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Abstract: Smart objects and home automation tools are becoming increasingly popular, and the
number of smart devices that each dedicated application has to manage is increasing accordingly.
The emergence of technologies such as serverless computing and dedicated machine-to-machine
communication protocols represents a valuable opportunity to facilitate management of smart objects
and replicability of new solutions. The aim of this paper is to propose a framework for home
automation applications that can be applied to control and monitor any appliance or object in a smart
home environment. The proposed framework makes use of a dedicated messages-exchange protocol
based on MQTT and cloud-deployed serverless functions. Furthermore, a vocal command interface
is implemented to let users control the smart object with vocal interactions, greatly increasing the
accessibility and intuitiveness of the proposed solution. A smart object, namely a smart kitchen fan
extractor system, was developed, prototyped, and tested to illustrate the viability of the proposed
solution. The smart object is equipped with a narrowband IoT (NB-IoT) module to send and receive
commands to and from the cloud. In order to evaluate the performance of the proposed solution, the
suitability of NB-IoT for the transmission of MQTT messages was evaluated. The results show how
NB-IoT has an acceptable latency performance despite some minimal packet loss.

Keywords: internet of things; home automation; smart appliance; narrowband IoT; MQTT; serverless

1. Introduction

Completely automated smart homes are on the way to becoming a well-established re-
ality. The ever increasing number of smart objects in the smart home environment requires
the definition of standardized and flexible protocols for commands and state information
exchange, besides optimal strategies for processing a large number of commands. New
technologies such as serverless computing and ad hoc communication protocols can be
leveraged to manage a large fleet of smart objects, while also ensuring good accessibility and
intuitive user interfaces. Serverless computing is an emerging cloud-computing paradigm
that represents a promising development for many application fields, from micro- and
web-services [1], to the the internet of things (IoT) [2,3], edge computing [4] and artificial
intelligence (AI) [5], or even for domain-specific scientific applications [6,7]. Serverless com-
puting operates at the crossing point of different models that have emerged alongside cloud
computing, such as function as a service (FaaS) and pay-per-use models, and technologies
such as event-driven programming, virtualization, and containerization [4]. Serverless
computing comes with automated scalability and resource provisioning, meaning that
resources assigned by the serverless platform scale depending on the number of functions
that are running and the resource demand of each of those functions. These characteristics
make serverless particularly appealing for applications that need to manage a large pool of
users or, in the field of the internet of things and smart objects, a large number of devices [2].

The pioneering commercial platform for serverless computing was Lambda [8], de-
veloped by Amazon Web Services (AWS), the Amazon cloud platform. Lambda remains
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one of the most popular platforms for the development of serverless applications. A recent
work by the authors of this paper [9] showed how AWS satisfies many key performance
indicators in IoT applications, also compared to other competitors such as Microsoft Azure
and Google cloud Platform, both of which now also offer serverless and FaaS services.
Lambda also comes with extensive integration with Amazon Alexa [10], the voice assis-
tant on Amazon Echo. Voice interfaces are seeing a wider use in different application
fields, from voice assistants to home automation, as they constitute a more natural and
intuitive interface to interact with smart objects and environments, as well as improving
accessibility [11].

This paper proposes and experimentally evaluates a framework that represents a syn-
ergistic union of different cloud-computing and IoT-related technologies that can enable
accessible and automated home environments. The framework is easy to replicate, is
scalable, and is transparent to the underlying smart object or appliance that uses it due
to the use of serverless technologies and a custom-defined command exchange protocol
based on the message queue telemetry transport (MQTT) protocol. MQTT [12] is the main
middleware service used in most cloud platforms for the IoT, therefore simplifying the
interfacing of IoT devices and smart objects with the cloud. Compared to other protocols
such as HTTP, which is also employed in many serverless solutions [3], MQTT messages
have a small overhead that makes the protocol suitable for machine-to-machine applica-
tions. Furthermore, MQTT does not impose a format for its payload, making it extremely
flexible [13], and the use of topics adds a further degree of freedom for the implementation
of custom applications.

