of curvature in the dome, which
is used to compute the true stress. In the past, the calculation was based
on the measurement of the peak height during the tests, as illustrated
in the pioneering work of Hill (1950), or using a spherometer (Young
et al., 1981). Nowadays, optical systems and full-field measurements
are usually preferred because of their accuracy as demonstrated by Koç
et al. (2011). The ISO 16808:2014 standard specifies a procedure to
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obtain the biaxial stress–strain curve using optical measurement sys-
tems, however, Mulder et al. (2015) proposed an alternative method to
increase the accuracy and the problem of stress–strain measurement in
the bulge test is still a research topic. Recently, Chen (2020) presented
a general theory to extract the stress and strain curve at the apex
of a bulge test that holds for both circular and elliptical bulge test,
irrespective of material properties.

In this paper a different approach is proposed, the displacement
field measured during the bulge test through digital image correlation
(DIC) (Sutton et al., 2009) is exploited to identify the materials proper-
ties applying an inverse identification scheme (Grédiac and Hild, 2013).
Inverse methods are well documented in many applications of material
characterization, see for instance the review of Avril et al. (2008), how-
ever, they are still not used for the HBT, where the standard procedures
described above are primarily adopted. Inverse methods have some ad-
vantages with respect to the standard methods, in particular they allow
to extract more information from a single test using the heterogeneous
strain fields measured during the test in the specimen surface. Several
inverse strategies can be used to identify the material properties from
full-field measurement, among the most used, we can name the finite
element model updating (FEMU) and the virtual fields method (VFM).
According to FEMU, a virtual copy of the test is reproduced with finite
elements and the constitutive parameters are iteratively changed in
order to obtain the best match between experiments and numerical
results. Many examples can be found in plasticity (Meuwissen et al.,
1998; Cooreman et al., 2008; Prates et al., 2016), including identifica-
tion at large strains (Kajberg and Lindkvist, 2004), and application to
complex anisotropic models (Kajberg and Lindkvist, 2004). The VFM,
instead, uses directly the strain full-field data measured during the
experiment to write the static equilibrium law as a function of the
constitutive parameters, employing the principle of virtual work (Pier-
ron and Grédiac, 2012). In case of non-linear models, the constitutive
parameters can be then identified using a minimization algorithm. The
VFM was applied successfully in plasticity, Rossi and Pierron (2012)
developed an algorithm for large deformation, Rossi et al. (2016), Kim
et al. (2014), Fu et al. (2017) and Lattanzi et al. (2020) studied in
details the possibility of applying the VFM for anisotropic plasticity.
With respect to FEMU, the VFM does not require the use of FE models,
thus is usually computationally more efficient, as shown by Zhang et al.
(2017), and is less affected by the boundary conditions. On the other
hand, VFM is sometimes less flexible than FEMU, because it requires
the strain measurement over the whole surface area of the specimen
and an assumption about the through thickness deformation, e.g. plane
stress or plane strain hypothesis. Other inverse methods, similar to
VFM, were proposed to use directly the full-field data to identify, for
instance the post-necking behavior of metals (Coppieters et al., 2011;
Rossi et al., 2018b).

Most of the cited inverse methods were developed for 2D problems,
since full 3D measurements are still difficult to obtain, especially for
metals, although some attempts of using interpolation functions to
investigate the internal deformation of solids where recently developed
by Rossi et al. (2018a). In the HBT, the plane stress hypothesis is ac-
ceptable, however the deformation is three dimensional. In this paper,
finite deformation theory is used to provide a framework that enables
to efficiently implement the HBT in inverse methods, using the full-field
data measured from stereo-DIC. The method is described in Section 2,
a numerical validation is given in Section 3 and a demonstration on a
real experiment is presented and discussed in Sections 4 and 5.

2. Method description

During the HBT, a blank sheet is deformed by the hydraulic pressure
of a fluid. Let us consider a Cartesian coordinate system with the origin
placed at the center of the initial blank sheet and the 𝑧-axis oriented
perpendicular to the sheet surface. In the undeformed or reference
configuration ℬ , the position of each point 𝐏 of the sheet can be
2
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identified by a set of coordinates 𝐗, in the 𝑋–𝑌 plane so that 𝐗 =
[𝑋, 𝑌 , 0 ]. At the time step 𝑡 of the test, the new position of point 𝐏
n the deformed configuration ℬ will be 𝐱 = [𝑥, 𝑦, 𝑧], as illustrated in
ig. 1.

At a given time 𝑡, for each point 𝐏 we can associate a thickness 𝑠 (𝐏, 𝑡)
nd a surface normal �̂� (𝐏, 𝑡). It is worth noting that in the reference
onfiguration ℬ0, the thickness 𝑠0 is constant and the surface normal
s always equal to �̂�0 = [0, 0, 1], according to the chosen coordinate
ystem.

Applying the finite strain theory, the deformation is described by
he deformation gradient 𝐅, defined as:

= 𝐺𝑟𝑎𝑑 𝜒(𝐗, 𝑡) (1)

ith 𝜒 a function that, at each time step 𝑡, transforms the coordinates
f a point 𝐏 from the reference to the deformed configuration, i.e. 𝐱 =
(𝐗, 𝑡). Expressing the component of 𝐅 in a matrix format, it follows1:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑥
𝜕𝑋

𝜕𝑥
𝜕𝑌

𝜕𝑥
𝜕𝑍

𝜕𝑦
𝜕𝑋

𝜕𝑦
𝜕𝑌

𝜕𝑦
𝜕𝑍

𝜕𝑧
𝜕𝑋

𝜕𝑧
𝜕𝑌

𝜕𝑧
𝜕𝑍

⎤

⎥

⎥

⎥

⎥

⎦

(2)