As the introduction of new communication technologies in such applications requires
careful evaluation in terms of the overall application latency, the aim of this paper is
to evaluate the performance of a framework for smart home appliances equipped with
narrowband IoT (NB-IoT) modules to send and receive messages to/from the cloud. NB-IoT
is a low-power wide area network (LPWAN) protocol by the Third-Generation Partnership
Project (3GPP), designed to provide wide connectivity to a huge number of IoT devices in
massive deployment scenarios and in scenarios that require good radio coverage and lower
power consumption, such as smart metering [14,15]. NB-IoT devices can reach nominal
life times of around 10 years with small and infrequent messaging [16], with an overall
good power consumption performance compared to other communication technologies,
both cellular and not [17]. Cellular technologies such as NB-IoT can be employed to embed
additional services that require internet connectivity in home and kitchen appliances,
adding negligible power consumption to their normal mode of operation and advancing
the machines as a service (MaaS) model [18,19] and servitization of the products [20].

The framework proposed in this paper includes a smart IoT device making use of the
aforementioned MQTT-based command protocol, and a serverless application on the cloud
to manage devices and commands received through Amazon Alexa or through a dedicated
application. The NB-IoT protocol was tested to determine if it is suitable to dispatch MQTT
messages between MQTT clients. Automatic speech recognition (ASR) software already
adds a delay to the overall application latency, and the execution of Lambda functions
also adds a (minimal) latency, but the message exchange delay might severely degrade the
user experience if it hinders the prompt execution of commands. For the demonstration of
the proposed framework viability, a smart extractor fan system was designed, prototyped,
and tested as a practical use case. An experimental test-bed with a NB-IoT node sending
and receiving MQTT messages was therefore set up to evaluate the latency performance of
the protocol in this context.

This work is organized as follows. Section 2 explains the main technologies employed
in the proposed system, and illustrates some recent works in the field of home automation
and vocal interfaces for smart homes. Section 3 goes into detail about the proposed system
and the NB-IoT evaluation test-bed, while Section 5 gives the results of the evaluation.
Lastly, Section 6 draws conclusions about the work and contributions of this paper.
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2. Background

Many smart home automation papers propose APIs or practical implementations
of smart device use cases, employing protocols ranging from HTTP to MQTT to CoAP,
which has also shown potential for home automation applications [21]. Crisan et al. [22]
proposed and developed an API for smart home automation called qtoggle to control
any IoT device in the smart home environment with a TCP/IP stack via HTTP requests,
regardless of the type of smart object or device. Sarkar et al. [23] proposed a framework
to manage IoT devices in smart buildings using the serverless paradigm. Their proposed
system consists of gas and humidity sensors and smart bulbs, and the serverless platform
of choice was the OpenFaas platform. Froiz-Míguez et al. [24] proposed a framework for
fog computing in smart homes called Ziwi, which enables the coexistence of Zigbee and
Wifi devices on the same smart home framework. MQTT is used for its small code footprint
and for addressing compatibility between smart devices. The increasing usage of MQTT in
machine-to-machine applications has been stressed by Biswajeeban et al. [25], stemming
from its lightweight design and its publish/subscribe architecture. Most frameworks
employing this protocol require the implementation of security mechanisms (such as
TLS) that add some extra overhead to the communication. As research on the topic of
security in MQTT is increasing [26,27], various recent papers have also focused on the
implementation of new security mechanisms designed specifically for MQTT-based smart
home environments [28,29].