The first two columns of 𝐅 can be readily determined from the
surface data, however the third column is undetermined since there
is no information about the through-thickness behavior of the sheet.
Using the polar decomposition, the deformation gradient 𝐅 can be
divided in the rotation matrix 𝐑 and the right stretch tensor 𝐔:

𝐅 = 𝐑 ⋅ 𝐔 (3)

where (⋅) is a matrix multiplication. The right stretch tensor 𝐔 is a
symmetric tensor that maps the deformation in the undeformed config-
uration and can be computed directly from the deformation gradient
as:

𝐔 =
√

𝐅𝑇 ⋅ 𝐅 (4)

making the assumption that there are not shear strains through
the thickness, the components of 𝐔 corresponding to the shear in the
𝑍-direction can be set to zero:

𝐔 =
⎡

⎢

⎢

⎣

𝑈11 𝑈12 0
𝑈21 𝑈22 0
0 0 𝑈33

⎤

⎥

⎥

⎦

(5)

then, if the 𝐔 of Eq. (5) is input in the matrix multiplication of Eq. (3),
it turns out that the third column of 𝐅 is equal to:

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑥
𝜕𝑍
𝜕𝑦
𝜕𝑍
𝜕𝑧
𝜕𝑍

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑈33

⎡

⎢

⎢

⎣

𝑅13
𝑅23
𝑅33

⎤

⎥

⎥

⎦

(6)

where 𝑅𝑖𝑗 are the components of the rotation matrix 𝐑. By definition
of the rotation matrix, each column of 𝐑 can be interpreted as a unit
vector that represents the rotated orthonormal basis. In this sense,
according to the chosen coordinate system, the third column of 𝐑 in
Eq. (6) is exactly the surface normal �̂�, that represents the rotation of
the basis vector corresponding to 𝑍-direction, i.e. �̂�0 = [0, 0, 1]. For
ach point 𝐏, the normal �̂� can be easily computed from the surface
ata, using suitable normal detection algorithms. Making the further
ypothesis of volume constancy, which is usually valid in large strain
lasticity, it follows that det(𝐔) = 1 and 𝑈33 can be derived, exploiting
he properties of the determinant, as:

det 𝐔 = 𝑈33 ⋅ det 𝐔1 with 𝐔1 =
[

𝑈11 𝑈12
𝑈21 𝑈22

]

(7)

1 For the sake of simplicity, since an orthogonal Cartesian system is used,
ensors are here represented directly as matrices, although formally this is
ot exact since matrices and tensors are different entities, and the matrix
epresentation of the tensor components depends on the used basis vectors.
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Fig. 1. Schematic of the initial and deformed sheet, the used coordinate system and the pressure distribution are illustrated.
𝜎

using Eq. (8), it can be shown that the sub-matrix 𝐔1 only depends on
the first two columns of 𝐅, that is:

𝐔1 =
√

𝐅1
𝑇 ⋅ 𝐅1 with 𝐅1 =
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⎢

⎢
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𝜕𝑋

𝜕𝑧
𝜕𝑌

⎤

⎥

⎥

⎥

⎥

⎦

(8)

where 𝐅1 can be computed from the surface data since only derivatives
along 𝑋 and 𝑌 are involved. Eq. (6) can be rewritten as:

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑥
𝜕𝑍
𝜕𝑦
𝜕𝑍
𝜕𝑧
𝜕𝑍

⎤

⎥

⎥

⎥

⎥

⎦

= 1
det(𝐔1)

⎡

⎢

⎢

⎣

�̂�𝑥
�̂�𝑦
�̂�𝑧

⎤

⎥

⎥

⎦

(9)

Finally, the complete rotation matrix can be obtained from the polar
decomposition as:

𝐑 = 𝐅 ⋅ 𝐔−1 (10)

For each point 𝐏 at the time step 𝑡, the matrices 𝐅, 𝐑 and 𝐔 com-
pletely define the deformation state. Since the deformed configuration
of the sheet metal during the test can assume a rather complex shape,
it is useful to map strain and stress back in the reference configuration
ℬ0. To this purpose, the strain is computed as the material logarithmic
strain tensor 𝐄:

𝐄 = log(𝐔) (11)

and the first Piola–Kirchhoff stress 𝐓1𝑃𝐾 is used instead of the Cauchy
stress 𝐓. The Cauchy stress 𝝈 represents the actual stress state, mapped
in the current deformed configuration ℬ, the first Piola–Kirchhoff
stress 𝐓1𝑃𝐾 , instead, applies the external forces to the undeformed
configuration ℬ0, similarly to what the engineering stress does in one
dimension. It can be computed from 𝝈 as:

𝐓1𝑃𝐾 = det (𝐅)𝝈 𝐅−𝑇 (12)

The advantages of this approach in data processing will be evident
later in the paper.

2.1. Stress–strain curve derivation

Let us consider a circular portion of the blank sheet 𝒜 with a radius
𝑅0 in the undeformed configuration as illustrated in Fig. 2. The stress
in 𝑅0 can be derived using the equilibrium between the load applied
by pressure in 𝒜 and traction force 𝐝𝐭 of the material at the boundary
𝜕𝒜 , similarly to the classical Barlow’s formula for tubes and vessels.