Different recent works explored the potentiality of integrating Amazon Alexa or, more
generally, voice services into the smart environment to enable interactive and accessible
interfaces. Iliev et al. [11] proposes a distributed framework for smart homes that uses
natural language processing (NLP) to develop a human/smart environment interface.
Their solution introduces a fog node for the deployment of intelligent user interface (IUI)
software to reduce the voice interface response delay and to decrease bandwidth load.
Krishnamurthi et al. [30] analyzed different data fusion and techniques for work offloading
in IoT applications, such as fog and edge computing, which can find use in different IoT
fields, including smart homes. The interface is designed to understand domain-specific
natural language to support under-resourced languages that lack available ASR software,
such as Amazon Alexa. Lee et al. [31] explored the possibility of using Amazon Alexa
to build smart home services for the elderly or to enhance the effectiveness of existing
services such as “carebots”. Bodgan et al. [32] proposed a framework that integrates voice
assistants into smart offices for various tasks such as ambient control and interaction with
various services.

This paper proposes a very flexible framework for smart home automation that embeds
a voice interface, while in addition evaluating the use of cellular technologies for the dis-
patching of MQTT messages for commands and status updates. The introduction of cellular
communication in these frameworks, if carefully evaluated, can aid in the implementation
of different services in home and kitchen appliances, enabling, for example, predictive
maintenance and remote monitoring services to be built on top of said frameworks. The
flexibility of the serverless model and the use of MQTT, which is the main middleware in
the cloud technologies described above, allowed for the integration of the different services
provided by AWS, including voice interaction services. Furthermore, NB-IoT has been
evaluated to test its efficiency in serving a framework based on MQTT. The remaining part
of this section describes the technologies used for the design, testing, and evaluation of
the proposed framework, embedding a smart extractor fan prototype. The details of the
implementation and fusion of the aforementioned technologies are detailed in Section 3.

2.1. Narrowband IoT

NB-IoT is a cellular technology based on long-term evolution (LTE) introduced by
3GPP. NB-IoT reduces the LTE protocol stack functionalities to make it suitable for IoT
applications. A brief comparison of NB-IoT with other LPWAN communication protocols
aimed at comparable applications is in Table 1. Compared to protocols such as LoRaWAN
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and Sigfox, NB-IoT works in LTE bands and does not require the use of a gateway. It pro-
vides extended coverage to delay-tolerant, low-cost, low-energy IoT applications, reaching
good energy performance even in the worse-case, continuous transmission scenarios when
compared to other communication protocols [17]. It represents a valuable choice for applica-
tion fields that require massive deployments, good coverage and low data rates, including
smart metering [33], smart grids [34], smart cities [35], healthcare [36–38], and industrial
applications [39]. To the best of the authors’ knowledge, it has still been seldom applied
in home automation [40], mostly in home surveillance or metering applications [41,42],
and rarely using MQTT. Cellular connectivity provides opportunities for enterprises to
embed additional services into home appliances [20]. Furthermore, NB-IoT will be used
in the machine-to-machine communication use case in 5G networks and will coexist with
other services in the 5G environment [43]. While some works exist on the application
layer performance over NB-IoT [44,45], this work mainly focuses on latency issues for
the smart home use case, with the goal of ensuring a good user experience for the vocal
interaction subsystem.

Table 1. Comparison of communication protocols for IoT and machine-to-machine applications.

NB-IoT LoRaWAN Sigfox LTE-M

Spectrum Cellular (LTE) ISM ISM Cellular (LTE)

Data Rate [46,47] ∼200 kbps ∼0.3–100 kbps ∼100–600 bps ∼1 Mbps

Payload (bytes) [47,48] 1600 243 12 1000

Tx Power (dBm) [48] 23 13 14 23

Consumption [48] Medium low Low Very Low Medium

2.2. MQTT

MQTT is an OASIS standard messaging protocol designed to be lightweight and to have
a small code footprint [12]. MQTT is one the main protocols that is used for the IoT and for the
implementation of middleware services, alongside COAP, AMQP and HTTP [49]. It is nowa-
days used in many application scenarios, such as smart homes and smart buildings [50,51],
smart cities [52], smart grids and energy management [53,54], smart agriculture [55], environ-
mental monitoring and early warning [56], and so on. Furthermore, the main cloud platforms
for the IoT use MQTT as their middleware service and brokering protocol [9].