The resultant force due to the pressure is indicated with 𝐟 (𝑝) and
given by:

𝐟 (𝑝) = 𝑝 �̂� 𝑑𝐴 (13)
3

∫𝒜
where 𝑝 is the pressure magnitude, 𝑑𝐴 the infinitesimal area and �̂� the
normal unit vector. The pressure force can be computed in terms of the
undeformed configuration 𝒜0 as:

𝐟 (𝑝) = ∫𝒜0

𝑝 det(𝐅)𝐅−𝑇 ⋅ �̂�0 𝑑𝐴0 (14)

where the normal is always �̂�0 = [0, 0, 1] and det(𝐅) = 1 under
the hypothesis of volume constancy. Considering the problem as axi-
symmetric, we can assume that the components of the pressure along
the plane 𝑋–𝑌 are self-balanced, so that the resultant 𝐟 (𝑝) is directed
along the 𝑧-axis, i.e. 𝐟 (𝑝) = [0, 0, 𝑓 (𝑝)

𝑧 ]. In actual experiments, the bulge
test can deviate from pure axial-symmetry if the material is anisotropic.
However, in practice, even if a moderate level of anisotropy is present,
such hypothesis is still largely applicable. Applying matrix multiplica-
tion to Eq. (14), the only non-zero component 𝑓 (𝑝)

𝑧 becomes:

𝑓 (𝑝)
𝑧 = 𝑝∫𝒜0

𝐹−𝑇
33 𝑑𝐴0 (15)

On the other hand, the force due to the material tension is indicated
with 𝐟 (𝑡) and depends on the traction force 𝐝𝐭. The traction force can be
computed in the undeformed configuration exploiting the definition of
the Piola–Kirchhoff stress tensor, that maps the stress and the external
force in the undeformed configuration. Thus:

𝐟 (𝑡) = ∫𝜕𝒜
𝐝𝐭 = ∫𝜕𝒜0

𝐓1𝑃𝐾 ⋅ �̂�0 𝑑𝐴0 (16)

where, in this case, the normal is perpendicular to the circumference
and is equal to �̂�0 = [cos 𝛼, sin 𝛼, 0], with 𝛼 the angle shown in Fig. 2.
As discussed before, because of the axial-symmetry, the only non
zero component of 𝐟 (𝑡) is the one along 𝑍, that is, applying matrix
multiplication to Eq. (16):

𝑓 (𝑡)
𝑧 = ∫𝜕𝒜0

(

𝑇 1𝑃𝐾
31 cos 𝛼 + 𝑇 1𝑃𝐾

32 sin 𝛼
)

𝑑𝐴0 (17)

moreover, thanks to the axial symmetry, the term between the paren-
thesis in Eq. (17) is constant in 𝜕𝒜0, therefore the integral can com-
puted as:

𝑓 (𝑡)
𝑧 = − 𝜅�̄�(2𝜋𝑅0𝑠0) (18)

where �̄� is the equivalent stress and 𝜅 is a constant defined as:

𝜅 = −

(

𝑇 1𝑃𝐾
31 cos 𝛼 + 𝑇 1𝑃𝐾

32 sin 𝛼
)

�̄�
(19)

This constant can be derived from the measured strain field and the
complete steps are detailed in Appendix. To satisfy the equilibrium
along 𝑍, the sum of the pressure force (Eq. (15)) and the tension force
(Eq. (18)) must be equal to zero, thus:

𝑝∫𝒜0

𝐹−𝑇
33 𝑑𝐴0 − 𝜅�̄�(2𝜋𝑅0𝑠0) = 0 (20)

and the equivalent stress can be derived as:

̄ =
𝑝

𝐹−𝑇
33 𝑑𝐴0 (21)
𝜅2𝜋𝑅0𝑠0 ∫𝒜0
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Fig. 2. Circular portion 𝒜 of the blank sheet used to retrieve the stress–strain curve; the axial-symmetry and the distribution of the external forces are shown in the right, applied
to the undeformed or deformed configuration, respectively.
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In actual experiments, the displacement, the strain and the defor-
mation gradient are measured on the specimen surface through image
analysis on a discrete number of points. If we have an equispaced grid
of points with the same initial area 𝛥𝐴0, it follows:

∫𝒜0

𝐹−𝑇
33 𝑑𝐴0 ≈ 𝛥𝐴0

𝑚
∑

𝑖
𝐹−𝑇
33 (𝑖) ≈

𝜋𝑅0
2

𝑚

𝑚
∑

𝑖
𝐹−𝑇
33 (𝑖) (22)

here 𝑚 are all points inside the circumference with radius 𝑅0. Accord-
ngly, Eq. (21) can be rewritten as:

�̄� =
𝑝𝑅0
𝜅 2𝑠0

⋅
1
𝑚

𝑚
∑

𝑖
𝐹−𝑇
33 (𝑖) (23)

The corresponding equivalent strain �̄� can be computed from the
train measurements. In case of isotropic von Mises, neglecting the
lastic part, it can be readily obtained as the sum of the equivalent
train increments, i.e. �̄� = ∑

𝛥�̄�, where:

�̄� =
√

2
3
𝛥𝐄 ∶ 𝛥𝐄 (24)

According to the axial symmetry, the equivalent strain �̄� is constant
in the circumference 𝜕𝒜0, therefore, from Eqs. (23) and (24) it comes
out directly the stress–strain curve of the material. It is worth noting the
used equations do not require the computation of the curvature, since
the computation of the first derivative of displacement is sufficient. This
should reduce remarkably the noise in experimental applications.

2.2. Principle of virtual work

Another advantage of studying the problem of the bulge test in
the reference configuration is that inverse methods developed for 2D
applications of sheet metal forming can be readily implemented.