MQTT is a publish/subscribe message protocol that decouples data producers and
data consumers through the use of a central entity called “broker”, a server responsible
for dispatching messages among MQTT clients. brokers contain a list of topics, which are
strings that are organized hierarchically. The MQTT client can either subscribe to a topic,
publish a message on a topic, or both. When a client publishes a message on a certain topic,
the broker will forward it to every client that has subscribed to that topic. MQTT includes
a series of security mechanisms, including password and username authentication, and au-
thentication with transport layer certificate exchange. Data encryption can be guaranteed
with protocols such as the transport layer security protocol (TLS), as is performed in AWS,
or it can be implemented at the application layer to provide end-to-end encryption.

2.3. Amazon Web Services

Amazon Web Services is one of the most famous and oldest cloud platforms, offering
services ranging from databases and data analytics to internet of things and mobile com-
puting, besides many services dedicated to enterprises [57]. The smart appliance system
proposed in this paper makes use of AWS IoT core, AWS Lambda, and two data storage
services, AWS S3 and DynamoDB. Furthermore, Amazon Cloudwatch, a service used to
monitor AWS resources and applications, is used to keep track of the performance and cost
of each deployed service.
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2.3.1. AWS IoT Core

AWS IoT core is the AWS platform for the internet of things. It allows devices to
connect to the cloud and other AWS services. The architecture of AWS IoT core is described
in Figure 1. The central component of the architecture is the message broker, which
dispatches messages to and from things (i.e., IoT devices) and other AWS services and user
applications. AWS IoT core supports MQTT and MQTT over Websockets, but clients can
also publish messages on the broker using HTTP. A rules engine is available to automatically
process messages and to generate triggers. Each IoT device has an associated “shadow” to
keep track of its status, and shadows are stored in a corresponding registry. Various security
and identity mechanisms are employed to guarantee secure communication between the
broker and devices, including TLS data encryption [58] and secure authentication with
X.509 certificates [59].

Figure 1. Architecture of AWS IoT core (adapted from [9]).

2.3.2. AWS Lambda

AWS Lambda is a serverless computing platform that lets users deploy applications
and run code without managing servers, delegating to Lambda all the server and operating
system maintenance, including capacity provisioning and automatic scaling of resources,
while leaving the code as the sole responsibility of the developer. Lambda can be used to
build IoT backends and countless other applications. Lambda functions are event-driven,
meaning that they are instantiated to manage events. Each function is usually linked to an
event source that generates triggers and will contain a series of handlers to manage those
triggers. Various AWS services are event sources and can be configured to trigger Lambda
functions, including Amazon Alexa skills and AWS IoT core rules.

2.4. Amazon Alexa

Amazon Alexa skills employ ASR and natural language understanding technology [60]
for the development of custom applications that take vocal commands as input, convert
them into text, interpret them to execute various actions, and possibly return a vocal
response to the user that invokes the application. Alexa skills can be configured to send
messages to various endpoints, including Lambda functions, essentially turning vocal
commands into Lambda triggers.

The components of an Alexa skill invocation are the following:

• A wake word, such as “Alexa”, to turn on the device;
• An invocation name, the de facto name of the Alexa skill that is being invoked;
• An utterance, telling the Alexa skill what action to execute, or, in Alexa skill jargon,

which “intent” is to be called;
• Optionally, a series of custom “slots”, which are additional variables that are being

passed to the intent.

Intents produce a message in JSON format that is then forwarded to a Lambda end-
point. The Lambda function will parse the JSON message content, call a dedicated handler
based on the intent, execute the handler’s routine, and lastly produce a JSON response
message that is sent back to the Alexa skill.
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3. Materials and Methods

The design proposed in this paper is applicable to any kitchen or home appliance due
to the flexibility of the MQTT protocol and the serverless paradigm. It provides a valuable
framework for the management of smart appliances that can be easily replicated in any
smart home system. It leverages technologies in the field of serverless and machine-to-
machine communication to create interactive smart objects with dedicated on-demand
services, with good accessibility due to the use of vocal interfaces.