For instance, using the non-linear Virtual Fields Methods (Pierron
and Grédiac, 2012), a set of constitutive parameters 𝝃 can be iden-
tified by a minimization of a cost function 𝜓 (𝝃) that represents the
balance between the internal and the external virtual work, according
to the principle of virtual work (PVW). Using the finite strain theory,2
the PVW can be written in the reference configuration using the 1st
Piola–Kirchhoff tensor, so 𝜓 (𝝃) becomes:

𝜓 (𝝃) =
|

|

|

|

|

∫ℬ0

𝐓1𝑃𝐾 ∶ 𝛿𝐅∙ 𝑑𝑉0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

IVW

− ∫𝜕ℬ0

(

𝐓1𝑃𝐾 ⋅ 𝐧0
)

⋅ 𝛿𝐯 𝑑𝐴0

|

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
EVW

(25)

2 In finite strain theory the principle of virtual work is often referred to
s the principle of virtual power, however, we prefer to use the term virtual
ork because it is the most used in the inverse method community.
4

where the first integral is the internal virtual work (IVW) and the sec-
ond is the external virtual work (EVW); 𝛿𝐯 is a kinematically admissible
virtual fields and 𝛿𝐅∙ is the corresponding gradient. The parameters 𝝃
re used to compute the stress from the measured strain field using
suitable stress integration algorithm (e.g. radial return, backward

uler, etc.). The virtual fields can be manually defined or automatically
hosen using one of the available algorithms, see for instance the papers
f Pierron et al. (2016) and Marek et al. (2017, 2019). Given 𝑁𝑣
inematically admissible virtual fields and 𝑁𝑡 load steps of the test,

the resultant cost function used to identify the parameter 𝝃 becomes:

𝛹 (𝝃) = 1
𝑁𝑣𝑁𝑡

𝑁𝑣
∑

𝑖=1

𝑁𝑡
∑

𝑗=1
𝜓
(

𝝃, 𝛿𝐯𝑖, 𝑡𝑗
)

(26)

Since Eq. (26) is valid for any virtual field and everything is written
in the undeformed configuration, that is a planar sheet, we can always
choose a virtual fields so that:

𝛿𝐯 =
⎡

⎢

⎢

⎣

𝛿𝑣𝑥
𝛿𝑣𝑦
0

⎤

⎥

⎥

⎦

and 𝛿𝐅∙ =
⎡

⎢

⎢

⎣

𝛿𝐹 ∙
11 𝐹 ∙

12 0
𝛿𝐹 ∙

21 𝐹 ∙
22 0

0 0 0

⎤

⎥

⎥

⎦

(27)

accordingly, all components in 𝑧 are equal to zero and the problem
reduces to two dimensions. Examples of VFM application will be given
in the following sections.

3. Numerical validation

A numerical validation of the proposed method is carried out using
a FE model of the HBT. The model is composed by two main parts: the
circular die, modeled as a 3D analytic rigid shell, and the blank sheet,
which is represented by a deformable shell. Fixed boundary condition is
imposed at the external circumference of both parts, while a maximum
forming pressure of 80 bar is applied to the blank sheet internal surface.
A frictional contact is imposed between the blank sheet and the die,
assuming a frictional coefficient of 𝜇𝑠 = 0.16, typical of steel–steel
lubricated surfaces. The model is shown in Fig. 3.

Isotropic von Mises plasticity was adopted, using isotropic hard-
ening with the stress–strain curve described with the Swift’s law:

̄ = 𝐾
(

�̄� + 𝜀0
)𝑁 (28)

The model was built using Abaqus/Standard. The sheet metal was
simulated using a standard 4-node shell element with reduced integra-
tion and hourglass control. The information about geometry, element

type and used constitutive parameters are summarized in Table 1.
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Fig. 3. FE model of the HBT used in the numerical validation, the von Mises equivalent plastic strain is shown.
Fig. 4. Points of the bulge test surface at the end of the test and curve of the pressure vs. the maximum height of the dome.
Table 1
Characteristics of the FE model.

Geometry and FE characteristics Material constitutive parameters

Blank size 300 mm Young’s modulus 200 GPa
Die diameter 200 mm Poisson ratio 0.3
Thickness 1.5 mm 𝐾 1000 MPa
Element type S4R 𝜀0 0.02
Number of elements 9716 𝑁 0.5

3.1. Stress–strain curve evaluation

As first step, the nodal displacements from the FE model were
reshaped over a regular grid of 2.5 × 2.5 mm. Fig. 4 shows the reshaped
points at the last increment of the simulated test and a plot of the
pressure vs. the maximum height of the dome, which can be viewed
as typical initial raw data from an experimental bulge test.

From the nodal position, for each point and each step of the test, the
deformation gradient 𝐅 is computed with Eq. (2) using a standard point-
to-point numerical differentiation. From the deformation gradient, the
right stretch tensor 𝐔 and the true strain 𝐄 are obtained as described
in Section 2.1. Fig. 5 shows the equivalent plastic strain and the
component 𝐹−𝑇

33 of the tensor 𝐅−𝑇 (for the last step), plotted in the
reference configuration. Given a fixed radius 𝑅0, for each step it is
possible to extract a value of equivalent stress from Eq. (23) and the
corresponding equivalent strain from Eq. (24). In this case, the true
5

stress–true strain curve was computed using three different values for
the initial radius 𝑅0 (i.e. 𝑅0 = 40, 60 and 80 mm) as illustrated in
Fig. 5. From the same figure it is also evident that the equivalent plastic
strain �̄� is constant along the different circumferences, because the
stress–strain field is axi-symmetric.

The corresponding points of the computed true stress–true strain
curve are illustrated in Fig. 6. A good agreement is found with the
reference curve, independently from the chosen radius. A rather small
underestimation of the stress is observed at the beginning of the curve,
this is due to the fact that the elastic part of the strain is neglected in
this formulation. Using a smaller radius, the level of equivalent plastic
strain is larger (see Fig. 5) because the corresponding strain is larger.
With this approach, from the same test, different stress–strain curves
can be extracted using different values of the initial radius 𝑅0 and
used to calibrate the parameters of an hardening law. The possibility
of extracting multiple curves from the same test will reduce the errors
due to experimental uncertainties, especially in the initial part of the
test, when the curvature is still very low.

3.2. VFM application

The non-linear VFM was applied to identify the hardening be-
havior of an isotropic material using Eq. (26). As already discussed
in Section 2.2, the VFM integrals are computed in the undeformed
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Fig. 5. Equivalent plastic strain and 𝐹 −𝑇
33 component computed with the proposed method; in the first plot, the different radii used to compute the stress–strain curve are highlighted.
Fig. 6. Comparison of the true stress–true strain points identified with the proposed
algorithm and the reference curve.

configuration, using only the in-plane component along 𝑋 and 𝑌 , see
Eq. (27). In this case a very simple virtual field was used:

𝛿𝐯 =

{

𝛿𝑣𝑥 = 𝑋
𝛿𝑣𝑦 = 𝑌

with 𝛿𝐅∙ =
[

1 0
0 1

]

(29)

The VFM was applied to a circular area 𝒜0 with diameter 𝑅0 (Fig. 2).
Under this assumptions, the IVW of Eq. (25) is straightforward:

IVW = ∫𝒜0

(

𝑇 1𝑃𝐾
11 + 𝑇 1𝑃𝐾

22
)

𝑑𝑣0 (30)

In order to compute the EVW, it is convenient dividing the boundary
𝜕𝒜0 into the upper surface, the lower surface and the surface at the cir-
cumference border. By definition, the term

(

𝐓1𝑃𝐾 ⋅ 𝐧0 𝑑𝐴0
)

of Eq. (25)
represents the surface forces acting at the boundary 𝜕𝒜0. Considering
the schematic of Fig. 2, in the upper surface there are no applied forces,
thus EVWupper = 0. In the lower surface, in each point there is the
pressure force (𝑝 �̂� 𝑑𝐴), which can be rewritten in terms of the reference
configuration as

(

𝑝 det(𝐅)𝐅−𝑇 �̂�0 𝑑𝐴0
)

, it follows:

EVWlower = ∫ lower

(

𝑝 det(𝐅)𝐅−𝑇 �̂�0
)

⋅ 𝛿𝐯 𝑑𝐴0 (31)
6

𝜕𝒜0
where �̂�0 = {0, 0, 1}, 𝛿𝐯 is the one of Eq. (29) and det(𝐅) = 1. Making
the matrix multiplication, it follows:

EVWlower = 𝑝∫𝜕𝒜 lower
0

(

𝐹−𝑇
13 𝑋 + 𝐹−𝑇

23 𝑌
)

𝑑𝐴0 (32)

In the circumference with radius equal to 𝑅0, the virtual field
components are equal to 𝛿𝑣𝑥 = 𝑅0 cos 𝛼 and 𝛿𝑣𝑦 = 𝑅0 sin 𝛼, respectively.
The virtual field is therefore a vector of length 𝑅0 perpendicular to the
circumference in the 𝑥–𝑦 plane. Assuming the axial-symmetry, the com-
ponent of the traction force 𝐝𝐭 in the 𝑋–𝑌 plane is also perpendicular
to the circumference and can be computed as 𝑑𝑡𝑧 cot 𝜃, where the angle
𝜃 is the one shown in Fig. 2. The EVW in the circumference is thus:

EVWcirc = 𝑅0 cot 𝜃 ∫𝜕𝒜 circ
0

𝑑𝑡𝑧 𝑑𝐴0 (33)

The last integral of Eq. (33) is exactly the resultant of the vertical
forces computed in Eq. (15). Dealing with discrete data, the integrals
can be rewritten as sums over the 𝑚 points internal to the circumference
with radius 𝑅0, see Eq. (22). The IVW becomes:

IVW =
𝜋 𝑅2

0 𝑠0
𝑚

𝑚
∑

𝑖

(

𝑇 1𝑃𝐾
11 (𝑖) + 𝑇

1𝑃𝐾
22 (𝑖)

)

(34)

and the EVW:
the EVW is entirely computed from experimental data, i.e. the pressure
𝑝 and the measured deformation field, used to evaluate 𝐅−𝑇 . The IVW
is computed from the Piola–Kirchhoff stress tensor 𝐓1𝑃𝐾 that is a
function of the deformation field and the constitutive parameters to
be identified, which, in this example, are the parameters of the Swift’s
law 𝝃 = {𝐾, 𝜀0, 𝑁}. The stress is computed from the strain field using
the reconstruction algorithm described by Rossi et al. (2020). The cost
function to be minimized becomes:

𝛹
(

𝐾, 𝜀0, 𝑁
)

= 1
𝑁𝑡

𝑁𝑡
∑

𝑖=1

|

|

|

IVW𝑖
(

𝐾, 𝜀0, 𝑁
)

− EVW𝑖
|

|

|

(35)

where 𝑁𝑡 is the number of used steps. A constrained gradient descent
algorithm, i.e. the matlab function fmincon, was used to check the
convergence and the accuracy of the VFM algorithm. The results are
illustrated in details in Fig. 7 and Table 2. Starting with initial pa-
rameters rather different from the reference ones, a fast convergence
rate is observed, with the optimal values obtained after 26 iterations.
As shown in Fig. 7, the final identified true stress–true strain curve is
almost overlapping the reference one. The quality of the identification
was assessed as RMS error between theoretical and identified curve. At
the final step, an error is still present, because the elastic component
of the strain was neglected, however this error is largely acceptable for
engineering applications.
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Fig. 7. Minimization of the constitutive parameter using the non linear VFM.

Table 2
Evolution of the parameters during the minimization algorithm.