A description of the proposed framework for a smart appliance system follows in
this section, and in particular, the design of the hardware and the serverless application
for a smart kitchen extractor fan are outlined. The framework is completely applica-
tion agnostic and can be replicated with any kitchen appliance or smart home device.
The cloud-developed application makes use of Amazon Alexa to build a vocal interface
and provides touchless interaction with the smart object. A phone application acting as
an MQTT publisher can also be used to send commands to the appliance. MQTT makes
the framework extremely flexible, and it makes the integration with cloud platforms (in
this case, with AWS) simple and secure due to the use of certificates securely stored on
the device by the use of a cryptochip. MQTT is also used to receive status updates from
the smart object. The serverless framework provides efficient replicability and scalability
properties to the application, and most importantly, it rationalizes resource allocation on
the cloud when managing a large number of devices.

3.1. Smart Extractor Fan Design

The kitchen extractor fan is controlled by a device whose block diagram is illustrated
in Figure 2. It consists of a microcontroller (referred to as “micro-host”) that interfaces with
various peripherals and controls the ventilation motor and a set of lights. A NB-IoT chip
is used to receive commands from the cloud in MQTT format over NB-IoT. The MQTT
protocol guarantees a simple and secure interface toward the cloud through the native
use of TLS encryption and authentication. The AWS IoT core requires authentication over
MQTT with X.509 certificates. A cryptochip is used to securely connect and authenticate
the AWS IoT core. Such a device can securely store certificates on the IoT device and
authenticate the AWS IoT core.

The device receives messages from the cloud, parses them, and executes commands
based on the content of their payload. It also sends state updates toward the cloud.
Firmware updates can be received over the air using MQTT, simplifying the deployment of
new firmware on large fleets of devices.

Figure 2. Block diagram of the smart extractor fan.
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3.2. Architecture of the Serverless Cloud Application

An application was designed for the management and control of smart objects. The ap-
plication is developed using AWS Lambda and the MQTT protocol to provide flexible
interaction between the users and the extractor fan. Amazon Alexa is used to implement
a vocal interface for the control of the smart object. State updates are also sent by the fan
using the custom commands protocol and are processed by a dedicated Lambda function
on the cloud to keep track of the state of each device.

The application was developed on AWS, and the serverless platform of choice was
Amazon Lambda. Two Lambda functions were implemented in NodeJS (JavaScript) using
the AWS SDK: one to forward user commands to devices, either by an application or Alexa
skill, and the other to handle state updates from the devices. JavaScript, being a high-level
interpreted language, lends itself quite naturally to the development of serverless or FaaS
applications and, alongside Python, is one of the most used languages for the development
of serverless applications [3]. Lambda functions comprised one or more handlers that are
used to manage triggers, which can be received by various outside services, including
Amazon Alexa or AWS IoT core. Each handler was defined on the basis of the custom
command protocol and of the intents that were implemented in the Alexa skill. This way,
users are able to control and monitor all the admissible states of the devices.

The project uses two AWS storage services: Amazon S3 and Amazon DynamoDB.
DynamoDB is used to store devices states and devices and user identifiers. Similarly to
the approach used in [61] to store Lambda code, in this project, Amazon S3 is used to
store the device firmware. This way, each device can download any firmware version
at any moment, greatly simplifying software updates and the deployment of new code.
A software update can be initiated by sending the url of the S3 bucket containing the new
firmware inside an MQTT command. The device will then download the file from the S3
bucket and execute the firmware update in autonomy.

An Alexa skill has been developed to interact with the devices. The endpoint of the
skill is Amazon Lambda. A Lambda function is triggered when a command is invoked
by the user. The Alexa skill takes care of translating input vocal commands into text and
then translates text into JSON inputs that can be parsed by Lambda functions. Each JSON
input produced by the Alexa skill also contains a user identifier that is used by Lambda
to retrieve (from DynamoDB) the device ID associated with the user that invoked the
skill. This mechanism guarantees that Lambda functions are only able to control the fans
corresponding to the user that invoked the Alexa skill from their personal account. Custom
slots are used to define a series of extra identifiers to distinguish between different fans
when a user owns or controls more than a single fan. Figure 3 illustrates the message flow
of the application. Green boxes indicate vocal commands and responses, yellow boxes
are messages in JSON format generated by the Alexa skill, and the pink box indicates
the payload of the MQTT message generated by the AWS application and forwarded to
the device.

The complete description of the smart appliance system is illustrated in Figure 4.
When a user invokes the Alexa skill with a valid intent, i.e., an Alexa skill intent for
which a handler was defined, the skill triggers Lambda and passes a JSON message to
it, containing both the UserID and a string identifying the handler required to manage
that request. The Lambda function queries DynamoDB for the identifier(s) of the device(s)
owned by that user. If the user owns more than one device, then a custom slot in the
Alexa intent is used to distinguish between their multiple devices and retrieve the correct
identifier from DynamoDB. Once Lambda knows the device to send the command to,
and on the basis of the intent, it publishes an MQTT message on AWS IoT core following
the commands protocol for that specific device. The device, having subscribed to its
individual topics at start-up, will receive the message, parse its payload, and execute
a command according to its content. Whenever it receives a command, the device will
also publish an update on its status on its dedicated OutState topic. It is also possible
to configure a “refresh time” at the monitoring topics, i.e., a time at which the devices
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sends periodic updates on the topic. An AWS IoT core rule is implemented to handle
state updates and to invoke a second Lambda function, which updates a DynamoDB table
with the new state information. The state information is used to monitor devices and
their activities, but it also allows users to ask the Alexa skill for the state of the fan, and it
uses “feedback” commands that require the Lambda function to know the current state of
the device (e.g., “lower the ventilation”, “raise the ventilation”, and similar commands).
The implementation of feedback intents makes the communication between the smart
appliance and the user feel more “natural”. At the same time, periodic refreshes at short
intervals amplify the application load on the cloud and the number of transmissions, which
might not be suitable for certain devices or communication protocols. For such use cases,
it might be required to set a longer refresh time or to only enable refreshes when there is
a state update via outside command. The refresh option has been used for the experimental
evaluation of the smart object work load on the cloud.

Figure 3. Messages flow from the user command up to the MQTT message generated by AWS that is
forwarded to the device.

Figure 4. Architecture of the proposed smart fan application.

4. Experimental Evaluation

An experiment was carried out to evaluate the use of narrowband IoT to dispatch
MQTT messages across MQTT clients. The goal of the experiment was to provide an
estimation of the time needed to forward a message to/from an MQTT client over NB-IoT
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to show whether the protocol is suitable for applications, such as the one developed in this
paper, that require an acceptable latency performance to ensure a good user experience.

The experiment involves the following nodes

• An MQTT Client (Client 1) that publishes messages on a dedicated topic named
Topic1;

• An MQTT broker;
• A NB-IoT module subscribed to Topic1 and publishing on a dedicated topic named Topic2;
• A second MQTT Client (Client 2) subscribed to Topic2.

This experimental setup is shown in Figure 5. The two MQTT clients might represent
cloud applications sending or receiving messages from a smart object, such as vocal com-
mands or state updates, while the NB-IoT device stands for the smart object itself. This
setup reflects the interaction between users and the smart extractor fan system, where client
1 might be a Lambda function publishing a command on the broker to control the NB-IoT
module/smart fan, which will then immediately publish a status update on the OutState
topic once it sets the correct output variables.