Iter. 𝐾 𝜀0 N RMS error (MPa)

0 500 0.1 0.2 173.3
3 813.25 5.8⋅10−5 0.364 55.3
5 1005.2 8.9⋅10−5 0.482 22.7
10 1003.6 0.0199 0.482 13.2
26 997.7 0.0179 0.5017 4.7

Ref. 1000 0.02 0.5

Table 3
Evolution of the parameters during the minimization algorithm.

Noise SD 𝐾 𝜀0 N RMS error (MPa)

0 997.7 0.0179 0.5017 4.7
10−4 1000.7 0.0167 0.4986 3.3
2 ⋅ 10−4 1002.0 0.0178 0.5013 2.8
10−3 979.8 0.0165 0.4862 6.7

Ref. 1000 0.02 0.5

3.3. Effect of noise

In order to evaluate the sensitivity of the proposed method to
experimental uncertainties, a preliminary study was conducted adding
a Gaussian noise to the strain maps obtained from the numerical
analysis. It is generally accepted that, for a typical DIC measurement,
the standard deviation (SD) of the noise, in term of microstrain, is
below 100 μm/m, see for instance the work of Badaloni et al. (2015). In
this case, three levels of noise were considered, with SD equal to 100,
200 and 1000 μm/m. The latter represents an extremely severe noise
level.

Fig. 8 illustrates the identification of the true stress–true strain curve
performed with noisy data using the algorithm described in Section 2.1.
The effect of noise is visible only if the severe and unrealistic level of
noise is added. Table 3 shows the parameters identified with the VFM
on noisy data. Again the identification is almost unaffected by the noise,
even in the high noise level case.

This analysis demonstrates that the proposed algorithm is robust
and almost insensitive to random noise. However, to keep into account
the whole experimental uncertainties (including effect of speckle pat-
tern, spatial resolution of the used camera, light variations, effect of
calibration, etc.) it is necessary to simulate the whole measurement
chain using a virtual test and a simulator as the one developed by Bal-
caen et al. (2017) for stereo-DIC. In this paper, an actual test was
7

Fig. 8. True stress–true strain curve identified on noisy strain data.

used to illustrate the suitability of the proposed approach to real cases,
however, in the future, further analyses will be conducted to better
quantify the accuracy.
4. Experiments

4.1. Experimental set-up

In this section, the proposed identification approach was used to
retrieve the hardening curve from the bulge test on a bake-hardened
steel, namely the BH340 from POSCO. The hydraulic bulge test was
performed on a 300 × 300 mm2 square specimen obtained from a blank
sheet of BH340 steel with 0.7 mm of thickness through wire EDM
cutting. The test was carried out in quasi-static conditions by employing
an Erichsen® BULGE-FLC 161 hydraulic machine, designed for forming
bulges with 200 mm of diameter with a max drawing force of 1000 kN.
The full-field deformation of the specimen was measured by using the
stereo-DIC technique, assisted by two 2448 × 2048 pixel2 Point Grey
Grasshopper GRAS-50S5M-C cameras, as shown in Fig. 9. Here, the
image analysis was achieved with the commercial software MatchID®
(www.matchid.eu, version 2018.2.2), adopting the correlation settings
listed in Table 4.

The same experiment was already used in Lattanzi et al. (2020)
for the calibration of an advanced anisotropic plasticity model: the
Yld2000-2D. We decided to use this test to validate the presented
procedure because the material approximates the isotropic behavior in
a zone of the stress space close to the equi-biaxial state. This is testified
by the 𝑟-value in the biaxial state (𝑟biax = 0.98), which represents the
slope of the yield surface at balanced biaxial stress state, i.e. 𝑟biax =
̇ 𝑥𝑥∕�̇�𝑥𝑥. The complete set of 𝑟-values and the ratios of the uniaxial stress
𝜎𝑢 to the biaxial stress 𝜎𝑏 measured in different directions are listed in

able 5.

.2. Data elaboration

As first step, the displacement field obtained with stereo-DIC was
eshaped over a regular grid with a constant spacing of 2.5 × 2.5 mm,
sing a scattered data interpolation function. Each point of the regu-
arized mesh is thus computed using several experimental points, as
llustrated in Fig. 10. Moreover, 41 load steps were sampled from the
nitial 698 ones. The reduced number of steps avoid the experimental
ncertainties tied to pressure measurement, preserving at the same time
he load history, as illustrated in the second plot of Fig. 10.

https://www.matchid.eu/
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Table 4
DIC analysis settings for the hydraulic bulge test.

Camera Point Grey Grasshopper GRAS-50S5M-C
Image resolution 2448 × 2048, 14-bit
Field of view 315.8 × 264.25 mm
Pixel to mm conversion 1 pixel = 0.12903 mm
Stereo-angle 12.4◦

Stand-off distance 650 mm
Patterning technique Matt white spray paint base coat with black speckles
Pattern feature size
(approx.)

4.2 pixel/0.54 mm

DIC technique Stereo correlation
DIC software MatchID, version 2018.2.2
Image filtering Gaussian, 5 × 5 pixel kernel
Subset size 43 pixels/5.29 mm
Step size 7 pixels/0.90 mm
Subset shape function Affine
Matching criterion Zero-normalized sum of square differences (ZNSSD)
Interpolant Bi-cubic spline
Stereo transformation Affine
Strain formulation Hencky logarithmic
Spatial smoothing Local polynomial regression Q8, 15 × 15 window
Temporal smoothing N/A
Virtual strain gauge size 139 pixels/17.93 mm
Displacement noise floor 0.008 pixels/0.28 μm (in plane); 2.0 μm (out-of-plane)

Fig. 9. Experimental set-up adopted for the hydraulic bulge test, the illumination and
the used stereo-DIC system are illustrated.

Table 5
Experimental data for the material BH340 used in the experiments (Lattanzi et al.,
2020).

Dir. 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Biax.

𝑟-value 0.92 0.92 0.95 0.96 0.96 0.93 0.92 0.98
𝜎𝑢∕𝜎𝑏 1.52 1.30 1.00 0.89 1.06 1.48 1.67 1

It is worth noting the described data regularization is the only
smoothing applied to the experimental data. For each load step, the
8

Table 6
Parameters of two hardening laws fitted over the experimental data from the Bulge
test.

Swift’s model

𝐾 𝜀0 𝑁 RSM error

702.56 MPa 0.0020 0.2470 10.8 MPa

Modified Voce’s model

𝜎𝑌 𝐴 𝐵 𝐻 RSM error

173.11 MPa 238.51 MPa 18.6 354.54 MPa 5.5 MPa

deformation gradient 𝐅 is obtained from Eq. (2) using a point-to-point
numerical differentiation. From a computational point of view, the use
of a regular grid considerably simplifies the data elaboration, which
can be efficiently performed using matrix operations.

An example of computed strain map is given in Fig. 11 where the
von Mises equivalent strain for the last step of the test is depicted. In
the same graph, the radii of the areas used to compute the true stress–
true strain curve are also plotted. As explained before, only the points
inside the circle are used for the curve identification.

5. Results and discussion

The plot of Fig. 12 illustrates the curves identified using three
different radii, similar results are obtained in all cases. With respect to
uniaxial tensile tests, the HBT allows to identify the hardening curve
up to large values of the true strain, because the necking in a biaxial
state of stress arises later on. In this case, the curve was identified
up to 0.55 m/m. With the proposed identification method, the curve
was accurately identified also at the early stage of the test when the
true strain is below 0.1. This zone is particularly critical in the HBT
because of the low deformation of the sheet, especially if the true stress
is computed from the curvature, as commonly established from the test
standards.

The experimental points can be used to identify the parameters of a
hardening law. Indeed, FE analysis of forming sometimes requires the
use of analytical constitutive laws, such as Voce or Swift curve, and
the HTB can be applied to get the best possible response that fits to
experimental data. Here the Swift’s law:

̄ = 𝐾
(

�̄� + 𝜀0
)𝑁 (36)

where 𝐾, 𝜀0 and 𝑁 are the constitutive parameters, and a modified
Voce’s law:

̄ = 𝜎𝑌 + 𝐴
(

1 − 𝑒−𝐵�̄�
)

+𝐻�̄� (37)

where 𝜎𝑌 , 𝐴, 𝐵 and 𝐻 are the constitutive parameters, were employed.
Both models shows a good agreement with the experimental data, see
Fig. 12. The identified parameters as well as the RMS error are listed
in Table 6, a slightly better result is obtained using the modified Voce’s
model.

To verify if the test is axi-symmetric, Fig. 13 shows the evolu-
tion of the equivalent plastic strain measured in a circular path with
initial radius 𝑅0 = 30 mm. Especially in the last steps of the test,
the path plots are not perfectly constant, although the deviation is
still reasonably small. This can be due to experimental uncertainties,
misalignment, anisotropy material inhomogenities, etc. However, prac-
tically, the equivalent strain for each step is computed as the mean
of the values obtained in the circular path, thus such deviation has a
minimal impact in the determination of the hardening curve.

As final study, the same VFM approach described in Section 3 was
applied to the experimental data to identify the parameters of a Swift’s
hardening law. The circular area used to compute the VFM has an initial
radius 𝑅0 = 30 mm. The identified parameters were 𝐾 = 689.03, 𝜀0 =
0.0015 and 𝑁 = 0.2353. Those parameters are slightly different from the
ones estimated with the first method and listed in Table 6, however,
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Fig. 10. On the left: experimental points obtained after the reshaping operation from the stereo-DIC data; on the right, pressure vs. dome height curve and steps selected for the
identification procedure.
Fig. 11. Example of equivalent strain map obtained from the experiments.

Fig. 12. Points of the true stress–true strain curve identified using the proposed
algorithm for three different radii and curve fitting obtained with two popular
hardening models, i.e. Swift’s law and modified Voce.
9

Fig. 13. Evolution of the equivalent plastic strain during the test in the circle with
initial radius 𝑅0 = 30.

the corresponding hardening curves are rather similar, as illustrated
in Fig. 14. As a term of comparison, in the same graph, the curve
identified using the ISO standard is also plotted. A good agreement is
obtained with the different approaches, demonstrating the reliability
of the proposed method. The small deviation observed between the
identified curves and the ISO standard can be due to the different
post-processing method, based on the curvature, and to the choice of
the Swift’s law as hardening model. For instance, Chen et al. (2018)
showed that, for certain materials, Swift and Voce models are not able
to reproduce the actual curve extracted from a bulge test. However,
in this case, the mismatch is rather low and the Swift assumption is
reasonably accurate for the validation purpose of this work.

Finally, it must be underlined that the identified curve represents
the stress–strain relation in the biaxial state, that will be different from
the one obtained in a uniaxial test because the material is anisotropic.
Anisotropy can be included in the VFM approach employing a suitable
anisotropic criterion to compute the stress from the strain. Moreover
the bulge test can be used in conjunction with other tests (e.g notched
specimens, uniaxial tests, elliptical bulge tests, etc.) to improve the
quality of the identification. In fact, often the VFM algorithm is run
over multiple experiments at the same time in order to identify the
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Fig. 14. Comparison of the hardening curve identified using the VFM and the
quilibrium method, in both cases the Swift’s law was used as hardening model. The
orresponding curve obtained with the ISO standard is also reported.

onstitutive parameters of advanced plasticity models (Lattanzi et al.,
020).