At the start of the evaluation, the board registers to the NB-IoT network, connects
to the MQTT broker, and it subscribes to Topic1. At the same time, the two clients also
establish a connection to the MQTT broker, and Client 2 subscribes to its assigned topic.
After waiting a short time to ensure that each MQTT client has successfully connected
to the broker, Client 1 will publish a first message on Topic1, containing a timestamp T1
representing the start of the communication. The broker then forwards the message to
the evaluation board. The board will then publish a new message on Topic2 containing
T1 and the time elapsed between reception of the first message from the broker and the
transmission of the second message. The broker will forward this message to Client 2,
which will save the timestamp of reception (T2). This information, alongside the one
obtained from the first client, the board, and the broker, is used to evaluate latency at
different sections of the communication. The procedure is repeated multiple times at
intervals of 10 s between each message.

Figure 5. Diagram of the evaluation testbed used to evaluate NB-IoT latency for dispatching
MQTT messages.

The two MQTT clients were implemented on a computer using the Paho-MQTT [62]
Python library. The MQTT broker was deployed on a different machine in the same
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network. The broker of choice was the Eclipse’ Mosquitto [63] broker. The MQTT clients
are synchronized using the network time protocol. The NB-IoT module is connected
to a mobile IoT network, which provides acceptable network coverage and reliability.
In debug mode, Mosquitto does not provide a precision for packets logging below the
second. However, the time difference between the transmission of the packet and its
reception on the broker is not higher than a second, as verified on the Mosquitto log file.
Therefore, considering symmetrical links and a negligible delay for the communication
between the clients and the broker on the same network, the communication delay between
the broker and the smart object was estimated as

TNB−IoT =
T2 − T1 − ∆

2
,

in which ∆ represents the time elapsing between the reception of the message on the board
and the transmission of a message toward the broker.

5. Results

The performance of the developed smart fans was monitored using Amazon Cloud-
watch and forcing a situation with frequent calls to Lambda. By setting a refresh time
of 1 min for the OutState topic, the Lambda function responsible for updating the state
database is called once every minute by the AWS IoT rule that handles messages received
on the OutState topic. The function simply parses the JSON message forwarded to it by
AWS IoT core, containing the new states and the identifier of the smart object, and updates
a DynamoDB table with this new information, also increasing a usage atomic counter on
the table to keep track of the usage of each smart device. Such a frequent refresh time
might be incompatible with NB-IoT, given the high transmission load compared to the
relatively low throughput expected of applications using this protocol, but more suitable
to WiFi implementation. Furthermore, configuring the device so that the OutState topic
is refreshed only when there is a state variable change is an implementation choice with
an acceptable load for NB-IoT, and possibly a more realistic work condition for the smart
home object. In the case of the Cloudwatch evaluation, the goal was to evaluate a situa-
tion with frequent calls to the serverless Lambda function; therefore, the number of state
updates was incremented.

The results of the evaluation are shown in Figures 6 and 7. The device was left on
for about 24 h and the Cloudwatch Lambda insights service was used to keep track of
various parameters. Figure 6 shows the median, 90th percentile, and maximum duration of
Lambda function calls, computed in intervals of 5 min. Figure 7 shows the maximum CPU
usage time and network load during 24 h, computed in 5-min intervals.

The spikes in duration correspond to “cold starts” that were also recorded by Cloud-
watch. A cold start is the time required to allocate cloud resources to instantiate a Lambda
function environment for the first time. Each Lambda function is only kept “warm” for
a certain amount of time, requiring a new, prolonged startup to instantiate a new execution
environment once the execution environment turns “cold”. Setting up provisioned concur-
rency can help mitigate the effect of cold starts when there are multiple devices invoking
the Lambda function.

The results of the experimental evaluation carried out to evaluate the use of narrow-
band IoT to send MQTT messages through MQTT clients are shown in Figure 8. The delay
has a mean value of 0.447 s, with occasional spikes of up to 11.41 s. The 90th percentile is
0.527 s, and the standard deviation is 0.938 s. The contribution of ∆ is negligible and has
minimal variations across multiple repetitions.