The application of the presented method to anisotropic materials,
owever, is beyond the scope of this paper and will be addressed in
uture works.

. Conclusion

In this paper, a novel method to identify the plastic behavior of
aterials using the HBT and full-field measurement is presented. With

espect to the conventional method, this approach has the advantage
f using the whole full-field measurement information and avoid the
omputation of the curvature, which requires a double derivative of
xperimental data. A numerical validation is performed using a FE
odel of the test, then the procedure was applied to a real experiment

o extract the hardening behavior in terms of true stress–true strain
urve. The approach was also used to demonstrate the possibility of
pplying the VFM, developed for plane stress condition, to HBT. The
ain outcomes of this paper are:

• a consistent framework to elaborate full-field displacement data
of a HBT obtained from stereo-DIC is presented. For each point,
the complete deformation tensor 𝐅 is computed using the vol-
ume constancy hypothesis, then the strain and stress fields are
mapped onto the initial undeformed configuration using the finite
deformation theory.

• The implementation of the method is computationally effective
and suitable for large experimental data. In fact everything is ob-
tained using simple operations, like point-to-point differentiation,
matrix multiplication or sum, that can be easily vectorized.

• The procedure is less sensitive to noise because it is not necessary
to evaluate the curvature but only the first derivative of the dis-
placement field, for instance, in the presented application it was
not necessary to apply any smoothing function to have reliable
results.

• The proposed approach allows to include effectively the bulge test
in inverse identification schemes developed for 2D plane stress ap-
plications, since everything is mapped in the initial configuration
that is a flat sheet metal.

• An algorithm to retrieve directly the true stress–true strain curve
is derived exploiting the equilibrium equation on a fixed initial
10

radius 𝑅0, the algorithm is summarized by Eq. (23). In this way, m
from a single test it is possible to extract different curves at
different radii, reducing the impact of experimental uncertainties
and increasing the amount of information achievable from a
single test.

• The VFM was applied to HBT in order to identify the hardening
behavior of the material using a Swift’s law. Reliable results were
obtained using both numerical and experimental data. It is worth
noting that the VFM approach is the same already used for 2D
plane stress applications.

• In this paper, the identification framework was validated using
isotropic plasticity, in order to precisely assess the accuracy of
the method and the impact of the approximations, however, it
is necessary to perform simulated experiments that include the
effect of experimental uncertainties and the anisotropy.

The results illustrated in this paper foster the use of the HBT
in inverse methods. Although a standard circular bulge test was in-
vestigated in this paper, in the future, different shape of the hole
(elliptical, squared, etc.) could be used to increase the heterogeneity
of the stress/strain field and enrich the information about the material
behavior achievable from a single test. It should be also noted that
the proposed approach is specifically targeted for inverse methods, if
the bulge test is used to retrieve the stress–strain curve at the bulge
apex, the conventional methods based on the curvature remains a
valid alternative. A quantitative comparison of the accuracy of the two
characterization approaches is beyond the scope of this paper and may
be addressed in future works.
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Appendix

In order to compute the equivalent stress with Eq. (23), it is neces-
sary to evaluate the constant 𝜅 defined by Eq. (19):

𝜅 = −

(

𝑇 1𝑃𝐾
31 cos 𝛼 + 𝑇 1𝑃𝐾

32 sin 𝛼
)

�̄�
(19)

where only the angle 𝛼 is known. Following the definition of the 1st
Piola–Kirchhoff stress given in Eq. (12), in order to compute 𝜅 we need
o retrieve the components of 𝐓1𝑃𝐾 normalized with respect to �̄�, that
s:
𝐓1𝑃𝐾

�̄�
= det (𝐅) �̂� 𝐅−𝑇 with �̂� = 𝝈∕�̄� (38)

Since det (𝐅) = 1 and 𝐅−𝑇 is computed from the measured dis-
lacement field, the only unknown is the normalized Cauchy stress
̂ , that can be obtained from the plastic flow rule. In the material
eference system, the plastic flow is directed as the increment 𝛥𝐄 of

the logarithmic strain defined by Eq. (11). Using the associative flow
rule with von Mises,3 the direction of the stress �̂�𝜎 in the plane 𝑋–𝑌

3 The procedure can be easily extended to other flow rules and yielding
odels, see Rossi et al. (2020) for details.
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can be then retrieved as:
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(39)

hen, in order to obtain the normalized stress �̂�, the stress directions
btained in the material reference plane must be rotated in the de-
ormed configuration and normalized according to the equivalent stress
unction, i.e.:

̂ =

[𝐑]𝑇 ⋅

⎡

⎢

⎢

⎢

⎣

�̂�𝜎𝑋 �̂�𝜎𝑋𝑌 0

�̂�𝜎𝑋𝑌 �̂�𝜎𝑌 0

0 0 0

⎤

⎥

⎥

⎥

⎦

⋅ [𝐑]

√

�̂�𝜎𝑋
2 + �̂�𝜎𝑌

2 − �̂�𝜎𝑋 �̂�
𝜎
𝑌 + 3 �̂�𝜎𝑋𝑌

2
(40)

where 𝐑 is the rotation matrix computed in Section 2. Applying in
sequence Eqs. (39), (40), (38) and (19) the parameter 𝜅 is obtained
for each step of the test and for a given radius 𝑅0. The operations
are all matrix multiplications or sums that can be easily vectorized
and computed without significant computational cost, even if a large
amount of full-field data are available.

As an example, Fig. 15 illustrates the evolution of the parameter
𝜅 during the test for the three different radii used in the numerical
validation of Section 3.
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