To investigate the reason behind the spikes, the experiment was repeated keeping
track of packet numbers and MQTT acknowledgment (ACK) messages received by the
board. Having set the MQTT quality of service to 1, the MQTT broker forwards an ACK
message toward the board whenever a message has been published correctly. The NB-IoT
board firmware was therefore slightly modified so that, after an ACK is received from
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the broker, a second MQTT message containing the current ACK number and ∆ is also
immediately published on Topic2. Client 2 therefore keeps track of the packet numbers,
their associated timestamps, and the ACK numbers, besides computing the time difference
between the timestamp of reception and the timestamp sent by Client 1, as in the previous
experimental setup. The new experiment flow is detailed in Figure 9.

Figure 6. Median, 90th percentile, and maximum duration of a lambda function calls, computed in
intervals of 5 min.

Figure 7. Maximum CPU (top) and network (bottom) usage during the Lambda function testing,
computed in intervals of 5 min.



Sensors 2023, 23, 4459 12 of 16

Figure 8. Estimated latency from the NB-IoT device to the MQTT broker.

Figure 9. Sequence diagram of the experiment used to investigate latency spikes by keeping track of
packet numbers and ACK messages.

The iteration of the experiment described in the Figure comprises the following steps.
At first, a packet P1 containing a timestamp T1 and packet number N1 = 1 is sent to the
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broker. P1 is then forwarded by the NB-IoT board and is correctly acknowledged; therefore,
nACK1 is also set to 1 and sent to Client 2. The difference between T1 and the timestamp of
reception (T2) is computed by Client 2 and is referred to as T21 in the figure. The delay in
this case is below a reasonable value, i.e., not corresponding to a latency spike. During the
following transmission, no ACK is received for packet P2, and thus, nACK is not increased
and P2 is reinserted in the output queue. At the third transmission, the board sends both
P2 and the new P3 packet and receives an ACK for both messages. nACK for P3 is not
set to 3 in this case to keep track of the previously lost ACK message, meaning that both
P2 and P3 have an associated nACK = nACK2 = 2. By looking at log entries on Client 2
where a packet has an associated packet number that is different from its ACK number, it is
therefore possible to find packets for which the previous ACK message was not received
by the board.

These packets also correspond to spikes in latency in the resulting latency graph,
meaning that the spikes are most likely due to the development of an output queue in the
NB-IoT board. The loss of an ACK message could be because the publish message did not
reach the broker or the ACK message from the broker was lost in transmission. In this
last case, since MQTT QoS is set to 1, there is no guarantee that each message will not be
forwarded twice toward Client 2. Client 2 does not receive any duplicate message, meaning
that the reason for a lack of ACK messages on the NB-IoT board is most likely because
the original publish message traveling on the NB-IoT network was lost. The average loss
across the two experiments is about 0.8%. The latency for the second experiment was in
line with the previous one, even if slightly lower (0.3845 s).

6. Conclusions

In this paper, a generalized and flexible framework for smart object applications in
a smart home environment was proposed, leveraging MQTT, the serverless computing
platform Amazon Lambda, Amazon ASK, and NB-IoT. The framework consists of smart
objects receiving messages from the cloud through a dedicated message-exchange protocol
and interactive vocal interfaces, with serverless functions deployed on the cloud to monitor
and control the objects. A practical use case based on this framework was also developed,
prototyped, and tested. The smart object, a smart kitchen fan, is equipped with a NB-IoT
module and makes use of a custom command exchange protocol based on MQTT. A vocal
interface was developed using Amazon Alexa and Lambda, enabling vocal control of
all the smart object’s controllable states. The suitability of NB-IoT for MQTT messages
dispatching was tested and showed a good latency performance, excluding some peaks
that were evaluated and traced back to the formation of MQTT queues on the sender due
to lost packets. Excluding cold starts, Lambda execution times are below 200 ms, positively
contributing to an overall quasi-real time interaction between users and the smart object.
Such a connected object could integrate additional customized services such as predictive
maintenance and consumption control, enabled by cellular connectivity and simplified by
resource provisioning on the cloud.
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